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2 SAHARON SHELAH

Annotated Content

§0 Introduction

§1 Countable Groups

[We present a result on a sequence of analytic equivalence relations on P(ω)
and apply it to ℵ0-system of groups getting a strong dichotomy: being
infinite implies cardinality continuum sharpening [GrSh 302a].]

§2 On λ-analytic equivalence relations

[We generalize theorems on the number of equivalence classes for analytic
equivalent relations replacing ℵ0 by λ regular, unfortunately this is only
consistent. Noting that if we just add many Cohen subsets to λ we get
something, but first the dichotomy is ≤ λ+,= 2λ rather than ≤ λ,= 2λ,
second we assume much less.]

§3 On λ-systems of groups

[This relates to §2 as the application relates to the lemma in §1.]

§4 Back to the p-rank of Ext

[We show that we can put the problem in the title to the previous context,
and show that in Easton model, §2 and §3 apply to every regular λ.]

§5 Strong limit of countable cofinality

[We generalize the theorem on ℵ0 systems of groups from §1, replace ℵ0 by
a strong limit uncountable cardinal of countable cofinality; this continues
[GrSh 302a].]
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STRONG DICHOTOMY OF CARDINALITY 3

§0

A usual dichotomy is that in many cases, reasonably definable sets, satisfies the
continuum hypothesis, i.e. if they are uncountable they have cardinality continuum.
A strong dichotomy is when: if the cardinality is infinite it is continuum, as in [Sh
273]. We are interested in such phenomena when λ = ℵ0 is replaced by λ regular
uncountable and also by λ = iω or more generally by strong limit of cofinality ℵ0.

Question: Does the parallel of 1.2 holds for e.g. iω? portion?
This continues Grossberg Shelah [GrSh 302], [GrSh 302a] and see history there.

We also generalize results on the number of analytic equivalence relations, contin-
uing Harrington Shelah [HrSh 152] and [Sh 202] and see history there.
On the connection to the rank of the p-torsion subgroup see [MRSh 314] and history
there. See more [ShVs 719].

On Ext(G,Z), rkp(Ext(G,Z) see [EM].
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4 SAHARON SHELAH

§1 Countable groups

Here we give a complete proof of a strengthening of the theorem of [GrSh 302a],
for the case λ = ℵ0 using a variant of [Sh 273].

1.1 Theorem. 1) Suppose

(A) λ is ℵ0. Let 〈Gm, πm,n : m ≤ n < ω〉 be an inverse system whose inverse
limit is Gω with πn,ω such that |Gn| < λ. (So πm,n is a homomorphism
from Gn to Gm, α ≤ β ≤ γ ≤ ω ⇒ πα,β ◦ πβ,γ = πα,γ and πα,α is the
identity).

(B) Let I be an index set. For every t ∈ I, let 〈Ht
m, π

t
m,n : m ≤ n < ω〉 be

an inverse system of groups and Ht
ω with πtn,ω be the corresponding inverse

limit and Ht
m of cardinality ≤ λ.

(C) Let for every t ∈ I, σtn : Ht
n → Gn be a homomorphism such that all dia-

grams commute (i.e. πm,n ◦ σtn = σtm ◦ πtm,n for m ≤ n < ω), and let σtω be

the induced homomorphism from Ht
ω into Gω.

(D) I is countable1

(E) For every µ < λ and t ∈ I there is a sequence 〈fi ∈ Gω : i < µ〉 such that
i < j ⇒ fif

−1
j /∈ Rang(σtω).

Then there is 〈fi ∈ Gω : i < 2λ〉 such that
i 6= j & t ∈ I⇒ fif

−1
j /∈ Rang(σtω).

2) We can weaken in clause (A) to (A)− replacing |Gn| < λ by |Gn| ≤ λ, if we
change clause (E) to

(E)∗ for every t ∈ I,m < ω there are n, f such that f is a member of Gω, n <
k < ω ⇒ πk,ω(f) /∈ Rang(σtω) and eGn = πn,ω(f).

We shall show below that 1.1 follows from 1.2.

1.2 Lemma. Assume for every n < ω,En is an analytic two place transitive rela-
tion on P(ω) = {A : A ⊆ ω+} which satisfies, for each m < ω for some infinite
Zm ⊆ ω we have

(∗)m,Zm if A,B ⊂ Z+, n ∈ Zm, n /∈ B,A = B∪{n}, then ¬(AEmB)∨¬(BEmA)

(∗∗) if m < ω,A′EmB and A′′EmB then A′EmA′′.

Then there is a perfect subset P of P(ω) of pairwise Em-nonrelated A ⊆ ω, simul-
taneously for all n, that is A 6= B & A ∈ P & B ∈ P & m < ω ⇒ ¬(AEmB).

1this is stronger, earlier I was finite
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STRONG DICHOTOMY OF CARDINALITY 5

1.3 Remark. 1) The proof uses some knowledge of set theory and is close to [Sh
273, Lemma 1.3].
2) We say A,B are E -related if AEB, and we say A,B are non-E -related if ¬(AEB).

Proof. Let rm ∈ ω2 be the real parameter involved in a definition ϕm(x, y, rm) of
Em. Let ϕ̄ = 〈ϕm : m < ω〉, r̄ = 〈rm : m < ω〉, Ē = 〈Ēm : m < ω〉. Let N be
a countable elementary submodel of (H ((2ℵ0)+),∈) to which ϕ̄, r̄, Ē belong. Now
we shall show

(∗ ∗ ∗) if 〈A1, A2〉 be a pair of subsets of ω which is Cohen generic over N [this
means that it belongs to no first category subset of P(ω) ×P(ω) which
belongs to N ] then

(α) A1, A2 are Em-related in N [A1, A2] if they are Em-related

(β) A1, A2 are non-Em-related in N [A1, A2].

Proof of (∗ ∗ ∗).

(α) by the absoluteness criterions (Levy Sheönfied)

(β) if not, then some finite information forces this, hence for some n

~ if 〈A′1, A′2〉 is Cohen generic over N and A′1 ∩ {0, 1, . . . , n} = A1 ∩
{0, 1, . . . , n} and A′2 ∩ {0, 1, . . . , n} = A2 ∩ {1, . . . , n} then A′1, A

′
2 are

Em-related in N [A′1, A
′
2].

Choose k ∈ Zm\{0, 1, . . . , n + 1}. Let A′′1 be A1 ∪ {k} if k /∈ A1 and A1\{k} if
k ∈ A1.

Trivially also 〈A′′1 , A2〉 is Cohen generic over N , hence by ~ above A′′1 , A2 are
Em-related in N [A′′1 , A2]. By (∗ ∗ ∗)(α) we know that really A′′1 , A2 are Em-related.
By (∗∗) clearly A1, A

′′
1 are Em-related and also A′′1 , A1 are Em-related. But this

contradicts the hypothesis (∗)m,Zm . So (∗ ∗ ∗) holds.
We can easily find a perfect (nonempty) subset P of {A : A ⊆ ω} such that

for any distinct A,B ∈ P, (A,B) is Cohen generic over N . So for each m for
A 6= B ∈ P we have N [A,B] |= “A,B are not Em-equivalent” and by (∗ ∗ ∗)(α)
clearly A,B are not Em-equivalent. This finishes the proof. �1.2

∗ ∗ ∗
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6 SAHARON SHELAH

1.4 Proof of 1.1. 1) Follows from part (2) as (E)⇒ (E)+ when the Gn’s are finite
(use (E) for µ∗ = |Gn|+ 1).
2) Let kn = n2 and we choose 〈fn : n < ω〉 such that:

(a) fn ∈ Gω
(b) kn ≤ i < kn+1 ⇒ eGn = πn,ω(fi)

(c) for every t ∈ I, for arbitrarily large k we have πk+1,ω(fk) /∈ Rang(σtk+1).

Clearly (a), (b) are straight for (c) use assumption (E)+ and bookkeeping.

By induction on n for every η ∈ n2 we choose fη ∈ Gω as follows: for n = 0, fη =

eGω , for η = νˆ〈0〉, ν ∈ n+2 let fη = fν and for η = νˆ〈1〉 let fη = fνf
−1
n−1. Clearly

m ≤ n < ω & η ∈ n2⇒ πm,ω(fη�m) = πm,ω(fη).
Lastly, for A ⊆ ω, let ηA ∈ ω2 be its characteristic function and gA ∈ Gω

be the unique f ∈ Gω satisfying m ≤ n < ω ⇒ πm,ω(fη�n) = πm,ω(fA). Let
I = {tm : m < ω} (well we can add trivial H’s) and let Em be AEmB ⇔ A ⊆ ω &
B ⊆ ω & g−1

A gB ∈ Rang(σtmω ). Clearly Em is an equivalence relation hence it
satisfies condition (∗∗) of 1.2. Lastly, let Zm =: {k : πk+1,ω(fk) /∈ Rang(σtmω )}. If

A,B,m, k are as in (∗) of 1.2 then πk+1,ω(g−1
A gB) = πk+1,ω(fk) /∈ Rang(σtk+1). We

have the assumptions of 1.2, hence get its conclusion. �1.1
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STRONG DICHOTOMY OF CARDINALITY 7

§2 On λ-analytic equivalence relations

2.1 Hypothesis. λ = cf(λ) is fixed.

2.2 Definition. 1) A sequence of relations R̄ = 〈Rε : ε < ε(∗)〉 on λ2 (equivalently
P(λ)) i.e. a sequence of definitions of such relations in (H (λ+),∈) and with
parameters in H (λ+) is called λ-w.c.a. sequence (weakly Cohen absolute) if: for
any A ⊆ λ we have

(∗)A there are N, r such that:

(α) N is a transitive model

(β) N<λ ⊆ N,λ + 1 ⊆ N , the sequence of the definitions of R̄ (including
the parameters) belongs to N

(γ) A ∈ N
(δ) r ∈ λ2 is Cohen over N ; that is generic for (λ>2, /) over N

(ε) Rε and ¬Rε are absolute from N [r] to V for each ε < ε(∗).

2) We say R̄ is (λ, µ)-w.c.a. if for A ⊆ λ we can find N, rα (for α < µ) satisfying
clauses (α), (β), (γ) from above and

(δ)′ for α 6= β < µ, (rα, rβ) is a pair of Cohens over N

(ε)′ Rε and ¬Rε are absolute from N [rα, rβ ] to V for each α 6= β < µ and
ε < ε(∗).

3) We say λ is (λ, µ)-w.c.a. if every λ-analytic relation R on λ2 is (λ, µ)-w.c.a.
Analytic means that it has the formR(X1, . . . , Xn) = (∃Y1, . . . , Ym ⊆ λ×λ)ϕ(Y1, . . . , Ym;X1, . . . , Xn).

2.3 Claim. Assume

(A) ε(∗) ≤ λ and 〈Eε : ε < ε(∗)〉 is a (λ, µ)-w.c.a. sequence, each Eε an equiva-
lence relation on P(λ), more exactly a definition of one and

(B) if ε < ε(∗) and A,B ⊆ λ and α ∈ A\B\ε,A = B ∪ {α}, then A,B are not
E -equivalent.

Then there is a set P ⊆ P(λ) of µ-pairwise non-Eε-equivalent members of P(λ)
for all ε < ε(∗) simultaneously.

2.4 Remark. If in 2.2 we ask that {rη : η ∈ λ2} perfect (see 2.5 below), then we can
demand that so is P.
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8 SAHARON SHELAH

2.5 Definition. 1) P ⊆P(λ) is perfect if there is a λ-perfect tree T ⊆ λ>2 (see
below) such that P = {{α < λ : η(α) = 1} : η ∈ limλ(T )}.
2) T is a λ-perfect tree if:

(a) T ⊆ λ>2 is non-empty

(b) η ∈ T & α < `g(η)⇒ η � α ∈ T
(c) if δ < λ is a limit ordinal, η ∈ δ2 and (∀α < δ)(η � α ∈ T ), then η ∈ T
(d) if η ∈ T, `g(η) < α < λ then there is ν, η / ν ∈ T ∩ α2

(e) if η ∈ T then there are /-incomparable ν1, ν2 ∈ T such that
η / ν1 & η / ν1.

3) Limδ(T ) = {η : `g(η) = δ and (∀α < δ)(η � α ∈ T )}.

Proof of 2.3.
Let T ∗ = λ>2.

Let N and rα ∈ λ2 for α < µ be as in Definition 2.2. We identify rα with {γ < λ :
rα(γ) = 1}.
By clause (ε)′ of Definition 2.2(2) clearly

(∗)0 if ε < ε(∗), and α 6= β < µ, then Eε define an equivalence relation in
N [rα, rβ ] on P(λ)N [rα,rβ ].

It is enough to prove assuming α 6= β < µ and ε < ε(∗) that,

(∗)1 ¬rαEεrβ .

By clause (ε)′ of Definition 2.2(2) it is enough to prove

(∗)2 N [rα, rβ ] |= ¬rαEενβ .

Assume this fails, so N [rα, rβ ] |= rαEεrβ then for some i < λ

(rα � i, rβ � i) (λ>2)×(λ>2) “r
˜
1Eεr

˜
2”

and without loss of generality i > ε. Define r ∈ λ2 by

r(j) =

{
rβ(j) if j 6= i

1− rβ(j) if j = i

So also (rα, r) is a generic pair for λ>2× λ>2 over N and (rα � i, r � i) =
(rα � i, rβ � i) hence by the forcing theorem

(∗)3 N [rα, r] |= r
˜
αEεr.
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STRONG DICHOTOMY OF CARDINALITY 9

But rα, rβ , r ∈ N [rα, rβ ] = N [rα, r]. As we are assuming that (∗)2 fail (toward
contradiction) we have N [rα, rβ ] |= rαEεrβ and by (∗)3 and the previous sentence
we have N [rα, rβ ] |= rEεr so together by (∗)0 we have N [rα, rβ ] |= rβEεr hence
V |= rβEεr, a contradiction to assumption (b). �2.3

2.6 Definition. We call Q a pseudo λ-Cohen forcing if:

(a) Q is a nonempty subset of {p : p a partial function from λ to {0, 1}}
(b) p ≤Q q ⇒ p ⊆ q
(c) Ii = {p ∈ Q : i ∈ Dom(p)} is a dense subset for i < λ

(d) define Fi : Ii → Ii by: Dom(Fi(p)) = Dom(Fi(p)) and

(Fi(p))(j) =

{
p(j) if j = i

1− p(j) if j 6= i

then Fi is an automorphism of (Ii, <
Q� Ii).

2.7 Claim. In 2.2, 2.5 we can replace (λ>2, /) by Q.

2.8 Observation: So if V |= G.C.H., P is Easton forcing, then in V P for every
regular λ, for Q = ((λ>2)V , /) we have: Q is pseudo λ-Cohen and in V P we have λ
is (λ, 2λ)-w.c.a.

2.9 Discussion: But in fact λ being (λ, 2λ)- w.c.a. is a weak condition.

We can generalize further using the following definition

2.10 Definition. 1) For r0, r1 ∈ λ2 we say (r0, r1) or r0, r1 is an R̄-pseudo Cohen
pair over N if (R̄ is a definition (in (H (λ+),∈)) of a relation on P(λ) (or λ2), the
definition belongs to N and) for some forcing notion Q ∈ N and Q-names r

˜
0, r

˜
1

and G ⊆ Q (G ∈ V ) generic over N we have:

(a) r
˜
0[G] = r0 and r

˜
1[G] = r1

(b) for every p ∈ G, for every i < λ large enough and `(∗) < 2 there is G′ ⊆ Q
generic over N such that: p ∈ G and (r

˜
`[G
′])(j) = (r

˜
`[G])(j) ⇔ (j, `) 6=

(i, `(∗))
(c) for ε < ε(∗), Rε is absolute from N [G] and from N [G′] to V .
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10 SAHARON SHELAH

2) We say λ is µ-p.c.a for R̄ if for every x ∈ H (λ+) there are N, 〈ri : i < µ〉 such
that:

(a) N is a transitive model of ZFC−

(b) for i 6= j < µ, (ri, rj) is an R̄-pseudo Cohen pair over N .

3) We omit R̄ if this holds for any λ-sequence of
∑1

1 formula in H (λ+).

Clearly

2.11 Claim. 1) If λ is µ-p.c.a for E ,E an equivalence relation on P(λ) and
A ⊆ B ⊆ λ & |B\A| = 1⇒ ¬AEB, then E has ≥ µ equivalence classes.

2) Similarly if E =
∨

ε<ε(∗)

Eε, ε(∗) ≤ λ and λ is µ-p.c.a. for 〈Eε : ε < ε(∗)〉 and

A ⊆ B ⊆ λ & |B\A| = |B\A\ε| = 1⇒ ¬AEεB, then there are Aα ⊆ λ for α < µ
such that ε < ε(∗) & α < β < µ⇒ ¬(AαEεAβ).
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STRONG DICHOTOMY OF CARDINALITY 11

§3 On λ-systems of groups

3.1 Hypothesis. λ = cf(λ).
We may wonder does 2.3 have any cases it covers?

3.2 Definition. 1) We say Y = (Ā, K̄, Ḡ, D̄, ḡ∗) is a λ-system if

(A) Ā = 〈Ai : i ≤ λ〉 is an increasing sequence of sets, A = Aλ = {Ai : i < λ}
(B) K̄ = 〈Kt : t ∈ A〉 is a sequence of finite groups

(C) Ḡ = 〈Gi : i ≤ λ〉 is a sequence of groups, Gi ⊆
∏
t∈Ai

Kt, each Gi is closed

and i < j ≤ λ⇒ Gi = {g � Ai : g ∈ Gj} and

Gλ = {g ∈
∏
t∈Aλ

Kt : (∀i < λ)(g � Ai ∈ Gi)}

(D) D̄ = 〈Dδ : δ ≤ λ (a limit ordinal) 〉, Dδ an ultrafilter on δ such that
α < δ ⇒ [α, δ) ∈ Dδ

(E) ḡ∗ = 〈g∗i : i < λ〉, g∗i ∈ Gλ and g∗i � Ai = eGi = 〈eKt : t ∈ Ai〉.

Of course, formally we should write AY
i ,K

Y
t , G

Y
i , D

Y
δ , g

Y
i , etc., if clear from the

context we shall not write this.
2) Let Y − be the same omitting Dλ and we call it a lean λ-system.

3.3 Definition. For a λ-system Y and j ≤ λ+ 1 we say f̄ ∈ cont(j,Y ) if:

(a) f̄ = 〈fi : i < j〉
(b) fi ∈ Gλ
(c) if δ < j is a limit ordinal then fδ = LimDδ(f̄ � δ) which means:

for every t ∈ A, fδ(t) = LimDδ〈fi(t) : i < δ〉

which means
{i < δ : fδ(t) = fi(t)} ∈ Dδ.

3.4 Fact: 1) If f̄ ∈ cont(j,Y ), i < j then f̄ � i ∈ cont(i,Y ).
2) If f̄ ∈ cont(j,Y ) and j < λ is non-limit, and fj ∈ Gλ then

f̄ˆ〈fj〉 ∈ cont(j + 1,Y ).
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12 SAHARON SHELAH

3) If f̄ ∈ cont(j,Y ) and j is a limit ordinal ≤ λ, then for some unique fj ∈ Gλ we
have f̄ˆ〈fj〉 ∈ cont(j + 1,Y ).
4) If j ≤ λ+ 1, f ∈ G then f̄ = 〈f : i < j〉 ∈ cont(j,Y ).
5) If f̄ , ḡ ∈ cont(j,Y ), then 〈figi : i < j〉 and 〈f−1

i : i < j〉 belongs to cont(j,Y ).

Proof. Straight (for part (3) we use each Kt is finite).

3.5 Definition. Let Y be a λ-system.
1) For ḡ ∈ j(Gλ) and j ≤ λ we define fḡ ∈ Gλ by induction on j for all such ḡ as
follows:

j = 0: fḡ = eG = 〈eKt : t ∈ A〉

j = i+ 1: fḡ = fḡ�igi

j limit: fḡ = LimDδ〈fḡ�i : i < j〉

2) We say ḡ is trivial on X if i ∈ X ∩ `g(ḡ)⇒ gi = eGλ .
3) For η ∈ λ≥2 let ḡη = 〈gηi : i < `g(η)〉, where

gηi =

{
g∗i if η(i) = 1

eGλ if η(i) = 0

recall g∗i is part of Y (see Definition 3.2).

3.6 Claim. 1) If i ≤ j and ḡ, ḡ′, ḡ′′ ∈ j(Gλ), ḡ′ � i = ḡ � i, ḡ′ is trivial on [i, j),
ḡ′′ � [i, j) = ḡ � [i, j) and ḡ′′ is trivial on i, then:

fḡ = fḡ′fḡ′′ and fḡ′ = fḡ�i.

2) For η ∈ λ2, f(ḡη) = Lim〈f(ḡη�i) : i < λ〉 (i.e. any ultrafilter D′λ on λ containing

the co-bounded sets will do), so Y −, a lean λ-system, is enough.

Proof. Straight.
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STRONG DICHOTOMY OF CARDINALITY 13

3.7 Claim. Let Y be a λ-system (or just a lean one), Hε a subgroup of Gλ for
ε < ε(∗) ≤ λ and Eε the equivalence relation [f ′(f ′′)−1 ∈ Hε] and assume: λ > i ≥
ε⇒ g∗i /∈ Hε.

(1) The assumption (B) of 2.3 holds with fA = f(ḡη) when A ⊆ λ, η ∈ λ2, A =
{i : η(i) = 1}

(2) if in addition Ā, K̄, Ḡ � K, D̄, ḡ∗ ∈ H (λ+) and 〈Hε : ε < ε(∗)〉 is (λ, µ)-
w.c.a., then also assumption (A) of 3.3 holds (hence its conclusion).

Proof. Straight.

3.8 Claim. Assume

(A) Y a λ-system (or just a lean one), Ai ⊆ λ+, |Ai| ≤ λ,Gi ∈H (λ+)

(i) ε(∗) ≤ λ,

(ii) H̄ = 〈Hε
i : i ≤ λ, ε < ε(∗)〉,

(iii) πεi,j : Hε
j → Hε

i a homomorphism,

(iv) for i0 ≤ i1 ≤ i2 we have πεi0,i1 ◦ π
ε
i1,i2

= πεi0,i2 ,

(v) σεi : Hε
t → Gi,

(vi) σεi π
ε
i,j(f) = (σεj (f)) � Ai,

(vii) Hε
λ, σ

ε
λ is the inverse limit (with πεi,λ) of 〈Hε

i , π
ε
i,j , σ

ε
i : i ≤ j < λ〉 and

(viii) i < λ⇒ Hε
i ∈H (λ+)

(B) Hε = Rang(σελ).

Then

(α) the assumptions of 3.7 holds

(β) if λ is (λ, µ)-w.c.a. then also the conclusion of 3.7, 2.3 holds so there are
hα ∈ Gλ for αMµ such that α 6= β < µ & ε < ε(∗)⇒ fαf

−1
β /∈ Hε.

Proof. Straight.

∗ ∗ ∗

We can go one more step in concretization.
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14 SAHARON SHELAH

3.9 Claim. 1) Assume

(a) L is an abelian group of cardinality λ

(b) p a prime number

(c) if L′ ⊆ L, |L′| < λ, then Extp(L
′,Z) 6= 0

(d) λ is µ-w.c.a. (in V ).

Then µ ≤ rp(Ext(L,Z)), see definition below.
2) If (a), (b), (d) above, µ > λ, λ strongly inaccessible then rp(Ext(L,Z)) /∈ [λ, µ).

3.10 Remark. 1) For an abelian group M let prime p and rp(M) be the dimension
of the subgroup of {x ∈M : px = 0} as a vector space over Z/pZ.
2) For an abelian group M let r0(M) be max{|X| : X ⊆ M\Tor(M) and is inde-
pendent in M/Tor(M).

Proof. Without loss of generality L is ℵ1-free (so torsion free).
Without loss of generality the set of elements of G is λ. Let A = Aλ = λ, Lλ = L,
for j < λ,Aj a proper initial segment of λ such that Lj = L � Aj is a pure subgroup
of L, increasing continuously with j.
Let Kt = Z/pZ, Gi = HOM(Li,Z/pZ).
Let ε(∗) = 1, soε = 0; let Hi = HOM(Li,Z) and (σεi (f))(x) = f(x) + pZ,Mε =
Rang(σελ) for i ≤ j let πi,j : Gj → Gi is πi,j(f) = f � Gi. We know that
rp(Ext(G,Z)) is (Gλ : M0). By assumption (d) for each i < λ we can choose
g∗i ∈ Gλ\Mε such that g∗i � Li is zero. The rest is left to the reader (using 3.8 using
any lean λ-system Y with Gi,Kt, ε(∗), πi,j , σελ as above (and Dδ for limit ordinal
< λ, any ultrafilter as in 3.2). �3.9
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§4 Back to the p-rank of Ext

For consistency of “no examples” see [MRSh 314].

4.1 Definition. 1) Let

ΞZ =
{
λ̄ : λ̄ = 〈λp : p < ω prime or zero〉 and for some

abelian (ℵ1-free) group L, λp = rp(Ext(G,Z))
}
.

2) For an abelian group G let rk(G) = Min{rk(G′) : G/G′ is free}.
Clearly ΞZ is closed under products. Let P be the set of primes.

Remember that (see [Sh:f, AP], 2.7, 2.7A, 2.13(1),(2)).
4.2 Fact: In the Easton model if G is ℵ1-free not free, G′ ⊆ G, |G′| < |G| ⇒ G/G′

not free then r0(Ext(G,Z)) = 2|G|.

4.3 Fact: 1) Assume µ is a strong limit cardinal > ℵ0, cf(µ) = ℵ0, λ = µ+, 2µ = µ+

and some Y ⊆ [ωµ]λ
+

is µ-free, (equivalently µ+-free, see in proof).
Let P0,P1 be a partition of the set of primes.
Then for some ℵ1-free abelian group L, |L| = µ+, 2λ = r0(Ext(G,Z)) and p ∈ P1 ⇒
rp(Ext(G,Z)) = 2λ and p ∈ P0 ⇒ rp(Ext(G,Z)) = 0.

Remark. On other cardinals see [MRSh 314], close to [MkSh 418, Th.12].

Proof. For notational simplicity assume P0 6= ∅. Let Y = {ηi : i < λ}. Let
pr:µ2 → µ be a pairing function, so pr(pr1(α), pr2(α)) = α. Without loss of
generality ηi(n) = ηj(m) ⇒ n = m & ηi � m = ηj � m. Let L be

⊕
α<λ

Zxα. Let

〈(pi, fi) : i < λ+〉 list the pairs (p, f) where p ∈ P0 and f ∈ HOM(L,Z/pZ). We
shall choose (gi, νi, ρi) by induction on i < λ such that:

�(α) gi ∈ HOM(L,Z)

(β) (∀x ∈ L)[gi(x)/pZ = fi(x)]

(γ) ρi, νi ∈ ωµ and ηi(n) = pr1(νi(n)) = pr1(ρi(n))

(δ) (∀j ≤ i)(∃n < ω)(∀m)[n ≤ m < ω → gj(xνi(m)) = gj(xρi(m))

(ε) (∀j < i)(∃n < ω) [for some sequence 〈bm : m ∈ [n, ω)〉 of natural numbers

we have n ≤ m < ω ⇒ (
∏

p∈P0∩n

p)bm+1 = bm + gi(xνj(m))− gi(xρj(m))]

(ζ) νi(m) 6= ρi(m) for m < ω.
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16 SAHARON SHELAH

Arriving to i first choose a function let hi : i→ ω be such that j < i⇒ hi(j) > pj
and 〈{ηj � ` : ` ∈ [hi(j), ω)} : j < i〉 is a sequence of pairwise disjoint sets
(possible as Y is µ+-free). Second choose gi such that clauses (ε) + (β) holds
with n = hi(j), this is possible as the choice of h splits the problem, that is,
the various cases of (ε) (one for each j) does not conflict. More specifically, first
choose g � {xα : (∀j < i)(∀`)(hi(j) ≤ ` < ω → α 6= ηj(`)) as required in (β),
possible as L is free. Second by induction on m ≥ hi(j) we choose bm+1 such that
0/pZ = bm+1/piZ + fi(xνj(m)) − fi(xρj(m)) and then choose gi(xνj(m)), g(xρj(m))

such that the m-th equation in clause (ε) for j holds. Let i =
⋃
n<ω

Ain be such that

Ain ⊆ Ain+1 and |Ain| < µ. Now choose by induction on n, ρi(n), νi(n) as distinct
ordinals ∈ {α ∈ µ : α /∈ {νi(m), ρi(m) : m < m} and pr1(α) = ηi(n)} such that
〈gj(xνi(α)) : j ∈ Ain〉 = 〈gj(xρi(m)) : j ∈ Ain〉. So we have carried the induction.
Let G be generated by L ∪ {yi,m : i < λ,m < ω} freely except that (the equations

of L and) (
∏

p∈P0∩n

p)yi,n+1 = yi,n + xνi(n) − xρi(n).

Why is the abelian group as required?

�1 G is µ+-free
[Why? As 〈ηα : α < µ+〉 is and clause (γ).]

�2 if p ∈ P0, then rp(Ext(G,Z)) = 0.
[Why? So let f ∈ Hom(G,Z/pZ) and we should find g ∈ Hom(G,Z)
such that f = g/pZ. Clearly for some i < µ+ we have (pi, fi) = (p, f),
now gi was chosen such that we can extend gi to a homomorphism gi,i
from Gi =: 〈L ∪ {yj,n : j < i, n < ω}〉G to Z such that gi,i(x)/pZ = f(x)
and if j < i we choose ni,j and 〈bi,jm : m ∈ [ni,j , ω)〉 are as required in
closed (ε), we let gi,i(yj,m) = bm for m ∈ [nij , ω). Lastly, we define by
induction on j ∈ [i, µ+] a homomorphism gi,j from Gj into Z such that
gi,j(x)/pZ = f(x) for x ∈ Gj , gi,j is increasing with j. For j = i this was
done, for limit take union and for j = ε + 1, by clause (δ) of � we know
that for some n = ni,j we have m[n, ω) ⇒ gi(xνi(m)) = gi(xρi(n)), so for
m ∈ [n, ω) we let gi,ε+1(yε,n) = 0 and solve the equations to determine
gi,ε+1(yε,n) by downward induction.]

�3 if p ∈ P1, then rp(Ext(G,Z)) = 2µ.
[Why? Because every h ∈ Hom(Gα,Z/pZ)) has > 1 extensions to h′ ∈
Hom(Gα+1,Z/pZ) hence Hom(Gα,Z/pZ) has cardinality 2µ

+

> 2µ, whereas
every h ∈ Hom(L,Z) has at most one extension to h+ ∈ Hom(G,Z), so
the result follows.]

�4 r0(Ext(G,Z)) = 2µ
+

[Why? Similar to �3, i.e. using cardinality considerations.]
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STRONG DICHOTOMY OF CARDINALITY 17

�4.3

4.4 Question: Do we have compactness for singular for Extp(G,Z) = 0?

4.5 Claim. [Omitted, see [Sh 724] and x.x.]

4.6 Question: If λ̄ ∈ ΞZ can we derive λ̄′ ∈ ΞZ by increasing some λp’s?

4.7 Fact: If λ̄i = 〈λip : p ∈ P ∪ {0}〉 ∈ ΞZ for i < α and λp =
∏
i<α

λip, then

〈λp : p ∈ P ∪ {0}〉 ∈ ΞZ.

Proof. As if G =
⊕
i<α

Gi then Ext(G,Z) =
∏
i<λ

Ext(G,Z) hence rp(Ext(G,Z)) =∏
i<α

rp(Ext(Gi,Z)).

4.8 Concluding Remark: In [EkSh 505] the statement “there is a W -abelian group”
is characterized.

We can similarly characterize “there is a separable group”. We have the same
characterization for “there is a non-free abelian group” such that for some p,
rp(Ext(G,Z)) = 0.

Question: What can P∗ = {p : p prime and λ̄ ∈ ΞZ & λ0 > 0 ⇒ λp > 0} be (if
V = L it is ∅, in 4.5 it is P, are there other possibilities?)

4.9 Claim. If λ is strong inaccessible or λ = µ+, µ strong limit singular of cofinal-
ity ℵ0, S ⊆ {δ < λ : cf(δ) = ℵ0} is stationary not reflecting and ♦∗S and P0 a set
of primes, then there is a λ-free abelian group G such that r0(Ext(G,Z)) = 2λ = 0
and: p ∈ P0 ⇒ rp(Ext(G,Z)) = 2λ and p prime and p /∈ P0 ⇒ rp(Ext(G,Z) = 0.
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18 SAHARON SHELAH

§5 Strong limit of countable cofinality

We continue [GrSh 302] and [GrSh 302a].

5.1 Definition. 1) We say A is a (λ, I)-system if A = (λ, I, Ḡ, H̄∗, π̄, σ̄) where
Ḡ = 〈Gα : α ≤ ω〉, H̄ = 〈H̄t : t ∈ I〉, H̄t = 〈Ht

α : α ≤ ω〉, π̄ = 〈πα,β , πtα,β : α ≤ β ≤
ω, t ∈ I〉, σ̄ = 〈σtα : t ∈ I, α ≤ ω〉) satisfies (we may write λA , πt,Aα,β , etc.)

(A) λ is ℵ0 or generally a cardinal of cofinality ℵ0

(B) 〈Gm, πm,n : m ≤ n < ω〉 is an inverse system of groups whose inverse limit
is Gω with πn,ω such that |Gn| ≤ λ. (So πm,n is a homomorphism from Gn
to Gm, α ≤ β ≤ γ ≤ ω ⇒ πα,β ◦ πβ,γ = πα,β and πα,α is the identity).

(C) I is an index set of cardinality ≤ λ. For every t ∈ I we have
〈Ht

m, π
t
m,n : m ≤ n < ω〉 is an inverse system of groups and Ht

ω with πtn,ω
being the corresponding inverse limit Ht

ω with πtm,ω and Ht
m has cardinality

≤ λ.

(D) for every t ∈ I, σtn : Ht
n → Gn is a homomorphism such that all diagrams

commute (i.e. πm,n ◦ σtn = σtm ◦ πtm,n for m ≤ n < ω), and let σtω be the

induced homomorphism from Ht
ω into Gω

(E) G0 = {eG0}, Ht
0 = {eHt0} (just for simplicity).

2) We say A is strict if |Gn| < λ, |Ht
n| < λ, |I| < λ. Let Et be the following

equivalence relation on Gω : fEtg iff fg−1 ∈ Rang(σtω).
3) Let nu(A ) = sup{µ : for each n < ω, there is a sequence 〈fi : i < µ〉 such that
fi ∈ Gω and µ ≤ λ ⇒ πn,ω(fi) = πn,ω(f0) for i < µ and i < j < µ & t ∈ I ⇒
¬fiEtfj}.
We write nu(A ) =+ µ to mean that moreover the supremum is obtained. Let
nu+(A ) be the first µ such that for n = 0, there is no 〈fi : i < µ〉 as above
(so nu(A ) ≤ nu+(A ) and if nu(A ) > µ then nu(A ) ≤ nu+(A ) ≤ nu(A )+

and nu(A ) < nu+(A ) implies nu(A ) is a limit cardinal and the supremum not
obtained).
4) We say A is an explicit (λ̄, J̄)-system if: A = (λ̄, J̄, Ḡ, H̄, π̄, σ̄) and

(α) λ̄ = 〈λn : n < ω〉, J̄ = 〈Jn : n < ω〉
(β) λn < λn+1,Jn ⊆ Jn+1,

(γ) letting λA =
∑
n<ω

λn, I
A =

⋃
n<ω

Jn we have sys(A ) =: (λ, I, Ḡ, H̄, π̄, σ̄) is a

(λ, I)-system

(δ) |Jn| ≤ λn, |Gn| ≤ λm, |Ht
n| < λ and |Hn

t | ≤ |Hn+1
t |.
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5) We add in (4), full if

(ε) |Ht
n| ≤ λn.

6) For an explicit (λ, J̄)-system A let nu+
∗ (A ) = sup{µ+:for every n < ω there is a

sequence 〈fi : i < µ〉 such that fi ∈ G, and µ ≤ λ⇒ πn,ω(pi) = πn,ω(f0) for i < µ
and i < j < µ & t ∈ Jn ⇒ ¬fiEtfj}.
7) For a λ-system A , we define nu+

∗ (A ) similarly, except we say: for some J̄ =

〈Jn : n < ω〉 such that I =
⋃
n<ω

Jn,Jn ⊆ Jn+1.

5.2 Claim. 1) For any strict (λ, I)-system A there are λ̄, J̄ and an explicit (λ̄, J̄)-
system B such that sys(B) = A so

λ =
∑
n<ω

λn, I =
⋃
n<ω

Jn, nu(B) = nu(A )

(and if in one side the supremum is obtained, so in the other).
2) For any (λ, I)-system A such that λ > 2ℵ0 and nu+(A ) ≥ µ ≥ λ and cf(µ) /∈
[ℵ1, 2

ℵ0 ] there is an explicit (λ̄, J̄)-system B such that λA =
∑
n<ω

λB
n , I

A =
⋃
n<ω

JB
n

and nu+(A ) ≥ nu+(B) ≥ µ.
3) In part (2) if f : Card ∩λ→ Card is increasing we can demand λn ∈ Rang(f),

f(λn) < λn+1. So if λ is strong limit > ℵ0, then we can demand 2λ
B
n < λB

n+1 =

cf(λB
n+1).

4) As in (2), (3) above with nu+
∗ instead of nu+.

Proof. 1) Straight.

2) Let λ̄ = 〈λn : n < ω〉 be such that λ =
∑
n<ω

λn, 2
ℵ0 < λn < λn+1, cf(λn) = λn.

Let 〈Gn,` : ` < ω〉 be increasing, Gn,` a subgroup of Gn of cardinality ≤ λ` and

Gn =
⋃
`<ω

Gn,`. Let 〈Ht
n,` : ` < ω〉 be an increasing sequence of subgroups of Ht

n

with union Ht
n, |Ht

n,`| ≤ λ`. Let 〈Jn : n < ω〉 be an increasing sequence of subsets

of I with union I such that |Jn| ≤ λn.

Without loss of generality πm,n maps Gn,` into Gm,` and πtm,n maps Ht
n,` into Ht

m,`

and σtn maps Ht
n,` into Gtn,` (why? just close the witness).

Now for every increasing η ∈ ωω we let

Gηω = {g ∈ Gω : for every n < ω we have πn,ω(g) ∈ Gn,η(n)}.
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Clearly

(∗)1(α) Gηω is a subgroup of Gω

(β) {Gηω : η ∈ ωω increasing} is directed, i.e. if (∀n < ω)η(n) ≤ ν(n)) where
η, ν ∈ ωω then Gηω ⊆ Gνω

(γ) Gω = ∪{Gηω : η ∈ ωω (increasing)}.

First assume cf(µ) 6= ℵ0 so as cf(µ) > 2ℵ0 for some η ∈ ωω, strictly increasing, we
have

(∗)2 µ ≤ sup{|X|+ : X ⊆ Gω,η and t ∈ I & f 6= g ∈ X ⇒ fg−1 /∈ σtω(Ht
ω)}.

However, as λ ≤ µ, cf(λ) = ℵ0, cf(µ) > 2ℵ0 clearly µ > λ; also if X1, X2 are as
in (∗)2 then for some X ⊆ X2 we have |X| ≤ |X1| + |I| and X1 ∪ (X2\X2) is as
required there. So we can choose η ∈ ωω, increasing such that

(∗)3 there is X ⊆ Gηω of cardinality µ such that t ∈ I & f 6= g ∈ X ⇒ fg−1 /∈
σtω(Ht

ω).

Second assume cf(µ) = ℵ0, so let µ =
∑
n<ω

µn, µn < µn+1, and without loss of

generality λn < µn = cf(µn) and µ > λ ⇒ µn > λ. If µ > λ, for each
n there is a witness 〈fnα : α < µn〉 to nu+(A ) > µn, so fnα ∈ GA

ω and as
µn > λ ≥ |GA

n |, without loss of generalityπn,ω(fnα ) = πn,ω(f0
α) so as we can re-

place fnα by fnα+1(fn0 )+1, without loss of generalitym ≤ n ⇒ πm,ω(fnα ) = eG.
For each α let ηnα ∈ ωω be increasing be such that πn,ω(fnα ) ∈ Gn,ηα(n). As

2ℵ0 < cf(µn) = µn, for some increasing ηn ∈ ωω we have (∃µnα < µn), ηnα = ηn.
So, hence without loss of generalityα < µ ⇒ ηnα = ηn. Let η ∈ ωω be η(n) =
Max{ηn(n) : m ≤ n}. So we have n < ω & α < µn ⇒ πn,ω(fnα ) ∈ Gn. So

(∗)4 for every n < ω and µ′0 < µ (in fact even µi = n) there are fα ∈ Gηω for
α < µ′ such that µ ≤ λ ⇒ πn,ω(fα) = eGn and α < β < µ′ & t ∈ I ⇒
fg−1 /∈ σtω(Ht

ω).

Lastly, if µ = λ, so cf(µ) = ℵ0 the proof is as in the case µ > λ & cf(µ) = ℵ0,
except that πn,ω(fnα ) = πn,o(f

n
0 ) holds by the choice of 〈fnα : α < µn〉 instead of by

“without loss of generality”.

For each t ∈ Jn and strictly increasing ν ∈ ωω let H
(t,ν)
ω be the subgroup {g ∈ Ht

ω :
for every n < ω we have σn,ω(g) ∈ Ht

n,ν(n)}. So let J′n = {(t, ν) : t ∈ J and ν ∈
ωω increasing}.
We define Gηn,ζ , a subgroup of Gn,η(n), decreasing with ζ by induction on ζ:
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ζ = 0: Gηn,ζ = Gn,η(n)

ζ = ε+ 1: Gηn,ζ = {x : x ∈ Gηn,ε and x ∈ Rang(πn,n+1 � G
η
n+1,ε)

and n > 0⇒ πn−1,n(x) ∈ Gn−1,η(n−1),ε}

ζ limit: Gηn,ζ =
⋂
ε<ζ

Gηn,ε.

Let Gηn =
⋂
ζ<λ+

Gηn,η(n),ζ , π
η
m,n = πm,n � G

η
n. Easily 〈Gηn, πηm,n : m ≤ n < ω〉 is

directed with limit Gηω with πηn,ω = πn,ω � Gηω.

Define H
(t,ν)
n,ζ , π

(t,ν)
m,n,ζ (for any ζ), H

(t,ν)
n , π

(t,ν)
m,n parallely to Gηn, π

η
m,n but such that

σtα maps H
(t,ν)
α into Gηα (note: element of H

(t,ν)
α not mapped to Gηα are irrelevant).

Let σ
(t,ν)
ω : H

(t,ν)
ω → Gηω be σtω � H

(t,ν)
ω and σ

(t,σ)
n = σtn � H

(t,ν)
n .

We have defined actually B = (λ̄B, J̄B, Ḡ, H̄, π̄B, σ̄B) where
λ̄B = 〈λn : n < ω〉,JB = 〈J′n : n < ω〉, ḠB = 〈Gηα : α ≤ ω〉,

H̄B =

〈
〈Hx

α : α ≤ ω〉 : x ∈
⋃
n

J′n

〉
,

π̄B = 〈πηα,β : α ≤ β ≤ ω〉ˆ

〈
〈π(t,ν)
α,β : α ≤ β ≤ ω〉 : (t, ν) ∈

⋃
n

J′n

〉
and

σ̄B =

〈
〈σ(t,ν)
α : α ≤ ω〉 : (t, ν) ∈

⋃
n<ω

J′n

〉
.

We have almost finished. Still Gηn may be of cardinality > λn but note that
for k : ω → ω non-decreasing with limit ω, 〈Gηn : n < ω〉 can be replaced by
〈Gk(n) : n < ω〉.

By the definition of B, GB
ω is a subgroup of GA

ω and for each t ∈ I for some

n, t ∈ Jn and HA
t ∩ GB

ω =
⋃
η∈ωω

HB
(t,η) hence for f, g ∈ GB

ω ⊆ GA
ω we have

fEtg ⇔ fg−1 ∈ HA
t ⇔ −(∃h ∈ HA

t )(fg−1 = h) ⇔ (∃h̄)(h̄ = 〈hn : n < ω〉 &

hn = πt,An,n+1(σhn+1) ∩
∧
n<ω

fg−1 � n = σt,An (hn)) ⇔ −(∃h̄)
∨
ν∈ω

(h̄) = 〈hn : n <

ω〉 & hn ∈ Ht,A
n,ν(n) &

∧
n

= πt,An,n+1(hn+1) &
∧
n<ω

fg−1 � n = σt,An (hn)) ⇔2∨
ν∈ωω

(∃h̄)(h̄ = 〈hn : n < ω〉 &
∧
n

hn ∈ Ht,A
n,ζ &

∧
n

hn = πt,An,n+1(hn+1) &

2for each ζ separately, by induction on T
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n<ω

fg−1 = σt,An (hn) ⇔
∨
ν∈ωω

(∃h̄)(h̄ = 〈hn : n < ω〉 &
∧
n

hn ∈ Ht,B
n &

∧
n

hn =

πt,Bn,n+1(hn+1) &
∧
n<ω

πB
n,ωfg

−1) = σt,Bn (hn)
∨
ν∈ωω

fg−1 ∈ HB
(t,ν) ⇔

∨
ν∈ωω

fE(t,ν)g; so

clearly nu+(B) ≤ nu+(A ). But also nu+(B) > µ by the choice of η, i.e. by (∗)3.
3), 4) Easy. �5.2

For the rest of this section we adopt:

5.3 Convention. 1) A is an explicit (λ̄, J̄)-system, so below rkt(g, f) should be
written as rkt(g, f,A ), etc.

2) λ =
∑
n<ω

λn, λn = λA
n ,Jn = JA

n , I = IA =
⋃
n<ω

Jn, Gα = GA
α , etc.

3) kt(n) = Max{m : m ≤ n, |Ht
m| ≤ λn} so kt : ω → ω is non-decreasing converging

to ∞.
For the reader’s convenience we repeat 5.5 - 5.8 from [GrSh 302a].

5.4 Definition. 1) For g ∈ Ht
α let lev(g) = α (without loss of generality this is

well defined).
2) For α ≤ β ≤ ω, g ∈ Ht

β let g � Ht
α = πtα,β(g) and we say g � Ht

α is below g and g

is above g � Ht
α or extend g � Ht

α.
3) For α ≤ β ≤ ω, f ∈ Gβ let f � Gα = πα,β(f).

We will now describe the rank function used in the proof of the main theorem.

5.5 Definition. 1) For g ∈ Ht
n, f ∈ Gω we say that (g, f) is a nice t-pair if

σtn(g) = f � Gn.
2) Define, for t ∈ I, a ranking function rkt(g, f) for any nice t-pair. First by
induction on the ordinal α (we can fix f ∈ Gω), we define when rkt(g, f) ≥ α
simultaneously for all n < ω, g ∈ Ht

n

(a) rkt(g, f) ≥ 0 iff (g, f) is a nice t-pair

(b) rkt(g, f) ≥ δ for a limit ordinal δ iff for every β < δ we have rkt(g, f) ≥ β
(c) rkt(g, f) ≥ β+1 iff (g, f) is a nice t-pair, and letting n = lev(g) there exists

g′ ∈ Ht
n+1 extending g such that rkt(g

′, f) ≥ β
(d) rkt(g, f) ≥ −1.

3) For α an ordinal or −1 (stipulating −1 < α < ∞ for any ordinal α) we let
rkt(g, f) = α iff rkt(g, f) ≥ α and it is false that rkt(g, f) ≥ α+ 1.
4) rkt(g, f) =∞ iff for every ordinal α we have rkt(g, f) ≥ α.

The following two claims give the principal properties of rkt(g, f).
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5.6 Claim. Let (g, f) be a nice t-pair.
1) The following statements are equivalent:

(a) rkt(g, f) =∞
(b) there exists g′ ∈ Ht

ω extending g such that σtω(g′) = f .

2) If rkt(g, f) < ∞, then rkt(g, f) < µ+ where µ =
∑
n<ω

2λn (for λ strong limit,

µ = λ).
3) If g′ is a proper extension of g and (g′, f) is also a nice t-pair then

(α) rkt(g
′, f) ≤ rkt(g, f) and

(β) if 0 ≤ rkt(g, f) <∞ then the inequality is strict.

4) For f1, f2 ∈ GA
ω , n < ω and t ∈

⋃
n<ω

Jn we have f1Etf2 iff rkt(g, f1f
−1
2 ) =∞ for

some g ∈ HA
n .

Proof.
1) Statement (a)⇒ (b).
Let n be the value such that g ∈ Ht

n. If we will be able to choose gk ∈ Ht
k for

k < ω, k ≥ n such that

(i) gn = g

(ii) gk is below gk+1 that is πtk,k+1(gk+1) = gk and

(iii) rkt(gk, f) =∞,

then clearly we will be done since g′ =: lim
k
gk is as required. The definition is by

induction on k ≥ n.
For k = n let g0 = g.
For k ≥ n, suppose gk is defined. By (iii) we have rkt(gk, f) = ∞, hence for
every ordinal α, rkt(g, f) > α hence there is gα ∈ Ht

k+1 extending g such that

rkt(g
α, f) ≥ α. Hence there exists g∗ ∈ Ht

k+1 extending gk such that {α : gα = g∗}
is unbounded hence rkt(g

∗, f) =∞, and let gk+1 =: g∗.

Statement (b)⇒ (a).
Since g is below g′, it is enough to prove by induction on α that for every k ≥ n
when gk =: g′ � Ht

k we have that rkt(g, f) ≥ α.
For α = 0, since σtω(g′) = f � Gn clearly for every k we have σtk(gk) = f � Gk so

(gk, f) is a nice t-pair.
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For limit α, by the induction hypothesis for every β < α and every k we have
rkt(gk, f) ≥ β, hence by Definition 5.5(2)(b), rkt(gk, f) ≥ α.

For α = β+1, by the induction hypothesis for every k ≥ n we have rkt(gk, f) ≥ β.
Let k0 ≥ n be given. Since gk0 is below gk0+1 and rkt(gk0+1, f) ≥ β, Definition
5.5(2)(c) implies that rkt(gk0 , f) ≥ β+1; i.e. for every k ≥ n we have rkt(gk, f) ≥ α.
So we are done.
2) Let g ∈ Ht

n and f ∈ Gω be given. It is enough to prove that if rkt(g, f) ≥ µ+

then rkt(g, f) =∞. Using part (1) it is enough to find g′ ∈ Ht
ω such that g is below

g′ and f = σtω(g′).
We choose by induction on k < ω, gk ∈ Ht

n+k such that gk is below gk+1 and

rkt(gk, f) ≥ µ+. For k = 0 let gk = g. For k+1, for every α < µ+, as rkt(gk, f) > α
by 5.5(2)(c) there is gk,α ∈ Gn+k+1 extending gk such that rkt(gk,α, f) ≥ α. But the
number of possible gk,α is ≤ |Ht

n+k+1| ≤ 2λn+k+1 < µ+ hence there are a function

g and a set S ⊆ µ+ of cardinality µ+ such that α ∈ S ⇒ gk,α = g. Then take
gk+1 = g.
3) Immediate from the definition.
4) Check the definitions. �5.6

5.7 Lemma. 1) Let (g, f) be a nice t-pair. Then we have rk(g, f) ≤ rk(g−1, f−1).
2) For every nice t-pair (g, f) we have rk(g, f) = rk(g−1, f−1).

Proof. 1) By induction on α prove that rk(g, f) ≥ α⇒ rk(g−1, f−1) ≥ α (see more
details in the proof of Lemma 5.8).
2) Apply part (1) twice. �5.7

5.8 Lemma. 1) Let n < ω be fixed, and let (g1, f1), (g2, f2) be nice t-pairs with g` ∈
Ht
n(` = 1, 2). Then (g1g2, f1f2) is a nice pair and rkt(g1g2, f1f2) ≥ Min{rkt(g`, f`) :

` = 1, 2}.
2) Let n, (f1, g1) and (f2, g2) be as above. If rkt(g1, f1) 6= rkt(g2, f2), then
rkt(g1g2, f1f2) = Min{rkt(g`, f`) : ` = 1, 2}.

Proof. 1) It is easy to show that the pair (g1f2, f1, f2) is t-nice. We show by induc-
tion on α simultaneously for all n < ω and every g1, g2 ∈ Ht

n that Min{rk(g`, f`) :
` = 1, 2} ≥ α implies that rk(g1g2, f1f2) ≥ α.

When α = 0 or α is a limit ordinal this should be clear. Suppose α = β + 1 and
that rk(g`, f`) ≥ β+ 1 for ` = 1, 2; by the definition of rank for ` = 1, 2 there exists
g′` ∈ Ht

n+1 extending g` such that (g′`, f`) is a nice pair and rkt(g
′
`, f`) ≥ β. By the

induction assumption rkt(g
′
1g
′
2, f1f2) ≥ β and clearly (g′1g

′
2) � n = g1g2. Hence g′1g

′
2

is as required in the definition of rkt(g1g2, f1f2) ≥ β + 1.
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2) Suppose without loss of generality that rk(g1, f1) < rk(g2, f2), let α1 = rk(g1, f1)
and let α2 = rkt(g2, f2). By part (1), rkt(g1g2, f1f2) ≥ α1, by Proposition 5.7,
rkt(g

−1
2 , f−1

2 ) = α2 > α1. So we have

α1 = rkt(g1, f1) = rkt(g1g2g
−1
2 , f1f2f

−1
2 )

≥ Min{rkt(g1g2, f1f2), rkt(g
−1
2 , f−1

2 )}
= Min{rkt(g1g2, f1f2), α2} ≥ Min{α1, α2} =≥ α1.

Hence the conclusion follows. �5.8

5.9 Theorem. Assume (A is an explicit λ-system and)

(a) λ is strong limit λ > cf(λ) = ℵ0

(b) nu(A ) ≥ λ or just nu+
∗ (A ) ≥ λ.

Then nu(A ) =+ 2λ.

The proof is broken into parts.
5.10 Fact: We can choose by induction on n, 〈fn,i : i < λn〉 such that

(α) fn,i ∈ Gω and fn,i � Gn+1 = eGn+1

(β) i < j < λn & t ∈ Jn ⇒ ¬fn,iEtfn,j
(γ) rkt(g, fn,if

−1
n,j ) <∞ for any t ∈ Jn, k ≤ n, g ∈ Ht

k and i 6= j < λn

(δ) if f∗ belongs to the subgroup Kn of Gω generated by the {fm,j : m < n, j <

λm} and t ∈ Jn, g ∈
⋃

m≤kt(n)

Ht
kt(n), then for every i0 < i1 < i2 < i3 < λn

each of the following statements have the same truth value, (i.e. the truth
value does not depend on (i0, i1, i2, i3))

(i) rkt(g, fn,i1f
−1
n,i0

f∗fn,i2f
−1
n,i3

) <∞
(ii) rkt(g, fn,i3f

−1
n,i2

f∗fn,i0f
−1
n,i1

) <∞
(iii) rkt(eHt

kt(n)
, fn,i1f

−1
n,i0

) < rkt(g, f
∗)

(iv) rkt(eHt
kt(n)

, fn,i1f
−1
n,i0

) > rkt(g, f
∗)

(v) rkt(g, f
∗) < rkt(g, fn,i0f

−1
n,i1

f∗fn,i2f
−1
n,i3

)

(vi) rkt(g, f
∗) < rkt(g, fn,i2f

−1
n,i3

f∗fn,i0f
−1
n,i1

)

(vii) rkt(g, fi0f
−1
i1

) <∞
(viii) rkt(g, fi1f

−1
i0

) <∞
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(ε) for each t ∈ Jn one of the following occurs:

(a) for i0 < i1 ≤ i2 < i3 < λn we have
rkt(eHt

kt(n)
, fn,i0f

−1
n,i1

) < rk(eHt
kt(n)

, fn,i2f
−1
n,i3

)

(b) for some γnt for every i < j < λn we have
γnt = rkt(eHt

kt(n)
, fn,if

−1
n,j ).

Proof. We can satisfy clauses (α), (β) by the definitions and clause (γ) follows. Now
clause (δ) is straight by Erdös Rado Theorem applied to a higher n.
For clause (ε) notice the transitivity of the order and of equality and “there is no
decreasing sequence of ordinals of length ω”. �5.10

5.11 Notation. For α ≤ ω let Tα = ×k<αλk, T =:
⋃
n<ω

Tn (note: by the partial

order /, T is a tree; treeness will be used).

5.12 Definition. Now by induction on n < ω, for every η ∈ ×m<nλm we define
fη ∈ Gω as follows:

for n = 0: fη = f<> = eGω

for n = m+ 1: fη = fm,3η(m)+1f
−1
m,3η(m)fη�m.

5.13 Fact. 1) For η ∈ Tω and m ≤ n < ω we have

fη�n � Gm+1 = fη�m � Gm+1

2) η ∈ ×m<nλm ⇒ fη ∈ Kn and Kn ⊆ Kn+1.

Proof. As πm,ω is a homomorphism it is enough to prove (fη�n(fη�m)−1) � Gm+1 =

eGm+1 , hence it is enough to prove m ≤ k < ω ⇒ (fη�kf
−1
η�(k+1)) � Gm+1 = eGm+1 (of

course, k < n is enough). Now this statement follows from k < ω ⇒ fη�kf
−1
η�(k+1) �

Gk+1 = eGk+1
, which by Definition 5.12 means fk,3η(k)+1f

−1
k,3η(k) � Gk+1 = eGk+1

which follows from ζ < λk ⇒ fk,η(ζ) � Gk+1 = eGk+1
which holds by clause (α)

above. �5.13
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5.14 Definition. For η ∈ Tω we have fη ∈ Gω is well defined as the inverse limit
of 〈fη�n � Gn : n < ω〉, so n < ω → fη � Gn = fη�n. This being well defined follows
by 5.13 and Gω being an inverse limit.

5.15 Proposition. Let η, ν ∈ Tω be such that (∀∞n)(η(n) 6= ν(n)), η(n) > 0, ν(n) >
0. If t ∈ I, then fηf

−1
ν /∈ σtω(Ht

ω).

Proof. Suppose toward contradiction that for some g ∈ Ht
ω we have σtω(g) = fηf

−1
ν .

Let k < ω be large enough such that t ∈ Jk, (∀`)[k ≤ ` < ω → η(`) 6= ν(`)]. Let
ξ` = rkt(g � Ht

kt(`)
, fη�(`+1)f

−1
ν�(`+1)) and ζ` = rkt(g � Ht

kt(`+1), fη�(`+1)f
−1
ν�(`+1))

(the difference between the two is the use of kt(`) vis kt(`+ 1)). Clearly

(∗)1 fη�(`+1)f
−1
ν�(`+1) = (f`,3η(`)+1f

−1
`,3η(`))(fη�`f

−1
ν�`)f`,3ν(`)f

−1
`,3ν(`)+1

[Why? Algebraic computations and Definition 5.12.] Next we claim that

(∗)2 ξ` <∞ for ` ≥ k (` < ω).

Why?
Case 1: η(`) < ν(`).

Assume toward contradiction ξ` =∞, but by clause (γ) of 5.10 above
rkt(eHt

kt(`)
, f`,3η(`)+2f

−1
`,3η(`)+1) <∞ = ξ`, hence by 5.8(2).

rkt(g � H
t
kt(`)

, f`,3η(`)+2f
−1
`,3η(`)+1fη�(`+1)f

−1
ν�(`+1)) = Min{rkt(eHt

kt(`)
, f`,2(η(`)+2f

−1
`,2η(`)+1),

rkt(g � H
t
kt(`)

, fη�(`+1)f
−1
ν�(`+1))} =

rkt(eHt
kt(`)

, f`,2η(`)+2f
−1
`,2η(`)+1) <∞.

Now (by the choice of fη�(`+1), fν�(`+1) that is Definition 5.12 that is (∗)1, algebraic
computation and the previous inequality) we have

∞ > rkt(g � H
t
kt(`)

,f`,3η(`)+2f
−1
`,3η(`)+1fη�(`+1)f

−1
ν�(`+1)) =

rkt(g � H
t
kt(`)

, (f`,3η(`)+2f
−1
`,3η(`))(fη�`f

−1
ν�`)(f`,3ν(`)f

−1
`,3ν(`)+1)).

This and the assumption ξ` = ∞ gives a contradiction to (δ)(i) of 5.10 (for
n = ` and f∗ = fη,`f

−1
ν�` ∈ K` (see 5.13(1)) and (i0, i1, i2, i3) being (3η(`), 3η(`) +

2, 3ν(`), 3ν(`) + 1) and being (3η(`), 3η(`) + 1, 3ν(`), 3ν(`) + 1); the contradiction is
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that for the first quadruple we get rank <∞ by the previous inequality by the last
inequality, for the second quadruple we get equality as we are temporarily assuming
ξ` = ω, the definition of ξ` and (∗)1).

Case 2: ν(`) > η(`).
Similar using (δ)(ii) of 5.10 instead of (δ)(i) of 5.10 (using η(`) > 0).

So we have proved (∗)2.

(∗)3 ξ`+1 ≤ ζ` for ` > k.

Why? Assume toward contradiction that ξ`+1 > ζ`.
Let f∗ = fη�(`+1)f

−1
ν�(`+1), so ζ` = rkt(g � Ht

kt(`+1), f
∗) and using the choice of ξ`+1

and (∗)1 we have ξ`+1 = rkt(g � Ht
kt(`+1), f(`+1),3η(`+1)+1f

−1
`+1,3η(`+1)f

∗f`+1,3ν(`+1)

f−1
`+1,3ν(`+1)+1).

If ζ` < rkt(eHt
kt(`+1)

, f`+1,3η(`+1)+1f
−1
`+1,3η(`+1)) then by 5.10(δ)(iii) also

ζ` < rkt(eHt
kt(`+1)

, f`+1,3ν(`+1)+1f
−1
`+1,3ν(`+1)) hence using twice 5.8(2) we have first

ζ` = rkt(g � Ht
kt(`+1), f`+1,3η(`+1)+1f

−1
`+1,3η(`+1)f

∗) and second (using also 5.7(2))

we have ζ` = rkt(g � Ht
kt(`+1), f`+1,3η(`+1)+1f

−1
`+1,3η(`+1)f

∗f`+1,3ν(`+1)f
−1
`+1,3ν(`+1)+1),

so by the second statement in the previous paragraph (on ξ`+1) we get ζ` = ξ`+1

contradicting our temporary assumption toward contradiction ¬(∗)3; so we have
ζ` ≥ rkt(eHt

kt(`+1)
, f`+1,3η(`+1)+1f

−1
`+1,3η(`+1).

Also if rkt(eHt
kt(`+1)

, f`+1,3η(`+1)+1f
−1
`+1,3η(`+1)) 6= rkt(eHt

kt(`+1)
, f`+1,3ν(`+1)+1f

−1
`+1,3ν(`+1)

then ζ` is not equal to at least one of them hence by 5.10(δ)(iii) + (iv) also ζ` is
not equal to those two ordinals so similarly to the previous sentence, 5.8(2) gives3

ξ`+1 = Min{rkt(eHt
kt(`+1)

, f`+1,3η(`+1)+1f
−1
`+1,3η(`+1)),

rkt(g � Ht
kt(`+1), f

∗), rkt(eHt
kt(`+1)

, f`+1,3ν(`+1)+1f
−1
`+1,3ν(`+1))} which is≤ ζ` so ξ`+1 ≤

ζ`, contradicting our assumption toward contradiction, ¬(∗)3.

Together the case left (inside the proof of (∗)3, remember 5.7) is:

� ζ` = rkt(g � Ht
kt(`+1), f

∗) ≥ rkt(eHt
kt(`+1)

, f`+1,3η(`+1)+1f
−1
`+1,3η(`+1)) =

rkt(eHt
kt(`+1)

, f`+1,3ν(`+1)+1f
−1
`+1,3ν(`+1)).

So in clause 5.10(ε), for n = `+ 1, case (b) holds, call this constant value ε`.
As, toward contradiction we are assuming ξ`+1 > ζ` during the proof of (∗)3; so by
�, ξ`+1 > ζ` ≥ ε` hence we get, by computation and by 5.8 that if η(`+ 1) > ν(`+

3as the three are pairwise non equal
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1) then rkt(g � Ht
kt(`+1), f`+1,3η(`+1)+2f

−1
`+1,3η(`+1)f

∗f`+1,3ν(`+1)f
−1
`+1,3ν(`+1)+1) =

rkt(eHt
kt(`+1)

(g � Ht
kt(`+1)), (f`+1,3η(`)+2f

−1
`+1,3η(`+1)+1))(f`+1,3η(`+1)+1f

−1
`+1,3η(`+1)f

∗f`+1,3ν(`)+1f
−1
`+1,3ν(`)+1)) =

rkt(eHt
kt(`+1)

, f`+1,3η(`+1)+2f
−1
`+1,3η(`+1)) but by (b) of 5.10(ε) proved above the later

is ε` ≤ ζ` < ξ`+1 = rkt(g � Ht
kt(`+1), f`+1,3η(`+1)+1f

−1
`+1,3η(`)f

∗f`+1,3ν(`+1)f
−1
`+1,3ν(`+1)+1)

contradiction to 5.10(δ)(v) for the two quadruples (3ν(`+ 1), 3ν(`+ 1) + 1, 3η(`+
1), 3η(`+1)+2) and (3ν(`+1), 3ν(`+1)+1, 3η(`+1), 3η(`+1)+1) and n = `+1.
If η(`+ 1) < ν(`+ 1) we use similarly f`+1,3ν(`+1)+2f

−1
`+1,3ν(`+1). So (∗)3 holds.

(∗)4 ζ` ≤ ξ`
[Why? Look at their definitions, as g � Ht

kt(`+1) is above g � Ht
kt(`)

. Now if

kt(`), kt(`+ 1) are equal trivial otherwise use 5.6(3).]

(∗)5 if kt(`+ 1) > kt(`) then ζ` < ξ` (so ξ` > 0)
[Why? Like (∗)4.]

(∗)6 ξ` ≥ ξ`+1 and if kt(`+ 1) > kt(`) then ξ` > ξ`+1

[Why? By (∗)3 +(∗)4 the first phrase, and (∗)3 +(∗)5 for the second phrase.]

So 〈ξ` : ` ∈ [k, ω)〉 is non-increasing, and not eventually constant sequence of
ordinals, contradiction.

�5.15

Proof of 5.9. Obvious as we can find T ′ ⊆ T , a subtree with λℵ0 ω-branches such
that η 6= ν ∈ lim(T ′)⇒ (∀∞`)η(`) 6= ν(`) and η ∈ lim(T ′) & n < ω ⇒ η(n) > 0.
Now 〈fη : η ∈ lim(T ′)〉 is as required by 5.15.

5.16 Conclusion: If A is a (λ, I)-system, and λ is an uncountable strong limit of
cofinality ℵ0 and nu(A ) ≥ λ (or just nu+

∗ (A ) ≥ λ), then nu(A ) =+ 2λ.

Proof. So we assume λ > ℵ0 hence λ > 2ℵ0 and trivially nu+(A ) ≥ nu(A ) ≥ λ.
We apply 5.2(2) to A and µ = λ (so cf(µ) = ℵ0) and get an explicit (λ, J̄)-system
B such that µ ≤ nu+(B) ≤ nu(A ) hence by 5.9 we have nu(B) =+ 2λ hence by
the choice of B also nu(A ) =+ 2λ. The proof for nu+

∗ (A ) ≥ λ is similar. �5.16

5.17 Concluding Remarks. Can we weaken condition (E)+ in Theorem 1.1(2)? Can
we use rank?
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