On tightness and depth in superatomic Boolean algebras

Saharon Shelah ${ }^{1}$
Institute of Mathematics, Hebrew University, Givat Ram, 91904 Jerusalem, ISRAEL e-mail: shelah@math.huji.ac.il

Otmar Spinas ${ }^{2}$
Mathematik, ETH-Zentrum, 8092 Zürich, SWITZERLAND
e-mail: spinas@math.ethz.ch

ABSTRACT: We introduce a large cardinal property which is consistent with L and show that for every superatomic Boolean algebra B and every cardinal λ with the large cardinal property, if tightness ${ }^{+}(B) \geq \lambda^{+}$then $\operatorname{depth}(B) \geq \lambda$. This improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if λ is a Ramsey cardinal (see [J, p.328]) then every superatomic Boolean algebra with tightness at least λ^{+}has depth at least λ. Recall that a Boolean algebra B is superatomic iff every homomorphic image of B is atomic. The depth of B is the supremum of all cardinals λ such that there is a sequence $\left(b_{\alpha}: \alpha<\lambda\right)$ in B with $b_{\beta}<b_{\alpha}$ for all $\alpha<\beta<\lambda$ (a well-ordered chain of length λ). Then depth $^{+}$of B is the first cardinal λ such that there is no well-ordered chain of length λ in B. The tightness of B is the supremum of all cardinals λ such that B has a free sequence of length λ, where a sequence $\left(b_{\alpha}: \alpha<\lambda\right)$ is called free provided that if Γ and Δ are finite subsets of λ such that $\alpha<\beta$ for all $\alpha \in \Gamma$ and $\beta \in \Delta$, then

$$
\bigcap_{\alpha \in \Gamma}-b_{\alpha} \cap \bigcap_{\beta \in \Delta} b_{\beta} \neq 0 .
$$

By tightness ${ }^{+}(B)$ we denote the first cardinal λ for which there is no free sequence of length λ in B.

[^0]For $b \in B$ we sometimes write b^{0} for $-b$ and b^{1} for b.
We improve Theorem C from [DM] in two directions. We introduce a large cardinal property which is much weaker than Ramseyness and even consistent with L (the constructible universe) and show that in Theorem C from [DM] it suffices to assume that λ has this property. Moreover we show that it suffices to assume tightness ${ }^{+}(B) \geq \lambda^{+}$instead of tightness $(B) \geq \lambda^{+}$to conclude that depth $(B) \geq \lambda$. In particular we get:

Theorem 1. Suppose that 0^{\sharp} exists. Let B be a superatomic Boolean algebra in the constructible universe L, and let λ be an uncountable cardinal in V. Then in L it is true that tightness ${ }^{+}(B) \geq \lambda^{+}$implies that depth ${ }^{+}(B) \geq \lambda$.

For the theory of 0^{\sharp} see $[\mathrm{J}, \S 30]$. Note that λ as in Theorem 1 is a limit cardinal in L, hence it suffices to show that in L, $\operatorname{depth}(B) \geq \kappa$ for all cardinals $\kappa<\lambda$. As was the case with the proof of Theorem C of $[\mathrm{DM}]$, we can't show that under the assumptions of Theorem 1, $\operatorname{depth}(B)=\lambda$ is attained, i.e. that there is a well-ordered chain of length λ.

For the proof we consider the following large cardinal property:
Definition 2. Let λ, κ, θ be infinite cardinals, and let γ be an ordinal. The relation $R_{\gamma}(\lambda, \kappa, \theta)$ is defined as follows:

For every $c:[\lambda]^{<\omega} \rightarrow \theta$ there exists $A \subseteq \lambda$ of order-type γ, such that for every $u \in[A]^{<\omega}$ there exists $B \subseteq \lambda$ of order-type κ such that $\forall w \in[B]^{|u|} \quad c(w)=c(u)$.

Lemma 3. Assume $R_{\gamma}(\lambda, \kappa, \theta)$, where γ is a limit ordinal. For every $c:[\lambda]^{<\omega} \rightarrow \theta$ there exists $A \subseteq \lambda$ as in the definition of $R_{\gamma}(\lambda, \kappa, \theta)$ such that additionally $c \upharpoonright[A]^{n}$ is constant for every $n<\omega$.

Proof: Define c^{\prime} on $[\lambda]^{<\omega}$ by

$$
c^{\prime}\left\{\beta_{0}, \ldots, \beta_{n-1}\right\}=\left\{\left(v, c\left\{\beta_{i}: i \in v\right\}\right): v \subseteq n\right\} .
$$

As θ is infinite we can easily code the values of c^{\prime} as ordinals in θ and therefore apply $R_{\gamma}(\lambda, \kappa, \theta)$ to it. We get $A \subseteq \lambda$ of order-type γ. We shall prove that $c \upharpoonright[A]^{n}$ is constant, for every $n<\omega$. Fix $w_{1}, w_{2} \in[A]^{n}$. Since γ is a limit, without loss of generality we may assume that $\max \left(w_{1}\right)<\min \left(w_{2}\right)$. Let $w=w_{1} \cup w_{2}$. By Definition 2 there exists $B \subseteq \lambda$, o.t. $B=\kappa$, such that $c^{\prime} \upharpoonright[B]^{2 n}$ is constant with value $c^{\prime}(w)$. Let $\left(\beta_{\nu}: \nu<\kappa\right)$ be the increasing enumeration of B. We have

$$
c^{\prime}\left\{\beta_{0}, \ldots, \beta_{2 n-1}\right\}=c^{\prime}\left\{\beta_{n}, \ldots, \beta_{3 n-1}\right\} .
$$

By the definition of c^{\prime} we get

$$
c\left\{\beta_{0}, \ldots, \beta_{n-1}\right\}=c\left\{\beta_{n}, \ldots, \beta_{2 n-1}\right\}=: c_{0}
$$

This information is coded in $c^{\prime}\left\{\beta_{0}, \ldots, \beta_{2 n-1}\right\}$, i.e.

$$
\left(\{0, \ldots, n-1\}, c_{0}\right),\left(\{n, \ldots, 2 n-1\}, c_{0}\right) \in c^{\prime}\left\{\beta_{0}, \ldots, \beta_{2 n-1}\right\} .
$$

As $c^{\prime}\left\{\beta_{0}, \ldots, \beta_{2 n-1}\right\}=c^{\prime}(w)$ we conclude $c\left(w_{1}\right)=c\left(w_{2}\right)=c_{0}$.
Theorem 4. Assume $R_{\gamma}(\lambda, \kappa, \omega)$, where γ is a limit ordinal. If B is a Boolean algebra and $\left(a_{\nu}: \nu<\lambda\right)$ is a sequence in B, then one of the following holds:
(a) there exists $A \subseteq \lambda$, o.t. $(A)=\gamma$, such that $\left(a_{\nu}: \nu \in A\right)$ is independent;
(b) there exist $n<\omega$ and strictly increasing sequence $\left(\beta_{\nu}: \nu<\kappa\right)$ in λ such that, letting

$$
\begin{equation*}
b_{\nu}=\bigcup_{k<n} \bigcap_{l<n} a_{\beta_{n^{2} \nu+n k+l}}, \tag{*}
\end{equation*}
$$

we have that $\left(b_{\nu}: \nu<\kappa\right)$ is constant;
(c) there exists a strictly decreasing sequence in B of length κ.

Corollary 5. Assume $R_{\gamma}(\lambda, \kappa, \omega)$, where γ is a limit ordinal. If B is a superatomic Boolean algebra, then tightness ${ }^{+}(B)>\lambda$ implies $\operatorname{Depth}^{+}(B)>\kappa$.

Proof of Corollary 5: Let $\left(a_{\nu}: \nu<\lambda\right)$ be a free sequence in B. As a superatomic Boolean algebra does not have an infinite independent subset, (a) is impossible. Suppose (b) were true. Define b_{ν} as in (*). Clearly we have

$$
\begin{aligned}
-b_{\nu} & \geq \bigcap_{k, l<n} a_{\beta_{n^{2} \nu+n k+l}^{0}}^{0}, \text { and } \\
b_{\nu} & \geq \bigcap_{k, l<n} a_{\beta_{n^{2} \nu+n k+l}}
\end{aligned}
$$

Hence if $\nu<\mu$ and $b_{\nu}=b_{\mu}$ we obtain

$$
0=-b_{\nu} \cap b_{\mu} \geq \bigcap_{k, l<n} a_{\beta_{n^{2} \nu+n k+l}^{0}}^{0} \cap \bigcap_{k, l<n} a_{\beta_{n^{2} \mu+n k+l}}
$$

This contradicts freeness of ($\left.a_{\nu}: \nu<\kappa\right)$. We conclude that (c) must hold.

Proof of Theorem 4: Define $c:[\lambda]^{<\omega} \rightarrow\left[{ }^{<\omega} 2\right]^{<\omega}$ by

$$
c\left\{\beta_{0}<\ldots<\beta_{n-1}\right\}=\left\{\eta \in{ }^{n} 2: \bigcap_{i<n} a_{\beta_{i}}^{\eta(i)}=0\right\} .
$$

Note that $c\left\{\beta_{0}<\ldots<\beta_{n-1}\right\}=c\left\{\alpha_{0}<\ldots<\alpha_{n-1}\right\}$ implies that $\left\{a_{\beta_{0}}, \ldots, a_{\beta_{n-1}}\right\}$ and $\left\{a_{\alpha_{0}}, \ldots, a_{\alpha_{n-1}}\right\}$ have the same quantifier-free diagram, i.e. for every quantifier-free formula $\phi\left(x_{0}, \ldots, x_{n-1}\right)$ in the language of Boolean algebra,

$$
B \models \phi\left[a_{\beta_{0}}, \ldots, a_{\beta_{n-1}}\right] \Leftrightarrow B \models \phi\left[a_{\alpha_{0}}, \ldots, a_{\alpha_{n-1}}\right] .
$$

Let $A \subseteq \lambda$ be as guaranteed for c by $R_{\gamma}(\lambda, \kappa, \omega)$. By Lemma 3 we may assume that $c \upharpoonright[A]^{n}$ is constant, for every $n<\omega$.

If ($a_{\alpha}: \alpha \in A$) is independent, we are done. Therefore we may assume that this is false. For $m<\omega$ define

$$
\Gamma_{m}=\left\{\eta \in{ }^{m} 2: \exists\left\{\beta_{0}<\ldots<\beta_{m-1}\right\} \subseteq A \quad \bigcap_{i<m} a_{\beta_{i}}^{\eta(i)}=0\right\}
$$

By assumption, in the definition of Γ_{m} the existential quantifier can be replace by a universal one to give the same set. There exists $m<\omega$ such that $\Gamma_{m} \neq \emptyset$. Define

$$
\Gamma_{m}^{\prime}=\left\{\eta \in \Gamma_{m}: \text { no proper subsequence of } \eta \text { belongs to } \bigcup_{k<m} \Gamma_{k}\right\}
$$

By Kruscal's Theorem $[\mathrm{K}]$, we have that $\bigcup_{m<\omega} \Gamma_{m}^{\prime}$ is finite. Let n^{*} be minimal such that $\bigcup_{m<\omega} \Gamma_{m}^{\prime}=\bigcup_{m<n^{*}} \Gamma_{m}^{\prime}$. Then clearly we have that for every $m<\omega$ and $\eta \in \Gamma_{m}, \eta$ has a subsequence in $\bigcup_{k<n^{*}} \Gamma_{k}^{\prime}$. Let $m^{*}=\left(n^{*}\right)^{2}$, and let

$$
\tau\left(x_{0}, \ldots, x_{m^{*}-1}\right)=\bigcup_{l<n^{*}} \bigcap_{k<n^{*}} x_{n^{*} l+k}
$$

Claim 1. If $\eta \in{ }^{m^{*}} 2, t \in\{0,1\}$, and in the Boolean algebra $\{0,1\}, \tau\left[\eta(0), \ldots, \eta\left(m^{*}-\right.\right.$ $1)]=t$, then $\left|\left\{i<m^{*}: \eta(i)=t\right\}\right| \geq n^{*}$.

Let $\left(\beta_{\nu}: \nu<\gamma\right)$ be the strictly increasing enumeration of A, and define

$$
b_{\nu}=\tau\left[a_{\beta_{m^{*} \nu}}, a_{\beta_{m^{*} \nu+1}}, \ldots, a_{\beta_{m^{*} \nu+m^{*}-1}}\right]
$$

for every $\nu<\gamma$, where the evaluation of τ takes place in B, of course. It is easy to see that the sequence $\left(b_{\nu}: \nu<\gamma\right)$ inherites from $\left(a_{\beta_{\nu}}: \nu<\gamma\right)$ the property, that any two finite subsequences of same length have the same quantifier-free diagram.

Claim 2. If $\eta \in \Gamma_{n}$, then $\bigcap_{i<n} b_{i}^{\eta(i)}=0$.
Proof of Claim 2: Otherwise there exists an ultrafilter D on B such that $\bigcap_{i<n} b_{i}^{\eta(i)} \in$ D. Define $\zeta \in{ }^{n m^{*}} 2$ by $\zeta(i)=1$ iff $a_{\beta_{i}} \in D$. Then $\bigcap_{i<n m^{*}} a_{\beta_{i}}^{\zeta(i)} \in D$, and hence $\zeta \notin \Gamma_{n m^{*}}$. Let $h: B \rightarrow B / D=\{0,1\}$ be the canonical homomorphism induced by D. We calculate

$$
\begin{aligned}
1=h\left(\bigcap_{i<n} b_{i}^{\eta(i)}\right)= & \bigcap_{i<n} h\left(b_{i}\right)^{\eta(i)}=\bigcap_{i<n} \tau\left[h\left(a_{\beta_{m^{*} i}}\right), \ldots, h\left(a_{\beta_{m^{*}(i+1)-1}}\right)\right]^{\eta(i)} \\
& =\bigcap_{i<n} \tau\left[\zeta\left(m^{*} i\right), \ldots, \zeta\left(m^{*} i+k\right), \ldots, \zeta\left(m^{*}(i+1)-1\right)\right]^{\eta(i)}
\end{aligned}
$$

We conclude that $\tau\left[\zeta\left(m^{*} i\right), \ldots, \zeta\left(m^{*} i+k\right), \ldots, \zeta\left(m^{*}(i+1)-1\right)\right]=\eta(i)$, for all $i<n$, and hence by Claim 1 we can choose $j_{i} \in\left[m^{*} i, m^{*}(i+1)\right)$ such that $\zeta\left(j_{i}\right)=\eta(i)$. Clearly $i_{0}<i_{1}$ implies that $j_{i_{0}}<j_{i_{1}}$. But this implies $\zeta \in \Gamma_{n m^{*}}$, a contradiction.

Claim 3. If $t<\omega, \eta \in \Gamma_{n}, 0=k_{0}<k_{1}<\ldots<k_{t}=n$, and $\eta \upharpoonright\left[k_{i}, k_{i+1}\right)$ is constant for all $i<t$, and if $\rho \in{ }^{t} 2$ is defined by $\rho(i)=\eta\left(k_{i}\right)$, then $\bigcap_{i<t} b_{i}^{\rho(i)}=0$.

Proof of Claim 3: Wlog we may assume that $\eta \in \Gamma_{n}^{\prime}$ for some $n<n^{*}$. Indeed, otherwise we can find $m<n^{*}, \eta^{\prime} \in \Gamma_{m}^{\prime}$ and some increasing $h: m \rightarrow n$ such that $\eta^{\prime}(i)=\eta(h(i))$, for all $i<m$. Then $\left\{h^{-1}\left[k_{i}, k_{i+1}\right): i<t\right\}$ equals $\left\{\left[l_{i}, l_{i+1}\right): i<s\right\}$ for some $l_{0}=0<l_{1}<\ldots<l_{s-1}=m$. Note that $\eta^{\prime} \upharpoonright\left[l_{i}, l_{i+1}\right)$ is constant, and letting $\rho^{\prime} \in{ }^{s} 2$ be defined by $\rho^{\prime}(i)=\eta^{\prime}\left(l_{i}\right)$, we have $\rho^{\prime}(i)=\rho(h(i))$. Hence $\bigcap_{i<s} b_{i}^{\rho^{\prime}(i)}=0$ implies $\bigcap_{i<t} b_{i}^{\rho(i)}=0$.

Therefore we assume $\eta \in \Gamma_{n}^{\prime}$, for some $n<n^{*}$. Suppose we had $\bigcap_{i<t} b_{i}^{\rho(i)}>0$. Let D be an ultrafilter on B containing $\bigcap_{i<t} b_{i}^{\rho(i)}$. Let $h: B \rightarrow B / D$ be the canonical homomorphism. Define $\zeta \in{ }^{t m^{*}} 2$ such that $\zeta(i)=1$ iff $a_{i} \in D$. Hence $\zeta \notin \Gamma_{t m^{*}}$. We get

$$
h\left(\bigcap_{i<t} b_{i}^{\rho(i)}\right)=\bigcap_{i<t} \tau\left[\zeta\left(i m^{*}\right), \ldots, \zeta\left((i+1) m^{*}-1\right)\right]^{\rho(i)}=1 .
$$

Hence by Claim 1,

$$
\forall i<t \exists a_{i} \in\left[\left\{i m^{*}, \ldots,(i+1) m^{*}-1\right\}\right]^{n^{*}} \forall j \in a_{i} \quad \zeta(j)=\rho(i) .
$$

Define $\mu \in{ }^{t n^{*}} 2$ by $\mu(j)=\rho(i)$ iff $j \in\left[i n^{*},(i+1) n^{*}\right)$. Then μ is a subsequence of ζ and therefore $\mu \notin \Gamma_{t n^{*}}$. But also η is a subsequence of μ, and hence $\eta \notin \Gamma_{n}$, a contradiction.

Claim 4. Suppose $\rho \in{ }^{t} 2$ and $\bigcap_{i<t} b_{i}^{\rho(i)}=0$. Let $\zeta \in{ }^{m^{*} t} 2$ be defined such that $\zeta\left(m^{*} i\right)=\rho(i)$ and $\zeta \upharpoonright\left[m^{*} i, m^{*}(i+1)\right)$ is constant for every $i<t$. Then $\zeta \in \Gamma_{m^{*} t}$.

Proof of Claim 4: Otherwise, $\bigcap_{i<m^{*} t} a_{i}^{\zeta(i)}>0$. Let D be an ultrafilter containing $\bigcap_{i<m^{*} t} t_{i}^{\zeta(i)}$. Let $h: B \rightarrow B / D$ be the canonical homomorphism. We have

$$
h\left(\bigcap_{i<t} b_{i}^{\rho(i)}\right)=\bigcap_{i<t} \tau\left[\zeta\left(m^{*} i\right), \ldots, \zeta\left(m^{*}(i+1)-1\right)\right]^{\rho(i)}=\bigcap_{i<t} \tau[\rho(i), \ldots, \rho(i)]^{\rho(i)}=1 .
$$

This is a contradiction.
Since we assume that ($a_{\alpha}: \alpha \in A$) is not independent, by Claim 2 we can find $k^{*}<\omega$ minimal such that for some $\rho^{*} \in k^{k^{*}} 2, \bigcap_{i<k^{*}} b_{i}^{\rho^{*}(i)}=0$. Note that $\rho^{*}(i+1) \neq \rho^{*}(i)$ for every $i<k^{*}-1$. Indeed, otherwise let $\zeta \in^{m^{*} k^{*}} 2$ be defined as in Claim 4. So $\zeta \in \Gamma_{m^{*} k^{*}}$. By Claim 3 we can find ρ^{\prime} of shorter length than ρ^{*} such that $\left.\bigcap_{i<\left|\rho^{\prime}\right|}\right|_{i} ^{\rho^{\prime}(i)}=0$, contradicting the minimal choice of k^{*}.

Suppose first that $k^{*}=1$. We conclude that $\left(b_{\nu}: \nu<\gamma\right)$ either is constantly 1 or 0 . The main part of the definition of $R_{\gamma}(\lambda, \kappa, \omega)$ then gives a sequence of length κ as desired in (b) of Theorem 4.

Secondly suppose $k^{*}>1$. If $\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap b_{k^{*}-2} \cap b_{k^{*}-1}^{0}=0$ and $\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap$ $b_{k^{*}-2}^{0} \cap b_{k^{*}-1}=0$, then $\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap b_{k^{*}-2}=\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap b_{k^{*}-1}$, and an application of the main part of the definition of $R_{\gamma}(\lambda, \kappa, \omega)$ gives a sequence as desired in (b).

Otherwise, if $\rho^{*}\left(k^{*}-2\right)=1$ and $\rho^{*}\left(k^{*}-1\right)=0$, then

$$
\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap b_{k^{*}-2}<\bigcap_{i<k^{*}-2} b_{i}^{\rho^{*}(i)} \cap b_{k^{*}-1}
$$

, and applying the definition gives (c). Similarly if $\rho^{*}\left(k^{*}-2\right)=0$ and $\rho^{*}\left(k^{*}-1\right)=1$.
Theorem 6. Assume the following:
(1) 0^{\sharp} exists,
(2) $V \models \lambda$ is an uncountable cardinal,
(3) $\kappa, \theta<\lambda$, and $L \models \kappa$ is a regular cardinal.

Then $L \models R_{\omega}(\lambda, \kappa, \theta)$.
Proof: Let $c:[\lambda]^{<\omega} \rightarrow \theta, c \in L$, be arbitrary.

Let Y be the set of all $w \in[\lambda]^{<\omega}$ such that for every $n \leq|w|$ and $u \in[w]^{n}$ there exists $B \subseteq \lambda$ of order-type κ in L such that $\forall v \in[B]^{n} \quad c(u)=c(v)$. Clearly $Y \in L$.

Claim 1. If in V there exists $A \in[\lambda]^{\omega}$ with $[A]^{<\omega} \subseteq Y$, then $L \models R_{\omega}(\lambda, \kappa, \theta)$.
Proof of Claim 1: Let T be the set of all one-to-one sequences $\rho \in{ }^{<\omega} \lambda$ with $\operatorname{ran}(\rho) \in Y$, ordered by extension. Then T is a tree and by assumption, T has an ω-branch in V. By absoluteness, T has an ω-branch b in L. Then $\operatorname{ran}(b)$ (or some subset) witnesses $L \models R_{\omega}(\lambda, \kappa, \theta)$.

Let $\left(i_{\nu}: \nu<\lambda^{+}\right)$be the increasing enumeration of the club of indiscernibles of $L_{\lambda^{+}}$. Then $\left(i_{\nu}: \nu<\lambda\right)$ is the club of indiscernibles of L_{λ}. As $c \in L_{\lambda+}$ there exist ordinals $\xi_{0}<\ldots<\xi_{p-1}<\lambda \leq \xi_{p}<\ldots<\xi_{q-1}<\lambda^{+}$and a Skolem term t_{c} such that

$$
L_{\lambda^{+}} \models c=t_{c}\left[i_{\xi_{0}}, \ldots, i_{\xi_{q-1}}\right] .
$$

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if $\alpha^{*}=\max \left\{\xi_{p-1}, \theta\right\}+$ 1 , then $c \upharpoonright\left[\left\{i_{\nu}: \alpha^{*} \leq \nu<\lambda\right\}\right]^{n}$ is constant for every $n<\omega$, say with value c_{n}. Let $n<\omega$ be arbitrary. Let $\delta_{0}=i_{\alpha^{*}+\kappa}, \delta_{1}=i_{\alpha^{*}+\kappa+1}, \ldots, \delta_{n-1}=i_{\alpha^{*}+\kappa+n-1}$.

Claim 2. For every $\alpha<\delta_{0}$ there exists a limit $\delta, \alpha<\delta<\delta_{0}$, such that for all $\beta_{0}<\ldots<\beta_{n-2}<\delta$ the following hold:
$(*)_{0} c\left\{\delta, \delta_{1}, \ldots, \delta_{n-1}\right\}=c\left\{\delta_{0}, \ldots, \delta_{n-1}\right\}\left(=c_{n}\right)$,
$(*)_{1} c\left\{\beta_{0}, \delta, \delta_{2}, \ldots, \delta_{n-1}\right\}=c\left\{\beta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right\}$,
$(*)_{2} c\left\{\beta_{0}, \beta_{1}, \delta, \delta_{3}, \ldots, \delta_{n-1}\right\}=c\left\{\beta_{0}, \beta_{1}, \delta_{2}, \ldots, \delta_{n-1}\right\}$,
$(*)_{n-1} c\left\{\beta_{0}, \ldots, \beta_{n-2}, \delta\right\}=c\left\{\beta_{0}, \ldots, \beta_{n-2}, \delta_{n-1}\right\}$.
Proof of Claim 2: Let $\alpha<\delta_{0}$ be arbitrary. Choose $\gamma<\kappa$ such that γ is a limit and $i_{\alpha^{*}+\gamma}>\alpha$, and let $\delta=i_{\alpha^{*}+\gamma}$.

Then clearly $(*)_{0}$ holds.
In order to prove $(*)_{1}$, let $\beta<\delta$ be arbitrary. There exist ordinals $\nu_{0}<\ldots<\nu_{k-1}<$ $\alpha^{*}+\gamma$ and a Skolem term t_{β} such that

$$
t_{\beta}^{L_{\lambda}}\left[i_{\nu_{0}}, \ldots, i_{\nu_{k-1}}\right]=\beta
$$

Moreover there exist ordinals $\mu_{0}<\ldots<\mu_{l-1}<\alpha^{*}$ and a Skolem term t such that

$$
\begin{equation*}
L_{\lambda+} \models t\left[i_{\mu_{0}}, \ldots, i_{\mu_{l-1}}\right]=t_{c}\left[i_{\xi_{0}}, \ldots, i_{\xi_{q-1}}\right]\left\{t_{\beta}\left[i_{\nu_{0}}, \ldots, i_{\nu_{k-1}}\right], \delta_{1}, \ldots, \delta_{n-1}\right\} . \tag{+}
\end{equation*}
$$

Note that all indices of occurring indiscernibles, except for $\delta_{1}, \ldots, \delta_{n-1}$, either are at least λ or else below $\alpha^{*}+\gamma$. We conclude that in $(+), \delta_{1}$ can be replaced by δ. The resulting statement is

$$
c\left\{\beta, \delta_{1}, \ldots, \delta_{n-1}\right\}=c\left\{\beta, \delta, \delta_{2}, \ldots, \delta_{n-1}\right\}
$$

as desired.
The proof of $(*)_{2}-(*)_{n-1}$ is similar.
It is clear that the statement of Claim 2 is absolute. Hence it is also true in L. Using this we shall prove that $\left[\left\{i_{\nu}: \alpha^{*} \leq \nu<\lambda\right\}\right]^{<\omega} \subseteq Y$. By Claim 1, this will suffice. We only have to prove that for every $n<\omega$ there exists $B \subseteq \lambda$ of order-type κ such that $B \in L$ and $\forall v \in[B]^{n} \quad c(v)=c_{n}$. Fix $n<\omega$. Working in L, we construct B inductively as $\left\{\gamma_{\nu}: \nu<\kappa\right\}$.

Fix $\delta_{0}<\delta_{1}<\ldots<\delta_{n-2}<\lambda$ as above. Apply Claim 2 in L with $\alpha=0$ and obtain $\gamma_{0} \in\left(0, \delta_{0}\right)$. Suppose we have gotten $\left(\gamma_{\nu}: \nu<\mu\right)$ for some $\mu<\kappa$. Let $\gamma^{*}=\sup _{\nu<\mu} \gamma_{\nu}+1$. Since $\operatorname{cf}^{L}\left(\delta_{0}\right) \geq \kappa$ and $\left(\gamma_{\nu}: \nu<\mu\right) \in L$, we have that $\gamma^{*}<\delta_{0}$. Apply Claim 2 with $\alpha=\gamma^{*}$ and get $\gamma_{\mu} \in\left(\gamma^{*}, \delta_{0}\right)$.

We claim that $\left(\gamma_{\nu}: \nu<\kappa\right)$ is as desired. Indeed, let $\left\{\gamma_{\nu_{0}}<\gamma_{\nu_{1}}<\ldots<\gamma_{\nu_{n-1}}\right\}$ be arbitrary. We have

$$
\begin{aligned}
& c\left\{\gamma_{\nu_{0}}, \ldots, \gamma_{\nu_{n-1}}\right\}={ }^{(*)_{n-1}} c\left\{\gamma_{\nu_{0}}, \ldots, \gamma_{\nu_{n-2}}, \delta_{n-1}\right\} \\
& ={ }^{(*)_{n-2} c\left\{\gamma_{\nu_{0}}, \ldots, \gamma_{\nu_{n-3}}, \delta_{n-2}, \delta_{n-1}\right\}} \\
& =\ldots \\
& ={ }^{(*)_{1}} c\left\{\gamma_{\nu_{0}}, \delta_{1}, \ldots, \delta_{n-1}\right\} \\
& ={ }^{(*)_{0}} c_{n} .
\end{aligned}
$$

References

[DM] A. Dow and D. Monk, Depth, π-character, and tightness in superatomic Boolean algebras, Top. and its Appl. 15(1997), 183-199.
[J] T. Jech, Set Theory, Academic Press, New York, 1978.
[K] J. Kruskal, Well-quasi ordering, the tree theorem and Vazsonyi's conjecture, Trans. Am. Math. Soc. 95(1960), 210-225.

[^0]: ${ }^{1}$ Supported by the Basic Research Foundation of the Israel Academy of Sciences; publication 663.
 ${ }^{2}$ Partially supported by the Alexander von Humboldt Foundation and grant 2124045702.95/1 of the Swiss National Science Foundation.

