ON THE NUMBER OF ELEMENTARY SUBMODELS OF AN UNSUPERSTABLE HOMOGENEOUS STRUCTURE

Tapani Hyttinen and Saharon Shelah*

Abstract

We show that if **M** is a stable unsuperstable homogeneous structure, then for most $\kappa < |\mathbf{M}|$, the number of elementary submodels of **M** of power κ is 2^{κ} .

Through out this paper we assume that \mathbf{M} is a stable unsuperstable homogeneous model such that $|\mathbf{M}|$ is strongly inaccessible (= regular and strong limit). We can drop this last assumption if instead of all elementary submodels of \mathbf{M} we study only suitably small ones. Notice also that we do not assume that $Th(\mathbf{M})$ is stable. We assume that the reader is familiar with [HS] and use all the notions and results of it freely. In [Hy1] a strong nonstructure theorem was proved for the elementary submodels of \mathbf{M} assuming the existence of Skolem-functions. In this paper we drop the assumption on the Skolem-functions and prove the following nonstructure theorem.

1 Theorem. Let λ be the least regular cardinal $\geq \lambda(\mathbf{M})$. Assume κ is an uncountable regular cardinal $(<|\mathbf{M}|)$ such that $\kappa > \lambda$ and $\kappa^{\omega} = \kappa$. Then there are models (=elementary submodels of \mathbf{M}) \mathcal{A}_i , $i < 2^{\kappa}$, such that for all $i < 2^{\kappa}$, $|\mathcal{A}_i| = \kappa$ and for all $i < 2^{\kappa}$, $\mathcal{A}_i \ncong \mathcal{A}_i$.

See [Hy1] for nonstructure results in the case M is unstable.

We prove Theorem 1 in a serie of lemmas. Let λ and κ be as in Theorem 1. By λ -saturated, λ -primary etc., we mean $F_{\lambda}^{\mathbf{M}}$ -saturated, $F_{\lambda}^{\mathbf{M}}$ -primary etc. Notice that \mathbf{M} is λ -stable.

* Research supported by the United States-Israel Binational Science Foundation. Publ. 632.

The notion λ -construction (= $F_{\lambda}^{\mathbf{M}}$ -construction) is defined as general F-construction is defined in [Sh].

2 Lemma. Assume $(C, \{a_i | i < \alpha\}, \{A_i | i < \alpha\})$ is a λ -construction and σ is a permutation of α . Let $b_i = a_{\sigma(i)}$ and $B_i = B_{\sigma(i)}$. If for all $i < \alpha$, $B_i \subseteq C \cup \{b_i | j < i\}$, then $(C, \{b_i | i < \alpha\}, \{B_i | i < \alpha\})$ is a λ -construction.

Proof. Exactly as [Sh] IV Theorem 3.3. \Box

We write $\kappa^{\leq \omega}$ for $\{\eta : \alpha \to \kappa | \alpha \leq \omega\}$, $\kappa^{<\omega}$ and $\kappa^{\omega} = \kappa^{=\omega}$ are defined similarly (of course these have also the other meaning, but it will be clear from the context, which one we mean). Let $J \subseteq \kappa^{\leq \omega}$ be such that it is closed under initial segments. If $\eta, \xi \in J$ then by $r'(\eta, \xi)$ we mean the longest element of J which is an initial segment of both η and ξ . If $u, v \in I = P_{\omega}(J)$ (=the set of all finite subsets of J) then by r(u, v) we mean the largest set R which satisfies

- (i) $R \subseteq \{r'(\eta, \xi) | \eta \in u, \xi \in v\}$
- (ii) if $u, v \in R$ and u is an initial segment of v, then u = v.

We order I by $u \leq v$ if for every $\eta \in u$ there is $\xi \in v$ such that η is an initial segment of ξ i.e. $r(u,v) = r(u,u) \ (= \{ \eta \in u | \neg \exists \xi \in u (\eta \text{ is a proper initial segment of } \xi) \})$.

- **3 Definition.** Assume $J \subseteq \kappa^{\leq \omega}$ is closed under initial segments and $I = P_{\omega}(J)$. Let $\Sigma = \{A_u | u \in I\}$ be an indexed family of subsets of \mathbf{M} of power $< |\mathbf{M}|$. We say that Σ is strongly independent if
 - (i) for all $u, v \in I$, $u \leq v$ implies $A_u \subseteq A_v$,
- (ii) if $u, u_i \in I$, i < n, and $B \subseteq \bigcup_{i < n} A_{u_i}$ has power $< \lambda$, then there is an automorphism $f = f_{(u,u_0,...,u_{n-1})}^{\Sigma,B}$ of \mathbf{M} such that $f \upharpoonright (B \cap A_u) = id_{B \cap A_u}$ and $f(B \cap u_i) \subseteq A_{r(u,u_i)}$.

The model construction in Lemma 4 belowe is a generalized version of the construction used in [Sh] XII.4.

- **4 Lemma.** Assume that $\Sigma = \{A_u | u \in I\}$, $I = P_{\omega}(J)$, is strongly independent. Then there are sets $A_u \subseteq \mathbf{M}$, $u \in I$, such that
 - (i) for all $u, v \in I$, $u \leq v$ implies $A_u \subseteq A_v$,
 - (ii) for all $u \in I$, A_u is λ -primary over A_u , (and so by (i), $\cup_{u \in I} A_u$ is a model),
- (iii) if $v \leq u$, then A_u is λ -atomic (= $F_{\lambda}^{\mathbf{M}}$ -atomic) over $\cup_{u \in I} A_u$ and λ -primary over $A_v \cup A_u$,
- (iv) if $J' \subseteq J$ is closed under initial segments and $u \in P_{\omega}(J')$, then $\bigcup_{v \in P_{\omega}(J')} A_v$ is λ -constructible over $A_u \cup \bigcup_{v \in P_{\omega}(J')} A_v$.
- **Proof.** Let $\{u_i | i < \alpha^*\}$ be an enumeration of I such that $u \leq v$ and $v \not\leq u$ implies i < j. It is easy to see that we can choose α , $\gamma_i < \alpha$ for $i < \alpha^*$, a_{γ} and B_{γ} for $\gamma < \alpha$, and $s : \alpha \to I$ so that
 - (a) $\gamma_0 = 0$ and $(\gamma_i)_{i < \alpha^*}$ is increasing and continuous,
 - (b) if $\gamma_i \leq \gamma < \gamma_{i+1}$, then $s(\gamma) = u_i$,
- (c) for all $\gamma < \alpha$, $|B_{\gamma}| < \lambda$ and if we write for $\gamma \leq \alpha$, $A_u^{\gamma} = A_u \cup \{a_{\delta} | \delta < \gamma, \ s(\delta) \leq u\}$, then $B_{\gamma} \subseteq A_{s(\gamma)}^{\gamma}$,
 - (d) for all $\gamma < \alpha$, if we write $A^{\gamma} = \bigcup_{u \in I} A_u^{\gamma}$, then $t(a_{\gamma}, B_{\gamma})$ λ -isolates $t(a_{\gamma}, A^{\gamma})$,

- (e) for all $i < \alpha^*$, there are no a and $B \subseteq A_{u_i}^{\gamma_{i+1}}$ of power $< \lambda$ such that t(a, B) λ -isolates $t(a, A^{\gamma_{i+1}})$,
- (f) if $a_{\delta} \in B_{\gamma}$, then $B_{\delta} \subseteq B_{\gamma}$. For all $u \in I$, we define $A_u = A_u^{\alpha}$. We show that these are as wanted.
- (i) follows immediately from the definitions and for (ii) it is enough to prove the following claim (Claim (III) implies (ii) easily).

Claim. For all $i < \alpha^*$,

- (I) $\Sigma_i = \{A_u^{\gamma_i} | u \in I\}$ is strongly independent, we write $f_{(u,u_0,\dots,u_{n-1})}^{i,B}$ instead
- (II) the functions $f_{(u,u_0,\ldots,u_{n-1})}^{i,B}$ can be chosen so that if $j < i, u, u_k \in I, k < n$, $B \subseteq \bigcup_{i < n} A_{u_k}^{\gamma_i}$ has power $< \lambda$ and $a_{\gamma} \in B$ implies $B_{\gamma} \subseteq B$ and $B' = B \cap A^{\gamma_j}$, then $f_{(u,u_0,\dots,u_{n-1})}^{i,B} \upharpoonright B' = f_{(u,u_0,\dots,u_{n-1})}^{j,B'} \upharpoonright B',$ (III) if j < i, then $A_{u_j}^{\gamma_{j+1}}$ is λ -saturated,

Proof. Notice that if $a_{\gamma} \in A_u^{\delta} \cap A_v^{\delta}$, then $a_{\gamma} \in A_{r(u,v)}^{\delta}$. Similarly we see that the first half of (I) in the claim is always true (i.e. if $u \leq v$ then for all $\delta < \alpha$, $A_u^{\delta} \subseteq A_v^{\delta}$.) We prove the rest by induction on $i < \alpha^*$. We notice first that it is enough to prove the existence of $f_{(u,u_0,\ldots,u_{n-1})}^{i,B}$ only in the case when B satisfies

(*) if $a_{\gamma} \in B$, then $B_{\gamma} \subseteq B$.

For i=0, there is nothing to prove. If i is limit, then the claim follows easily from the induction assumption (use (II) in the claim). So we assume that the claim holds for i and prove it for i+1. We prove first (I) and (II). For this let $u, u_k \in I$, k < n, and $B \subseteq \bigcup_{k < n} A_{u_k}^{\gamma_{i+1}}$ be of power $< \lambda$ such that (*) above is satisfied. If for all $k < n, s(\gamma_i) \not \leq u_k$, then (I) and (II) in the claim follow immediately from the induction assumption. So we may assume that $s(\gamma_i) \leq u_0$. Let $B' = B \cap (\bigcup_{k < n} A_{u_k}^{\gamma_i})$. By the induction assumption there is an automorphism $f = f_{(u,u_0,...,u_{n-1})}^{i,B'}$ of **M** such that $f \upharpoonright (B' \cap A_u^{\gamma_i}) = id_{B' \cap A_u^{\gamma_i}}$ and $f(B' \cap A_{u_k}^{\gamma_i}) \subseteq A_{r(u,u_k)}^{\gamma_i}$. If $s(\gamma_i) \leq u$, then, by (*) and (d) in the construction, we can find an automorphism $g = f_{(u,u_0,\dots,u_{n-1})}^{i+1,B}$ of **M** such that $g \upharpoonright B' = f \upharpoonright B'$ and $g \upharpoonright (B - B') = id_{B - B'}$. Clearly this is as wanted.

So we may assume that $s(\gamma_i) \not\leq u$. Since $s(\gamma_i) \leq u_0$, $u_0 \not\leq r(u, u_0)$. By the choise of the enumeration of I there is j < i such that $u_j = r(u, u_0)$. Then by the induction assumption (part (III)), $A_{u_j}^{\gamma_{i+1}} = A_{u_j}^{\gamma_i} = A_{u_j}^{\gamma_{j+1}}$ is λ -saturated and by the choise of f, $f(B' \cap A_{u_0}^{\gamma_i}) \subseteq A_{u_j}^{\gamma_i}$. So by (d) in the construction and (*) above, there are no difficulties in finding the required automorphism $f_{(u,u_0,\dots,u_{n-1})}^{i+1,B}$.

So we need to prove (III): For this it is enough to show that $A_{u_i}^{\gamma_{i+1}}$ is λ -saturated. Assume not. Then there are a and B such that $B \subseteq A_{u_i}^{\gamma_{i+1}}$, $|B| < \lambda$ and t(a, B) is not realized in $A_{u_i}^{\gamma_{i+1}}$. Since $\lambda \geq \lambda(\mathbf{M})$, there are b and C such that $B \subseteq C \subseteq A_{u_i}^{\gamma_{i+1}}$, $|C| < \lambda$, t(b,B) = t(a,B) and t(b,C) λ -isolates $t(b,A_{u_i}^{\gamma_{i+1}})$. But since (I) in the claim holds for i+1, t(b,C) λ -isolates $t(b,A^{\gamma_{i+1}})$. This contradicts (e) in the construction. □ Claim

(iii) and (iv) follow immediately from the construction, Claim (III) and Lemma 2. \square

Since **M** is unsuperstable, by [HS] Lemma 5.1, there are a and $\lambda(\mathbf{M})$ -saturated models \mathcal{A}_i , $i < \omega$, such that

- (i) if $j < i < \omega$, then $A_j \subseteq A_i$,
- (ii) for all $i < \omega$, $a \not\downarrow_{\mathcal{A}_i} \mathcal{A}_{i+1}$.

It is easy to see that we may choose the models \mathcal{A}_i so that they are λ -saturated and of power λ . Let \mathcal{A}_{ω} be λ -primary over $a \cup \bigcup_{i < \omega} \mathcal{A}_i$. As in [Hy1] Chapter 1, for all $\eta \in \kappa^{\leq \omega}$, we can find \mathcal{A}_{η} such that

- (a) for all $\eta \in \kappa^{\leq \omega}$, there is an automorphism f_{η} of \mathbf{M} such that $f_{\eta}(\mathcal{A}_{length(\eta)}) = \mathcal{A}_{\eta}$,
 - (b) if η is an initial segment of ξ , then $f_{\xi} \upharpoonright \mathcal{A}_{length(\eta)} = f_{\eta} \upharpoonright \mathcal{A}_{length(\eta)}$,
- (c) if $\eta \in \kappa^{<\omega}$, $\alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{\leq \omega}$ such that $\eta \frown (\alpha)$ is an initial segment of ξ , then

$$\cup_{\xi\in X}\mathcal{A}_{\xi}\downarrow_{\mathcal{A}_{\eta}}\cup_{\xi\in(\kappa^{\leq\omega}-X)}\mathcal{A}_{\xi}.$$

For all $\eta \in \kappa^{\omega}$, we let $a_{\eta} = f_{\eta}(a)$.

5 Lemma. Assume $\eta \in \kappa^{<\omega}$, $\alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{<\omega}$ such that $\eta \frown (\alpha)$ is an initial segment of ξ . Let $B \subseteq \bigcup_{\xi \in (\kappa^{\leq \omega} - X)} \mathcal{A}_{\xi}$ and $C \subseteq \bigcup_{\xi \in X} \mathcal{A}_{\xi}$ be of power $< \lambda$. Then there is $C' \subseteq \mathcal{A}_{\eta}$ such that t(C', B) = t(C, B).

Proof. By [Hy2] Lemma 8 (or [HS] Lemma 3.15 plus little work) we can find $D \subseteq \mathcal{A}_{\eta}$ of power $< \lambda$ such that for all $b \in B$, $t(b, \mathcal{A}_{\eta} \cup C)$ does not split over D. So if we choose $C' \subseteq \mathcal{A}_{\eta}$ so that t(C', D) = t(C, D), then C' is as wanted. \square

6 Lemma. Assume $J \subseteq \kappa^{\leq \omega}$ and $I = P_{\omega}(J)$. For all $u \in I$, define $A_u = \bigcup_{\eta \in u} A_{\eta}$. Then $\{A_u | u \in I\}$ is strongly independent.

Proof. Follows immediately from Lemma 5. \square

Let $S \subseteq \{\alpha < \kappa | cf(\alpha) = \omega\}$. By J_S we mean the set

$$\kappa^{<\omega} \cup \{\eta \in \kappa^{\omega} | \eta \text{ is strictly increasing and } \cup_{i<\omega} \eta(i) \in S\}.$$

Let $I_S = P_{\omega}(J_S)$ and \mathcal{A}_S be the model given by Lemmas 4 and 6 for $\{A_u | u \in I_S\}$.

7 Lemma.

(i) Assume $\eta \in \kappa^{<\omega}$, $u \in I_S$, $\alpha < \kappa$, $\{\eta\} \leq u$ and $\{\eta \frown (\alpha)\} \not\leq u$. Let X be the set of theose $\xi \in J_S$ such that $\eta \frown (\alpha)$ is an initial segment of ξ . Then

$$\bigcup_{\xi \in X} \mathcal{A}_{\xi} \downarrow_{\mathcal{A}_u} \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi}.$$

(ii) Assume $\alpha \in \kappa$, $u \in I_S$ and $v \in P_{\omega}(J_S \cap \alpha^{\leq \omega})$ is maximal such that $v \leq u$. Then

$$\mathcal{A}_u \downarrow_{\mathcal{A}_v} \cup_{w \in P_\omega(J_S \cap \alpha^{\leq \omega})} \mathcal{A}_w.$$

Proof. (i): Let $C = \bigcup_{\xi \in X} \mathcal{A}_{\xi}$. By (c) in the definition of \mathcal{A}_{ξ} , $\xi \in \kappa^{\leq \omega}$, there is C' such that $t(C', \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi}) = t(C, \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi})$ and $C' \downarrow_{\mathcal{A}_{\eta}} \mathcal{A}_u \cup \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi}$. So the claim follows from the first half of Lemma 4 (iii).

(ii): By (i), $A_u \downarrow_{\mathcal{A}_v} \cup_{w \in P_\omega(J_S \cap \alpha \leq \omega)} A_w$ from which the claim follows by Lemma 4 (iii) and (iv). \square

8 Lemma. Assume $S, R \subseteq \{\alpha < \kappa | cf(\alpha) = \omega\}$ are such that $(S-R) \cup (R-S)$ is stationary. Then A_S is not isomorphic to A_R .

Proof. Assume not. Let $f: \mathcal{A}_S \to \mathcal{A}_R$ be an isomorphism. We write I_S^{α} for the set of those $u \in I_S$, which satisfy that for all $\xi \in u$, $\bigcup_{i < length(\xi)} \xi(i) < \alpha$. I_R^{α} is defined similarly. Then we can find α and a_i , $i < \omega$, such that $\eta = (a_i)_{i < \omega}$ is strictly increasing, for all $i < \omega$, $f(\bigcup_{u \in I_S^{\alpha_i}} \mathcal{A}_u) = \bigcup_{u \in I_R^{\alpha_i}} \mathcal{A}_u$ and $\alpha = \bigcup_{i < \omega} \alpha_i \in (S - R) \cup (R - S)$. Without loss of generality we may assume that $\alpha \in S - R$, and so $\eta \in J_S - J_R$. Let $\mathcal{A}_S^{\alpha_i} = \bigcup_{u \in I_S^{\alpha_i}} \mathcal{A}_u$ and $\mathcal{A}_R^{\alpha_i} = \bigcup_{u \in I_R^{\alpha_i}} \mathcal{A}_u$. Then it easy to see that for all $i < \omega$, $a_{\eta} \not\downarrow_{\mathcal{A}_S^{\alpha_i}} \mathcal{A}_S^{\alpha_{i+1}}$ (use [HS] Lemma 3.8 (iii)). So there is $u \in I_R$ such that for all $i < \omega$, $\mathcal{A}_u \not\downarrow_{\mathcal{A}_R^{\alpha_i}} \mathcal{A}_R^{\alpha_{i+1}}$. Since $\alpha \notin R$, this contradicts Lemma 7 (ii). \square

We can now prove Theorem 1: By [Sh] Appendix 1 Theorem 1.3 (2) and (3), there are stationary $S_i \subseteq \{\alpha < \kappa | cf(\alpha) = \omega\}$, $i < \kappa$, such that for all $i < j < \kappa$, $S_i \cap S_j = \emptyset$. For all $X \subseteq \kappa$, let $\mathcal{A}_X = \mathcal{A}_{\cup_{i \in X} S_i}$. Then by Lemma 8, if $X \neq X'$, then \mathcal{A}_X is not isomorphic to $\mathcal{A}_{X'}$. Since $\kappa^{\omega} = \kappa$, $|\mathcal{A}_X| = \kappa$. \square Theorem 1.

References.

- [Hy1] T. Hyttinen, On nonstructure of elementary submodels of an unsuperstable homogeneous structure, Mathematical Logic Quarterly, to appear.
- [Hy2] T. Hyttinen, Generalizing Morley's theorem, to appear.
- [HS] T. Hyttinen and S. Shelah, Strong splitting in stable homogeneous models, to appear.
- [Sh] S. Shelah, Classification Theory, Stud. Logic Found. Math. 92, North-Holland, Amsterdam, 2nd rev. ed., 1990.

Tapani Hyttinen Department of Mathematics P.O. Box 4 00014 University of Helsinki Finland

Saharon Shelah Institute of Mathematics The Hebrew University Jerusalem Israel

Rutgers University Hill Ctr-Bush New Brunswick New Jersey 08903 U.S.A.