1. The proof of Theorem 0.1.

Main Lemma 1.1. Suppose that
(a) μ, λ are cardinals satisfying $\mu=\mu^{\aleph_{0}}, \lambda \leq 2^{\mu}$,
(b) \mathfrak{B} is a complete c.c.c. Boolean algebra,
(c) $x_{i} \in \mathfrak{B} \backslash\{0\}$ for $i<\lambda$,
(d) for each sequence $\left\langle\left(u_{i}, f_{i}\right): i<\lambda\right\rangle$ such that $u_{i} \in[\lambda]{ }^{\leq \aleph_{0}}, f_{i} \in u_{i} 2$ there are $n<\omega$ (but $n>0$) and $i_{0}<i_{1} \ldots<i_{n-1}$ in λ such that:
(α) the functions $f_{i_{0}}, \ldots, f_{i_{n-1}}$ are compatible,
(β) $\mathfrak{B} \models \bigcap_{\ell<n} x_{i_{\ell}}=0$.
Then
(\oplus) there are a σ-ideal I on $\mathcal{P}(\mu)$ and a σ-algebra \mathfrak{A} of subsets of μ extending I such that \mathfrak{A} / I satisfies the c.c.c. and the natural homomorphism $\mathfrak{A} \longrightarrow \mathfrak{A} / I$ cannot be lifted.

Proof Without loss of generality the algebra \mathfrak{B} has cardinality $\lambda^{\aleph_{0}}$ $\left(\leq 2^{\mu}\right)$. Let $\left\langle Y_{b}: b \in \mathfrak{B}\right\rangle$ be a sequence of subsets of μ such that any nontrivial countable Boolean combination of the Y_{b} 's is non-empty (possible by [1] as $\mu=\mu^{\aleph_{0}}$ and the algebra \mathfrak{B} has cardinality $\leq 2^{\mu}$; see background in [4]). Let \mathfrak{A}_{0} be the Boolean subalgebra of $\mathcal{P}(\mu)$ generated by $\left\{Y_{b}: b \in \mathfrak{B}\right\}$. So $\left\{Y_{b}: b \in \mathfrak{B}\right\}$ freely generates \mathfrak{A}_{0} and hence there is a unique homomorphism h_{0} from \mathfrak{A}_{0} into \mathfrak{B} satisfying $h_{0}\left(Y_{b}\right)=b$.

A Boolean term σ is hereditarily countable if σ belongs to the closure Σ of the set of terms $\bigcap_{i<i^{*}} y_{i}$ for $i^{*}<\omega_{1}$ under composition and under $-y$.

Let \mathcal{E} be the set of all equations \mathbf{e} of the form $0=\sigma\left(b_{0}, b_{1}, \ldots, b_{n}, \ldots\right)_{n<\omega}$ which hold in \mathfrak{B}, where σ is hereditarily countable. For $\mathbf{e} \in \mathcal{E}$ let $\operatorname{cont}(\mathbf{e})$ be the set of $b \in \mathfrak{B}$ mentioned in it (i.e. $\left\{b_{n}: n<\omega\right\}$) and let $Z_{\mathbf{e}} \subseteq \mu$ be the set $\sigma\left(Y_{b_{0}}, Y_{b_{1}}, \ldots, Y_{b_{n}}, \ldots\right)_{n<\omega}$.

Let I be the σ-ideal of $\mathcal{P}(\mu)$ generated by the family $\left\{Z_{\mathbf{e}}: \mathbf{e} \in \mathcal{E}\right\}$ and let \mathfrak{A}_{1} be the Boolean Algebra of subsets of $\mathcal{P}(\mu)$ generated by $I \cup\left\{Y_{b}: b \in \mathfrak{B}\right\}$.

Claim 1.1.1. $I \cap \mathfrak{A}_{0}=\operatorname{Ker}\left(h_{0}\right)$.
Proof of the claim: Plainly $\operatorname{Ker}\left(h_{0}\right) \subseteq I \cap \mathfrak{A}_{0}$. For the converse inclusion it is enough to consider elements of \mathfrak{A}_{0} of the form

$$
Y=\bigcap_{\ell=1}^{n} Y_{b_{\ell}}-\bigcup_{\ell=n+1}^{2 n} Y_{b_{\ell}} .
$$

If $\mathfrak{B}=$ " $\bigcap_{\ell=1}^{n} b_{\ell}-\bigcup_{\ell=n+1}^{2 n} b_{\ell}=0$ " then easily $h_{0}(Y)=0$. So assume that

$$
\mathfrak{B} \models " c=\bigcap_{\ell=1}^{n} b_{\ell}-\bigcup_{\ell=n+1}^{2 n} b_{\ell} \neq 0 ",
$$

and we shall prove $Y \notin I$. Let $Z \in I$, so for some $\mathbf{e}_{m} \in \mathcal{E}$ for $m<\omega$ we have $Z \subseteq \bigcup_{m<\omega} Z_{\mathbf{e}_{m}}$. Let g be a homomorphism from \mathfrak{B} into the 2element Boolean Algebra $\mathfrak{B}_{0}=\{0,1\}$ such that $g(c)=1$, and g respects all the equations \mathbf{e}_{m} (including those of the form $b=\bigcup_{k<\omega} b_{k}$; possible by the Sikorski theorem).

By the choice of the Y_{b} 's, there is $\alpha<\mu$ such that:

$$
\begin{gathered}
\text { if } b \in\left\{b_{\ell}: \ell=1, \ldots, 2 n\right\} \cup \underset{m<\omega}{\cup} \operatorname{cont}\left(\mathbf{e}_{m}\right) \text { then } \\
g(b)=1 \Leftrightarrow \alpha \in Y_{b} .
\end{gathered}
$$

So easily $\alpha \notin Z_{\mathbf{e}_{m}}$ for $m<\omega$, and $\alpha \in \bigcap_{\ell=1}^{n} Y_{b_{\ell}} \backslash \bigcup_{\ell=n+1}^{2 n} Y_{b_{\ell}}$, so Y is not a subset of Z. As Z was an arbitrary element of I we get $Y \notin I$, so we have finished proving 1.1.1.

It follows from 1.1.1 that we can extend h_{0} (the homomorphism from \mathfrak{A}_{0} onto \mathfrak{B}) to a homomorphism h_{1} from \mathfrak{A}_{1} onto \mathfrak{B} with $I=\operatorname{Ker}\left(h_{1}\right)$. Let \mathfrak{A}_{2} be the σ-algebra of subsets of μ generated by \mathfrak{A}_{1}.
Claim 1.1.2. For every $Y \in \mathfrak{A}_{2}$ there is $b \in \mathfrak{B}$ such that $Y \equiv Y_{b} \bmod I$. Consequently, $\mathfrak{A}_{2}=\mathfrak{A}_{1}$.
Proof of the claim: Let $Y \in \mathfrak{A}_{2}$. Then Y is a (hereditarily countable) Boolean combination of some $Y_{b_{\ell}}(\ell<\omega)$ and $Z_{n}(n<\omega)$, where $b_{\ell} \in \mathfrak{B}$, $Z_{n} \in I$. Let $Z_{n} \subseteq \bigcup_{m<\omega} Z_{\mathbf{e}_{n, m}}$, where $\mathbf{e}_{n, m} \in \mathcal{E}$, and say

$$
Y=\sigma\left(Y_{b_{0}}, Z_{0}, Y_{b_{1}}, Z_{1}, \ldots, Y_{b_{n}}, Z_{n}, \ldots\right)_{n<\omega} .
$$

Let $\mathbf{e}_{n, m}$ be $0=\sigma_{n, m}\left(b_{n, m, 0}, b_{n, m, 1}, \ldots\right)$. Then clearly $\underset{n, m<\omega}{\bigcup} Z_{\mathbf{e}_{n, m}} \in I$ (use the definition of I). In \mathfrak{B}, let $b=\sigma\left(b_{0}, 0, b_{1}, 0, \ldots, b_{n}, 0, \ldots\right)$ and let $\sigma^{*}=\sigma^{*}\left(b_{0}, b_{1}, \ldots, b_{n, m, \ell}, \ldots\right)_{n, m, \ell<\omega}$ be the following term

$$
\begin{aligned}
\bigcup_{n, m} \sigma_{n, m}\left(b_{n, m, 0}, b_{n, m, 1}, \ldots\right) & \cup\left(b-\sigma\left(b_{0}, 0, b_{1}, 0, \ldots, b_{m}, 0, \ldots\right)\right) \cup \\
& \cup\left(\sigma\left(b_{0}, 0, b_{1}, 0, \ldots, b_{n}, 0, \ldots\right)-b\right) \cup 0 .
\end{aligned}
$$

Clearly $\mathfrak{B} \models " 0=\sigma^{*} "$, so the equation \mathbf{e} defined as $0=\sigma^{*}$ belongs to \mathcal{E}, and thus Z_{e} is well defined. It follows from the definition of σ^{*} that $\left(Y \backslash Y_{b}\right) \cup\left(Y_{b} \backslash Y\right) \subseteq Z_{\mathbf{e}} \in I$.

So we can sum up:
(a) I is an \aleph_{1}-complete ideal of $\mathcal{P}(\mu)$,
(b) \mathfrak{A}_{1} is a σ-algebra of subsets of μ,
(c) $I \subseteq \mathfrak{A}_{1}$,
(d) h_{1} is a homomorphism from \mathfrak{A}_{1} onto \mathfrak{B}, with kernel I,
(e) \mathfrak{B} is a complete c.c.c. Boolean algebra.

This is exactly as required, so the "only" point left is
Claim 1.1.3. The homomorphism h_{1} cannot be lifted.
Proof of the claim: Assume that h_{1} can be lifted, so there is a homomorphism $g_{1}: \mathfrak{B} \longrightarrow \mathfrak{A}_{1}$ such that $h_{1} \circ g_{1}=\mathrm{id}_{\mathfrak{B}}$.

For $i<\lambda$ let $Z_{i}=\left(g_{1}\left(x_{i}\right)-Y_{x_{i}}\right) \cup\left(Y_{x_{i}}-g_{1}\left(x_{i}\right)\right)$, so by the assumption on g_{1} necessarily $Z_{i} \in I$. Consequently we can find $\mathbf{e}_{i, n} \in \mathcal{E}$ for $n<\omega$ such that $Z_{i} \subseteq \bigcup_{n<\omega} Z_{\mathbf{e}_{i, n}}$. Let $W_{i}=\left\{x_{i}\right\} \cup \bigcup_{n<\omega} \operatorname{cont}\left(\mathbf{e}_{i, n}\right)$, so $W_{i} \subseteq \mathfrak{B}$ is countable. Let \mathfrak{B}^{\prime} be the subalgebra of \mathfrak{B} generated by $\bigcup_{i<\lambda} W_{i}$. Clearly $\left|\mathfrak{B}^{\prime}\right|=\lambda$, so there is a one-to-one function t from λ onto \mathfrak{B}^{\prime}. Put $u_{i}=t^{-1}\left(W_{i}\right) \in[\lambda]^{\leq \aleph_{0}}$.

For each i there is a homomorphism f_{i} from \mathfrak{B} into the 2 -element Boolean Algebra $\{0,1\}$ such that $f_{i}\left(x_{i}\right)=1$ and f_{i} respects all the equations $\mathbf{e}_{i, n}$ for $n<\omega$ (as in the proof of 1.1.1). Let $f_{i}^{\prime}: u_{i} \longrightarrow\{0,1\}$ be defined by $f_{i}^{\prime}(\alpha)=f_{i}(t(\alpha))$. Then by clause (d) of the hypothesis there are $n<\omega$ and $i_{0}<\ldots<i_{n-1}<\lambda$ such that:
(α) the functions $f_{i_{0}}^{\prime}, \ldots, f_{i_{n-1}}^{\prime}$ are compatible,
(β) $\mathfrak{B} \models \models_{\ell<n} \bigcap_{i_{\ell}}=0 "$.
Hence
$(\alpha)^{\prime}$ the functions $f_{i_{0}} \upharpoonright W_{i_{0}}, \ldots, f_{i_{n-1}} \upharpoonright W_{i_{n-1}}$ are compatible ${ }^{1}$, call their union g.
Now let $\alpha<\mu$ be such that:
$\left(\otimes_{1}\right) \quad \ell<n \& b \in W_{i_{\ell}} \quad \Rightarrow \quad\left[\alpha \in Y_{b} \Leftrightarrow g(b)=1\right]$
(it exists by the choice of the Y_{b} 's and $\left.(\alpha)^{\prime}\right)$.
By $\left(\otimes_{1}\right)$ and the choice of $f_{i_{\ell}}$ we have:
$\left(\otimes_{2}\right) \quad \alpha \in Y_{x_{i_{\ell}}}$
(because $f_{i_{\ell}}\left(x_{i_{\ell}}\right)=1$) and
$\left(\otimes_{3}\right) \quad \alpha \notin Z_{\mathbf{e}_{i_{\ell}, n}}$ for $n<\omega$
(because $f_{i_{\ell}}$ respects $\mathbf{e}_{i_{\ell}, n}$ and $\operatorname{cont}\left(\mathbf{e}_{i_{\ell}, n}\right) \subseteq W_{i_{\ell}}$) and
$\left(\otimes_{4}\right) \quad \alpha \notin Z_{i_{\ell}}$

[^0](by $\left(\otimes_{3}\right)$ as $Z_{i_{\ell}} \subseteq \bigcup_{n<\omega} Z_{\mathrm{e}_{\ell, n}}$).
So $\alpha \in Y_{x_{i_{\ell}}} \backslash Z_{i_{\ell}}$ and thus $\alpha \in g_{1}\left(x_{i_{\ell}}\right)$. Hence $\alpha \in \bigcap_{\ell<n} g_{1}\left(x_{i_{\ell}}\right)$. Since g_{1} is a homomorphism we have
$$
\bigcap_{\ell<n} g_{1}\left(x_{i_{\ell}}\right)=g_{1}\left(\bigcap_{\ell<n} x_{i_{\ell}}\right)=g_{1}(0)=\emptyset
$$
(we use clause (β) above). A contradiction.
Remark 1.2. (1) Concerning the assumptions of 1.1 , note that they seem closely related to
$\left(\oplus_{\mu}\right)$ there is a c.c.c. Boolean Algebra \mathfrak{B} of cardinality $\leq \lambda$ which is not the union of $\leq \mu$ ultrafilters (i.e. $d(\mathfrak{B})>\mu$). (See the proof of 1.7 below).
(2) Concerning $\left(\oplus_{\mu}\right)$, by [8], if $\lambda=\mu^{+}, \mu=\mu^{\aleph_{0}}$ then there is no such Boolean algebra. By [9], it is consistent then $\lambda=\mu^{++} \leq 2^{\mu}, \aleph_{0}<$ $\mu=\mu^{<\mu}$ and $\left(\oplus_{\mu}\right)$ above holds using (see below) a Boolean algebra of the form $B A(W), W \subseteq[\lambda]^{3},\left(\forall u_{1} \neq u_{2} \in W\right)\left(\left|u_{1} \cap u_{2}\right| \leq 1\right)$. Hajnal, Juhasz and Szentmiklossy [5] prove the existence of a c.c.c. Boolean algebra \mathfrak{B} with $d(\mathfrak{B})=\mu$ of cardinality 2^{μ} when there is a Jonsson algebra on μ (or μ is a limit cardinal) using $B A(W)$, $W \subseteq[\lambda]^{<\aleph_{0}}, u \neq v \in W \quad \Rightarrow \quad|u \cap v|<|u| / 2$. The claim we need is close to this. On the existence of Jonson cardinals (and its history) see [10]. Of course, also in 1.7 if μ is not strong limit, instead " M is a Jonsson algebra on μ " it suffices that " M is not the union of $<\mu$ subalgebras". Rabus Shelah [7] prove the existence of a c.c.c. Boolean Algebra \mathfrak{B} with $d(\mathfrak{B})=\mu$ for every μ.

Definition 1.3. (1) For a set u let
$\operatorname{pfil}(u) \stackrel{\text { def }}{=}\{w: w \subseteq \mathcal{P}(u), u \in w, w$ is upward closed and if $\left(u_{1}, u_{2}\right)$ is a partition of u then $u_{1} \in w$ or $\left.u_{2} \in w\right\}$ [pfil stands for "pseudo-filter"].
(2) The canonical (pfil) w of u for a finite set u is

$$
\operatorname{half}(u)=\{v \subseteq u:|v| \geq|u| / 2\} .
$$

(3) We say that (W, \mathbf{w}) is a λ-candidate if:
(a) $W \subseteq[\lambda]^{<\aleph_{0}}$,
(b) w is a function with domain W,
(c) $\mathbf{w}(u) \in \operatorname{pfil}(u)$ for $u \in W$
(d) if $v \in[\lambda]^{<\aleph_{0}}$ then $\operatorname{cl}_{(W, \mathbf{w})}(v) \stackrel{\text { def }}{=}\{u \in W: u \cap v \in \mathbf{w}(u)\}$ is finite.
(4) We say W is a λ-candidate if (W, half $\upharpoonright W$) is a λ-candidate.
(5) Instead of λ we can use any ordinal (or even set).
(6) We say that $\mathcal{U} \subseteq \lambda$ is (W, \mathbf{w})-closed if for each $u \in W$

$$
u \cap \mathcal{U} \in \mathbf{w}(u) \quad \Rightarrow \quad u \subseteq \mathcal{U}
$$

Definition 1.4. (1) For a λ-candidate (W, \mathbf{w}) let $B A(W, \mathbf{w})$ be the Boolean algebra generated by $\left\{x_{i}: i<\lambda\right\}$ freely except

$$
\bigcap_{i \in u} x_{i}=0 \quad \text { for } \quad u \in W
$$

(2) For a λ-candidate W, let

$$
B A(W)=B A(W, \text { half } \upharpoonright W)
$$

(3) For a λ-candidate (W, \mathbf{w}) let $B A^{c}(W, \mathbf{w})$ be the completion of $B A(W, \mathbf{w})$; similarly $B A^{c}(W)$.

Proposition 1.5. Let (W, \mathbf{w}) be a λ-candidate. Then the Boolean algebra $B A(W, \mathbf{w})$ satisfies the c.c.c. and has cardinality λ, so $B A^{c}(W, \mathbf{w})$ satisfies the c.c.c. and has cardinality $\leq \lambda^{\aleph_{0}}$.

Proof Let $b_{\alpha}=\sigma_{\alpha}\left(x_{i_{\alpha, 0}}, \ldots, x_{i_{\alpha, n_{\alpha}-1}}\right)$ be nonzero members of $B A(W, \mathbf{w})$ (for $\alpha<\omega_{1}$ and σ_{α} a Boolean term). Without loss of generality $\sigma_{\alpha}=\sigma$, $n_{\alpha}=n(*)$ and $i_{\alpha, 0}<i_{\alpha, 1}<\ldots<i_{\alpha, n_{\alpha}-1}$, and $\left\langle\left\langle i_{\alpha, \ell}: \ell<n(*)\right\rangle: \alpha<\omega_{1}\right\rangle$ forms a Δ-system, so

$$
i_{\alpha_{1}, \ell_{1}}=i_{\alpha_{2}, \ell_{2}} \& \alpha_{1} \neq \alpha_{2} \quad \Rightarrow \quad \ell_{1}=\ell_{2} \&\left(\forall \alpha<\omega_{1}\right)\left(i_{\alpha, \ell_{1}}=i_{\alpha_{1}, \ell_{1}}\right)
$$

Also we can replace b_{α} by any nonzero $b_{\alpha}^{\prime} \leq b_{\alpha}$, so without loss of generality for some $s_{\alpha} \subseteq n(*)(=\{0, \ldots, n(*)-1\})$ we have

$$
b_{\alpha}=\bigcap_{\ell \in s_{\alpha}} x_{i_{\alpha, \ell}} \cap \bigcap_{\ell \in n(*) \backslash s_{\alpha}}\left(-x_{i_{\alpha, \ell}}\right)>0
$$

and without loss of generality $s_{\alpha}=s$. Put (for $\left.\alpha<\omega_{1}\right)$

$$
\mathbf{u}_{\alpha} \stackrel{\text { def }}{=}\left\{u \in W: u \cap\left\{i_{\alpha, \ell}: \ell \in s\right\} \in \mathbf{w}(u)\right\}
$$

and note that these sets are finite (remember 1.3(3d)). Hence the sets

$$
u_{\alpha}=\bigcup\left\{u: u \in \mathbf{u}_{\alpha}\right\}
$$

are finite. Without loss of generality $\left\langle\left\{i_{\alpha, \ell}: \ell<n(*)\right\} \cup u_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a Δ-system. Now let $\alpha \neq \beta$ and assume $b_{\alpha} \cap b_{\beta}=0$. Clearly we have

$$
b_{\alpha} \cap b_{\beta}=\bigcap_{\ell \in s}\left(x_{i_{\alpha, \ell}} \cap x_{i_{\beta, \ell}}\right) \cap \bigcap_{\ell \in n(*) \backslash s}\left(-x_{i_{\alpha, \ell}} \cap-x_{i_{\beta, \ell}}\right) .
$$

Note that, by the Δ-system assumption, the sets $\left\{i_{\alpha, \ell}, i_{\beta, \ell}: \ell \in s\right\},\left\{i_{\alpha, \ell}, i_{\beta, \ell}\right.$: $\ell \in n(*) \backslash s\}$ are disjoint. So why is $b_{\alpha} \cap b_{\beta}$ zero? The only possible reason is that for some $u \in W$ we have $u \subseteq\left\{i_{\alpha, \ell}, i_{\beta, \ell}: \ell \in s\right\}$. Thus

$$
u=\left(u \cap\left\{i_{\alpha, \ell}: \ell \in s\right\}\right) \cup\left\{u \cap\left\{i_{\beta, \ell}: \ell \in s\right\}\right)
$$

and without loss of generality $u \cap\left\{i_{\alpha, \ell}: \ell \in s\right\} \in \mathbf{w}(u)$. Hence $u \in \mathbf{u}_{\alpha}$ and therefore $u \subseteq u_{\alpha}$. Now we may easily finish the proof.

Remark 1.6. If we define a (λ, κ)-candidate weakening clause (d) to
$(\mathrm{d})_{\kappa} v \in[\lambda]^{<\aleph_{0}} \quad \Rightarrow \quad \kappa>|\{u \in W: u \cap v \in \mathbf{w}(u)\}|$,
then the algebra $B A(W, \mathbf{w})$ satisfies the κ^{+}-c.c.c.
[Why? We repeat the proof of Proposition 1.5 replacing \aleph_{1} with κ. There is a difference only when \mathbf{u}_{α} has cardinality $<\kappa$ (instead being finite) and (being the union of $<\kappa$ finite sets) also u_{α} has carinality $\mu_{\alpha}<\kappa$. Wlog $\mu_{\alpha}=\mu<\kappa$. Clearly the set

$$
S \stackrel{\text { def }}{=}\left\{\delta<\kappa^{+}: \operatorname{cf}(\delta)=\mu^{+}\right\}
$$

is a stationary subset of κ^{+}, so for some stationary subset S^{*} of S and $\alpha(*)<\kappa$ we have:

$$
\left(\forall \alpha \in S^{*}\right)\left(u_{\alpha} \cap \alpha \subseteq \alpha^{*} \quad \& \quad u_{\alpha} \subseteq \min \left(S^{*} \backslash(\alpha+1)\right)\right)
$$

Let us define $u_{\alpha}^{*}=u_{\alpha} \cup\left\{i_{\alpha, \ell}: \ell \in s\right\} \backslash \alpha(*)$. Wlog $\left\langle u_{\alpha}^{*}: \alpha \in S^{*}\right\rangle$ is a Δ-system. The rest should be clear.]

Theorem 1.7. Assume that there is a Jonsson algebra on $\mu, \lambda=2^{\mu}$, and

$$
(\forall \alpha<\mu)\left(|\alpha|^{\aleph_{0}}<\mu=\operatorname{cf}(\mu)\right) .
$$

Then for some λ-candidate (W, \mathbf{w}) the Boolean algebra $B A^{c}(W, \mathbf{w})$ and λ satisfy the assumptions (b) -(d) of 1.1.
Proof Let $F:[\mu]^{<\aleph_{0}} \longrightarrow \mu$ be such that

$$
\left(\forall A \in[\mu]^{\mu}\right)\left[F^{\prime \prime}\left([A]^{<\aleph_{0}} \backslash[A]^{<2}\right)=\mu\right]
$$

(well known and easily equivalent to the existence of a Jonsson algebra).
Let $\left\langle\bar{A}^{\alpha}: \alpha<2^{\mu}\right\rangle$ list the sequences $\bar{A}=\left\langle A_{i}: i<\mu\right\rangle$ such that

- $A_{i} \in\left[2^{\mu}\right]^{\mu}$,
- $\quad(\forall i<\mu)(\exists \alpha)\left(A_{i} \subseteq[\mu \times \alpha, \mu \times \alpha+\mu)\right)$, and
- $i<j<\mu \quad \Rightarrow \quad A_{i} \cap A_{j}=\emptyset$.

Without loss of generality we have $A_{i}^{\alpha} \subseteq \mu \times(1+\alpha)$ and each \bar{A} is equal to \bar{A}^{α} for 2^{μ} ordinals α. Clearly $\operatorname{otp}\left(A_{i}^{\alpha}\right)=\mu$.

By induction on $\alpha<2^{\mu}$ we choose pairs ($W_{\alpha}, \mathbf{w}_{\alpha}$) and functions F_{α} such that
(α) $\left(W_{\alpha}, \mathbf{w}_{\alpha}\right)$ is a $\mu \times(1+\alpha)$-candidate,
(β) $\beta<\alpha$ implies $W_{\beta}=W_{\alpha} \cap[\mu \times(1+\beta)]^{<\aleph_{0}}$ and $\mathbf{w}_{\beta}=\mathbf{w}_{\alpha} \upharpoonright W_{\beta}$,
($\gamma) F_{\alpha}$ is a one-to-one function from the set
$\{u: u \subseteq[\mu \times(1+\alpha), \mu \times(1+\alpha+1))$ finite with ≥ 2 elements $\}$ into $\bigcup_{i<\mu} A_{i}^{\alpha}$,
($\delta) W_{\alpha+1}=W_{\alpha} \cup\left\{u \cup\left\{F_{\alpha}(u)\right\}: u \in W_{\alpha}^{*}\right\}$, where
$W_{\alpha}^{*}=\left\{u: u\right.$ a subset of $[\mu \times(1+\alpha), \mu \times(1+\alpha+1))$ such that $\left.\aleph_{0}>|u| \geq 2\right\}$,
(ε) for any (finite) $u \in W_{\alpha}^{*}$ we have
$\mathbf{w}_{\alpha+1}\left(u \cup\left\{F_{\alpha}(u)\right\}\right)=\left\{v \subseteq u \cup\left\{F_{\alpha}(u)\right\}: u \subseteq v\right.$ or $\left.F_{\alpha}(u) \in v \& v \cap u \neq \emptyset\right\}$,
(ζ) F_{α} is such that for any subset X of $J_{\alpha}=[\mu \times(1+\alpha), \mu \times(1+\alpha+1))$ of cardinality μ and $i<\mu$ and $\gamma \in A_{i}^{\alpha}$ for some finite subset u of X with ≥ 2 elements we have $F_{\alpha}(u) \in A_{i}^{\alpha} \backslash \gamma$.
There is no problem to carry out the definition so that clauses $(\beta)-(\zeta)$ are satisfied (to define functions F_{α} use the function F chosen at the beginning of the proof). Then ($W_{\alpha}, \mathbf{w}_{\alpha}$) is defined for each $\alpha<2^{\mu}$ (at limit stages α we take $W_{\alpha}=\bigcup_{\beta<\alpha} W_{\beta}, \mathbf{w}_{\alpha}=\bigcup_{\beta<\alpha} \mathbf{w}_{\beta}$, of course).
Claim 1.7.1. For each $\alpha<2^{\mu},\left(W_{\alpha}, \mathbf{w}_{\alpha}\right)$ is a $\mu \times(1+\alpha)$-candidate.
Proof of the claim: We should check the requirements of 1.3(3). Clauses (a), (b) there are trivially satisfied. For the clause (c) note that every element u of W_{α} is of the form $u^{\prime} \cup\left\{F_{\beta}\left(u^{\prime}\right)\right\}$ for some $\beta<\alpha$ and $u^{\prime} \in W_{\beta}^{*}$. Now, if $u=u_{0} \cup u_{1}$ then either one of u_{0}, u_{1} contains u^{\prime} or one of the two sets contains $F_{\beta}\left(u^{\prime}\right)$ and has non-empty intersection with u^{\prime}. In both cases we are done. Regarding the demand (d) of 1.3(3), note that if

$$
v \in\left[2^{\mu}\right]^{<\aleph_{0}}, \quad u \in W_{\alpha}, \quad u=u^{\prime} \cup\left\{F_{\beta}\left(u^{\prime}\right)\right\}, \quad u^{\prime} \in W_{\beta}^{*}, \quad \beta<\alpha
$$

and $v \cap u \in \mathbf{w}_{\beta+1}(u)$ then $v \cap u^{\prime} \neq \emptyset$ and either $u^{\prime} \subseteq v$ or $F_{\beta}\left(u^{\prime}\right) \in u$. Hence, using the fact that the functions F_{γ} are one-to-one, we easily show that for every $v \in\left[2^{\mu}\right]^{<\aleph_{0}}$ the set

$$
\left\{u \in W_{\alpha}: u \cap v \in \mathbf{w}_{\alpha}(u)\right\}
$$

is finite (remember the definition of $\mathbf{w}_{\beta+1}$), finishing the proof of the claim.

Let $W=\bigcup_{\alpha} W_{\alpha}, \mathbf{w}=\bigcup_{\alpha} \mathbf{w}_{\alpha}, \mathfrak{B}=B A^{c}(W, \mathbf{w})$. It follows from 1.7.1 that (W, \mathbf{w}) is a λ-candidate. The main point of the proof of the theorem is clause (d) of the assumptions of 1.1. So let $f_{\alpha}: u_{\alpha} \longrightarrow\{0,1\}$ for $\alpha<2^{\mu}, u_{\alpha} \in\left[2^{\mu}\right] \leq \aleph_{0}$, be given. For each $\alpha<2^{\mu}$, by the assumption that
$(\forall \beta<\mu)\left[|\beta|^{\aleph_{0}}<\mu=\operatorname{cf}(\mu)\right]$ and by the Δ-lemma, we can find $X_{\alpha} \in[\mu]^{\mu}$ such that $\left\langle f_{\mu \times \alpha+\zeta}: \zeta \in X_{\alpha}\right\rangle$ forms a Δ-system with heart f_{α}^{*}. Let $G=\left\{g: g\right.$ is a partial function from 2^{μ} to $\{0,1\}$ with countable domain $\}$. For each $g \in G$ let $\langle\gamma(g, i): i<i(g)\rangle$ be a maximal sequence such that $g \subseteq f_{\gamma(g, i)}^{*}$ and

$$
\operatorname{Dom}\left(f_{\gamma(g, i)}^{*}\right) \cap \operatorname{Dom}\left(f_{\gamma(g, j)}^{*}\right)=\operatorname{Dom}(g) \quad \text { for } j<i
$$

(just choose $\gamma(g, i)$ by induction on i).
By induction on $\zeta \leq \omega_{1}$, we choose $Y_{\zeta}, G_{\zeta}, Z_{\zeta}$ and $U_{\zeta, g}$ such that
(a) $Y_{\zeta} \in\left[2^{\mu}\right] \leq \mu$ is increasing continuous in ζ,
(b) $Z_{\zeta} \stackrel{\text { def }}{=} \bigcup\left\{\operatorname{Dom}\left(f_{\gamma}\right):\left(\exists \alpha \in Y_{\zeta}\right)[\mu \times \alpha \leq \gamma<\mu \times(\alpha+1)]\right\}$,
(c) $G_{\zeta}=\left\{g \in G: \operatorname{Dom}(g) \subseteq Z_{\zeta}\right\}$,
(d) for $g \in G_{\zeta}$ we have: $U_{\zeta, g}$ is $\{i: i<i(g)\}$ if $i(g)<\mu^{+}$and otherwise it is a subset of $i(g)$ of cardinality μ such that

$$
j \in U_{\zeta, g} \quad \Rightarrow \quad \operatorname{Dom}\left(f_{\gamma(g, j)}^{*}\right) \cap Z_{\zeta}=\operatorname{Dom}(g)
$$

(e) $Y_{\zeta+1}=Y_{\zeta} \cup\left\{\gamma(g, j): g \in G_{\zeta}\right.$ and $\left.j \in U_{\zeta, g}\right\}$.

Let $Y=Y_{\omega_{1}}$. Let $\left\{\left(g_{\varepsilon}, \xi_{\varepsilon}\right): \varepsilon<\varepsilon(*)\right\}, \varepsilon(*) \leq \mu$, list the set of pairs (g, ξ) such that $\xi<\omega_{1}, g \in G_{\xi}$ and $i(g) \geq \mu^{+}$. We can find $\left\langle\zeta_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ such that $\left\langle\gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right): \varepsilon<\varepsilon(*)\right\rangle$ is without repetition and $\zeta_{\varepsilon} \in U_{g_{\varepsilon}, \xi_{\varepsilon}}$. Then for some $\alpha<2^{\mu} \backslash Y_{\omega_{1}}$ we have

$$
(\forall \varepsilon<\varepsilon(*))\left(A_{\varepsilon}^{\alpha}=\left\{\mu \times \gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)+\Upsilon: \Upsilon \in X_{\gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)}\right\}\right)
$$

Now let $g=f_{\alpha}^{*} \upharpoonright Z_{\omega_{1}}$. Then for some $\zeta_{0}(*)<\omega_{1}$ we have $g \in G_{\zeta_{0}(*)}$ and thus $U_{g, \zeta} \subseteq i(g)$ for $\zeta \in\left[\zeta_{0}(*), \omega_{1}\right)$ and $\langle\gamma(g, i): i<i(g)\rangle$ are well defined. Now, α exemplifies that $i(g)<\mu^{+}$is impossible (see the maximality of $i(g)$, as otherwise $\left.i<i(g) \quad \Rightarrow \quad \gamma(g, i) \in Y_{\zeta_{0}(*)+1} \subseteq Y_{\omega_{1}}\right)$.

Next, for each $\gamma \in X_{\alpha}, \operatorname{Dom}\left(f_{\mu \times \alpha+\gamma}\right)$ is countable and hence for some $\zeta_{1, \gamma}(*)<\omega_{1}$ we have $\operatorname{Dom}\left(f_{\mu \times \alpha+\gamma}\right) \cap Z_{\omega_{1}} \subseteq Z_{\zeta_{1, \gamma}(*)}$. As $\operatorname{cf}(\mu)>\aleph_{1}$ necessarily for some $\zeta_{1}(*)<\omega_{1}$ we have that $X_{\alpha}^{\prime} \stackrel{\text { def }}{=}\left\{\gamma \in X_{\alpha}: \zeta_{1, \gamma}(*) \leq \zeta_{1}(*)\right\} \in$ $[\mu]^{\mu}$, and without loss of generality $\zeta_{1}(*) \geq \zeta_{0}(*)$.

So for some $\varepsilon<\varepsilon(*) \leq \mu$ we have $g_{\varepsilon}=g \& \xi_{\varepsilon}=\zeta_{1}(*)+1$. Let $\Upsilon_{\varepsilon}=\gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)$. Clearly
$(*)_{1} \quad f_{\alpha}^{*}, f_{\Upsilon_{\varepsilon}}^{*}$ are compatible (and countable),
$(*)_{2} \quad\left\langle f_{\mu \times \alpha+\gamma}: \gamma \in X_{\alpha}^{\prime}\right\rangle$ is a Δ-system with heart f_{α}^{*}.
So possibly shrinking X_{α}^{\prime} without loss of generality
$(*)_{3} \quad$ if $\gamma \in X_{\alpha}^{\prime}$ then $f_{\mu \times \alpha+\gamma}$ and $f_{\Upsilon_{\varepsilon}}^{*}$ are compatible.

For each $\gamma \in X_{\alpha}^{\prime}$ let

$$
t_{\gamma}=\left\{\beta \in X_{\Upsilon_{\varepsilon}}: f_{\mu \times \Upsilon_{\varepsilon}+\beta} \text { and } f_{\mu \times \alpha+\gamma} \text { are incompatible }\right\} .
$$

As $\left\langle f_{\mu \times \Upsilon_{\varepsilon}+\beta}: \beta \in X_{\Upsilon_{\varepsilon}}\right\rangle$ is a Δ-system with heart $f_{\Upsilon_{\varepsilon}}^{*}\left(\right.$ and $\left.(*)_{3}\right)$ necessarily
$(*)_{4} \quad \gamma \in X_{\alpha}^{\prime}$ implies t_{γ} is countable.
For $\gamma \in X_{\alpha}^{\prime}$ let

$$
\begin{array}{ll}
s_{\gamma} \stackrel{\text { def }}{=} \bigcup\{u: & u \text { is a finite subset of } X_{\alpha}^{\prime} \text { and } \\
& \left.F_{\alpha}(\{\mu \times \alpha+\beta: \beta \in u\}) \text { belongs to } t_{\gamma}\right\}
\end{array}
$$

As F_{α} is a one-to-one function clearly
$(*)_{5} \quad s_{\gamma}$ is a countable set.
Hence without loss of generality (possibly shrinking X_{α}^{\prime}), as $\mu>\aleph_{1}$,
$(*)_{6} \quad$ if $\gamma_{1} \neq \gamma_{2}$ are from X_{α}^{\prime} then $\gamma_{1} \notin s_{\gamma_{2}}$.
By the choice of F_{α} for some finite subset u of X_{α}^{\prime} with at least two elements, letting $u^{\prime} \stackrel{\text { def }}{=}\{\mu \times \alpha+j: j \in u\}$ we have

$$
\beta \stackrel{\text { def }}{=} F_{\alpha}\left(u^{\prime}\right) \in\left\{\mu \times \gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)+\gamma: \gamma \in X_{\gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)}\right\}
$$

(remember $\Upsilon_{\varepsilon}=\gamma\left(g_{\varepsilon}, \zeta_{\varepsilon}\right)$), so $u^{\prime} \cup\{\beta\} \in W$. Thus it is enough to show that $\left\{f_{\mu \times \alpha+j}: j \in u\right\} \cup\left\{f_{\beta}\right\}$ are compatible. For this it is enough to check any two. Now, $\left\{f_{\mu \times \alpha+j}: j \in u\right\}$ are compatible as $\left\langle f_{\mu \times \alpha+j}: j \in X_{\alpha}\right\rangle$ is a Δ-system. So let $j \in u$, why are $f_{\mu \times \alpha+j}, f_{\beta}$ compatible? As otherwise $\beta-\left(\mu \times \Upsilon_{\varepsilon}\right) \in t_{j}$ and hence u is a subset of s_{j}. But u has at least two elements, so there is $\gamma \in u \backslash\{j\}$. Now u is a subset of X_{α}^{\prime} and this contradicts the statement $(*)_{6}$ above, finishing the proof.

Remark 1.8. In 1.7, we can also get $d(B A(W, \mathbf{w}))=\mu$, but this is irrelevant to our aim. E.g. in this case let for $i<\mu, h_{i}$ be a partial function from 2^{μ} to $\{0,1\}$ such that $\operatorname{Dom}\left(h_{i}\right) \cap[\beta, \beta+\mu)$ is finite for $\beta<2^{\mu}$ and such that every finite such function is included in some h_{i}. Choosing the ($W_{\alpha}, \mathbf{w}_{\alpha}$) preserve:

$$
\left\{x_{\beta}: h_{i}(\beta)=1\right\} \cup\left\{-x_{\beta}: h_{i}(\beta)=0\right\} \text { generates a filter of } B A\left(W_{\alpha}, \mathbf{w}_{\alpha}\right)
$$

Conclusion 1.9. Theorem 0.1 holds.
Proof By 1.1, 1.7.
2. Getting the example for $\mu=\left(\aleph_{2}\right)^{\aleph_{0}}, \lambda=2^{\aleph_{2}}$. Our aim here is to show that there are I, \mathfrak{B} as in 0.1 for $\mu=\left(\aleph_{2}\right)^{\aleph_{0}}$. For this we shall weaken the conditions in the Main Lemma 1.1 (see 2.1 below) and then show that we can get it in a variant of 1.7 (see 2.2 below). More fully, by 2.2 there is a $2^{\aleph_{2}}$-candidate (W, \mathbf{w}) satisfying the assumptions of 2.1 except possibly clause (a), so μ is irrelevant in the clauses (b) $-(\mathbf{f}$). Let $\mu=\left(\aleph_{2}\right)^{\aleph_{0}}=\aleph_{2}+2^{\aleph_{0}}$ and apply 2.2. Now we get the conclusion of 1.1 as required.

Proposition 2.1. Assume that
(a) $\mu=\mu^{\aleph_{0}}, \lambda \leq 2^{\mu}$,
(b) \mathfrak{B} is a complete c.c.c. Boolean Algebra,
(c) $x_{i} \in \mathfrak{B} \backslash\{0\}$ for $i<\lambda$, and $\mathcal{S} \subseteq\left\{u \in[\lambda] \leq \aleph_{0}:(\forall i \in \lambda \backslash u)\left(x_{i} \notin \mathfrak{B}_{u}\right)\right\}$, where \mathfrak{B}_{u} is the completion of $\left\langle\left\{x_{i}: i \in u\right\}\right\rangle_{\mathfrak{B}}$ in \mathfrak{B} (for $u \in[\lambda] \leq \aleph_{0}$),
(d) ${ }^{-}$if $i \in u_{i} \in[\lambda] \leq \aleph_{0}$ for $i<\lambda$, then we can find $n<\omega, i_{0}<\ldots<$ $i_{n-1}<\lambda$ and $\left.u \in \mathcal{S}(\subseteq[\lambda]]^{\leq \aleph_{0}}\right)$ such that:
(i) $\mathfrak{B} \models \bigcap_{\ell<n} x_{i_{\ell}}=0$ ",
(ii) $\quad i_{\ell} \in u_{i_{\ell}} \backslash u$ for $\ell<n$,
(iii) $\left\langle u_{i_{\ell}} \backslash u: \ell<n\right\rangle$ are pairwise disjoint;
(e) $u \in \mathcal{S} \& i \in \lambda \backslash u \& y \in \mathfrak{B}_{u} \backslash\{0,1\} \quad \Rightarrow \quad y \cap x_{i} \neq 0 \& y-x_{i} \neq 0$,
(f) \mathcal{S} is cofinal in $\left([\mu]^{<\aleph_{0}}, \subseteq\right)$
[actually, it follows from (d)-].
Then there are a σ-ideal I on $\mathcal{P}(\mu)$ and a σ-algebra \mathfrak{A} of subsets of μ extending I such that \mathfrak{A} / I satisfies the c.c.c. and the natural homomorphism $\mathfrak{A} \longrightarrow \mathfrak{A} / I$ cannot be lifted.

Remark: Actually we can in clause (e) omit " $y-x_{i} \neq 0$ ".
Proof Repeat the proof of 1.1 till the definition of $\mathbf{e}_{i, n}$ and W_{i} in the beginning of the proof of 1.1.3 (which says that h_{2} cannot be lifted). Then choose $u_{i} \in \mathcal{S}$ such that $W_{i} \subseteq \mathfrak{B}_{u_{i}}$ (exists by clause (f) of our assumptions). By clause (d) ${ }^{-}$we can find $n<\omega, i_{0}<\ldots<i_{n-1}$ and $u \in \mathcal{S}$ such that clauses (i),(ii),(iii) of (d)- hold.

Claim 2.1.1. For $\ell<n$, there are homomorphisms $f_{i_{\ell}}$ from \mathfrak{B} into $\{0,1\}$ respecting $\mathbf{e}_{i_{\ell}, m}$ for $m<\omega$ and mapping $x_{i_{\ell}}$ to 1 such that $\left\langle f_{i_{\ell}} \upharpoonright\left(W_{i_{\ell}} \cap \mathfrak{B}_{u}\right)\right.$: $\ell<n\rangle$ are compatible functions.

Proof of the claim: E.g. by absoluteness it suffices to find it in some generic extension. Let $G_{u} \subseteq \mathfrak{B}_{u}$ be a generic ultrafilter. Now $\mathfrak{B}_{u} \lessdot \mathfrak{B}$ and $(\forall y \in$ $\left.G_{u}\right)\left(y \cap x_{i_{\ell}}>0\right)$ (see clause (e)). So there is a generic ultrafilter G_{ℓ} of \mathfrak{B} extending G_{u} such that $x_{i_{\ell}} \in G_{\ell}$. Define $f_{i_{\ell}}$ by $f_{i_{\ell}}(y)=1 \quad \Leftrightarrow \quad y \in G_{\ell}$
for $y \in u_{i_{\ell}}$. By Clause (iii) of (d) ${ }^{-}$those functions are compatible and we finish as in 1.1.

Thus we have finished.

Theorem 2.2. In 1.7 if we let e.g. $\mu=\aleph_{2}$ then we can find a 2^{μ}-candidate (W, \mathbf{w}) such that $B A^{c}(W, \mathbf{w})$ satisfies the clauses $(\mathrm{b})-(\mathrm{f})$ of 2.1.
Proof In short, we repeat the proof of 1.7 after defining (W, \mathbf{w}). But now we are being given $\left\langle u_{i}: i<\lambda\right\rangle, u_{i} \in\left[2^{\mu}\right] \leq \aleph_{0}, i \in u_{i}$. For each $\alpha<2^{\mu}$ (we cannot in general find a Δ-system but) we can find $u_{\alpha}^{*}, X_{\alpha}$ such that $X_{\alpha} \in[\mu]^{\mu}, u_{\alpha}^{*} \in \mathcal{S} \subseteq\left[2^{\mu}\right] \leq \aleph_{0}$ and $\left\langle u_{\mu \times \alpha+i} \backslash u_{\alpha}^{*}: i \in X_{\alpha}\right\rangle$ are pairwise disjoint, and $i \in X_{\alpha} \quad \Rightarrow \quad \mu \times \alpha+i \in u_{\mu \times \alpha+i} \backslash u_{\alpha}^{*}$ and we continue as there (replacing the functions by the sets where instead $G_{\zeta}=\{g: g \in$ $\left.Z_{\zeta}, \operatorname{Dom}(g) \subseteq Z_{\zeta}\right\}$ we let h_{ζ} be a one-to-one function from Z_{ζ} onto μ and $G_{\zeta}=\left\{u \subseteq Z_{\zeta}: h_{\zeta}{ }^{\prime \prime}(u) \in \mathcal{S}\right\}$ and instead $g=f_{\alpha}^{*} \upharpoonright Z_{\omega_{1}}$ let $u_{\alpha}^{*} \cap Z_{\omega_{1}} \subseteq Z_{\zeta_{0}(*)}$, $\left.u_{\alpha}^{*} \cap Z_{\omega_{1}} \subseteq v \in G_{\zeta}\right)$.
Detailed Proof Let $F^{*}:[\mu]^{<\aleph_{0}} \longrightarrow \mu$ be such that

$$
\left(\forall A \in[\mu]^{\mu}\right)\left[F^{\prime \prime}\left([A]^{<\aleph_{0}} \backslash[A]^{<2}\right)=\mu\right]
$$

Let $\left\langle\bar{A}^{\alpha}: \alpha<2^{\mu}\right\rangle$ list the sequences $\bar{A}=\left\langle A_{i}: i<\mu\right\rangle$ such that $A_{i} \in\left[2^{\mu}\right]^{\mu}$, $(\forall i<\mu)(\exists \alpha)\left(A_{i} \subseteq[\mu \times \alpha, \mu \times \alpha+\mu)\right)$ and $i<j<\mu \quad \Rightarrow \quad A_{i} \cap A_{j}=\emptyset$. Without loss of generality we have $A_{i}^{\alpha} \subseteq \mu \times(1+\alpha)$ and each \bar{A} is equal to \bar{A}^{α} for 2^{μ} ordinals α. Clearly otp $\left(A_{i}^{\alpha}\right)=\mu$.

We choose by induction on $\alpha<2^{\mu}$ pairs $\left(W_{\alpha}, \mathbf{w}_{\alpha}\right)$ and functions F_{α} such that
$(\alpha)\left(W_{\alpha}, \mathbf{w}_{\alpha}\right)$ is a $\mu \times(1+\alpha)$-candidate,
(β) $\beta<\alpha$ implies $W_{\beta}=W_{\alpha} \cap[\mu \times(1+\beta)]^{<\aleph_{0}}, \mathbf{w}_{\beta}=\mathbf{w}_{\alpha} \upharpoonright W_{\beta}$,
$(\gamma) F_{\alpha}$ is a one-to-one function from
$\{u: u \subseteq[\mu \times(1+\alpha), \mu \times(1+\alpha+1))$ finite with at least two elements $\}$ into $\bigcup_{i<\mu} A_{i}^{\alpha}$,
($\delta) W_{\alpha+1}=W_{\alpha} \cup\left\{u \cup\left\{F_{\alpha}(u)\right\}: u \in W_{\alpha}^{*}\right\}$, where $W_{\alpha}^{*}=\{u: u$ is a subset of $[\mu \times(1+\alpha), \mu \times(1+\alpha+1))$ such that $\left.\aleph_{0}>|u| \geq 2\right\}$,
(ε) for finite $u \in W_{\alpha}^{*}$ we have

$$
\mathbf{w}\left(u \cup\left\{F_{\alpha}(u)\right\}\right)=\left\{v \subseteq u \cup\left\{F_{\alpha}(u)\right\}: u \subseteq v \text { or } F_{\alpha}(u) \in v \& v \cap u \neq \emptyset\right\}
$$

(ζ) Let F_{α} be such that for any subset X of $J_{\alpha}=[\mu \times(1+\alpha), \mu \times(1+$ $\alpha+1)$) of cardinality μ and $i<\mu$ and $\gamma \in A_{i}^{\alpha}$ for some finite subset u of X we have $F_{\alpha}(u) \in A_{i}^{\alpha} \backslash \gamma$.

There are no difficulties in carrying out the construction and checking that it as required. Let $W=\bigcup_{\alpha} W_{\alpha}, \mathbf{w}=\bigcup_{\alpha} \mathbf{w}_{\alpha}, \mathfrak{B}=B A^{c}(W, \mathbf{w})$. Clearly (W, \mathbf{w}) is a λ-candidate.

Let $\mathcal{S}^{*} \subseteq[\mu]^{\leq \aleph_{0}}$ be stationary of cardinality μ. Let

$$
\mathcal{S}^{\prime}=\left\{u \in[\lambda]^{\leq \aleph_{0}}: \text { if } v \in W \text { and } v \cap u \in \mathbf{w}(v) \text { then } v \subseteq u\right\} .
$$

Now, clause (f) holds as (W, \mathbf{w}) satisfies clause (d) of Definition 1.3(3). As for clause (e) use Lemma 2.3 below.

The main point is clause (d) ${ }^{-}$of 2.1. So let $i \in a_{i} \in\left[\lambda^{\mu}\right] \leq \aleph_{0}$ for $i<\lambda$ be given. For each $\alpha<\lambda$, as $\mu=\aleph_{2}$ we can find $X_{\alpha} \in[\mu]^{\mu}$ and $a_{\alpha}^{*} \in \mathcal{S}^{\prime}$ such that $\alpha \in a_{\alpha}^{*}$ and:
$\left(\otimes_{\alpha}\right) \zeta_{1} \neq \zeta_{2} \& \zeta_{1} \in X_{\alpha} \& \zeta_{2} \in X_{\alpha} \quad \Rightarrow \quad a_{\mu \times \alpha+\zeta_{1}} \cap a_{\mu \times \alpha+\zeta_{2}} \subseteq a_{\alpha}^{*}$ and $\zeta \in X_{\alpha} \quad \Rightarrow \quad \mu \times \alpha+\zeta \notin a_{\alpha}^{*}$.
For each $b \in[\lambda] \leq \aleph_{0}$ let $\langle\gamma(b, i): i<i(g)\rangle$ be a maximal sequence such that $\gamma(b, i)<\lambda$ and $u_{\gamma(b, i)}^{*} \cap u_{\gamma(b, j)}^{*} \subseteq b$ and $\gamma(b, i) \notin b$ for $j<i$ (just choose $\gamma(b, i)$ by induction on $i)$.

We choose by induction on $\zeta \leq \omega_{1}, Y_{\zeta}, h_{\zeta}, S_{\zeta}, G_{\zeta}, Z_{\zeta}$ and $U_{\zeta, g}$ such that
(a) $Y_{\zeta} \in\left[2^{\mu}\right] \leq \mu$ is increasing continuous in ζ,
(b) Z_{ζ} is the minimal subset of λ (of cardinality $\leq \mu$) which includes

$$
\bigcup\left\{u_{\gamma}:\left(\exists \alpha \in Y_{\zeta}\right)[\mu \times \alpha \leq \gamma<\mu \times(\alpha+1)]\right\}
$$

and satisfies

$$
u \in W \& u \cap Z_{\zeta} \in \mathbf{w}(u) \quad \Rightarrow \quad u \subseteq Z_{\zeta}
$$

(c) h_{ζ} is a one-to-one function from μ onto Z_{ζ}, and

$$
G_{\zeta}=\left\{h_{\zeta}^{\prime \prime}(b): b \in \mathcal{S}\right\} \cup \bigcup_{\xi<\zeta} G_{\xi}
$$

(d) for $b \in G_{\zeta}$ we have $U_{\zeta, b}$ is $\{i: i<i(b)\}$ if $i(b)<\mu^{+}$and otherwise is a subset of $i(b)$ of cardinality μ such that

$$
j \in U_{\zeta, b} \quad \Rightarrow \quad \operatorname{Dom}\left(f_{\gamma(b, j)}^{*}\right) \cap Z_{\zeta} \subseteq b
$$

(e) $Y_{\zeta+1}=Y_{\zeta} \cup\left\{\gamma(b, j): b \in G_{\zeta}\right.$ and $\left.j \in U_{\zeta, b}\right\}$.

Again, there is no problem to carry out the definition (e.g. $\left|Z_{\zeta}\right| \leq \mu$ by clause (d) of $1.3(3))$. Let $Y=Y_{\omega_{1}}$. Let $\left\{\left(b_{\varepsilon}, \xi_{\varepsilon}\right): \varepsilon<\varepsilon(*) \leq \mu\right\}$ list the set of pairs (b, ξ) such that $\xi<\omega_{1}, b \in G_{\xi}$ and $i(b) \geq \mu^{+}$. We can find $\left\langle\zeta_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ such that $\left\langle\gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right): \varepsilon<\varepsilon(*)\right\rangle$ is without repetition and $\zeta_{\varepsilon} \in U_{b_{\varepsilon}, \xi_{\varepsilon}}, \varepsilon(*) \leq \mu$. So for some $\alpha<2^{\mu} \backslash Y_{\omega_{1}}$ we have

$$
(\forall \varepsilon<\varepsilon(*))\left(A_{\varepsilon}^{\alpha}=\left\{\mu \times \gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right)+\Upsilon: \Upsilon \in X_{\gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right)}\right\}\right.
$$

Now, let $b_{0}=a_{\alpha}^{*} \cap Z_{\omega_{1}}$, so for some $\zeta_{0}(*)<\omega_{1}$ we have $b_{0} \subseteq Z_{\zeta_{0}(*)}$. As a_{α}^{*} is countable and $G_{\zeta} \subseteq\left[Z_{\zeta}\right] \leq \aleph_{0}$ is stationary (and the closure property of Z_{ζ}) there is $b^{*} \in \mathcal{S}^{\prime}$ such that $b \stackrel{\text { def }}{=} b^{*} \cap Z_{\zeta_{0}(*)}$ belongs to G_{ζ} and $a_{\alpha}^{*} \subseteq b^{*}$ and so $U_{b, \zeta} \subseteq i(b)$ for $\zeta \in\left[\zeta_{0}(*), \omega_{1}\right)$ and $\langle\gamma(b, i): i<i(b)\rangle$ are well defined. Now α exemplified $i(b)<\mu^{+}$is impossible (see the maximality as otherwise $\left.i<i(b) \quad \Rightarrow \quad \gamma(b, i) \in Z_{\zeta_{0}(*)+1} \subseteq Z_{\omega_{1}}\right)$.

As for each $\gamma \in X_{\alpha}$, the set $a_{\mu \times \alpha+\gamma}$ is countable, for some $\zeta_{1, \gamma}(*)<\omega_{1}$ we have $a_{\mu \times \alpha+\gamma} \cap Z_{\omega_{1}} \subseteq Z_{\zeta_{1, \gamma}(*)}$. Since $\operatorname{cf}(\mu)>\aleph_{1}$ necessarily for some $\zeta_{1}(*)<\omega_{1}$ we have

$$
X_{\alpha}^{\prime} \stackrel{\text { def }}{=}\left\{\gamma \in X_{\alpha}: \zeta_{1, \gamma}(*) \leq \zeta_{1}(*)\right\} \in[\mu]^{\mu}
$$

and without loss of generality $\zeta_{1}(*) \geq \zeta_{0}(*)$. Thus for some $\varepsilon<\mu$ we have $b_{\varepsilon}=b \& \xi_{\varepsilon}=\zeta_{1}(*)+1$. Let $\Upsilon_{\varepsilon}=\gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right)$. Clearly
$(*)_{1} a_{\alpha}^{*}, a_{\Upsilon_{\varepsilon}}^{*}$ are countable,
$(*)_{2} \gamma \in X_{\alpha}^{\prime} \quad \Rightarrow \quad \mu \times \alpha+\gamma \in a_{\gamma}$,
$(*)_{3} \gamma_{1} \neq \gamma_{2} \& \gamma_{1} \in X_{\alpha}^{\prime} \& \gamma_{2} \in X_{\alpha}^{\prime} \quad \Rightarrow \quad a_{\mu \times \alpha+\gamma_{1}} \cap a_{\mu \times \alpha+\gamma_{2}} \subseteq b^{*}$.
So possibly shrinking X_{α}^{\prime} without loss of generality
$(*)_{4}$ if $\gamma \in X_{\alpha}^{\prime}$ then $a_{(\mu \times \alpha+\gamma)} \cap a_{\Upsilon_{\varepsilon}}^{*} \subseteq b^{*}$.
For each $\gamma \in X_{\alpha}^{\prime}$ let

$$
t_{\gamma}=\left\{\beta \in X_{\Upsilon_{\varepsilon}}: a_{\left(\mu \times \Upsilon_{\varepsilon}+\beta\right)} \cap a_{(\mu \alpha+\gamma)} \nsubseteq b^{*}\right\}
$$

As $\left\langle f_{\left(\mu \times \Upsilon_{\varepsilon}+\beta\right)}: \beta \in X_{\Upsilon_{\varepsilon}}\right\rangle$ was chosen to satisfy $\left(\otimes_{\Upsilon_{\varepsilon}}\right)$ (and $\left.(*)_{3}\right)$ necessarily
$(*)_{5} \gamma \in X_{\alpha}^{\prime}$ implies t_{γ} is countable.
For $\gamma \in X_{\alpha}^{\prime}$ let

$$
\begin{array}{ll}
s_{\gamma} \stackrel{\text { def }}{=} \bigcup\{u: & u \text { is a finite subset of } X_{\alpha}^{\prime} \text { and } \\
& \left.F_{\alpha}(\{\mu \times \alpha+\beta: \beta \in u\}) \text { belongs to } t_{\gamma}\right\} .
\end{array}
$$

As F_{α} is a one-to-one function clearly
$(*)_{6} s_{\gamma}$ is a countable set.
So without loss of generality (possibly shrinking X_{α}^{\prime} using $\mu>\aleph_{1}$)
$(*)_{7}$ if $\gamma_{1} \neq \gamma_{2}$ are from X_{α}^{\prime} then $\gamma_{1} \notin s_{\gamma_{2}}$.
By the choice of F_{α}, for some finite subset u of X_{α}^{\prime} with at least two elements, letting $u^{\prime} \stackrel{\text { def }}{=}\{\mu \times \alpha+j: j \in u\}$ we have

$$
\beta \stackrel{\text { def }}{=} F_{\alpha}\left(u^{\prime}\right) \in\left\{\mu \times \gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right)+\gamma: \gamma \in X_{\gamma\left(b_{\varepsilon}, \zeta_{\varepsilon}\right)}\right\} .
$$

Hence $u^{\prime} \cup\{\beta\} \in W$, so it is enough to show that $\left\{a_{\mu \times \alpha+j}: j \in u\right\} \cup\left\{a_{\beta}\right\}$ are pairwise disjoint outside b^{*}. For the first it is enough to check any two. Now, $\left\{f_{\mu \times \alpha+j}: j \in u\right\}$ are O.K. by the choice of $\left\langle f_{\mu \times \alpha+j}: j \in X_{\alpha}\right\rangle$. So let
$j \in u$. Now, $a_{\mu \times \alpha+j}, a_{\beta}$ are O.K., otherwise $\beta-\left(\mu \times \Upsilon_{\varepsilon}\right) \in t_{j}$ and hence u is a subset of s_{j} but u has at least two elements and is a subset of X_{α}^{\prime} and this contradicts the statement $(*)_{6}$ above and so we are done.

Lemma 2.3. Let (W, \mathbf{w}) be a λ-candidate. Assume that $u \subseteq \lambda$ and $u=$ $\mathrm{cl}_{(W, \mathbf{w})}(u)$ (see Definition 1.3(1),(d)) and let $W^{[u]}=W \cap[u]^{<\aleph_{0}}$ and $\mathbf{w}^{[u]}=$ $\mathbf{w} \upharpoonright W^{[u]}$. Furthermore suppose that (W, \mathbf{w}) is non-trivial (which holds in all the cases we construct), i.e.
$(*) \quad i \in v \in W \quad \Rightarrow \quad v \backslash\{i\} \in \mathbf{w}(v)$.
Then:
(1) $\left(W^{[u]}, \mathbf{w}^{[u]}\right)$ is a λ-candidate (here $u=\operatorname{cl}_{(W, \mathbf{w})}(u)$ is irrelevant);
(2) $B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$ is a subalgebra of $B A(W, \mathbf{w})$, moreover $B A\left(W^{[u]}, \mathbf{w}^{[u]}\right) \lessdot$ $B A(W, \mathbf{w})$;
(3) if $i \in \lambda \backslash u$ and $y \in B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$ then

$$
y \neq 0 \Rightarrow y \cap x_{i}>0 \& y-x_{i}>0
$$

(4) $B A^{c}\left(W^{[u]}, \mathbf{w}^{[u]}\right) \lessdot \prec B A^{c}(W, \mathbf{w})$.

Proof 1) Trivial.
2) The first phrase: if f_{0} is a homomorphism from $B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$ to the Boolean Algebra $\{0,1\}$ we define a function f from $\left\{x_{\alpha}: \alpha<\lambda\right\}$ to $\{0,1\}$ by $f\left(x_{\alpha}\right)$ is $f_{0}\left(x_{\alpha}\right)$ if $\alpha \in u$ and is zero otherwise. Now

$$
v \in W \quad \Rightarrow \quad(\exists \alpha \in v)\left(f\left(x_{\alpha}\right)=0\right)
$$

Why? If $v \subseteq u$, then $v \in W^{[u]}$ and " f_{0} is a homomorphism", so $f_{0}\left(\bigcap_{\alpha \in v} x_{\alpha}\right)=$ 0 . Hence $(\exists \alpha \in v)\left(f_{0}\left(x_{\alpha}\right)=0\right)$ and hence $(\exists \alpha \in v)\left(f\left(x_{\alpha}\right)=0\right)$. If $v \nsubseteq u$, then choose $\alpha \in v \backslash u$, so $f\left(x_{\alpha}\right)=0$.

So f respects all the equations involved in the definition of $B A(W, \mathbf{w})$ hence can be extended to a homomorphism \hat{f} from $B A(W, \mathbf{w})$ to $\{0,1\}$. Easily $f_{0} \subseteq \hat{f}$ and so we are done.

As for the second phrase, let $z \in B A(W, \mathbf{w}), z>0$ and we shall find $y \in B A\left(W^{[u]}, \mathbf{w}^{[u]}\right), y>0$ such that

$$
(\forall x)\left[x \in B A\left(W^{[u]}, \mathbf{w}^{[u]}\right) \& 0<x \leq y \quad \Rightarrow \quad x \cap z \neq 0\right)
$$

We can find disjoint finite subsets s_{0}, s_{1} of λ such that $0<z^{\prime} \leq z$ where $z^{\prime}=\bigcap_{\alpha \in s_{1}} x_{\alpha} \cap \bigcap_{\alpha \in s_{0}}\left(-x_{\alpha}\right)$. Let

$$
t=\bigcup\left\{v: v \in W \text { a finite subset of } \lambda \text { and } v \cap s_{0} \in \mathbf{w}(v)\right\} \cup s_{0} \cup s_{1}
$$

We know that t is finite. We can find a partition t_{0}, t_{1} of t (so $t_{0} \cap t_{1}=\emptyset$, $\left.t_{0} \cup t_{1}=t\right)$ such that $s_{0} \subseteq t_{0}$ and $s_{1} \subseteq t_{1}$ and $y^{*}=\bigcap_{\alpha \in t_{1}} x_{\alpha} \cap \bigcap_{\alpha \in t_{0}}\left(-x_{\alpha}\right)>$
0. Note that $y \stackrel{\text { def }}{=} \bigcap_{\alpha \in u \cap t_{1}} x_{\alpha} \cap \bigcap_{\alpha \in u \cap t_{0}}\left(-x_{\alpha}\right)$ is >0 and, of course, $y \in$ $B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$. We shall show that y is as required. So assume $0<x \leq y$, $x \in B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$. As we can shrink x, without loss of generality, for some disjoint finite $r_{0}, r_{1} \subseteq u$ we have $t \cap u \subseteq r_{0} \cup r_{1}$ and $x=\bigcap_{\alpha \in r_{1}} x_{\alpha} \cap \bigcap_{\alpha \in r_{0}}\left(-x_{\alpha}\right)$, so clearly $t_{1} \cap u \subseteq r_{1}, t_{0} \cap u \subseteq r_{0}$.

We need to show $x \cap z \neq 0$, and for this it is enough to show that $x \cap z^{\prime} \neq 0$. Now, it is enough to find a function $f:\left\{x_{\alpha}: \alpha<\lambda\right\} \longrightarrow\{0,1\}$ respecting all the equations in the definition of $B A(W, \mathbf{w})$ such that \hat{f} maps $x \cap z^{\prime}$ to 1. So let $f\left(x_{\alpha}\right)=1$ for $\alpha \in r_{1} \cup s_{1}$ and $f\left(x_{\alpha}\right)=0$ otherwise. If this is O.K., fine as $f \upharpoonright r_{0}, f \upharpoonright s_{0}$ are identically zero and $f \upharpoonright r_{1}, f \upharpoonright s_{1}$ are identically one. If this fails, then for some $v \in \mathbf{w}$ we have $v \subseteq r_{1} \cup s_{1}$. But then $v \cap r_{1} \in \mathbf{w}(v)$ or $v \cap s_{1} \in \mathbf{w}(v)$. Now if $v \cap r_{1} \in \mathbf{w}(w)$ as $r_{1} \subseteq u$ necessarily $v \subseteq u$, but $v \subseteq r_{1} \cup s_{1}$ and $s_{1} \cap u \subseteq t_{1} \subseteq r_{1}$, so $v \subseteq r_{1}$ is a contradiction to $x>0$. Lastly, if $v \cap s_{1} \in \mathbf{w}(v)$, then $v \subseteq t$ so as $v \subseteq r_{1} \cup s_{1}$ we have $v \subseteq s_{1} \cup\left(t \cap r_{1}\right)$ and so $v \subseteq s_{1} \cup t_{1}$ and hence $v \subseteq t_{1}-$ a contradiction to $y^{*}>0$. So f is O.K. and we are done.
3) Let f_{0} be a homomorphism from $B A\left(W^{[u]}, \mathbf{w}^{[u]}\right)$ to the trivial Boolean Algebra $\{0,1\}$. For $t \in\{0,1\}$ we define a function f from $\left\{x_{\alpha}: \alpha<\lambda\right\}$ to $\{0,1\}$ by

$$
f\left(x_{\alpha}\right)=\left\{\begin{array}{lll}
f_{0}\left(x_{\alpha}\right) & \text { if } & \alpha \in u \\
t & \text { if } & \alpha=i \\
0 & \text { if } & \alpha \in \lambda \backslash u \backslash\{i\}
\end{array}\right.
$$

Now f respects the equations in the definition of $B A(W, \mathbf{w})$. Why? Let $v \in W$. We should prove that $(\exists \alpha \in v)(f(\alpha)=0)$. If $v \subseteq u$, then

$$
\begin{gathered}
f \upharpoonright\left\{x_{\alpha}: \alpha \in v\right\}=f_{0} \upharpoonright\left\{x_{\alpha}: \alpha \in v\right\} \quad \text { and } \\
0=f_{0}\left(0_{B A\left(W^{[u]}, \mathbf{w}\right.}{ }^{[u]}\right)=f_{0}\left(\bigcap_{\alpha \in v} x_{\alpha}\right)=\bigcap_{\alpha \in v} f_{0}\left(x_{\alpha}\right),
\end{gathered}
$$

so $(\exists \alpha \in v)\left(f_{0}\left(x_{\alpha}\right)=0\right)$. If $v \nsubseteq u \cup\{i\}$ let $\alpha \in v \backslash u \backslash\{i\}$, so $f\left(x_{\alpha}\right)=0$ as required.

So we are left with the case $v \subseteq u \cup\{i\}, v \nsubseteq u$. Then by the assumption $(*), v \cap u=v \backslash\{i\} \in \mathbf{w}(v)$ and $v \subseteq u$, a contradiction.
4) Follows.

Remark 2.4. We can replace \aleph_{0} by say $\kappa=\operatorname{cf}(\kappa)$ (so in $2.2, \mu=\kappa^{++}$, in 1.7, $(\forall \alpha<\mu)\left(|\alpha|^{<\kappa}<\mu=\operatorname{cf}(\mu)\right)$.

References

[1] Engelking, R. and Karlowicz, M., Some theorems of set theory and their topological consequences, Fundamenta Math., 57 (1965), 275-285.
[2] Fremlin, D., Measure algebras, In Handbook of Boolean Algebras, North-Holland, 1989. Monk D., Bonet R. eds.
[3] Detlefsen, M. E. and Szymański, A., Category bases, International Journal of mathematics and Mathematical Sciences, 16 (1993), 531-538.
[4] Gitik, M. and Shelah, S., On densities of box products, Topology and its Applications, accepted.
[5] Hajnal, A. and Juhasz, I. and Szentmiklossy, Z., On the structure of CCC partial orders, Algebra Universalis, to appear.
[6] Morgan, J. C. II, Point set theory, volume 131 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc, New York, 1990.
[7] Rabus, M. and Shelah, S., Topological density of ccc Boolean algebras - every cardinality occurs, Proceedings of the American Mathematical Society, submitted.
[8] Shelah, S., Remarks on λ-collectionwise Hausdorff spaces, Topology Proceedings, 2 (1977), 583-592.
[9] Shelah, S., On saturation for a predicate. Notre Dame Journal of Formal Logic, 22 (1981), 239-248.
[10] Shelah, S., Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
[11] Shilling, K., Some category bases which are equivalent to topologies, Real Analysis Exchange, 14 (1988/89), 210-214.
[12] Szymański, A., On the measurability problem for category bases, Real Analysis Exchange, 17 (1991/92), 85-92.

Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel, and Rutgers University, Mathematics Department, New Brunswick, NJ 08854 , USA

Email address: shelah@math.huji.ac.il

[^0]: ${ }^{1}$ as functions, not as homomorphisms

