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ABSTRACT: We introduce a large cardinal property which is consistent with L
and show that for every superatomic Boolean algebra B and every cardinal A
with the large cardinal property, if tightness™(B) > AT then depth(B) > . This

improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if A is a Ramsey cardinal (see
[J, p-328]) then every superatomic Boolean algebra with tightness at least AT has depth at
least A\. Recall that a Boolean algebra B is superatomic iff every homomorphic image of B
is atomic. The depth of B is the supremum of all cardinals A such that there is a sequence
(bo 1 v < A) in B with bg < b, for all a < 8 < A (a well-ordered chain of length \). Then
depth™ of B is the first cardinal A such that there is no well-ordered chain of length \ in
B. The tightness of B is the supremum of all cardinals A such that B has a free sequence
of length A, where a sequence (b, : a < ) is called free provided that if I and A are finite
subsets of A such that o < g for all a € I" and 8 € A, then

() —ban () bs #0.

ael BeEA

By tightness™(B) we denote the first cardinal A for which there is no free sequence of
length X\ in B.
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For b € B we sometimes write b" for —b and b! for b.

We improve Theorem C from [DM] in two directions. We introduce a large cardinal
property which is much weaker than Ramseyness and even consistent with L (the con-
structible universe) and show that in Theorem C from [DM] it suffices to assume that A
has this property. Moreover we show that it suffices to assume tightness™(B) > A% instead
of tightness(B) > AT to conclude that depth(B) > \. In particular we get:

Theorem 1. Suppose that 0f exists. Let B be a superatomic Boolean algebra in the
constructible universe L, and let A be an uncountable cardinal in V. Then in L it is true
that tightness™ (B) > AT implies that deptht(B) > \.

For the theory of 0% see [J, §30]. Note that A as in Theorem 1 is a limit cardinal in
L, hence it suffices to show that in L, depth(B) > & for all cardinals k < A. As was the

case with the proof of Theorem C of [DM], we can’t show that under the assumptions of

Theorem 1, depth(B) = A is attained, i.e. that there is a well-ordered chain of length .
For the proof we consider the following large cardinal property:

Definition 2. Let A, k, 6 be infinite cardinals, and let v be an ordinal. The relation
R, (A k,0) is defined as follows:

For every ¢ : [\]<“ — 0 there exists A C X of order-type 7, such that for every

u € [A]<% there exists B C A of order-type & such that Vw € [B]I*l  c(w) = c(u).

Lemma 3. Assume R,(\, k,0), where v is a limit ordinal. For every ¢ : [A\]<* — 6
there exists A C X as in the definition of R (A, k,0) such that additionally c[[A]™ is constant

for every n < w.

Proof: Define ¢’ on [A]<“ by

H{Bos- s Bn1} ={(v,c{Bi i € v}) v Cn}.

As 0 is infinite we can easily code the values of ¢’ as ordinals in 6 and therefore apply
R, (A k,0) to it. We get A C X of order-type . We shall prove that c[[A]" is constant,

for every n < w. Fix wy,wy € [A]™.

Since v is a limit, without loss of generality we
may assume that max(w;) < min(wsy). Let w = w; Uwy. By Definition 2 there exists
B C )\, o.t.B = k, such that ¢[[B]?" is constant with value ¢/(w). Let (3, : v < k) be the

increasing enumeration of B. We have

C/{B(J? s 76271—1} - C/{/Bﬂn SRR /8371—1}-
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By the definition of ¢’ we get

{Bo,-- - Bn-1} = c{Bns- - Ban—1} =t co.

This information is coded in ¢/{fy, ..., Ban—1}, i.e.

({0,...,n—1},¢0), ({n,...,2n —1},¢0) € ¢{Bo,-- -, Bon—1}-

As {Bo, ..., Pan—1} = ¢ (w) we conclude c(w;) = c(wz) = co. 0

Theorem 4. Assume R, (\, k,w), where y is a limit ordinal. If B is a Boolean algebra
and (a, : v < \) is a sequence in B, then one of the following holds:
(a) there exists A C X\, 0.t.(A) =, such that (a, : v € A) is independent;

(b) there exist n < w and strictly increasing sequence (B, : v < k) in X such that, letting

b, = U ﬂ B2y ynkir? (*)

k<nl<n

we have that (b, : v < K) is constant;

(c) there ezists a strictly decreasing sequence in B of length k.

Corollary 5. Assume R (A, k,w), where v is a limit ordinal. If B is a superatomic

Boolean algebra, then tightnesst (B) > X\ implies Depth™ (B) > k.

Proof of Corollary 5: Let (a, : v < A) be a free sequence in B. As a superatomic
Boolean algebra does not have an infinite independent subset, (a) is impossible. Suppose

(b) were true. Define b, as in (x). Clearly we have

0
—b, > | | n
by = a5n2u+nk+l’ and
k,l<n

by Z m aﬁnzu-&-nk:-&-l'
k,l<n

Hence if v < p and b, = b, we obtain

_ 0
0 o bl/ m b‘u Z m aﬁnzu-i-nk-‘,—l m m aﬁ"2#ﬂ+"’€+l '
k,l<n k,l<n

This contradicts freeness of (a, : ¥ < k). We conclude that (c¢) must hold. O
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Proof of Theorem /: Define ¢ : [A\|<¥ — [<¥2]<% by

ABo < ... < PBp1}={nen2: ﬂ aggl) = 0}.
<n
Note that c{fy < ... < Bn-1} = cfap < ... < a,—_1} implies that {ag,,...,ap, ,}
and {aqag, ..., 0q,_, } have the same quantifier-free diagram, i.e. for every quantifier-free

formula ¢(zg,...,z,—1) in the language of Boolean algebra,

B |: (;5[CL50, . 7aﬁn71j| < B ): (b[aao, . 7aan71]'

Let A C X be as guaranteed for ¢ by R, (), k,w). By Lemma 3 we may assume that c[[A]"”
is constant, for every n < w.
If (an : @ € A) is independent, we are done. Therefore we may assume that this is

false. For m < w define

Fm:{UGWQ:H{BO<,__<ﬁm_1}gA ﬂaggi)zo}.

<m

By assumption, in the definition of I',, the existential quantifier can be replace by a

universal one to give the same set. There exists m < w such that I',,, # (). Define

I ={neT, : no proper subsequence of n belongs to U Ty}
k<m

By Kruscal’s Theorem [K]|, we have that (J IV, is finite. Let n* be minimal such that

m<w

U I, = Umen~ [ Then clearly we have that for every m < w and n € I'y,, 1 has a

m<w = m

subsequence in (J,_,. I’y Let m* = (n*)?, and let

T(l’o,...,xm*_l): U ﬂ mn*l—&—k-

I<n* k<n*

Claim 1. Ifn € ™ 2, t € {0,1}, and in the Boolean algebra {0,1}, 7[n(0),...,n(m* —
1)] =t, then [{i <m* :n(i) =t} > n*. O

Let (8, : v < ) be the strictly increasing enumeration of A, and define

bV = T[aﬁm*y7a57n*y+1’ tte 7a5m*v+m*—1]’
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for every v < =, where the evaluation of 7 takes place in B, of course. It is easy to see that
the sequence (b, : v < 7) inherites from (ag, : v < 7) the property, that any two finite

subsequences of same length have the same quantifier-free diagram.

Claim 2. Ifn € T, then (;_, b7 = 0.
Proof of Claim 2: Otherwise there exists an ultrafilter D on B such that (1, _,, b?(i) €
D. Define ¢ € "™ 2 by ¢(i) =1iff ag, € D. Then (... aggi) € D, and hence ( & I'p,+-

Let h: B — B/D = {0,1} be the canonical homomorphism induced by D. We calculate

b= h(icn B) = M 0™ = My 75,0 ), 0y T

= MNicn TIC(M* ), ..., C(m* i+ k), ..., {(m* (i + 1) — 1],

We conclude that 7[¢(m*i),...,{(m*i+k),...,{(m*(i+1)—1)] = n(i), for all i < n,
and hence by Claim 1 we can choose j; € [m*i,m*(i 4+ 1)) such that ((j;) = n(i). Clearly
19 < 71 implies that j;, < j;,. But this implies ¢ € I';,,,,», a contradiction. OClaim 2

Claim 3. Ift<w,nel,, 0=Fky < ki <...<k=n, and n[lk;, kit1) is constant
for alli <t, and if p € *2 is defined by p(i) = n(k;), then (,_, bf(i) = 0.

Proof of Claim 3: Wlog we may assume that n € I') for some n < n*. Indeed,
otherwise we can find m < n*, n’ € I/, and some increasing h : m — n such that
n'(i) = n(h(i)), for all i < m. Then {h= ki, kiz1) : i < t} equals {[l;,lix1) : i < s}
for some lp = 0 < l; < ... < ls_1 = m. Note that n'[[l;,[;+1) is constant, and letting

p' € °2 be defined by p'(i) = 1’ (l;), we have p’(i) = p(h(i)). Hence ), _, bf/(i) = 0 implies
Micy 079 = 0.
Therefore we assume n € I',, for some n < n*. Suppose we had (),_, bf(i) > 0.

i<t bf(i). Let h : B — B/D be the canonical

homomorphism. Define ¢ € ¥ 2 such that (i) = 1 iff a; € D. Hence ¢ & T'yy,-. We get

Let D be an ultrafilter on B containing ()

R 00D) = () r[Cim™), ..., C((i + 1ym* — 1)]PD =1.

1<t 1<t
Hence by Claim 1,
Vi < t3a; € [{im*, ..., i+ Dm* —1}"'Vjca; () = pli).

Define p € ™2 by u(j) = p(i) iff j € [in*, (i + 1)n*). Then u is a subsequence of ¢ and

therefore pu ¢ I'y,«. But also 7 is a subsequence of u, and hence n € I';,, a contradiction.
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Uclaim 3
Claim 4. Suppose p € *2 and (,_, bf(i) = 0. Let ( € ™2 be defined such that
¢(m*i) = p(i) and {[[m*i,m*(i+ 1)) is constant for every i < t. Then € I'p«;.

Proof of Claim 4: Otherwise, [, ,,« af(i) > 0. Let D be an ultrafilter containing
¢(4)

Nicm+¢ @; - Let h: B — B/D be the canonical homomorphism. We have

R 00D) = () 7IC(m™ ), ..., ¢(m* (i +1) = 1)]7D = () 7[p(d), ..., p(i)]"D = 1.

i<t i<t i<t
This is a contradiction. OClaim 4
Since we assume that (a, : @ € A) is not independent, by Claim 2 we can find k* < w
minimal such that for some p* € ¥ 2, (i< pr bf* ) = 0. Note that p*(i+1) # p*(i) for every
i < k* — 1. Indeed, otherwise let ¢ € ™ ¥"2 be defined as in Claim 4. So ¢ € T'p+p+. By
Claim 3 we can find p’ of shorter length than p* such that (), <Ip| by fop 0, contradicting
the minimal choice of k*.
Suppose first that k* = 1. We conclude that (b, : v < ) either is constantly 1 or 0.

The main part of the definition of R, (), k,w) then gives a sequence of length x as desired

in (b) of Theorem 4.

Secondly suppose k* > 1. If (), _j._o b} @ b 5N b0, =0 and ;_p._o b O
bg*_Q Nbg+_1 =0, then ﬂi<k*_2 bf*(i) Nbgx_o = ﬂi<k*_2 bf*(i) Nby+_1, and an application

of the main part of the definition of R, (), k,w) gives a sequence as desired in (b).

Otherwise, if p*(k* —2) = 1 and p*(k* — 1) = 0, then

N ¥ 20bea< () P Nbps
i<k*—2 i<k —2
, and applying the definition gives (c). Similarly if p*(k* —2) =0 and p*(k* —1)=1. O
Theorem 6. Assume the following:
(1) 0F exists,
(2) V |= X is an uncountable cardinal,

(3) k,0 < A, and L |= k is a regular cardinal.
Then L = Ry,(\, kK, 0).

Proof: Let ¢ : [A|<¥ — 0, ¢ € L, be arbitrary.
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Let Y be the set of all w € [A]<% such that for every n < |w| and u € [w]™ there exists
B C X of order-type « in L such that Vv € [B]" ¢(u) = ¢(v). Clearly Y € L.

Claim 1. If in V there exists A € [\|* with [A]<* CY, then L = R, (\, k,0).

Proof of Claim 1: Let T be the set of all one-to-one sequences p € <“ X withran(p) € Y,
ordered by extension. Then T is a tree and by assumption, 7" has an w-branch in V.
By absoluteness, 7" has an w-branch b in L. Then ran(b) (or some subset) witnesses
LE=R,(\K,6). Oclaim 1

Let (i, : v < A1) be the increasing enumeration of the club of indiscernibles of Ly .
Then (i, : v < A) is the club of indiscernibles of Ly. As ¢ € Ly+ there exist ordinals
o< ...<&-1<A<E <...<&-1<AT and a Skolem term ¢, such that

L>\+ |: C = tc[igo, e ai£q71]-

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if o = max{,_1,0}+
1, then ¢[[{i, : @ < v < A}|™ is constant for every n < w, say with value ¢,. Let n < w
be arbitrary. Let 0o = ta*4r, 01 = tartrtlys---s0n—1 = la*trtn—1-
Claim 2. For every a < dqg there exists a limit §, a < § < dg, such that for all

Bo < ...< Pn_g <6 the following hold:

Jo ¢{0,01,...,0n—1} =c{do,.-.,0n_1}(=cn),
(#)1 c{Bo,8,02,...,0n-1} = c{Bo,01,...,0n—1},

)2 e{Bo, 156,03, -, 0n—1} = c{Bo, B1,02, ..., 6n—1},

(#)n-1 {Bo,-- -+ Bn-2,0} = c{Bo, ..., Bn—2,0n-1}.
Proof of Claim 2: Let a < &g be arbitrary. Choose v < k such that ~ is a limit and
tar4~y > @, and let § = i 4.
Then clearly (%) holds.
In order to prove ()1, let B < & be arbitrary. There exist ordinals vy < ... < g1 <

a* + v and a Skolem term ¢g such that
Lyr- .
ts M ivgs - - sl _1] = B
Moreover there exist ordinals pg < ... < py—1 < o™ and a Skolem term ¢ such that

Lt = tipgs v ipy ] = telicos - - vie, J{talivgs - rive 1015y 0na}e  (4)

7



Paper Sh:663, version 1998-02-16_10. See https://shelah.logic.at/papers/663/ for possible updates.

Note that all indices of occurring indiscernibles, except for d1,...,9d,_1, either are at least
A or else below a* + . We conclude that in (+), d; can be replaced by ¢. The resulting

statement is

6{5751; s 7671—1} = 6{576; 627 s 7571—1}7

as desired.

The proof of (%)a—(%),_1 is similar. OClaim 2

It is clear that the statement of Claim 2 is absolute. Hence it is also true in L. Using
this we shall prove that [{i, : o* < v < A}<* C Y. By Claim 1, this will suffice. We
only have to prove that for every n < w there exists B C A of order-type x such that
B e L and Vv € [B]" ¢(v) = ¢,. Fix n < w. Working in L, we construct B inductively
as {7, : v < K}

Fix §p < 01 < ... < d,_2 < A as above. Apply Claim 2 in L with o = 0 and obtain
Yo € (0,00). Suppose we have gotten (v, : v < p) for some p < k. Let v* =sup, ., v + 1.
Since cf®(6y) > k and (7, : v < pu) € L, we have that v* < 6y. Apply Claim 2 with o = 7*
and get v, € (v*, o).

We claim that (v, : v < k) is as desired. Indeed, let {7,, < 7, < ... < Y, ,} be
arbitrary. We have

0{7V07 cee =’7Vn—1} =(*)n-1 C{’Vvov cee 77Vn_2a5n—1}

=(")n-2 C{’YVm <o Yon—ss 5"_2’ 5”‘_1}

:(*)1 C{fyuov 617 s 7571—1}

=)o Cn- OTheorem 6
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