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Abstract. Affirming a conjecture of Erdös and Rényi we prove that for any (real

number) c1 > 0 for some c2 > 0, if a graph G has no c1(log n) nodes on which the

graph is complete or edgeless (i.e. G exemplifies |G| 9 (c1 log n)22) then G has at

least 2c2n non-isomorphic (induced) subgraphs.
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§0 Introduction

Erdös and Rényi conjectured (letting I(G) denote the number of (induced) sub-
graphs of G up to isomorphism and Rm(G) be the maximal number of nodes on
which G is complete or edgeless):

(∗) for every c1 > 0 for some c2 > 0 for n large enough for every graph Gn with
n points⊗

Rm(Gn) < c1(log n)⇒ I(Gn) ≥ 2c2n.

They succeeded to prove a parallel theorem replacing Rm(G) by the bipartite ver-
sion:

Bipartite(G) =: Max

{
k : there are disjoint sets A1, A2 of k nodes of G,

such that (∀x1 ∈ A1)(∀x2 ∈ A2)({x1, x2} an edge) or

(∀x1 ∈ A1)(∀x2 ∈ A2)({x1, x2} is not an edge)

}
.

It is well known that Rm(Gn) ≥ 1
2 log n. On the other hand, Erdös [Er7] proved

that for every n for some graph Gn, Rm(Gn) ≤ 2 log n. In his construction Gn is
quite a random graph; it seems reasonable that any graph Gn with small Rm(Gn)
is of similar character and this is the rationale of the conjecture.

Alon and Bollobas [AlBl] and Erdös and Hajnal [EH9] affirm a conjecture of
Hajnal:

(∗) if Rm(Gn) < (1− ε)n then I(Gn) > Ω(εn2)
and Erdös and Hajnal [EH9] also prove

(∗) for any fixed k, if Rm(Gn) < n
k then I(Gn) > nΩ(

√
k).

Alon and Hajnal [AH] noted that those results give poor bounds for I(Gn) in the
case Rm(Gn) is much smaller than a multiple of log n, and prove an inequality
weaker than the conjecture:

(∗) I(Gn) ≥ 2n/2t20 log(2t)

when t = Rm(Gm)

so in particular if t ≥ c log n they got I(Gn) ≥ 2n/(log n)c log log n

, that is the
constant c2 in the conjecture is replaced by (log n)c log log n for some c.

I thank Andras Hajnal for telling me about the problem and Mariusz Rabus and
Andres Villaveces for some corrections.
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§1

1.1 Notation. log n = log2n.
Let c denote a positive real.
G,H denote graphs, which are here finite, simple and undirected.
V G is the set of nodes of the graph G.
EG is the set of edges of the graph G so G = (V G, EG), EG is a symmetric,
irreflexive relation on V G i.e. a set of unordered pairs. So {x, y} ∈ EG, xEy, {x, y}
an edge of G, all have the same meaning.
H ⊆ G means that H is an induced subgraph of G; i.e. H = G � V H .
Let |X| be the number of elements of the set X.

1.2 Definition. I(G) is the number of (induced) subgraphs of G up to isomor-
phisms.

1.3 Theorem. For any c1 > 0 for some c2 > 0 we have (for n large enough): if
G is a graph with n edges and G has neither a complete subgraph with ≥ c1 log n
nodes nor a subgraph with no edges with ≥ c1 log n nodes then I(G) ≥ 2c2n.

1.4 Remark. 1) Suppose n9 (r1, r2) and m are given. Choose a graph H on
{0, . . . , n− 1} exemplifying n9 (r1, r2)2 (i.e. with no complete subgraphs with r1

nodes and no independent set with r2 nodes). Define the graph G with set of nodes
V G = {0, . . . ,mn− 1} and set of edges EG = {{mi1 + `1,mi2 + `2} : {i1, i2} ∈ EH

and `1, `2 < m}. Clearly G has nm nodes and it exemplifies mn 9 (r1,mr2). So
I(G) ≤ (m+ 1)n ≤ 2n log2(m+1) (as the isomorphism type of G′ ⊆ G is determined
by 〈|G′ ∩ [mi,mi+m)| : i < n〉). We conjecture that this is the worst case.

2) Similarly if n 9
([

r1

r2

])2

2

; i.e. there is a graph with n nodes and no disjoint

A1, A2 ⊆ V G, |A1| = r1, |A2| = r2 such that A1×A2 ⊆ EG or (A1×A2)∩EG = ∅,

then there is G exemplifying mn→
([

n1m
r2m

])2

2

such that I(G) ≤ 2n log(m+1).

Proof. Let c1, a real > 0, be given.
Letm∗1 be1 such that for every n (large enough) n

(log n)2log logn → (c1 log n, c1
m∗

1
log n).

[Why does it exist? By Erdös and Szekeres [ErSz]
(
n1+n2−2

n−1

)
→ (n1, n2)2 and

hence for any k letting n1 = km, n2 = m we have
(
km+m−2

m−1

)
→ (km,m)2, now(

m+m−2
m−1

)
≤ 22(m−1) and

(
(k + 1)m+m− 2

m− 1

)/(km+m− 2

m− 1

)
=

m−2∏
i=0

(1 +
m

km+ i
)

≤
m−2∏
i=0

(1 +
m

km
) = (1 +

1

k
)m−1

1the log log n can be replaced by a constant computed from m∗
1,m

∗
2, c` later
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hence
(
km+m−2

m−1

)
≤

(
4 ·

k−2∏
`=0

(1 +
1

`+ 1
)

)m−1

, and choose k large enough (see be-

low). For (large enough) n we let m = (c1 log n)/k, more exactly the first integer
is not below this number so

log

(
km+m− 2

m− 1

)
≤ log

(
4 ·

k−2∏
`=0

(1 +
1

`+ 1
)

)m−1

≤ (log n) · c1
k
· log

(
4 ·

k−2∏
`=0

(1 +
1

`+ 1
)

)
≤ 1

2
(log n)

(the last inequality holds as k is large enough); lastly let m∗1 be such a k. Alterna-
tively, just repeat the proof of Ramsey’s theorem.]

Let m∗2 be minimal such that m∗2 → (m∗1)2
2.

Let c2 <
1

m∗
2

(be a positive real).

Let c3 ∈ (0, 1)R be such that 0 < c3 <
1

m∗
2
− c2.

Let c4 ∈ R+ be 4/c3 (even (2 + ε)/c3 suffices).

Let c5 = 1−c2−c3
m∗

2
(it is > 0).

Let ε ∈ (0, 1)R be small enough.

Now suppose

(∗)0 n is large enough, G a graph with n nodes and I(G) < 2c2n.

We choose A ⊆ V G in the following random way: for each x ∈ V G we flip a coin
with probability c3/log n, and let A be the set of x ∈ V G for which we succeed.
For any A ⊆ V G let ≈A be the following relation on V G, x ≈A y iff x, y ∈ V G

and (∀z ∈ A)[zEGx ↔ zEGy]. Clearly ≈A is an equivalence relation; and let
≈′A=≈A� (V G\A).

For distinct x, y ∈ V G what is the probability that x ≈A y? Let

Dif(x, y) =: {z : z ∈ V G and zEGx↔ ¬zEGy},

and dif(x, y) = |Dif(x, y)|, so the probability of x ≈A y is(
1− c3

log n

)dif(x,y)

∼ e−c3 dif(x,y)/log n.

Hence the probability that for some x 6= y in V G satisfying dif(x, y) ≥ c4(log n)2

we have x ≈A y is at most(
n

2

)
e−c3(c4(log n)2)/log n ≤

(
n

2

)
e−4 log n ≤ 1/n2

(remember c3c4 = 4 and (4/log e) ≥ 2). Hence for some set A of nodes of G we
have

(∗)1 A ⊆ V G and A has ≤ c3
log n · n elements and A is non-empty and

(∗)2 if x ≈A y then dif(x, y) ≤ c4(log n)2.
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Next

(∗)3 ` =: |(V G\A)/ ≈A | (i.e. the number of equivalence classes of
≈′A=≈A� (V G\A)) is < (c2 + c3) · n

[why? let C1, . . . , C` be the ≈′A-equivalence classes. For each u ⊆ {1, . . . , `}
let Gu = G � (A∪

⋃
i∈u

Ci). So Gu is an induced subgraph of G and (Gu, c)c∈A

for u ⊆ {1, . . . , `} are pairwise non- isomorphic structures, so

2` = |{u : u ⊆ {1, . . . , `}}| ≤ |{f : f a function from A into V G}| × I(G)

≤ n|A| × I(G),

hence (first inequality by the hypothesis toward contradiction)

2c2n > I(G) ≥ 2` × n−|A| ≥ 2` · n−c3n/log n

= 2` × 2−c3n

hence

c2n > `− c3n so ` < (c2 + c3)n and we have gotten (∗)3].

Let {Bi : i < i∗} be a maximal family such that:

(a) each Bi is a subset of some ≈′A-equivalence class

(b) the Bi’s are pairwise disjoint

(c) |Bi| = m∗1
(d) G � Bi is a complete graph or a graph with no edges.

Now if x ∈ V G\A then (x/ ≈′A)\
⋃
i<i∗

Bi has < m∗2 elements (as m∗2 → (m∗1)2
2 by

the choice of m∗2 and “〈Bi : i < i∗〉 is maximal”). Hence

n = |V G| = |A|+ |
⋃
i<i∗

Bi|+ |V G\A\
⋃
i<i∗

Bi|

≤ c3
n

log n
+m∗1 × i∗ + |(V G\A)/ ≈′A | ×m∗2

≤ c3
n

log n
+m∗1 × i∗ +m∗2(c2 + c3)n

= c3
n

log n
+m∗1 × i∗ + (1−m∗2c5) · n

hence

(∗)4 i∗ ≥ n
m∗

1
(m∗2c5 − c3

log n ).
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For i < i∗ let

Bi = {xi,0, xi,2, . . . , xm∗
1−1},

and let

ui =:

{
j < i∗ :j 6= i and for some `1 ∈ {1, . . . ,m∗1 − 1} and

`2 ∈ {0, . . . ,m∗1 − 1} we have

xj,`2 ∈ Dif(xi,0, xi,`1)

}
.

Clearly

(∗)5 |ui| ≤ m∗1(m∗1 − 1)c4(log n)2.

Next we can find W such that

(∗)6 (i) W ⊆ {0, . . . , i∗ − 1}
(ii) |W | ≥ i∗/(m∗1(m∗1 − 1)c4(log n)2)

(iii) if i 6= j are members of W then j /∈ ui.

[Why? By de Bruijn and Erdös [ErBr]; however we shall give a proof when we
weaken the bound. First weaken the demand to

(iii)′ i ∈W & j ∈W & i < j ⇒ j /∈ ui.
This we get as follows: choose the i-th member by induction. Next we find
W ′ ⊆ W such that W ′ satisfies (iii); then choose this is done similarly but
we choose the members from the top down (inside W ) so the requirement
on i is i ∈ W & (∀j)(i < j ∈ W ′ → i /∈ uj) so our situation is similar.
So we have proved the existence, except that we get a somewhat weaker
bound, which is immaterial here].

Now for some W ′ ⊆W

(∗) W ′ ⊆ W, |W ′| ≥ 1
2 |W |, and all the G � Bi for i ∈ W ′ are complete graphs

or all are independent sets.

By symmetry we may assume the former.
Let us sum up the relevant points:

(A) W ′ ⊆ {0, . . . , i∗ − 1},
|W ′| ≥ (m∗

2c5−
c3

log n )·n
2(m∗

1)2(m∗
1−1)c4(log n)2

(B) G � Bi is a complete graph for i ∈W ′

(C) Bi = {xi,` : ` < m∗1} without repetition and
i1, i2 < i∗, `1, `2 < m∗1 ⇒ xi1,`1E

Gxi2,`2 ≡ xi1,0EGxi2,0.
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But by the choice of m∗1 (and as n is large enough hence |W ′| is large enough) we

know |W ′| →
(

c1
m∗

1
log n, c11 log n

)2

.

We apply it to the graph {xi,0 : i ∈W ′}.
So one of the following occurs:

(α) there is W ′′ ⊆ W ′ such that |W ′′| ≥ c1
m∗

1
log n and {xi,0 : i ∈ W ′′} is a

complete graph

or

(β) there is W ′′ ⊆W ′ such that |W ′| ≥ c1(log n) and {xi,0 : i ∈W ′′} is a graph
with no edges.

Now if possibility (β) holds, then {xi,0 : i ∈W ′′} is as required and if possibility
(α) holds then {xi,t : i ∈W ′′, t < m∗1} is as required (see (C) above).
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