STRONG DICHOTOMY OF CARDINALITY SH664

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

Abstract. We investigate strong dichotomical behaviour of the number of equivalence classes and related cardinal.

Saharon: compare with Journal proofs!

2000 Mathematics Subject Classification. 20K99
Key words and phrases: Dichotomies in uncountable cardinals, abelian groups, Ext, p-rank

Research supported by the German-Israeli Foundation for Scientific Research
I would like to thank Alice Leonhardt for the beautiful typing.
Written Spring '97
First Typed - 97/Sept/2
Latest Revision - 02/Jan/30

Annotated Content

Introduction
§1 Countable Groups
[We present a result on a sequence of analytic equivalence relations on $\mathscr{P}(\omega)$ and apply it to \aleph_{0}-system of groups getting a strong dichotomy: being infinite implies cardinality continuum sharpening [GrSh 302a].]
$\S 2 \quad$ On λ-analytic equivalence relations
[We generalize theorems on the number of equivalence classes for analytic equivalent relations replacing \aleph_{0} by λ regular, unfortunately this is only consistent. Noting that if we just add many Cohen subsets to λ we get something, but first the dichotomy is $\leq \lambda^{+},=2^{\lambda}$ rather than $\leq \lambda,=2^{\lambda}$, second we assume much less.]
$\S 3$ On λ-systems of groups
[This relates to $\S 2$ as the application relates to the lemma in §1.]
Back to the p-rank of Ext
[We show that we can put the problem in the title to the previous context, and show that in Easton model, $\S 2$ and $\S 3$ apply to every regular λ.]

Strong limit of countable cofinality
[We generalize the theorem on \aleph_{0} systems of groups from $\S 1$, replace \aleph_{0} by a strong limit uncountable cardinal of countable cofinality; this continues [GrSh 302a].]

§0

A usual dichotomy is that in many cases, reasonably definable sets, satisfies the continuum hypothesis, i.e. if they are uncountable they have cardinality continuum. A strong dichotomy is when: if the cardinality is infinite it is continuum, as in [Sh 273]. We are interested in such phenomena when $\lambda=\aleph_{0}$ is replaced by λ regular uncountable and also by $\lambda=\beth_{\omega}$ or more generally by strong limit of cofinality \aleph_{0}.

Question: Does the parallel of 1.2 holds for e.g. \beth_{ω} ? portion?
This continues Grossberg Shelah [GrSh 302], [GrSh 302a] and see history there. We also generalize results on the number of analytic equivalence relations, continuing Harrington Shelah [HrSh 152] and [Sh 202] and see history there.
On the connection to the rank of the p-torsion subgroup see [MRSh 314] and history there. See more [ShVs 719].

On $\operatorname{Ext}(G, \mathbb{Z}), \operatorname{rk}_{p}(\operatorname{Ext}(G, \mathbb{Z})$ see $[\mathrm{EM}]$.

§1 Countable groups

Here we give a complete proof of a strengthening of the theorem of [GrSh 302a], for the case $\lambda=\aleph_{0}$ using a variant of [Sh 273].
1.1 Theorem. 1) Suppose
(A) λ is \aleph_{0}. Let $\left\langle G_{m}, \pi_{m, n}: m \leq n<\omega\right\rangle$ be an inverse system whose inverse limit is G_{ω} with $\pi_{n, \omega}$ such that $\left|G_{n}\right|<\lambda$. (So $\pi_{m, n}$ is a homomorphism from G_{n} to $G_{m}, \alpha \leq \beta \leq \gamma \leq \omega \Rightarrow \pi_{\alpha, \beta} \circ \pi_{\beta, \gamma}=\pi_{\alpha, \gamma}$ and $\pi_{\alpha, \alpha}$ is the identity).
(B) Let \mathbf{I} be an index set. For every $t \in \mathbf{I}$, let $\left\langle H_{m}^{t}, \pi_{m, n}^{t}: m \leq n<\omega\right\rangle$ be an inverse system of groups and H_{ω}^{t} with $\pi_{n, \omega}^{t}$ be the corresponding inverse limit and H_{m}^{t} of cardinality $\leq \lambda$.
(C) Let for every $t \in \mathbf{I}, \sigma_{n}^{t}: H_{n}^{t} \rightarrow G_{n}$ be a homomorphism such that all diagrams commute (i.e. $\pi_{m, n} \circ \sigma_{n}^{t}=\sigma_{m}^{t} \circ \pi_{m, n}^{t}$ for $m \leq n<\omega$), and let σ_{ω}^{t} be the induced homomorphism from H_{ω}^{t} into G_{ω}.
(D) \mathbf{I} is countable ${ }^{1}$
(E) For every $\mu<\lambda$ and $t \in \mathbf{I}$ there is a sequence $\left\langle f_{i} \in G_{\omega}: i<\mu\right\rangle$ such that $i<j \Rightarrow f_{i} f_{j}^{-1} \notin \operatorname{Rang}\left(\sigma_{\omega}^{t}\right)$.

Then there is $\left\langle f_{i} \in G_{\omega}: i<2^{\lambda}\right\rangle$ such that $i \neq j \& t \in \mathbf{I} \Rightarrow f_{i} f_{j}^{-1} \notin \operatorname{Rang}\left(\sigma_{\omega}^{t}\right)$.
2) We can weaken in clause (A) to (A)- replacing $\left|G_{n}\right|<\lambda$ by $\left|G_{n}\right| \leq \lambda$, if we change clause (E) to
$(E)^{*}$ for every $t \in \mathbf{I}, m<\omega$ there are n, f such that f is a member of $G_{\omega}, n<$ $k<\omega \Rightarrow \pi_{k, \omega}(f) \notin \operatorname{Rang}\left(\sigma_{\omega}^{t}\right)$ and $e_{G_{n}}=\pi_{n, \omega}(f)$.

We shall show below that 1.1 follows from 1.2.
1.2 Lemma. Assume for every $n<\omega, \mathscr{E}_{n}$ is an analytic two place transitive relation on $\mathscr{P}(\omega)=\left\{A: A \subseteq \omega^{+}\right\}$which satisfies, for each $m<\omega$ for some infinite $Z_{m} \subseteq \omega$ we have

$$
\begin{aligned}
& (*)_{m, Z_{m}} \text { if } A, B \subset \mathbf{Z}^{+}, n \in Z_{m}, n \notin B, A=B \cup\{n\}, \text { then } \neg\left(A \mathscr{E}_{m} B\right) \vee \neg\left(B \mathscr{E}_{m} A\right) \\
& (* *) \\
& \text { if } m<\omega, A^{\prime} \mathscr{E}_{m} B \text { and } A^{\prime \prime} \mathscr{E}_{m} B \text { then } A^{\prime} \mathscr{E}_{m} A^{\prime \prime} .
\end{aligned}
$$

Then there is a perfect subset \mathbf{P} of $\mathscr{P}(\omega)$ of pairwise \mathscr{E}_{m}-nonrelated $A \subseteq \omega$, simultaneously for all n, that is $A \neq B \& A \in \mathbf{P} \& B \in \mathbf{P} \& m<\omega \Rightarrow \neg\left(A \mathscr{E}_{m} B\right)$.

[^0]1.3 Remark. 1) The proof uses some knowledge of set theory and is close to [Sh 273, Lemma 1.3].
2) We say A, B are \mathscr{E}-related if $A \mathscr{E} B$, and we say A, B are non- \mathscr{E}-related if $\neg(A \mathscr{E} B)$.

Proof. Let $r_{m} \in{ }^{\omega} 2$ be the real parameter involved in a definition $\varphi_{m}\left(x, y, r_{m}\right)$ of \mathscr{E}_{m}. Let $\bar{\varphi}=\left\langle\varphi_{m}: m<\omega\right\rangle, \bar{r}=\left\langle r_{m}: m<\omega\right\rangle, \overline{\mathscr{E}}=\left\langle\overline{\mathscr{E}}_{m}: m<\omega\right\rangle$. Let N be a countable elementary submodel of $\left(\mathscr{H}\left(\left(2^{\aleph_{0}}\right)^{+}\right), \in\right)$ to which $\bar{\varphi}, \bar{r}, \mathscr{E}$ belong. Now we shall show
$(* * *)$ if $\left\langle A_{1}, A_{2}\right\rangle$ be a pair of subsets of ω which is Cohen generic over N [this means that it belongs to no first category subset of $\mathscr{P}(\omega) \times \mathscr{P}(\omega)$ which belongs to N] then
(α) A_{1}, A_{2} are \mathscr{E}_{m}-related in $N\left[A_{1}, A_{2}\right]$ if they are \mathscr{E}_{m}-related
(β) A_{1}, A_{2} are non- \mathscr{E}_{m}-related in $N\left[A_{1}, A_{2}\right]$.

Proof of (***).
(α) by the absoluteness criterions (Levy Sheönfied)
(β) if not, then some finite information forces this, hence for some n
\circledast if $\left\langle A_{1}^{\prime}, A_{2}^{\prime}\right\rangle$ is Cohen generic over N and $A_{1}^{\prime} \cap\{0,1, \ldots, n\}=A_{1} \cap$ $\{0,1, \ldots, n\}$ and $A_{2}^{\prime} \cap\{0,1, \ldots, n\}=A_{2} \cap\{1, \ldots, n\}$ then $A_{1}^{\prime}, A_{2}^{\prime}$ are \mathscr{E}_{m}-related in $N\left[A_{1}^{\prime}, A_{2}^{\prime}\right]$.

Choose $k \in Z_{m} \backslash\{0,1, \ldots, n+1\}$. Let $A_{1}^{\prime \prime}$ be $A_{1} \cup\{k\}$ if $k \notin A_{1}$ and $A_{1} \backslash\{k\}$ if $k \in A_{1}$.

Trivially also $\left\langle A_{1}^{\prime \prime}, A_{2}\right\rangle$ is Cohen generic over N, hence by \circledast above $A_{1}^{\prime \prime}, A_{2}$ are \mathscr{E}_{m}-related in $N\left[A_{1}^{\prime \prime}, A_{2}\right]$. By $(* * *)(\alpha)$ we know that really $A_{1}^{\prime \prime}, A_{2}$ are \mathscr{E}_{m}-related. By ($* *$) clearly $A_{1}, A_{1}^{\prime \prime}$ are \mathscr{E}_{m}-related and also $A_{1}^{\prime \prime}, A_{1}$ are \mathscr{E}_{m}-related. But this contradicts the hypothesis $(*)_{m, Z_{m}}$. So $(* * *)$ holds.

We can easily find a perfect (nonempty) subset \mathbf{P} of $\{A: A \subseteq \omega\}$ such that for any distinct $A, B \in \mathbf{P},(A, B)$ is Cohen generic over N. So for each m for $A \neq B \in \mathbf{P}$ we have $N[A, B] \models$ " A, B are not \mathscr{E}_{m}-equivalent" and by $(* * *)(\alpha)$ clearly A, B are not \mathscr{E}_{m}-equivalent. This finishes the proof.
1.4 Proof of 1.1.1) Follows from part (2) as $(E) \Rightarrow(E)^{+}$when the G_{n} 's are finite (use (E) for $\mu^{*}=\left|G_{n}\right|+1$).
2) Let $k_{n}=n^{2}$ and we choose $\left\langle f_{n}: n<\omega\right\rangle$ such that:
(a) $f_{n} \in G_{\omega}$
(b) $k_{n} \leq i<k_{n+1} \Rightarrow e_{G_{n}}=\pi_{n, \omega}\left(f_{i}\right)$
(c) for every $t \in \mathbf{I}$, for arbitrarily large k we have $\pi_{k+1, \omega}\left(f_{k}\right) \notin \operatorname{Rang}\left(\sigma_{k+1}^{t}\right)$.

Clearly $(a),(b)$ are straight for (c) use assumption $(E)^{+}$and bookkeeping.
By induction on n for every $\eta \in{ }^{n} 2$ we choose $f_{\eta} \in G_{\omega}$ as follows: for $n=0, f_{\eta}=$ $e_{G_{\omega}}$, for $\eta=\nu^{\wedge}\langle 0\rangle, \nu \in{ }^{n+} 2$ let $f_{\eta}=f_{\nu}$ and for $\eta=\nu^{\wedge}\langle 1\rangle$ let $f_{\eta}=f_{\nu} f_{n-1}^{-1}$. Clearly $m \leq n<\omega \& \eta \in{ }^{n} 2 \Rightarrow \pi_{m, \omega}\left(f_{\eta \upharpoonright m}\right)=\pi_{m, \omega}\left(f_{\eta}\right)$.

Lastly, for $A \subseteq \omega$, let $\eta_{A} \in{ }^{\omega} 2$ be its characteristic function and $g_{A} \in G_{\omega}$ be the unique $f \in G_{\omega}$ satisfying $m \leq n<\omega \Rightarrow \pi_{m, \omega}\left(f_{\eta \upharpoonright n}\right)=\pi_{m, \omega}\left(f_{A}\right)$. Let $\mathbf{I}=\left\{t_{m}: m<\omega\right\}$ (well we can add trivial H 's) and let \mathscr{E}_{m} be $A \mathscr{E}_{m} B \Leftrightarrow A \subseteq \omega \&$ $B \subseteq \omega \& g_{A}^{-1} g_{B} \in \operatorname{Rang}\left(\sigma_{\omega}^{t_{m}}\right)$. Clearly \mathscr{E}_{m} is an equivalence relation hence it satisfies condition $(* *)$ of 1.2. Lastly, let $Z_{m}=:\left\{k: \pi_{k+1, \omega}\left(f_{k}\right) \notin \operatorname{Rang}\left(\sigma_{\omega}^{t_{m}}\right)\right\}$. If A, B, m, k are as in $(*)$ of 1.2 then $\pi_{k+1, \omega}\left(g_{A}^{-1} g_{B}\right)=\pi_{k+1, \omega}\left(f_{k}\right) \notin \operatorname{Rang}\left(\sigma_{k+1}^{t}\right)$. We have the assumptions of 1.2 , hence get its conclusion.

$\S 2$ On λ-analytic equivalence relations

2.1 Hypothesis. $\lambda=\operatorname{cf}(\lambda)$ is fixed.
2.2 Definition. 1) A sequence of relations $\bar{R}=\left\langle R_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ on ${ }^{\lambda} 2$ (equivalently $\mathscr{P}(\lambda))$ i.e. a sequence of definitions of such relations in $\left(\mathscr{H}\left(\lambda^{+}\right), \epsilon\right)$ and with parameters in $\mathscr{H}\left(\lambda^{+}\right)$is called λ-w.c.a. sequence (weakly Cohen absolute) if: for any $A \subseteq \lambda$ we have
$(*)_{A}$ there are N, r such that:
(α) N is a transitive model
(β) $\quad N^{<\lambda} \subseteq N, \lambda+1 \subseteq N$, the sequence of the definitions of \bar{R} (including the parameters) belongs to N
(γ) $A \in N$
(δ) $r \in{ }^{\lambda} 2$ is Cohen over N; that is generic for $\left({ }^{\lambda>} 2, \triangleleft\right)$ over N
($\varepsilon) \quad R_{\varepsilon}$ and $\neg R_{\varepsilon}$ are absolute from $N[r]$ to V for each $\varepsilon<\varepsilon(*)$.
2) We say \bar{R} is (λ, μ)-w.c.a. if for $A \subseteq \lambda$ we can find N, r_{α} (for $\alpha<\mu$) satisfying clauses $(\alpha),(\beta),(\gamma)$ from above and
$(\delta)^{\prime}$ for $\alpha \neq \beta<\mu,\left(r_{\alpha}, r_{\beta}\right)$ is a pair of Cohens over N
$(\varepsilon)^{\prime} R_{\varepsilon}$ and $\neg R_{\varepsilon}$ are absolute from $N\left[r_{\alpha}, r_{\beta}\right]$ to V for each $\alpha \neq \beta<\mu$ and $\varepsilon<\varepsilon(*)$.
3) We say λ is (λ, μ)-w.c.a. if every λ-analytic relation R on ${ }^{\lambda} 2$ is (λ, μ)-w.c.a.

Analytic means that it has the form $R\left(X_{1}, \ldots, X_{n}\right)=\left(\exists Y_{1}, \ldots, Y_{m} \subseteq \lambda \times \lambda\right) \varphi\left(Y_{1}, \ldots, Y_{m} ; X_{1}, \ldots, X_{n}\right)$
2.3 Claim. Assume
(A) $\varepsilon(*) \leq \lambda$ and $\left\langle\mathscr{E}_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ is a (λ, μ)-w.c.a. sequence, each $\mathscr{E}_{\varepsilon}$ an equivalence relation on $\mathscr{P}(\lambda)$, more exactly a definition of one and
(B) if $\varepsilon<\varepsilon(*)$ and $A, B \subseteq \lambda$ and $\alpha \in A \backslash B \backslash \varepsilon, A=B \cup\{\alpha\}$, then A, B are not \mathscr{E}-equivalent.

Then there is a set $\mathscr{P} \subseteq \mathscr{P}(\lambda)$ of μ-pairwise non- $\mathscr{E}_{\varepsilon}$-equivalent members of $\mathscr{P}(\lambda)$ for all $\varepsilon<\varepsilon(*)$ simultaneously.
2.4 Remark. If in 2.2 we ask that $\left\{r_{\eta}: \eta \in{ }^{\lambda} 2\right\}$ perfect (see 2.5 below), then we can demand that so is \mathscr{P}.
2.5 Definition. 1) $\mathscr{P} \subseteq \mathscr{P}(\lambda)$ is perfect if there is a λ-perfect tree $T \subseteq{ }^{\lambda>} 2$ (see below) such that $\mathscr{P}=\left\{\{\alpha<\lambda: \eta(\alpha)=1\}: \eta \in \lim _{\lambda}(T)\right\}$.
2) T is a λ-perfect tree if:
(a) $T \subseteq{ }^{\lambda>} 2$ is non-empty
(b) $\eta \in T \& \alpha<\ell g(\eta) \Rightarrow \eta \upharpoonright \alpha \in T$
(c) if $\delta<\lambda$ is a limit ordinal, $\eta \in{ }^{\delta} 2$ and $(\forall \alpha<\delta)(\eta \upharpoonright \alpha \in T)$, then $\eta \in T$
(d) if $\eta \in T, \ell g(\eta)<\alpha<\lambda$ then there is $\nu, \eta \triangleleft \nu \in T \cap{ }^{\alpha} 2$
(e) if $\eta \in T$ then there are \triangleleft-incomparable $\nu_{1}, \nu_{2} \in T$ such that $\eta \triangleleft \nu_{1} \& \eta \triangleleft \nu_{1}$.
3) $\operatorname{Lim}_{\delta}(T)=\{\eta: \ell g(\eta)=\delta$ and $(\forall \alpha<\delta)(\eta \upharpoonright \alpha \in T)\}$.

Proof of 2.3.

Let $T^{*}={ }^{\lambda>} 2$.
Let N and $r_{\alpha} \in{ }^{\lambda} 2$ for $\alpha<\mu$ be as in Definition 2.2. We identify r_{α} with $\{\gamma<\lambda$: $\left.r_{\alpha}(\gamma)=1\right\}$.
By clause $(\varepsilon)^{\prime}$ of Definition 2.2(2) clearly
$(*)_{0}$ if $\varepsilon<\varepsilon(*)$, and $\alpha \neq \beta<\mu$, then $\mathscr{E}_{\varepsilon}$ define an equivalence relation in $N\left[r_{\alpha}, r_{\beta}\right]$ on $\mathscr{P}(\lambda)^{N\left[r_{\alpha}, r_{\beta}\right]}$.

It is enough to prove assuming $\alpha \neq \beta<\mu$ and $\varepsilon<\varepsilon(*)$ that,
$(*)_{1} \neg r_{\alpha} \mathscr{E}_{\varepsilon} r_{\beta}$.
By clause $(\varepsilon)^{\prime}$ of Definition 2.2(2) it is enough to prove
$(*)_{2} N\left[r_{\alpha}, r_{\beta}\right] \models \neg r_{\alpha} \mathscr{E}_{\varepsilon} \nu_{\beta}$.
Assume this fails, so $N\left[r_{\alpha}, r_{\beta}\right] \models r_{\alpha} \mathscr{E}_{\varepsilon} r_{\beta}$ then for some $i<\lambda$

$$
\left(r_{\alpha} \upharpoonright i, r_{\beta} \upharpoonright i\right) \Vdash_{(\lambda>2) \times(\lambda>2)}{ }_{\sim}^{r}{\underset{\sim}{1}}^{\mathscr{E}_{\varepsilon}} r_{2} "
$$

and without loss of generality $i>\varepsilon$. Define $r \in{ }^{\lambda} 2$ by

$$
r(j)= \begin{cases}r_{\beta}(j) & \text { if } j \neq i \\ 1-r_{\beta}(j) & \text { if } j=i\end{cases}
$$

So also $\left(r_{\alpha}, r\right)$ is a generic pair for ${ }^{\lambda>} 2 \times^{\lambda>} 2$ over N and $\left(r_{\alpha} \upharpoonright i, r \upharpoonright i\right)=$ $\left(r_{\alpha} \upharpoonright i, r_{\beta} \upharpoonright i\right)$ hence by the forcing theorem
$(*)_{3} N\left[r_{\alpha}, r\right] \models{\underset{\sim}{r}}_{\alpha} \mathscr{E}_{\varepsilon} r$.

But $r_{\alpha}, r_{\beta}, r \in N\left[r_{\alpha}, r_{\beta}\right]=N\left[r_{\alpha}, r\right]$. As we are assuming that $(*)_{2}$ fail (toward contradiction) we have $N\left[r_{\alpha}, r_{\beta}\right] \models r_{\alpha} \mathscr{E}_{\varepsilon} r_{\beta}$ and by $(*)_{3}$ and the previous sentence we have $N\left[r_{\alpha}, r_{\beta}\right] \models r \mathscr{E}_{\varepsilon} r$ so together by $(*)_{0}$ we have $N\left[r_{\alpha}, r_{\beta}\right] \models r_{\beta} \mathscr{E}_{\varepsilon} r$ hence $V \models r_{\beta} \mathscr{E}_{\varepsilon} r$, a contradiction to assumption (b).
2.6 Definition. We call Q a pseudo λ-Cohen forcing if:
(a) Q is a nonempty subset of $\{p: p$ a partial function from λ to $\{0,1\}\}$
(b) $p \leq_{Q} q \Rightarrow p \subseteq q$
(c) $\mathscr{I}_{i}=\{p \in Q: i \in \operatorname{Dom}(p)\}$ is a dense subset for $i<\lambda$
(d) define $F_{i}: \mathscr{I}_{i} \rightarrow \mathscr{I}_{i}$ by: $\operatorname{Dom}\left(F_{i}(p)\right)=\operatorname{Dom}\left(F_{i}(p)\right)$ and

$$
\left(F_{i}(p)\right)(j)= \begin{cases}p(j) & \underline{\text { if }} j=i \\ 1-p(j) & \text { if } j \neq i\end{cases}
$$

then F_{i} is an automorphism of $\left(\mathscr{I}_{i},<^{Q} \upharpoonright \mathscr{I}_{i}\right)$.
2.7 Claim. In 2.2, 2.5 we can replace $\left({ }^{\lambda>} 2, \triangleleft\right)$ by Q.
2.8 Observation: So if $V \models$ G.C.H., P is Easton forcing, then in V^{P} for every regular λ, for $Q=\left(\left({ }^{\lambda>} 2\right)^{V}, \triangleleft\right)$ we have: Q is pseudo λ-Cohen and in V^{P} we have λ is $\left(\lambda, 2^{\lambda}\right)$-w.c.a.
2.9 Discussion: But in fact λ being $\left(\lambda, 2^{\lambda}\right)$ - w.c.a. is a weak condition.

We can generalize further using the following definition
2.10 Definition. 1) For $r_{0}, r_{1} \in{ }^{\lambda} 2$ we say $\left(r_{0}, r_{1}\right)$ or r_{0}, r_{1} is an \bar{R}-pseudo Cohen pair over N if (\bar{R} is a definition (in $\left(\mathscr{H}\left(\lambda^{+}\right), \in\right)$) of a relation on $\mathscr{P}(\lambda)$ (or ${ }^{\lambda} 2$), the definition belongs to N and) for some forcing notion $Q \in N$ and Q-names r_{0}, r_{1} and $G \subseteq Q(G \in V)$ generic over N we have:
(a) ${\underset{\sim}{r}}_{0}^{r}[G]=r_{0}$ and ${\underset{\sim}{r}}_{1}[G]=r_{1}$
(b) for every $p \in G$, for every $i<\lambda$ large enough and $\ell(*)<2$ there is $G^{\prime} \subseteq Q$ generic over N such that: $p \in G$ and $\left({\underset{\sim}{r}}_{\ell}\left[G^{\prime}\right]\right)(j)=\left({\underset{\sim}{r} \ell}^{r}[G]\right)(j) \Leftrightarrow(j, \ell) \neq$ $(i, \ell(*))$
(c) for $\varepsilon<\varepsilon(*), R_{\varepsilon}$ is absolute from $N[G]$ and from $N\left[G^{\prime}\right]$ to V.
2) We say λ is μ-p.c.a for \bar{R} if for every $x \in \mathscr{H}\left(\lambda^{+}\right)$there are $N,\left\langle r_{i}: i<\mu\right\rangle$ such that:
(a) N is a transitive model of $Z F C^{-}$
(b) for $i \neq j<\mu,\left(r_{i}, r_{j}\right)$ is an \bar{R}-pseudo Cohen pair over N.
3) We omit \bar{R} if this holds for any λ-sequence of \sum_{1}^{1} formula in $\mathscr{H}\left(\lambda^{+}\right)$.

Clearly
2.11 Claim. 1) If λ is μ-p.c.a for \mathscr{E}, \mathscr{E} an equivalence relation on $\mathscr{P}(\lambda)$ and $A \subseteq B \subseteq \lambda \&|B \backslash A|=1 \Rightarrow \neg A \mathscr{E} B$, then \mathscr{E} has $\geq \mu$ equivalence classes.
2) Similarly if $\mathscr{E}=\bigvee_{\varepsilon<\varepsilon(*)} \mathscr{E}_{\varepsilon}, \varepsilon(*) \leq \lambda$ and λ is μ-p.c.a. for $\left\langle\mathscr{E}_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ and $A \subseteq B \subseteq \lambda \&|B \backslash A|=|B \backslash A \backslash \varepsilon|=1 \Rightarrow \neg A \mathscr{E}_{\varepsilon} B$, then there are $A_{\alpha} \subseteq \lambda$ for $\alpha<\mu$ such that $\varepsilon<\varepsilon(*) \& \alpha<\beta<\mu \Rightarrow \neg\left(A_{\alpha} \mathscr{E}_{\varepsilon} A_{\beta}\right)$.

$\S 3$ On λ-Systems of groups

3.1 Hypothesis. $\lambda=\operatorname{cf}(\lambda)$.

We may wonder does 2.3 have any cases it covers?
3.2 Definition. 1) We say $\mathscr{Y}=\left(\bar{A}, \bar{K}, \bar{G}, \bar{D}, \bar{g}^{*}\right)$ is a λ-system if
(A) $\bar{A}=\left\langle A_{i}: i \leq \lambda\right\rangle$ is an increasing sequence of sets, $A=A_{\lambda}=\left\{A_{i}: i<\lambda\right\}$
(B) $\bar{K}=\left\langle K_{t}: t \in A\right\rangle$ is a sequence of finite groups
(C) $\bar{G}=\left\langle G_{i}: i \leq \lambda\right\rangle$ is a sequence of groups, $G_{i} \subseteq \prod_{t \in A_{i}} K_{t}$, each G_{i} is closed and $i<j \leq \lambda \Rightarrow G_{i}=\left\{g \upharpoonright A_{i}: g \in G_{j}\right\}$ and $G_{\lambda}=\left\{g \in \prod_{t \in A_{\lambda}} K_{t}:(\forall i<\lambda)\left(g \upharpoonright A_{i} \in G_{i}\right)\right\}$
(D) $\bar{D}=\left\langle D_{\delta}: \delta \leq \lambda\right.$ (a limit ordinal) \rangle, D_{δ} an ultrafilter on δ such that $\alpha<\delta \Rightarrow[\alpha, \delta) \in D_{\delta}$
(E) $\bar{g}^{*}=\left\langle g_{i}^{*}: i<\lambda\right\rangle, g_{i}^{*} \in G_{\lambda}$ and $g_{i}^{*} \upharpoonright A_{i}=e_{G_{i}}=\left\langle e_{K_{t}}: t \in A_{i}\right\rangle$.

Of course, formally we should write $A_{i}^{\mathscr{\vartheta}}, K_{t}^{\mathscr{y}}, G_{i}^{\mathscr{\vartheta}}, D_{\delta}^{\mathscr{Y}}, g_{i}^{\mathscr{Y}}$, etc., if clear from the context we shall not write this.
2) Let \mathscr{Y}^{-}be the same omitting D_{λ} and we call it a lean λ-system.
3.3 Definition. For a λ-system \mathscr{Y} and $j \leq \lambda+1$ we say $\bar{f} \in \operatorname{cont}(j, \mathscr{Y})$ if:
(a) $\bar{f}=\left\langle f_{i}: i<j\right\rangle$
(b) $f_{i} \in G_{\lambda}$
(c) if $\delta<j$ is a limit ordinal then $f_{\delta}=\operatorname{Lim}_{D_{\delta}}(\bar{f} \upharpoonright \delta)$ which means:

$$
\text { for every } t \in A, f_{\delta}(t)=\operatorname{Lim}_{D_{\delta}}\left\langle f_{i}(t): i<\delta\right\rangle
$$

which means

$$
\left\{i<\delta: f_{\delta}(t)=f_{i}(t)\right\} \in D_{\delta}
$$

3.4 Fact: 1) If $\bar{f} \in \operatorname{cont}(j, \mathscr{Y}), i<j$ then $\bar{f} \upharpoonright i \in \operatorname{cont}(i, \mathscr{Y})$.
2) If $\bar{f} \in \operatorname{cont}(j, \mathscr{Y})$ and $j<\lambda$ is non-limit, and $f_{j} \in G_{\lambda}$ then

$$
\bar{f}^{\wedge}\left\langle f_{j}\right\rangle \in \operatorname{cont}(j+1, \mathscr{Y})
$$

3) If $\bar{f} \in \operatorname{cont}(j, \mathscr{Y})$ and j is a limit ordinal $\leq \lambda$, then for some unique $f_{j} \in G_{\lambda}$ we have $\bar{f}^{\wedge}\left\langle f_{j}\right\rangle \in \operatorname{cont}(j+1, \mathscr{Y})$.
4) If $j \leq \lambda+1, f \in G$ then $\bar{f}=\langle f: i<j\rangle \in \operatorname{cont}(j, \mathscr{Y})$.
5) If $\bar{f}, \bar{g} \in \operatorname{cont}(j, \mathscr{Y})$, then $\left\langle f_{i} g_{i}: i<j\right\rangle$ and $\left\langle f_{i}^{-1}: i<j\right\rangle$ belongs to cont (j, \mathscr{Y}).

Proof. Straight (for part (3) we use each K_{t} is finite).
3.5 Definition. Let \mathscr{Y} be a λ-system.

1) For $\bar{g} \in{ }^{j}\left(G_{\lambda}\right)$ and $j \leq \lambda$ we define $f_{\bar{g}} \in G_{\lambda}$ by induction on j for all such \bar{g} as follows:
$j=0: f_{\bar{g}}=e_{G}=\left\langle e_{K_{t}}: t \in A\right\rangle$
$j=i+1: f_{\bar{g}}=f_{\bar{g} \upharpoonright i} g_{i}$
j limit: $f_{\bar{g}}=\operatorname{Lim}_{D_{\delta}}\left\langle f_{\bar{g} \mid i}: i<j\right\rangle$
2) We say \bar{g} is trivial on X if $i \in X \cap \ell g(\bar{g}) \Rightarrow g_{i}=e_{G_{\lambda}}$.
3) For $\eta \in{ }^{\lambda \geq} 2$ let $\bar{g}^{\eta}=\left\langle g_{i}^{\eta}: i<\ell g(\eta)\right\rangle$, where

$$
g_{i}^{\eta}= \begin{cases}g_{i}^{*} & \text { if } \eta(i)=1 \\ e_{G_{\lambda}} & \text { if } \eta(i)=0\end{cases}
$$

recall g_{i}^{*} is part of \mathscr{Y} (see Definition 3.2).
3.6 Claim. 1) If $i \leq j$ and $\bar{g}, \bar{g}^{\prime}, \bar{g}^{\prime \prime} \in{ }^{j}\left(G_{\lambda}\right), \bar{g}^{\prime} \upharpoonright i=\bar{g} \upharpoonright i, \bar{g}^{\prime}$ is trivial on $[i, j)$, $\bar{g}^{\prime \prime} \upharpoonright[i, j)=\bar{g} \upharpoonright[i, j)$ and $\bar{g}^{\prime \prime}$ is trivial on i, then:

$$
f_{\bar{g}}=f_{\bar{g}^{\prime}} f_{\bar{g}^{\prime \prime}} \text { and } f_{\bar{g}^{\prime}}=f_{\bar{g}\lceil i} .
$$

2) For $\eta \in{ }^{\lambda} 2, f_{\left(\bar{g}^{\eta}\right)}=\operatorname{Lim}\left\langle f_{\left(\bar{g}^{\eta \mid i}\right)}: i<\lambda\right\rangle$ (i.e. any ultrafilter D_{λ}^{\prime} on λ containing the co-bounded sets will do), so \mathscr{Y}^{-}, a lean λ-system, is enough.

Proof. Straight.
3.7 Claim. Let \mathscr{Y} be a λ-system (or just a lean one), H_{ε} a subgroup of G_{λ} for $\varepsilon<\varepsilon(*) \leq \lambda$ and $\mathscr{E}_{\varepsilon}$ the equivalence relation $\left[f^{\prime}\left(f^{\prime \prime}\right)^{-1} \in H_{\varepsilon}\right]$ and assume: $\lambda>i \geq$ $\varepsilon \Rightarrow g_{i}^{*} \notin H_{\varepsilon}$.
(1) The assumption (B) of 2.3 holds with $f_{A}=f_{\left(\bar{g}^{\eta}\right)}$ when $A \subseteq \lambda, \eta \in{ }^{\lambda} 2, A=$ $\{i: \eta(i)=1\}$
(2) if in addition $\bar{A}, \bar{K}, \bar{G} \upharpoonright K, \bar{D}, \bar{g}^{*} \in \mathscr{H}\left(\lambda^{+}\right)$and $\left\langle H_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ is (λ, μ) w.c.a., then also assumption (A) of 3.3 holds (hence its conclusion).

Proof. Straight.
3.8 Claim. Assume
(A) \mathscr{Y} a λ-system (or just a lean one), $A_{i} \subseteq \lambda^{+},\left|A_{i}\right| \leq \lambda, G_{i} \in \mathscr{H}\left(\lambda^{+}\right)$
(i) $\varepsilon(*) \leq \lambda$,
(ii) $\bar{H}=\left\langle H_{i}^{\varepsilon}: i \leq \lambda, \varepsilon<\varepsilon(*)\right\rangle$,
(iii) $\pi_{i, j}^{\varepsilon}: H_{j}^{\varepsilon} \rightarrow H_{i}^{\varepsilon}$ a homomorphism,
(iv) for $i_{0} \leq i_{1} \leq i_{2}$ we have $\pi_{i_{0}, i_{1}}^{\varepsilon} \circ \pi_{i_{1}, i_{2}}^{\varepsilon}=\pi_{i_{0}, i_{2}}^{\varepsilon}$,
(v) $\sigma_{i}^{\varepsilon}: H_{t}^{\varepsilon} \rightarrow G_{i}$,
(vi) $\sigma_{i}^{\varepsilon} \pi_{i, j}^{\varepsilon}(f)=\left(\sigma_{j}^{\varepsilon}(f)\right) \upharpoonright A_{i}$,
(vii) $H_{\lambda}^{\varepsilon}, \sigma_{\lambda}^{\varepsilon}$ is the inverse limit (with $\pi_{i, \lambda}^{\varepsilon}$) of $\left\langle H_{i}^{\varepsilon}, \pi_{i, j}^{\varepsilon}, \sigma_{i}^{\varepsilon}: i \leq j<\lambda\right\rangle$ and (viii) $i<\lambda \Rightarrow H_{i}^{\varepsilon} \in \mathscr{H}\left(\lambda^{+}\right)$
(B) $H_{\varepsilon}=\operatorname{Rang}\left(\sigma_{\lambda}^{\varepsilon}\right)$.

Then

(α) the assumptions of 3.7 holds
(β) if λ is $(\lambda, \mu)-w . c . a$. then also the conclusion of 3.7, 2.3 holds so there are $h_{\alpha} \in G_{\lambda}$ for $\alpha M \mu$ such that $\alpha \neq \beta<\mu \& \varepsilon<\varepsilon(*) \Rightarrow f_{\alpha} f_{\beta}^{-1} \notin H_{\varepsilon}$.

Proof. Straight.

We can go one more step in concretization.
3.9 Claim. 1) Assume
(a) L is an abelian group of cardinality λ
(b) p a prime number
(c) if $L^{\prime} \subseteq L,\left|L^{\prime}\right|<\lambda$, then $\operatorname{Ext}_{p}\left(L^{\prime}, \mathbb{Z}\right) \neq 0$
(d) λ is μ-w.c.a. (in V).

Then $\mu \leq r_{p}(E x t(L, \mathbb{Z}))$, see definition below.
2) If $(a),(b),(d)$ above, $\mu>\lambda, \lambda$ strongly inaccessible then $r_{p}(E x t(L, \mathbb{Z})) \notin[\lambda, \mu)$.
3.10 Remark. 1) For an abelian group M let prime p and $r_{p}(M)$ be the dimension of the subgroup of $\{x \in M: p x=0\}$ as a vector space over $\mathbb{Z} / p \mathbb{Z}$.
2) For an abelian group M let $r_{0}(M)$ be $\max \{|X|: X \subseteq M \backslash \operatorname{Tor}(M)$ and is independent in $M / \operatorname{Tor}(M)$.

Proof. Without loss of generality L is \aleph_{1}-free (so torsion free).
Without loss of generality the set of elements of G is λ. Let $A=A_{\lambda}=\lambda, L_{\lambda}=L$, for $j<\lambda, A_{j}$ a proper initial segment of λ such that $L_{j}=L \upharpoonright A_{j}$ is a pure subgroup of L, increasing continuously with j.
Let $K_{t}=\mathbb{Z} / p \mathbb{Z}, G_{i}=\operatorname{HOM}\left(L_{i}, \mathbb{Z} / p \mathbb{Z}\right)$.
Let $\varepsilon(*)=1$, so $\varepsilon=0$; let $H_{i}=\operatorname{HOM}\left(L_{i}, \mathbb{Z}\right)$ and $\left(\sigma_{i}^{\varepsilon}(f)\right)(x)=f(x)+p \mathbb{Z}, M_{\varepsilon}=$ $\operatorname{Rang}\left(\sigma_{\lambda}^{\varepsilon}\right)$ for $i \leq j$ let $\pi_{i, j}: G_{j} \rightarrow G_{i}$ is $\pi_{i, j}(f)=f \upharpoonright G_{i}$. We know that $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))$ is $\left(G_{\lambda}: M_{0}\right)$. By assumption (d) for each $i<\lambda$ we can choose $g_{i}^{*} \in G_{\lambda} \backslash M_{\varepsilon}$ such that $g_{i}^{*} \upharpoonright L_{i}$ is zero. The rest is left to the reader (using 3.8 using any lean λ-system \mathscr{Y} with $G_{i}, K_{t}, \varepsilon(*), \pi_{i, j}, \sigma_{\lambda}^{\varepsilon}$ as above (and D_{δ} for limit ordinal $<\lambda$, any ultrafilter as in 3.2).

$\S 4$ Back to the p-Rank of Ext

For consistency of "no examples" see [MRSh 314].
4.1 Definition. 1) Let

$$
\begin{aligned}
& \Xi_{\mathbb{Z}}=\left\{\bar{\lambda}: \bar{\lambda}=\left\langle\lambda_{p}: p<\omega \text { prime or zero }\right\rangle\right. \text { and for some } \\
&\text { abelian } \left.\left(\aleph_{1} \text {-free }\right) \text { group } L, \lambda_{p}=r_{p}(\operatorname{Ext}(G, \mathbb{Z}))\right\} .
\end{aligned}
$$

2) For an abelian group G let $\operatorname{rk}(G)=\operatorname{Min}\left\{\operatorname{rk}\left(G^{\prime}\right): G / G^{\prime}\right.$ is free $\}$.

Clearly $\Xi_{\mathbb{Z}}$ is closed under products. Let \mathbf{P} be the set of primes.
Remember that (see [Sh:f, AP], 2.7, 2.7A, 2.13(1),(2)).
4.2 Fact: In the Easton model if G is \aleph_{1}-free not free, $G^{\prime} \subseteq G,\left|G^{\prime}\right|<|G| \Rightarrow G / G^{\prime}$ not free then $r_{0}(\operatorname{Ext}(G, \mathbb{Z}))=2^{|G|}$.
4.3 Fact: 1) Assume μ is a strong limit cardinal $>\aleph_{0}, \operatorname{cf}(\mu)=\aleph_{0}, \lambda=\mu^{+}, 2^{\mu}=\mu^{+}$ and some $Y \subseteq\left[{ }^{\omega} \mu\right]^{\lambda^{+}}$is μ-free, (equivalently μ^{+}-free, see in proof).
Let $\mathbf{P}_{0}, \mathbf{P}_{1}$ be a partition of the set of primes.
Then for some \aleph_{1}-free abelian group $L,|L|=\mu^{+}, 2^{\lambda}=r_{0}(\operatorname{Ext}(G, \mathbb{Z}))$ and $p \in \mathbf{P}_{1} \Rightarrow$ $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\lambda}$ and $p \in \mathbf{P}_{0} \Rightarrow r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=0$.

Remark. On other cardinals see [MRSh 314], close to [MkSh 418, Th.12].

Proof. For notational simplicity assume $\mathbf{P}_{0} \neq \emptyset$. Let $Y=\left\{\eta_{i}: i<\lambda\right\}$. Let pr: $\mu^{2} \rightarrow \mu$ be a pairing function, so $\operatorname{pr}\left(p r_{1}(\alpha), p r_{2}(\alpha)\right)=\alpha$. Without loss of generality $\eta_{i}(n)=\eta_{j}(m) \Rightarrow n=m \& \eta_{i} \upharpoonright m=\eta_{j} \upharpoonright m$. Let L be $\bigoplus_{\alpha<\lambda} \mathbb{Z} x_{\alpha}$. Let $\left\langle\left(p_{i}, f_{i}\right): i<\lambda^{+}\right\rangle$list the pairs (p, f) where $p \in \mathbf{P}_{0}$ and $f \in \operatorname{HOM}(L, \mathbb{Z} / p \mathbb{Z})$. We shall choose $\left(g_{i}, \nu_{i}, \rho_{i}\right)$ by induction on $i<\lambda$ such that:

$$
\boxtimes(\alpha) g_{i} \in \operatorname{HOM}(L, \mathbb{Z})
$$

(β) $(\forall x \in L)\left[g_{i}(x) / p \mathbb{Z}=f_{i}(x)\right]$
(γ) $\rho_{i}, \nu_{i} \in{ }^{\omega} \mu$ and $\eta_{i}(n)=p r_{1}\left(\nu_{i}(n)\right)=p r_{1}\left(\rho_{i}(n)\right)$
(δ) $(\forall j \leq i)(\exists n<\omega)(\forall m)\left[n \leq m<\omega \rightarrow g_{j}\left(x_{\nu_{i}(m)}\right)=g_{j}\left(x_{\rho_{i}(m)}\right)\right.$
(ε) $(\forall j<i)(\exists n<\omega)$ [for some sequence $\left\langle b_{m}: m \in[n, \omega)\right\rangle$ of natural numbers we have $\left.n \leq m<\omega \Rightarrow\left(\prod_{p \in \mathbf{P}_{0} \cap n} p\right) b_{m+1}=b_{m}+g_{i}\left(x_{\nu_{j}(m)}\right)-g_{i}\left(x_{\rho_{j}(m)}\right)\right]$
$(\zeta) \nu_{i}(m) \neq \rho_{i}(m)$ for $m<\omega$.

Arriving to i first choose a function let $h_{i}: i \rightarrow \omega$ be such that $j<i \Rightarrow h_{i}(j)>p_{j}$ and $\left\langle\left\{\eta_{j} \upharpoonright \ell: \ell \in\left[h_{i}(j), \omega\right)\right\}: j<i\right\rangle$ is a sequence of pairwise disjoint sets (possible as Y is μ^{+}-free). Second choose g_{i} such that clauses $(\varepsilon)+(\beta)$ holds with $n=h_{i}(j)$, this is possible as the choice of h splits the problem, that is, the various cases of (ε) (one for each j) does not conflict. More specifically, first choose $g \upharpoonright\left\{x_{\alpha}:(\forall j<i)(\forall \ell)\left(h_{i}(j) \leq \ell<\omega \rightarrow \alpha \neq \eta_{j}(\ell)\right)\right.$ as required in (β), possible as L is free. Second by induction on $m \geq h_{i}(j)$ we choose b_{m+1} such that $0 / p \mathbb{Z}=b_{m+1} / p_{i} \mathbb{Z}+f_{i}\left(x_{\nu_{j}(m)}\right)-f_{i}\left(x_{\rho_{j}(m)}\right)$ and then choose $g_{i}\left(x_{\nu_{j}(m)}\right), g\left(x_{\rho_{j}(m)}\right)$ such that the m-th equation in clause (ε) for j holds. Let $i=\bigcup_{n<\omega} A_{n}^{i}$ be such that $A_{n}^{i} \subseteq A_{n+1}^{i}$ and $\left|A_{n}^{i}\right|<\mu$. Now choose by induction on $n, \rho_{i}(n), \nu_{i}(n)$ as distinct ordinals $\in\left\{\alpha \in \mu: \alpha \notin\left\{\nu_{i}(m), \rho_{i}(m): m<m\right\}\right.$ and $\left.p r_{1}(\alpha)=\eta_{i}(n)\right\}$ such that $\left\langle g_{j}\left(x_{\nu_{i}(\alpha)}\right): j \in A_{n}^{i}\right\rangle=\left\langle g_{j}\left(x_{\rho_{i}(m)}\right): j \in A_{n}^{i}\right\rangle$. So we have carried the induction.
Let G be generated by $L \cup\left\{y_{i, m}: i<\lambda, m<\omega\right\}$ freely except that (the equations of L and $)\left(\prod_{p \in \mathbf{P}_{0} \cap n} p\right) y_{i, n+1}=y_{i, n}+x_{\nu_{i}(n)}-x_{\rho_{i}(n)}$.

Why is the abelian group as required?
$\boxtimes_{1} G$ is μ^{+}-free
[Why? As $\left\langle\eta_{\alpha}: \alpha<\mu^{+}\right\rangle$is and clause (γ).]
\boxtimes_{2} if $p \in \mathbf{P}_{0}$, then $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=0$.
[Why? So let $f \in \operatorname{Hom}(G, \mathbb{Z} / p \mathbb{Z})$ and we should find $g \in \operatorname{Hom}(G, \mathbb{Z})$ such that $f=g / p \mathbb{Z}$. Clearly for some $i<\mu^{+}$we have $\left(p_{i}, f_{i}\right)=(p, f)$, now g_{i} was chosen such that we can extend g_{i} to a homomorphism $g_{i, i}$ from $G_{i}=:\left\langle L \cup\left\{y_{j, n}: j<i, n<\omega\right\}\right\rangle_{G}$ to \mathbb{Z} such that $g_{i, i}(x) / p \mathbb{Z}=f(x)$ and if $j<i$ we choose $n^{i, j}$ and $\left\langle b_{m}^{i, j}: m \in\left[n^{i, j}, \omega\right)\right\rangle$ are as required in closed (ε), we let $g_{i, i}\left(y_{j, m}\right)=b_{m}$ for $m \in\left[n^{i j}, \omega\right)$. Lastly, we define by induction on $j \in\left[i, \mu^{+}\right]$a homomorphism $g_{i, j}$ from G_{j} into \mathbb{Z} such that $g_{i, j}(x) / p \mathbb{Z}=f(x)$ for $x \in G_{j}, g_{i, j}$ is increasing with j. For $j=i$ this was done, for limit take union and for $j=\varepsilon+1$, by clause (δ) of \boxtimes we know that for some $n=n^{i, j}$ we have $m[n, \omega) \Rightarrow g_{i}\left(x_{\nu_{i}(m)}\right)=g_{i}\left(x_{\rho_{i}(n)}\right)$, so for $m \in[n, \omega)$ we let $g_{i, \varepsilon+1}\left(y_{\varepsilon, n}\right)=0$ and solve the equations to determine $g_{i, \varepsilon+1}\left(y_{\varepsilon, n}\right)$ by downward induction.]
\boxtimes_{3} if $p \in \mathbf{P}_{1}$, then $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\mu}$.
[Why? Because every $h \in \operatorname{Hom}\left(G_{\alpha}, \mathbb{Z} / p \mathbb{Z}\right)$) has >1 extensions to $h^{\prime} \in$ $\operatorname{Hom}\left(G_{\alpha+1}, \mathbb{Z} / p \mathbb{Z}\right)$ hence $\operatorname{Hom}\left(G_{\alpha}, \mathbb{Z} / p \mathbb{Z}\right)$ has cardinality $2^{\mu^{+}}>2^{\mu}$, whereas every $h \in \operatorname{Hom}(L, \mathbb{Z})$ has at most one extension to $h^{+} \in \operatorname{Hom}(G, \mathbb{Z})$, so the result follows.]
$\boxtimes_{4} r_{0}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\mu^{+}}$
[Why? Similar to \boxtimes_{3}, i.e. using cardinality considerations.]
4.4 Question: Do we have compactness for singular for $\operatorname{Ext}_{p}(G, \mathbb{Z})=0$?
4.5 Claim. [Omitted, see [Sh 724] and x.x.]
4.6 Question: If $\bar{\lambda} \in \Xi_{\mathbb{Z}}$ can we derive $\bar{\lambda}^{\prime} \in \Xi_{\mathbb{Z}}$ by increasing some λ_{p} 's?
4.7 Fact: If $\bar{\lambda}^{i}=\left\langle\lambda_{p}^{i}: p \in \mathbf{P} \cup\{0\}\right\rangle \in \Xi_{\mathbb{Z}}$ for $i<\alpha$ and $\lambda_{p}=\prod_{i<\alpha} \lambda_{p}^{i}$, then $\left\langle\lambda_{p}: p \in \mathbf{P} \cup\{0\}\right\rangle \in \Xi_{\mathbb{Z}}$.

Proof. As if $G=\bigoplus_{i<\alpha} G_{i}$ then $\operatorname{Ext}(G, \mathbb{Z})=\prod_{i<\lambda} \operatorname{Ext}(G, \mathbb{Z})$ hence $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=$ $\prod_{i<\alpha} r_{p}\left(\operatorname{Ext}\left(G_{i}, \mathbb{Z}\right)\right)$.
4.8 Concluding Remark: In [EkSh 505] the statement "there is a W-abelian group" is characterized.

We can similarly characterize "there is a separable group". We have the same characterization for "there is a non-free abelian group" such that for some p, $r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=0$.

Question: What can $\mathbf{P}^{*}=\left\{p: p\right.$ prime and $\left.\bar{\lambda} \in \Xi_{\mathbb{Z}} \& \lambda_{0}>0 \Rightarrow \lambda_{p}>0\right\}$ be (if $V=L$ it is \emptyset, in 4.5 it is \mathbf{P}, are there other possibilities?)
4.9 Claim. If λ is strong inaccessible or $\lambda=\mu^{+}, \mu$ strong limit singular of cofinality $\aleph_{0}, S \subseteq\left\{\delta<\lambda: c f(\delta)=\aleph_{0}\right\}$ is stationary not reflecting and \diamond_{S}^{*} and \mathbf{P}_{0} a set of primes, then there is a λ-free abelian group G such that $r_{0}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\lambda}=0$ and: $p \in \mathbf{P}_{0} \Rightarrow r_{p}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\lambda}$ and p prime and $p \notin \mathbf{P}_{0} \Rightarrow r_{p}(E x t(G, \mathbb{Z})=0$.

§5 Strong limit of countable cofinality

We continue [GrSh 302] and [GrSh 302a].
5.1 Definition. 1) We say \mathscr{A} is a (λ, \mathbf{I})-system if $\mathscr{A}=\left(\lambda, \mathbf{I}, \bar{G}, \bar{H}^{*}, \bar{\pi}, \bar{\sigma}\right)$ where $\bar{G}=\left\langle G_{\alpha}: \alpha \leq \omega\right\rangle, \bar{H}=\left\langle\bar{H}^{t}: t \in \mathbf{I}\right\rangle, \bar{H}^{t}=\left\langle H_{\alpha}^{t}: \alpha \leq \omega\right\rangle, \bar{\pi}=\left\langle\pi_{\alpha, \beta}, \pi_{\alpha, \beta}^{t}: \alpha \leq \beta \leq\right.$ $\left.\omega, t \in \mathbf{I}\rangle, \bar{\sigma}=\left\langle\sigma_{\alpha}^{t}: t \in \mathbf{I}, \alpha \leq \omega\right\rangle\right)$ satisfies (we may write $\lambda^{\mathscr{A}}, \pi_{\alpha, \beta}^{t, \mathscr{A}}$, etc.)
(A) λ is \aleph_{0} or generally a cardinal of cofinality \aleph_{0}
(B) $\left\langle G_{m}, \pi_{m, n}: m \leq n<\omega\right\rangle$ is an inverse system of groups whose inverse limit is G_{ω} with $\pi_{n, \omega}$ such that $\left|G_{n}\right| \leq \lambda$. (So $\pi_{m, n}$ is a homomorphism from G_{n} to $G_{m}, \alpha \leq \beta \leq \gamma \leq \omega \Rightarrow \pi_{\alpha, \beta} \circ \pi_{\beta, \gamma}=\pi_{\alpha, \beta}$ and $\pi_{\alpha, \alpha}$ is the identity).
(C) \mathbf{I} is an index set of cardinality $\leq \lambda$. For every $t \in \mathbf{I}$ we have $\left\langle H_{m}^{t}, \pi_{m, n}^{t}: m \leq n<\omega\right\rangle$ is an inverse system of groups and H_{ω}^{t} with $\pi_{n, \omega}^{t}$ being the corresponding inverse limit H_{ω}^{t} with $\pi_{m, \omega}^{t}$ and H_{m}^{t} has cardinality $\leq \lambda$.
(D) for every $t \in \mathbf{I}, \sigma_{n}^{t}: H_{n}^{t} \rightarrow G_{n}$ is a homomorphism such that all diagrams commute (i.e. $\pi_{m, n} \circ \sigma_{n}^{t}=\sigma_{m}^{t} \circ \pi_{m, n}^{t}$ for $m \leq n<\omega$), and let σ_{ω}^{t} be the induced homomorphism from H_{ω}^{t} into G_{ω}
(E) $G_{0}=\left\{e_{G_{0}}\right\}, H_{0}^{t}=\left\{e_{H_{0}^{t}}\right\}$ (just for simplicity).
2) We say \mathscr{A} is strict if $\left|G_{n}\right|<\lambda,\left|H_{n}^{t}\right|<\lambda,|\mathbf{I}|<\lambda$. Let \mathscr{E}_{t} be the following equivalence relation on $G_{\omega}: f \mathscr{E}_{\epsilon} g$ iff $f g^{-1} \in \operatorname{Rang}\left(\sigma_{\omega}^{t}\right)$.
3) Let $\operatorname{nu}(\mathscr{A})=\sup \left\{\mu\right.$: for each $n<\omega$, there is a sequence $\left\langle f_{i}: i<\mu\right\rangle$ such that $f_{i} \in G_{\omega}$ and $\mu \leq \lambda \Rightarrow \pi_{n, \omega}\left(f_{i}\right)=\pi_{n, \omega}\left(f_{0}\right)$ for $i<\mu$ and $i<j<\mu \& t \in I \Rightarrow$ $\left.\neg f_{i} \mathscr{E}_{t} f_{j}\right\}$.
We write $\operatorname{nu}(\mathscr{A})=^{+} \mu$ to mean that moreover the supremum is obtained. Let $\mathrm{nu}^{+}(\mathscr{A})$ be the first μ such that for $n=0$, there is no $\left\langle f_{i}: i<\mu\right\rangle$ as above $\left(\mathrm{so} \mathrm{nu}(\mathscr{A}) \leq \mathrm{nu}^{+}(\mathscr{A})\right.$ and if $\mathrm{nu}(\mathscr{A})>\mu$ then $\mathrm{nu}(\mathscr{A}) \leq \mathrm{nu}^{+}(\mathscr{A}) \leq \mathrm{nu}(\mathscr{A})^{+}$ and $\mathrm{nu}(\mathscr{A})<\mathrm{nu}^{+}(\mathscr{A})$ implies $\mathrm{nu}(\mathscr{A})$ is a limit cardinal and the supremum not obtained).
4) We say \mathscr{A} is an explicit $(\bar{\lambda}, \overline{\mathbf{J}})$-system if: $\mathscr{A}=(\bar{\lambda}, \overline{\mathbf{J}}, \bar{G}, \bar{H}, \bar{\pi}, \bar{\sigma})$ and
(α) $\bar{\lambda}=\left\langle\lambda_{n}: n<\omega\right\rangle, \overline{\mathbf{J}}=\left\langle\mathbf{J}_{n}: n<\omega\right\rangle$
(β) $\lambda_{n}<\lambda_{n+1}, \mathbf{J}_{n} \subseteq \mathbf{J}_{n+1}$,
(γ) letting $\lambda^{\mathscr{A}}=\sum_{n<\omega} \lambda_{n}, \mathbf{I}^{\mathscr{A}}=\bigcup_{n<\omega} \mathbf{J}_{n}$ we have $\operatorname{sys}(\mathscr{A})=:(\lambda, \mathbf{I}, \bar{G}, \bar{H}, \bar{\pi}, \bar{\sigma})$ is a (λ, \mathbf{I})-system
($\delta)\left|\mathbf{J}_{n}\right| \leq \lambda_{n},\left|G_{n}\right| \leq \lambda_{m},\left|H_{n}^{t}\right|<\lambda$ and $\left|H_{t}^{n}\right| \leq\left|H_{t}^{n+1}\right|$.
5) We add in (4), full if
$(\varepsilon)\left|H_{n}^{t}\right| \leq \lambda_{n}$.
6) For an explicit $(\lambda, \overline{\mathbf{J}})$-system \mathscr{A} let $\mathrm{nu}_{*}^{+}(\mathscr{A})=\sup \left\{\mu^{+}\right.$:for every $n<\omega$ there is a sequence $\left\langle f_{i}: i<\mu\right\rangle$ such that $f_{i} \in G$, and $\mu \leq \lambda \Rightarrow \pi_{n, \omega}\left(p_{i}\right)=\pi_{n, \omega}\left(f_{0}\right)$ for $i<\mu$ and $\left.i<j<\mu \& t \in \mathbf{J}_{n} \Rightarrow \neg f_{i} \mathscr{E}_{t} f_{j}\right\}$.
7) For a λ-system \mathscr{A}, we define $\mathrm{nu}_{*}^{+}(\mathscr{A})$ similarly, except we say: for some $\overline{\mathbf{J}}=$ $\left\langle\mathbf{J}_{n}: n<\omega\right\rangle$ such that $\mathbf{I}=\bigcup_{n<\omega} \mathbf{J}_{n}, \mathbf{J}_{n} \subseteq \mathbf{J}_{n+1}$.
5.2 Claim. 1) For any strict (λ, \mathbf{I})-system \mathscr{A} there are $\bar{\lambda}, \overline{\mathbf{J}}$ and an explicit $(\bar{\lambda}, \overline{\mathbf{J}})$ system \mathscr{B} such that sys $(\mathscr{B})=\mathscr{A}$ so

$$
\lambda=\sum_{n<\omega} \lambda_{n}, \mathbf{I}=\bigcup_{n<\omega} \mathbf{J}_{n}, n u(\mathscr{B})=n u(\mathscr{A})
$$

(and if in one side the supremum is obtained, so in the other).
2) For any (λ, \mathbf{I})-system \mathscr{A} such that $\lambda>2^{\aleph_{0}}$ and $n u^{+}(\mathscr{A}) \geq \mu \geq \lambda$ and $\operatorname{cf}(\mu) \notin$ $\left[\aleph_{1}, 2^{\aleph_{0}}\right]$ there is an explicit $(\bar{\lambda}, \overline{\mathbf{J}})$-system \mathscr{B} such that $\lambda^{\mathscr{A}}=\sum_{n<\omega} \lambda_{n}^{\mathscr{B}}, \mathbf{I}^{\mathscr{A}}=\bigcup_{n<\omega} \mathbf{J}_{n}^{\mathscr{B}}$ and $n u^{+}(\mathscr{A}) \geq n u^{+}(\mathscr{B}) \geq \mu$.
3) In part (2) if $f:$ Card $\cap \lambda \rightarrow$ Card is increasing we can demand $\lambda_{n} \in \operatorname{Rang}(f)$, $f\left(\lambda_{n}\right)<\lambda_{n+1}$. So if λ is strong limit $>\aleph_{0}$, then we can demand $2^{\lambda_{n}^{\mathscr{B}}}<\lambda_{n+1}^{\mathscr{B}}=$ $c f\left(\lambda_{n+1}^{\mathscr{B}}\right)$.
4) As in (2), (3) above with $n u_{*}^{+}$instead of $n u^{+}$.

Proof. 1) Straight.
2) Let $\bar{\lambda}=\left\langle\lambda_{n}: n<\omega\right\rangle$ be such that $\lambda=\sum_{n<\omega} \lambda_{n}, 2^{\aleph_{0}}<\lambda_{n}<\lambda_{n+1}, \operatorname{cf}\left(\lambda_{n}\right)=\lambda_{n}$. Let $\left\langle G_{n, \ell}: \ell<\omega\right\rangle$ be increasing, $G_{n, \ell}$ a subgroup of G_{n} of cardinality $\leq \lambda_{\ell}$ and $G_{n}=\bigcup_{\ell<\omega} G_{n, \ell}$. Let $\left\langle H_{n, \ell}^{t}: \ell<\omega\right\rangle$ be an increasing sequence of subgroups of H_{n}^{t} with union $H_{n}^{t},\left|H_{n, \ell}^{t}\right| \leq \lambda_{\ell}$. Let $\left\langle\mathbf{J}_{n}: n<\omega\right\rangle$ be an increasing sequence of subsets of \mathbf{I} with union \mathbf{I} such that $\left|\mathbf{J}_{n}\right| \leq \lambda_{n}$.
Without loss of generality $\pi_{m, n} \operatorname{maps} G_{n, \ell}$ into $G_{m, \ell}$ and $\pi_{m, n}^{t}$ maps $H_{n, \ell}^{t}$ into $H_{m, \ell}^{t}$ and σ_{n}^{t} maps $H_{n, \ell}^{t}$ into $G_{n, \ell}^{t}$ (why? just close the witness).
Now for every increasing $\eta \in{ }^{\omega} \omega$ we let

$$
G_{\omega}^{\eta}=\left\{g \in G_{\omega}: \text { for every } n<\omega \text { we have } \pi_{n, \omega}(g) \in G_{n, \eta(n)}\right\}
$$

Clearly
$(*)_{1}(\alpha) G_{\omega}^{\eta}$ is a subgroup of G_{ω}
$(\beta)\left\{G_{\omega}^{\eta}: \eta \in{ }^{\omega} \omega\right.$ increasing $\}$ is directed, i.e. if $\left.(\forall n<\omega) \eta(n) \leq \nu(n)\right)$ where $\eta, \nu \in{ }^{\omega} \omega$ then $G_{\omega}^{\eta} \subseteq G_{\omega}^{\nu}$
$(\gamma) G_{\omega}=\cup\left\{G_{\omega}^{\eta}: \eta \in{ }^{\omega} \omega\right.$ (increasing) $\}$.
First assume $\operatorname{cf}(\mu) \neq \aleph_{0}$ so as $\operatorname{cf}(\mu)>2^{\aleph_{0}}$ for some $\eta \in{ }^{\omega} \omega$, strictly increasing, we have

$$
(*)_{2} \mu \leq \sup \left\{|X|^{+}: X \subseteq G_{\omega, \eta} \text { and } t \in \mathbf{I} \& f \neq g \in X \Rightarrow f g^{-1} \notin \sigma_{\omega}^{t}\left(H_{\omega}^{t}\right)\right\} .
$$

However, as $\lambda \leq \mu, \operatorname{cf}(\lambda)=\aleph_{0}, \operatorname{cf}(\mu)>2^{\aleph_{0}}$ clearly $\mu>\lambda$; also if X_{1}, X_{2} are as in $(*)_{2}$ then for some $X \subseteq X_{2}$ we have $|X| \leq\left|X_{1}\right|+|\mathbf{I}|$ and $X_{1} \cup\left(X_{2} \backslash X_{2}\right)$ is as required there. So we can choose $\eta \in{ }^{\omega} \omega$, increasing such that
$(*)_{3}$ there is $X \subseteq G_{\omega}^{\eta}$ of cardinality μ such that $t \in \mathbf{I} \& f \neq g \in X \Rightarrow f g^{-1} \notin$ $\sigma_{\omega}^{t}\left(H_{\omega}^{t}\right)$.

Second assume $\operatorname{cf}(\mu)=\aleph_{0}$, so let $\mu=\sum_{n<\omega} \mu_{n}, \mu_{n}<\mu_{n+1}$, and without loss of generality $\lambda_{n}<\mu_{n}=\operatorname{cf}\left(\mu_{n}\right)$ and $\mu>\lambda \Rightarrow \mu_{n}>\lambda$. If $\mu>\lambda$, for each n there is a witness $\left\langle f_{\alpha}^{n}: \alpha<\mu_{n}\right\rangle$ to $\mathrm{nu}^{+}(\mathscr{A})>\mu_{n}$, so $f_{\alpha}^{n} \in G_{\omega}^{\mathscr{A}}$ and as $\mu_{n}>\lambda \geq\left|G_{n}^{\mathscr{A}}\right|$, without loss of generality $\pi_{n, \omega}\left(f_{\alpha}^{n}\right)=\pi_{n, \omega}\left(f_{\alpha}^{0}\right)$ so as we can replace f_{α}^{n} by $f_{\alpha+1}^{n}\left(f_{0}^{n}\right)^{+1}$, without loss of generality $m \leq n \Rightarrow \pi_{m, \omega}\left(f_{\alpha}^{n}\right)=e_{G}$. For each α let $\eta_{\alpha}^{n} \in{ }^{\omega} \omega$ be increasing be such that $\pi_{n, \omega}\left(f_{\alpha}^{n}\right) \in G_{n, \eta_{\alpha}(n)}$. As $2^{\aleph_{0}}<\operatorname{cf}\left(\mu_{n}\right)=\mu_{n}$, for some increasing $\eta_{n} \in{ }^{\omega} \omega$ we have $\left(\exists^{\mu_{n}} \alpha<\mu_{n}\right), \eta_{\alpha}^{n}=\eta_{n}$. So, hence without loss of generality $\alpha<\mu \Rightarrow \eta_{\alpha}^{n}=\eta_{n}$. Let $\eta \in{ }^{\omega} \omega$ be $\eta(n)=$ $\operatorname{Max}\left\{\eta_{n}(n): m \leq n\right\}$. So we have $n<\omega \& \alpha<\mu_{n} \Rightarrow \pi_{n, \omega}\left(f_{\alpha}^{n}\right) \in G_{n}$. So
$(*)_{4}$ for every $n<\omega$ and $\mu_{0}^{\prime}<\mu$ (in fact even $\mu_{i}=n$) there are $f_{\alpha} \in G_{\omega}^{\eta}$ for $\alpha<\mu^{\prime}$ such that $\mu \leq \lambda \Rightarrow \pi_{n, \omega}\left(f_{\alpha}\right)=e_{G_{n}}$ and $\alpha<\beta<\mu^{\prime} \quad \& \quad t \in \mathbf{I} \Rightarrow$ $f g^{-1} \notin \sigma_{\omega}^{t}\left(H_{\omega}^{t}\right)$.

Lastly, if $\mu=\lambda$, $\operatorname{socf}(\mu)=\aleph_{0}$ the proof is as in the case $\mu>\lambda \& \operatorname{cf}(\mu)=\aleph_{0}$, except that $\pi_{n, \omega}\left(f_{\alpha}^{n}\right)=\pi_{n, o}\left(f_{0}^{n}\right)$ holds by the choice of $\left\langle f_{\alpha}^{n}: \alpha<\mu_{n}\right\rangle$ instead of by "without loss of generality".
For each $t \in \mathbf{J}_{n}$ and strictly increasing $\nu \in{ }^{\omega} \omega$ let $H_{\omega}^{(t, \nu)}$ be the subgroup $\left\{g \in H_{\omega}^{t}\right.$: for every $n<\omega$ we have $\left.\sigma_{n, \omega}(g) \in H_{n, \nu(n)}^{t}\right\}$. So let $\mathbf{J}_{n}^{\prime}=\{(t, \nu): t \in \mathbf{J}$ and $\nu \in$ ${ }^{\omega} \omega$ increasing $\}$.
We define $G_{n, \zeta}^{\eta}$, a subgroup of $G_{n, \eta(n)}$, decreasing with ζ by induction on ζ :
$\zeta=0: G_{n, \zeta}^{\eta}=G_{n, \eta(n)}$

$$
\begin{array}{r}
\zeta=\varepsilon+1: G_{n, \zeta}^{\eta}=\left\{x: x \in G_{n, \varepsilon}^{\eta} \text { and } x \in \operatorname{Rang}\left(\pi_{n, n+1} \upharpoonright G_{n+1, \varepsilon}^{\eta}\right)\right. \\
\text { and } \left.n>0 \Rightarrow \pi_{n-1, n}(x) \in G_{n-1, \eta(n-1), \varepsilon}\right\}
\end{array}
$$

ζ limit: $G_{n, \zeta}^{\eta}=\bigcap_{\varepsilon<\zeta} G_{n, \varepsilon}^{\eta}$.
Let $G_{n}^{\eta}=\bigcap_{\zeta<\lambda+} G_{n, \eta(n), \zeta}^{\eta}, \pi_{m, n}^{\eta}=\pi_{m, n} \upharpoonright G_{n}^{\eta}$. Easily $\left\langle G_{n}^{\eta}, \pi_{m, n}^{\eta}: m \leq n<\omega\right\rangle$ is directed with limit G_{ω}^{η} with $\pi_{n, \omega}^{\eta}=\pi_{n, \omega} \upharpoonright G_{\omega}^{\eta}$.
Define $H_{n, \zeta}^{(t, \nu)}, \pi_{m, n, \zeta}^{(t, \nu)}$ (for any ζ), $H_{n}^{(t, \nu)}, \pi_{m, n}^{(t, \nu)}$ parallely to $G_{n}^{\eta}, \pi_{m, n}^{\eta}$ but such that σ_{α}^{t} maps $H_{\alpha}^{(t, \nu)}$ into G_{α}^{η} (note: element of $H_{\alpha}^{(t, \nu)}$ not mapped to G_{α}^{η} are irrelevant). Let $\sigma_{\omega}^{(t, \nu)}: H_{\omega}^{(t, \nu)} \rightarrow G_{\omega}^{\eta}$ be $\sigma_{\omega}^{t} \upharpoonright H_{\omega}^{(t, \nu)}$ and $\sigma_{n}^{(t, \sigma)}=\sigma_{n}^{t} \upharpoonright H_{n}^{(t, \nu)}$.

We have defined actually $\mathscr{B}=\left(\bar{\lambda}^{\mathscr{B}}, \overline{\mathbf{J}}^{\mathscr{B}}, \bar{G}, \bar{H}, \bar{\pi}^{\mathscr{B}}, \bar{\sigma}^{\mathscr{B}}\right)$ where $\bar{\lambda}^{\mathscr{B}}=\left\langle\lambda_{n}: n<\omega\right\rangle, \mathbf{J}^{\mathscr{B}}=\left\langle\mathbf{J}_{n}^{\prime}: n<\omega\right\rangle, \bar{G}^{\mathscr{B}}=\left\langle G_{\alpha}^{\eta}: \alpha \leq \omega\right\rangle$, $\bar{H}^{\mathscr{B}}=\left\langle\left\langle H_{\alpha}^{x}: \alpha \leq \omega\right\rangle: x \in \bigcup_{n} \mathbf{J}_{n}^{\prime}\right\rangle$,
$\bar{\pi}^{\mathscr{B}}=\left\langle\pi_{\alpha, \beta}^{\eta}: \alpha \leq \beta \leq \omega\right\rangle^{\wedge}\left\langle\left\langle\pi_{\alpha, \beta}^{(t, \nu)}: \alpha \leq \beta \leq \omega\right\rangle:(t, \nu) \in \bigcup_{n} \mathbf{J}_{n}^{\prime}\right\rangle$ and
$\bar{\sigma}^{\mathscr{B}}=\left\langle\left\langle\sigma_{\alpha}^{(t, \nu)}: \alpha \leq \omega\right\rangle:(t, \nu) \in \bigcup_{n<\omega} \mathbf{J}_{n}^{\prime}\right\rangle$.
We have almost finished. Still G_{n}^{η} may be of cardinality $>\lambda_{n}$ but note that for $k: \omega \rightarrow \omega$ non-decreasing with limit $\omega,\left\langle G_{n}^{\eta}: n<\omega\right\rangle$ can be replaced by $\left\langle G_{k(n)}: n<\omega\right\rangle$.

By the definition of $\mathscr{B}, G_{\omega}^{\mathscr{B}}$ is a subgroup of $G_{\omega}^{\mathscr{A}}$ and for each $t \in \mathbf{I}$ for some $n, t \in \mathbf{J}_{n}$ and $H_{t}^{\mathscr{A}} \cap G_{\omega}^{\mathscr{B}}=\bigcup_{\eta \in^{\omega} \omega} H_{(t, \eta)}^{\mathscr{B}}$ hence for $f, g \in G_{\omega}^{\mathscr{B}} \subseteq G_{\omega}^{\mathscr{A}}$ we have $f \mathscr{E}_{t} g \Leftrightarrow f g^{-1} \in H_{t}^{\mathscr{A}} \Leftrightarrow-\left(\exists h \in H_{t}^{\mathscr{A}}\right)\left(f g^{-1}=h\right) \Leftrightarrow(\exists \bar{h})\left(\bar{h}=\left\langle h_{n}: n<\omega\right\rangle \quad \&\right.$ $\left.h_{n}=\pi_{n, n+1}^{t, \mathscr{A}}\left(\sigma h_{n+1}\right) \cap \bigwedge_{n<\omega} f g^{-1} \upharpoonright n=\sigma_{n}^{t, \mathscr{A}}\left(h_{n}\right)\right) \Leftrightarrow-(\exists \bar{h}) \bigvee_{\nu \in \omega}(\bar{h})=\left\langle h_{n}: n<\right.$ $\left.\omega\rangle \& h_{n} \in H_{n, \nu(n)}^{t, \mathscr{A}} \& \bigwedge_{n}=\pi_{n, n+1}^{t, \mathscr{A}}\left(h_{n+1}\right) \& \bigwedge_{n<\omega} f g^{-1} \upharpoonright n=\sigma_{n}^{t, \mathscr{A}}\left(h_{n}\right)\right) \Leftrightarrow^{2}$ $\bigvee_{\nu \in{ }^{\omega} \omega}(\exists \bar{h})\left(\bar{h}=\left\langle h_{n}: n<\omega\right\rangle \quad \& \bigwedge_{n} h_{n} \in H_{n, \zeta}^{t, \mathscr{A}} \stackrel{n<\omega}{\&} \bigwedge_{n} h_{n}=\pi_{n, n+1}^{t, \mathscr{A}}\left(h_{n+1)} \quad \&\right.\right.$

[^1]$\bigwedge_{n<\omega} f g^{-1}=\sigma_{n}^{t, \mathscr{A}}\left(h_{n}\right) \Leftrightarrow \bigvee_{\nu \in^{\omega} \omega}(\exists \bar{h})\left(\bar{h}=\left\langle h_{n}: n<\omega\right\rangle \& \bigwedge_{n} h_{n} \in H_{n}^{t, \mathscr{B}} \& \bigwedge_{n} h_{n}=\right.$ $\left.\pi_{n, n+1}^{t, \mathscr{B}}\left(h_{n+1}\right) \& \bigwedge_{n<\omega} \pi_{n, \omega}^{\mathscr{B}} f g^{-1}\right)=\sigma_{n}^{t, \mathscr{B}}\left(h_{n}\right) \bigvee_{\nu \in^{\omega} \omega} f g^{-1} \in H_{(t, \nu)}^{\mathscr{B}} \Leftrightarrow \bigvee_{\nu \in^{\omega} \omega} f \mathscr{E}_{(t, \nu)} g ;$ so clearly $\mathrm{nu}^{+}(\mathscr{B}) \leq \mathrm{nu}^{+}(\mathscr{A})$. But also $\mathrm{nu}^{+}(\mathscr{B})>\mu$ by the choice of η, i.e. by $(*)_{3}$. 3), 4) Easy.

For the rest of this section we adopt:
5.3 Convention. 1) \mathscr{A} is an explicit $(\bar{\lambda}, \overline{\mathbf{J}})$-system, so below $\mathrm{rk}_{t}(g, f)$ should be written as $\mathrm{rk}_{t}(g, f, \mathscr{A})$, etc.
2) $\lambda=\sum_{n<\omega} \lambda_{n}, \lambda_{n}=\lambda_{n}^{\mathscr{A}}, \mathbf{J}_{n}=\mathbf{J}_{n}^{\mathscr{A}}, \mathbf{I}=\mathbf{I}^{\mathscr{A}}=\bigcup_{n<\omega} \mathbf{J}_{n}, G_{\alpha}=G_{\alpha}^{\mathscr{A}}$, etc.
3) $k_{t}(n)=\operatorname{Max}\left\{m: m \leq n,\left|H_{m}^{t}\right| \leq \lambda_{n}\right\}$ so $k_{t}: \omega \rightarrow \omega$ is non-decreasing converging to ∞.
For the reader's convenience we repeat 5.5-5.8 from [GrSh 302a].
5.4 Definition. 1) For $g \in H_{\alpha}^{t}$ let $\operatorname{lev}(g)=\alpha$ (without loss of generality this is well defined).
2) For $\alpha \leq \beta \leq \omega, g \in H_{\beta}^{t}$ let $g \upharpoonright H_{\alpha}^{t}=\pi_{\alpha, \beta}^{t}(g)$ and we say $g \upharpoonright H_{\alpha}^{t}$ is below g and g is above $g \upharpoonright H_{\alpha}^{t}$ or extend $g \upharpoonright H_{\alpha}^{t}$.
3) For $\alpha \leq \beta \leq \omega, f \in G_{\beta}$ let $f \upharpoonright G_{\alpha}=\pi_{\alpha, \beta}(f)$.

We will now describe the rank function used in the proof of the main theorem.
5.5 Definition. 1) For $g \in H_{n}^{t}, f \in G_{\omega}$ we say that (g, f) is a nice t-pair if $\sigma_{n}^{t}(g)=f \upharpoonright G_{n}$.
2) Define, for $t \in \mathbf{I}$, a ranking function $\operatorname{rk}_{t}(g, f)$ for any nice t-pair. First by induction on the ordinal α (we can fix $f \in G_{\omega}$), we define when $\operatorname{rk}_{t}(g, f) \geq \alpha$ simultaneously for all $n<\omega, g \in H_{n}^{t}$
(a) $\operatorname{rk}_{t}(g, f) \geq 0$ iff (g, f) is a nice t-pair
(b) $\operatorname{rk}_{t}(g, f) \geq \delta$ for a limit ordinal δ iff for every $\beta<\delta$ we have $\operatorname{rk}_{t}(g, f) \geq \beta$
(c) $\operatorname{rk}_{t}(g, f) \geq \beta+1$ iff (g, f) is a nice t-pair, and letting $n=\operatorname{lev}(g)$ there exists $g^{\prime} \in H_{n+1}^{t}$ extending g such that $\mathrm{rk}_{t}\left(g^{\prime}, f\right) \geq \beta$
(d) $\mathrm{rk}_{t}(g, f) \geq-1$.
3) For α an ordinal or -1 (stipulating $-1<\alpha<\infty$ for any ordinal α) we let $\mathrm{rk}_{t}(g, f)=\alpha$ iff $\mathrm{rk}_{t}(g, f) \geq \alpha$ and it is false that $\mathrm{rk}_{t}(g, f) \geq \alpha+1$.
4) $\mathrm{rk}_{t}(g, f)=\infty$ iff for every ordinal α we have $\mathrm{rk}_{t}(g, f) \geq \alpha$.

The following two claims give the principal properties of $\mathrm{rk}_{t}(g, f)$.
5.6 Claim. Let (g, f) be a nice t-pair.

1) The following statements are equivalent:
(a) $r k_{t}(g, f)=\infty$
(b) there exists $g^{\prime} \in H_{\omega}^{t}$ extending g such that $\sigma_{\omega}^{t}\left(g^{\prime}\right)=f$.
2) If $r k_{t}(g, f)<\infty$, then $r k_{t}(g, f)<\mu^{+}$where $\mu=\sum_{n<\omega} 2^{\lambda_{n}}$ (for λ strong limit, $\mu=\lambda)$.
3) If g^{\prime} is a proper extension of g and $\left(g^{\prime}, f\right)$ is also a nice t-pair then
(α) $r k_{t}\left(g^{\prime}, f\right) \leq r k_{t}(g, f)$ and
(β) if $0 \leq r k_{t}(g, f)<\infty$ then the inequality is strict.
4) For $f_{1}, f_{2} \in G_{\omega}^{\mathscr{A}}, n<\omega$ and $t \in \bigcup_{n<\omega} \mathbf{J}_{n}$ we have $f_{1} \mathscr{E}_{t} f_{2}$ iff $r k_{t}\left(g, f_{1} f_{2}^{-1}\right)=\infty$ for some $g \in H_{n}^{\mathscr{A}}$.

Proof.

1) Statement $(a) \Rightarrow(b)$.

Let n be the value such that $g \in H_{n}^{t}$. If we will be able to choose $g_{k} \in H_{k}^{t}$ for $k<\omega, k \geq n$ such that
(i) $g_{n}=g$
(ii) g_{k} is below g_{k+1} that is $\pi_{k, k+1}^{t}\left(g_{k+1}\right)=g_{k}$ and
(iii) $\mathrm{rk}_{t}\left(g_{k}, f\right)=\infty$,
then clearly we will be done since $g^{\prime}=: \lim _{k} g_{k}$ is as required. The definition is by induction on $k \geq n$.
For $k=n$ let $g_{0}=g$.
For $k \geq n$, suppose g_{k} is defined. By (iii) we have $\operatorname{rk}_{t}\left(g_{k}, f\right)=\infty$, hence for every ordinal $\alpha, \operatorname{rk}_{t}(g, f)>\alpha$ hence there is $g^{\alpha} \in H_{k+1}^{t}$ extending g such that $\mathrm{rk}_{t}\left(g^{\alpha}, f\right) \geq \alpha$. Hence there exists $g^{*} \in H_{k+1}^{t}$ extending g_{k} such that $\left\{\alpha: g^{\alpha}=g^{*}\right\}$ is unbounded hence $\operatorname{rk}_{t}\left(g^{*}, f\right)=\infty$, and let $g_{k+1}=: g^{*}$.

Statement $(b) \Rightarrow(a)$.
Since g is below g^{\prime}, it is enough to prove by induction on α that for every $k \geq n$ when $g_{k}=: g^{\prime} \upharpoonright H_{k}^{t}$ we have that $\mathrm{rk}_{t}(g, f) \geq \alpha$.

For $\alpha=0$, since $\sigma_{\omega}^{t}\left(g^{\prime}\right)=f \upharpoonright G_{n}$ clearly for every k we have $\sigma_{k}^{t}\left(g_{k}\right)=f \upharpoonright G_{k}$ so $\left(g_{k}, f\right)$ is a nice t-pair.

For limit α, by the induction hypothesis for every $\beta<\alpha$ and every k we have $\mathrm{rk}_{t}\left(g_{k}, f\right) \geq \beta$, hence by Definition $5.5(2)(\mathrm{b}), \mathrm{rk}_{t}\left(g_{k}, f\right) \geq \alpha$.

For $\alpha=\beta+1$, by the induction hypothesis for every $k \geq n$ we have $\mathrm{rk}_{t}\left(g_{k}, f\right) \geq \beta$. Let $k_{0} \geq n$ be given. Since $g_{k_{0}}$ is below $g_{k_{0}+1}$ and $\operatorname{rk}_{t}\left(g_{k_{0}+1}, f\right) \geq \beta$, Definition $5.5(2)(\mathrm{c})$ implies that $\mathrm{rk}_{t}\left(g_{k_{0}}, f\right) \geq \beta+1$; i.e. for every $k \geq n$ we have $\mathrm{rk}_{t}\left(g_{k}, f\right) \geq \alpha$. So we are done.
2) Let $g \in H_{n}^{t}$ and $f \in G_{\omega}$ be given. It is enough to prove that if $\operatorname{rk}_{t}(g, f) \geq \mu^{+}$ then $\mathrm{rk}_{t}(g, f)=\infty$. Using part (1) it is enough to find $g^{\prime} \in H_{\omega}^{t}$ such that g is below g^{\prime} and $f=\sigma_{\omega}^{t}\left(g^{\prime}\right)$.

We choose by induction on $k<\omega, g_{k} \in H_{n+k}^{t}$ such that g_{k} is below g_{k+1} and $\mathrm{rk}_{t}\left(g_{k}, f\right) \geq \mu^{+}$. For $k=0$ let $g_{k}=g$. For $k+1$, for every $\alpha<\mu^{+}$, as $\mathrm{rk}_{t}\left(g_{k}, f\right)>\alpha$ by $5.5(2)(\mathrm{c})$ there is $g_{k, \alpha} \in G_{n+k+1}$ extending g_{k} such that $\mathrm{rk}_{t}\left(g_{k, \alpha}, f\right) \geq \alpha$. But the number of possible $g_{k, \alpha}$ is $\leq\left|H_{n+k+1}^{t}\right| \leq 2^{\lambda_{n+k+1}}<\mu^{+}$hence there are a function g and a set $S \subseteq \mu^{+}$of cardinality μ^{+}such that $\alpha \in S \Rightarrow g_{k, \alpha}=g$. Then take $g_{k+1}=g$.
3) Immediate from the definition.
4) Check the definitions.
5.7 Lemma. 1) Let (g, f) be a nice t-pair. Then we have $r k(g, f) \leq r k\left(g^{-1}, f^{-1}\right)$. 2) For every nice t-pair (g, f) we have $\operatorname{rk}(g, f)=r k\left(g^{-1}, f^{-1}\right)$.

Proof. 1) By induction on α prove that $\operatorname{rk}(g, f) \geq \alpha \Rightarrow \operatorname{rk}\left(g^{-1}, f^{-1}\right) \geq \alpha$ (see more details in the proof of Lemma 5.8).
2) Apply part (1) twice.
5.8 Lemma. 1) Let $n<\omega$ be fixed, and let $\left(g_{1}, f_{1}\right),\left(g_{2}, f_{2}\right)$ be nice t-pairs with $g_{\ell} \in$ $H_{n}^{t}(\ell=1,2)$. Then $\left(g_{1} g_{2}, f_{1} f_{2}\right)$ is a nice pair and $r k_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right) \geq \operatorname{Min}\left\{r k_{t}\left(g_{\ell}, f_{\ell}\right)\right.$: $\ell=1,2\}$.
2) Let $n,\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ be as above. If $r k_{t}\left(g_{1}, f_{1}\right) \neq r k_{t}\left(g_{2}, f_{2}\right)$, then $r k_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right)=\operatorname{Min}\left\{r k_{t}\left(g_{\ell}, f_{\ell}\right): \ell=1,2\right\}$.

Proof. 1) It is easy to show that the pair $\left(g_{1} f_{2}, f_{1}, f_{2}\right)$ is t-nice. We show by induction on α simultaneously for all $n<\omega$ and every $g_{1}, g_{2} \in H_{n}^{t}$ that $\operatorname{Min}\left\{\operatorname{rk}\left(g_{\ell}, f_{\ell}\right)\right.$: $\ell=1,2\} \geq \alpha$ implies that $\operatorname{rk}\left(g_{1} g_{2}, f_{1} f_{2}\right) \geq \alpha$.

When $\alpha=0$ or α is a limit ordinal this should be clear. Suppose $\alpha=\beta+1$ and that $\operatorname{rk}\left(g_{\ell}, f_{\ell}\right) \geq \beta+1$ for $\ell=1,2$; by the definition of rank for $\ell=1,2$ there exists $g_{\ell}^{\prime} \in H_{n+1}^{t}$ extending g_{ℓ} such that $\left(g_{\ell}^{\prime}, f_{\ell}\right)$ is a nice pair and $\mathrm{rk}_{t}\left(g_{\ell}^{\prime}, f_{\ell}\right) \geq \beta$. By the induction assumption $\mathrm{rk}_{t}\left(g_{1}^{\prime} g_{2}^{\prime}, f_{1} f_{2}\right) \geq \beta$ and clearly $\left(g_{1}^{\prime} g_{2}^{\prime}\right) \upharpoonright n=g_{1} g_{2}$. Hence $g_{1}^{\prime} g_{2}^{\prime}$ is as required in the definition of $\operatorname{rk}_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right) \geq \beta+1$.
2) Suppose without loss of generality that $\operatorname{rk}\left(g_{1}, f_{1}\right)<\operatorname{rk}\left(g_{2}, f_{2}\right)$, let $\alpha_{1}=\operatorname{rk}\left(g_{1}, f_{1}\right)$ and let $\alpha_{2}=\operatorname{rk}_{t}\left(g_{2}, f_{2}\right)$. By part (1), $\operatorname{rk}_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right) \geq \alpha_{1}$, by Proposition 5.7, $\operatorname{rk}_{t}\left(g_{2}^{-1}, f_{2}^{-1}\right)=\alpha_{2}>\alpha_{1}$. So we have

$$
\begin{aligned}
\alpha_{1} & =\operatorname{rk}_{t}\left(g_{1}, f_{1}\right)=\operatorname{rk}_{t}\left(g_{1} g_{2} g_{2}^{-1}, f_{1} f_{2} f_{2}^{-1}\right) \\
& \geq \operatorname{Min}\left\{\mathrm{rk}_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right), \mathrm{rk}_{t}\left(g_{2}^{-1}, f_{2}^{-1}\right)\right\} \\
& =\operatorname{Min}\left\{\mathrm{rk}_{t}\left(g_{1} g_{2}, f_{1} f_{2}\right), \alpha_{2}\right\} \geq \operatorname{Min}\left\{\alpha_{1}, \alpha_{2}\right\}=\geq \alpha_{1} .
\end{aligned}
$$

Hence the conclusion follows.
5.9 Theorem. Assume (\mathscr{A} is an explicit λ-system and)
(a) λ is strong limit $\lambda>c f(\lambda)=\aleph_{0}$
(b) $n u(\mathscr{A}) \geq \lambda$ or just $n u_{*}^{+}(\mathscr{A}) \geq \lambda$.

Then $n u(\mathscr{A})=+2^{\lambda}$.

The proof is broken into parts.
5.10 Fact: We can choose by induction on $n,\left\langle f_{n, i}: i<\lambda_{n}\right\rangle$ such that
($\alpha) f_{n, i} \in G_{\omega}$ and $f_{n, i} \upharpoonright G_{n+1}=e_{G_{n+1}}$
(β) $i<j<\lambda_{n} \& t \in \mathbf{J}_{n} \Rightarrow \neg f_{n, i} \mathscr{E}_{t} f_{n, j}$
(γ) $\operatorname{rk}_{t}\left(g, f_{n, i} f_{n, j}^{-1}\right)<\infty$ for any $t \in \mathbf{J}_{n}, k \leq n, g \in H_{k}^{t}$ and $i \neq j<\lambda_{n}$
(δ) if f^{*} belongs to the subgroup K_{n} of G_{ω} generated by the $\left\{f_{m, j}: m<n, j<\right.$ $\left.\lambda_{m}\right\}$ and $t \in \mathbf{J}_{n}, g \in \bigcup_{m \leq k_{t}(n)} H_{k_{t}(n)}^{t}$, then for every $i_{0}<i_{1}<i_{2}<i_{3}<\lambda_{n}$ each of the following statements have the same truth value, (i.e. the truth value does not depend on ($i_{0}, i_{1}, i_{2}, i_{3}$))
(i) $\operatorname{rk}_{t}\left(g, f_{n, i_{1}} f_{n, i_{0}}^{-1} f^{*} f_{n, i_{2}} f_{n, i_{3}}^{-1}\right)<\infty$
(ii) $\operatorname{rk}_{t}\left(g, f_{n, i_{3}} f_{n, i_{2}}^{-1} f^{*} f_{n, i_{0}} f_{n, i_{1}}^{-1}\right)<\infty$
(iii) $\operatorname{rk}_{t}\left(e_{H_{k_{t}(n)}^{t}}, f_{n, i_{1}} f_{n, i_{0}}^{-1}\right)<\operatorname{rk}_{t}\left(g, f^{*}\right)$
(iv) $\mathrm{rk}_{t}\left(e_{H_{k_{t}(n)}^{t}}, f_{n, i_{1}} f_{n, i_{0}}^{-1}\right)>\operatorname{rk}_{t}\left(g, f^{*}\right)$
(v) $\operatorname{rk}_{t}\left(g, f^{*}\right)<\operatorname{rk}_{t}\left(g, f_{n, i_{0}} f_{n, i_{1}}^{-1} f^{*} f_{n, i_{2}} f_{n, i_{3}}^{-1}\right)$
(vi) $\operatorname{rk}_{t}\left(g, f^{*}\right)<\operatorname{rk}_{t}\left(g, f_{n, i_{2}} f_{n, i_{3}}^{-1} f^{*} f_{n, i_{0}} f_{n, i_{1}}^{-1}\right)$
(vii) $\operatorname{rk}_{t}\left(g, f_{i_{0}} f_{i_{1}}^{-1}\right)<\infty$
(viii) $\operatorname{rk}_{t}\left(g, f_{i_{1}} f_{i_{0}}^{-1}\right)<\infty$
(ε) for each $t \in \mathbf{J}_{n}$ one of the following occurs:
(a) for $i_{0}<i_{1} \leq i_{2}<i_{3}<\lambda_{n}$ we have

$$
\mathrm{rk}_{t}\left(e_{H_{k_{t}(n)}^{t}}, f_{n, i_{0}} f_{n, i_{1}}^{-1}\right)<\operatorname{rk}\left(e_{H_{k_{t}(n)}^{t}}, f_{n, i_{2}} f_{n, i_{3}}^{-1}\right)
$$

(b) for some γ_{t}^{n} for every $i<j<\lambda_{n}$ we have

$$
\gamma_{t}^{n}=\operatorname{rk}_{t}\left(e_{H_{k_{t}(n)}^{t}}, f_{n, i} f_{n, j}^{-1}\right)
$$

Proof. We can satisfy clauses $(\alpha),(\beta)$ by the definitions and clause (γ) follows. Now clause (δ) is straight by Erdös Rado Theorem applied to a higher n.
For clause (ε) notice the transitivity of the order and of equality and "there is no decreasing sequence of ordinals of length ω ".
5.11 Notation. For $\alpha \leq \omega$ let $T_{\alpha}=\times_{k<\alpha} \lambda_{k}, T=: \bigcup_{n<\omega} T_{n}$ (note: by the partial order \triangleleft, T is a tree; treeness will be used).
5.12 Definition. Now by induction on $n<\omega$, for every $\eta \in \times_{m<n} \lambda_{m}$ we define $f_{\eta} \in G_{\omega}$ as follows:

$$
\begin{aligned}
& \text { for } n=0: \quad f_{\eta}=f_{<>}=e_{G_{\omega}} \\
& \text { for } n=m+1: \quad f_{\eta}=f_{m, 3 \eta(m)+1} f_{m, 3 \eta(m)}^{-1} f_{\eta \upharpoonright m} .
\end{aligned}
$$

5.13 Fact. 1) For $\eta \in T_{\omega}$ and $m \leq n<\omega$ we have

$$
f_{\eta \upharpoonright n} \upharpoonright G_{m+1}=f_{\eta \upharpoonright m} \upharpoonright G_{m+1}
$$

2) $\eta \in \times_{m<n} \lambda_{m} \Rightarrow f_{\eta} \in K_{n}$ and $K_{n} \subseteq K_{n+1}$.

Proof. As $\pi_{m, \omega}$ is a homomorphism it is enough to prove $\left(f_{\eta \upharpoonright n}\left(f_{\eta \upharpoonright m}\right)^{-1}\right) \upharpoonright G_{m+1}=$ $e_{G_{m+1}}$, hence it is enough to prove $m \leq k<\omega \Rightarrow\left(f_{\eta \upharpoonright k} f_{\eta \upharpoonright(k+1)}^{-1}\right) \upharpoonright G_{m+1}=e_{G_{m+1}}$ (of course, $k<n$ is enough). Now this statement follows from $k<\omega \Rightarrow f_{\eta \upharpoonright k} f_{\eta \upharpoonright(k+1)}^{-1} \upharpoonright$ $G_{k+1}=e_{G_{k+1}}$, which by Definition 5.12 means $f_{k, 3 \eta(k)+1} f_{k, 3 \eta(k)}^{-1} \upharpoonright G_{k+1}=e_{G_{k+1}}$ which follows from $\zeta<\lambda_{k} \Rightarrow f_{k, \eta(\zeta)} \upharpoonright G_{k+1}=e_{G_{k+1}}$ which holds by clause (α) above.
5.14 Definition. For $\eta \in T_{\omega}$ we have $f_{\eta} \in G_{\omega}$ is well defined as the inverse limit of $\left\langle f_{\eta \upharpoonright n} \upharpoonright G_{n}: n<\omega\right\rangle$, so $n<\omega \rightarrow f_{\eta} \upharpoonright G_{n}=f_{\eta \upharpoonright n}$. This being well defined follows by 5.13 and G^{ω} being an inverse limit.
5.15 Proposition. Let $\eta, \nu \in T_{\omega}$ be such that $\left(\forall^{\infty} n\right)(\eta(n) \neq \nu(n)), \eta(n)>0, \nu(n)>$ 0 . If $t \in \mathbf{I}$, then $f_{\eta} f_{\nu}^{-1} \notin \sigma_{\omega}^{t}\left(H_{\omega}^{t}\right)$.

Proof. Suppose toward contradiction that for some $g \in H_{\omega}^{t}$ we have $\sigma_{\omega}^{t}(g)=f_{\eta} f_{\nu}^{-1}$. Let $k<\omega$ be large enough such that $t \in \mathbf{J}_{k},(\forall \ell)[k \leq \ell<\omega \rightarrow \eta(\ell) \neq \nu(\ell)]$. Let $\xi^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell)}^{t}, f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}\right)$ and $\zeta^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}\right)$
(the difference between the two is the use of $k_{t}(\ell)$ vis $\left.k_{t}(\ell+1)\right)$. Clearly
$(*)_{1} f_{\eta \upharpoonright(\ell+1)} f_{\nu\lceil(\ell+1)}^{-1}=\left(f_{\ell, 3 \eta(\ell)+1} f_{\ell, 3 \eta(\ell)}^{-1}\right)\left(f_{\eta \upharpoonright \ell} f_{\nu \upharpoonright \ell}^{-1}\right) f_{\ell, 3 \nu(\ell)} f_{\ell, 3 \nu(\ell)+1}^{-1}$
[Why? Algebraic computations and Definition 5.12.] Next we claim that
$(*)_{2} \xi^{\ell}<\infty$ for $\ell \geq k(\ell<\omega)$.
Why?
Case 1: $\eta(\ell)<\nu(\ell)$.
Assume toward contradiction $\xi^{\ell}=\infty$, but by clause (γ) of 5.10 above $\mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell)}}, f_{\ell, 3 \eta(\ell)+2} f_{\ell, 3 \eta(\ell)+1}^{-1}\right)<\infty=\xi^{\ell}$, hence by 5.8(2).

$$
\begin{aligned}
& \operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell)}^{t}, f_{\ell, 3 \eta(\ell)+2} f_{\ell, 3 \eta(\ell)+1}^{-1} f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}\right)= \operatorname{Min}\left\{\operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell)}^{t}}, f_{\ell, 2(\eta(\ell)+2} f_{\ell, 2 \eta(\ell)+1}^{-1}\right),\right. \\
&\left.\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell)}^{t}, f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}\right)\right\}= \\
& \operatorname{rk}_{t}\left(e_{H_{k_{t}}^{t}(\ell)}, f_{\ell, 2 \eta(\ell)+2} f_{\ell, 2 \eta(\ell)+1}^{-1}\right)<\infty
\end{aligned}
$$

Now (by the choice of $f_{\eta \upharpoonright(\ell+1)}, f_{\nu \upharpoonright(\ell+1)}$ that is Definition 5.12 that is $(*)_{1}$, algebraic computation and the previous inequality) we have

$$
\begin{aligned}
\infty>\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell)}^{t},\right. & \left.f_{\ell, 3 \eta(\ell)+2} f_{\ell, 3 \eta(\ell)+1}^{-1} f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}\right)= \\
& \operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell)}^{t},\left(f_{\ell, 3 \eta(\ell)+2} f_{\ell, 3 \eta(\ell)}^{-1}\right)\left(f_{\eta \upharpoonright \ell} f_{\nu \upharpoonright \ell}^{-1}\right)\left(f_{\ell, 3 \nu(\ell)} f_{\ell, 3 \nu(\ell)+1}^{-1}\right)\right) .
\end{aligned}
$$

This and the assumption $\xi_{\ell}=\infty$ gives a contradiction to $(\delta)(i)$ of 5.10 (for $n=\ell$ and $f^{*}=f_{\eta, \ell} f_{\nu \backslash \ell}^{-1} \in K_{\ell}$ (see 5.13(1)) and $\left(i_{0}, i_{1}, i_{2}, i_{3}\right)$ being $(3 \eta(\ell), 3 \eta(\ell)+$ $2,3 \nu(\ell), 3 \nu(\ell)+1)$ and being $(3 \eta(\ell), 3 \eta(\ell)+1,3 \nu(\ell), 3 \nu(\ell)+1)$; the contradiction is
that for the first quadruple we get rank $<\infty$ by the previous inequality by the last inequality, for the second quadruple we get equality as we are temporarily assuming $\xi_{\ell}=\omega$, the definition of ξ_{ℓ} and $\left.(*)_{1}\right)$.

Case 2: $\nu(\ell)>\eta(\ell)$.
Similar using $(\delta)(i i)$ of 5.10 instead of $(\delta)(i)$ of 5.10 (using $\eta(\ell)>0)$.
So we have proved $(*)_{2}$.
$(*)_{3} \xi^{\ell+1} \leq \zeta^{\ell}$ for $\ell>k$.
Why? Assume toward contradiction that $\xi^{\ell+1}>\zeta^{\ell}$.
Let $f^{*}=f_{\eta \upharpoonright(\ell+1)} f_{\nu \upharpoonright(\ell+1)}^{-1}$, so $\zeta^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f^{*}\right)$ and using the choice of $\xi^{\ell+1}$ and $(*)_{1}$ we have $\xi^{\ell+1}=\mathrm{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{(\ell+1), 3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1} f^{*} f_{\ell+1,3 \nu(\ell+1)}\right.$ $\left.f_{\ell+1,3 \nu(\ell+1)+1}^{-1}\right)$.

If $\zeta^{\ell}<\mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right)$ then by $5.10(\delta)(i i i)$ also $\zeta^{\ell}<\operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \nu(\ell+1)+1} f_{\ell+1,3 \nu(\ell+1)}^{-1}\right)$ hence using twice 5.8(2) we have first $\zeta^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1} f^{*}\right)$ and second (using also 5.7(2)) we have $\zeta^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1} f^{*} f_{\ell+1,3 \nu(\ell+1)} f_{\ell+1,3 \nu(\ell+1)+1}^{-1}\right)$, so by the second statement in the previous paragraph (on $\xi^{\ell+1}$) we get $\zeta_{\ell}=\xi^{\ell+1}$ contradicting our temporary assumption toward contradiction $\neg(*)_{3}$; so we have $\zeta^{\ell} \geq \operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right.$.

$$
\text { Also if } \mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right) \neq \operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \nu(\ell+1)+1} f_{\ell+1,3 \nu(\ell+1)}^{-1}\right.
$$ then ζ^{ℓ} is not equal to at least one of them hence by $5.10(\delta)(i i i)+(i v)$ also ζ^{ℓ} is not equal to those two ordinals so similarly to the previous sentence, 5.8(2) gives ${ }^{3}$ $\xi^{\ell+1}=\operatorname{Min}\left\{\mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right)\right.$,

$\left.\mathrm{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f^{*}\right), \mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \nu(\ell+1)+1} f_{\ell+1,3 \nu(\ell+1)}^{-1}\right)\right\}$ which is $\leq \zeta^{\ell}$ so $\xi^{\ell+1} \leq$ ζ^{ℓ}, contradicting our assumption toward contradiction, $\neg(*)_{3}$.
Together the case left (inside the proof of $(*)_{3}$, remember 5.7) is:

$$
\begin{aligned}
& \boxtimes \zeta^{\ell}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f^{*}\right) \geq \operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right)= \\
& \quad \operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \nu(\ell+1)+1} f_{\ell+1,3 \nu(\ell+1)}^{-1}\right) .
\end{aligned}
$$

So in clause $5.10(\varepsilon)$, for $n=\ell+1$, case (b) holds, call this constant value ε^{ℓ}. As, toward contradiction we are assuming $\xi^{\ell+1}>\zeta^{\ell}$ during the proof of $(*)_{3}$; so by $\boxtimes, \xi^{\ell+1}>\zeta^{\ell} \geq \varepsilon^{\ell}$ hence we get, by computation and by 5.8 that if $\eta(\ell+1)>\nu(\ell+$

[^2]1) then $\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{\ell+1,3 \eta(\ell+1)+2} f_{\ell+1,3 \eta(\ell+1)}^{-1} f^{*} f_{\ell+1,3 \nu(\ell+1)} f_{\ell+1,3 \nu(\ell+1)+1}^{-1}\right)=$ $\operatorname{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}\right),\left(f_{\ell+1,3 \eta(\ell)+2} f_{\ell+1,3 \eta(\ell+1)+1)}^{-1}\right)\left(f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell+1)}^{-1} f^{*} f_{\ell+1,3 \nu(\ell)+1} f_{\ell+1,3}^{-1}\right.\right.$ $\mathrm{rk}_{t}\left(e_{H_{k_{t}(\ell+1)}^{t}}, f_{\ell+1,3 \eta(\ell+1)+2} f_{\ell+1,3 \eta(\ell+1)}^{-1}\right)$ but by (b) of $5.10(\varepsilon)$ proved above the later is $\varepsilon^{\ell} \leq \zeta^{\ell}<\xi^{\ell+1}=\operatorname{rk}_{t}\left(g \upharpoonright H_{k_{t}(\ell+1)}^{t}, f_{\ell+1,3 \eta(\ell+1)+1} f_{\ell+1,3 \eta(\ell)}^{-1} f^{*} f_{\ell+1,3 \nu(\ell+1)} f_{\ell+1,3 \nu(\ell+1)+1}^{-1}\right)$ contradiction to $5.10(\delta)(v)$ for the two quadruples $(3 \nu(\ell+1), 3 \nu(\ell+1)+1,3 \eta(\ell+$ $1), 3 \eta(\ell+1)+2)$ and $(3 \nu(\ell+1), 3 \nu(\ell+1)+1,3 \eta(\ell+1), 3 \eta(\ell+1)+1)$ and $n=\ell+1$. If $\eta(\ell+1)<\nu(\ell+1)$ we use similarly $f_{\ell+1,3 \nu(\ell+1)+2} f_{\ell+1,3 \nu(\ell+1)}^{-1}$. So $(*)_{3}$ holds.
$(*)_{4} \zeta^{\ell} \leq \xi^{\ell}$
[Why? Look at their definitions, as $g \upharpoonright H_{k_{t}(\ell+1)}^{t}$ is above $g \upharpoonright H_{k_{t}(\ell)}^{t}$. Now if $k_{t}(\ell), k_{t}(\ell+1)$ are equal trivial otherwise use 5.6(3).]
$(*)_{5}$ if $k_{t}(\ell+1)>k_{t}(\ell)$ then $\zeta^{\ell}<\xi^{\ell}\left(\right.$ so $\left.\xi^{\ell}>0\right)$
[Why? Like $(*)_{4}$.]
$(*)_{6} \xi^{\ell} \geq \xi^{\ell+1}$ and if $k_{t}(\ell+1)>k_{t}(\ell)$ then $\xi^{\ell}>\xi^{\ell+1}$
[Why? By $(*)_{3}+(*)_{4}$ the first phrase, and $(*)_{3}+(*)_{5}$ for the second phrase.]
So $\left\langle\xi^{\ell}: \ell \in[k, \omega)\right\rangle$ is non-increasing, and not eventually constant sequence of ordinals, contradiction.

Proof of 5.9. Obvious as we can find $T^{\prime} \subseteq T$, a subtree with $\lambda^{\aleph_{0}} \omega$-branches such that $\eta \neq \nu \in \lim \left(T^{\prime}\right) \Rightarrow\left(\forall^{\infty} \ell\right) \eta(\ell) \neq \nu(\ell)$ and $\eta \in \lim \left(T^{\prime}\right) \& n<\omega \Rightarrow \eta(n)>0$. Now $\left\langle f_{\eta}: \eta \in \lim \left(T^{\prime}\right)\right\rangle$ is as required by 5.15.
5.16 Conclusion: If \mathscr{A} is a (λ, \mathbf{I})-system, and λ is an uncountable strong limit of cofinality \aleph_{0} and $\operatorname{nu}(\mathscr{A}) \geq \lambda$ (or just $\mathrm{nu}_{*}^{+}(\mathscr{A}) \geq \lambda$), then $\mathrm{nu}(\mathscr{A})={ }^{+} 2^{\lambda}$.

Proof. So we assume $\lambda>\aleph_{0}$ hence $\lambda>2^{\aleph_{0}}$ and trivially $\mathrm{nu}^{+}(\mathscr{A}) \geq \operatorname{nu}(\mathscr{A}) \geq \lambda$. We apply $5.2(2)$ to \mathscr{A} and $\mu=\lambda\left(\operatorname{socf}(\mu)=\aleph_{0}\right)$ and get an explicit $(\lambda, \overline{\mathbf{J}})$-system \mathscr{B} such that $\mu \leq \mathrm{nu}^{+}(\mathscr{B}) \leq \mathrm{nu}(\mathscr{A})$ hence by 5.9 we have $\mathrm{nu}(\mathscr{B})={ }^{+} 2^{\lambda}$ hence by the choice of \mathscr{B} also $\mathrm{nu}(\mathscr{A})={ }^{+} 2^{\lambda}$. The proof for $\mathrm{nu}_{*}^{+}(\mathscr{A}) \geq \lambda$ is similar. $\quad \square_{5.16}$
5.17 Concluding Remarks. Can we weaken condition $(E)^{+}$in Theorem 1.1(2)? Can we use rank?

REFERENCES.

[EM] Paul C. Eklof and Alan Mekler. Almost free modules: Set theoretic methods, volume 46 of North-Holland Mathematical Library. NorthHolland Publishing Co., Amsterdam, 1990.
[EkSh 505] Paul C. Eklof and Saharon Shelah. A Combinatorial Principle Equivalent to the Existence of Non-free Whitehead Groups. In Abelian group theory and related topics, volume 171 of Contemporary Mathematics, pages 79-98. American Mathematical Society, Providence, RI, 1994. edited by R. Goebel, P. Hill and W. Liebert, Oberwolfach proceedings.
[GrSh 302] Rami Grossberg and Saharon Shelah. On the structure of $\operatorname{Ext}_{p}(G, \mathbf{Z})$. Journal of Algebra, 121:117-128, 1989. See also [GrSh:302a] below.
[GrSh 302a] Rami Grossberg and Saharon Shelah. On cardinalities in quotients of inverse limits of groups. Mathematica Japonica, 47(2):189-197, 1998.
[HrSh 152] Leo Harrington and Saharon Shelah. Counting equivalence classes for co- κ-Souslin equivalence relations. In Logic Colloquium '80 (Prague, 1980), volume 108 of Stud. Logic Foundations Math, pages 147-152. North-Holland, Amsterdam-New York, 1982. eds. van Dalen, D., Lascar, D. and Smiley, T.J.
[MRSh 314] Alan H. Mekler, Andrzej Rosłanowski, and Saharon Shelah. On the p-rank of Ext. Israel Journal of Mathematics, 112:327-356, 1999.
[MkSh 418] Alan H. Mekler and Saharon Shelah. Every coseparable group may be free. Israel Journal of Mathematics, 81:161-178, 1993.
[Sh 202] Saharon Shelah. On co- κ-Souslin relations. Israel Journal of Mathematics, 47:139-153, 1984.
[Sh 273] Saharon Shelah. Can the fundamental (homotopy) group of a space be the rationals? Proceedings of the American Mathematical Society, 103:627-632, 1988.
[Sh:f] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer, 1998.
[Sh 724] Saharon Shelah. On nice equivalence relations on ${ }^{\lambda} 2$. Archive for Mathematical Logic, 43:31-64, 2004.
[ShVs 719] Saharon Shelah and Pauli Väisänen. On equivalence relations second order definable over $H(\kappa)$. Fundamenta Mathematicae, 174:1-21, 2002.

[^0]: ${ }^{1}$ this is stronger, earlier \mathbf{I} was finite

[^1]: ${ }^{2}$ for each ζ separately, by induction on T

[^2]: ${ }^{3}$ as the three are pairwise non equal

