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2 SAHARON SHELAH

ANNOTATED CONTENT

§1  GCH implies for successor of singular no stationary S has uniformization

[For A strong limit singular, for stationary S C S ?;{A) we prove strong nega-
tion of uniformization for some S-ladder system and even weak versions of
diamond. E.g. if X is singular strong limit and 2* = AT, then there are
7 < § increasing in i < cf(\) with limit ¢ for each § € S such that for
every f : AT — o* < )\ for stationarily many § € S, for every i we have

f(’Ygi) = f(Vgi+1)-]

§2  Forcing for successor of singulars
[Let A be strong limit singular kK = AT = 22§ C Sff(k) stationary not
reflecting. We present the consistency of a forcing axiom implying e.g.: if
hs is a function from Az to 6, As C § = sup(As), otp(As) = cf(A),0 < A
then for some h : kK — 6 for every § € S we have hs C* h.|

§3  kT-c.c. and kT -pic
[In the forcing axioms we would like to allow forcing notions of cardinality
> r; for this we use a suitable chain condition (allowed here and in

[Sh 587]). This sheds more light on the strongly inaccessible case and we
comment on this (and forcing against cases of diamonds).]

84  Existence of non-free Whitehead groups (and Ext(G,Z) = 0) abelian groups
in successor of singulars

[We use the information on the existence of weak version of the diamond

for S C Sé\fJ(rA), X strong limit singular with 2* = AT, to prove that there are

some abelian groups with special properties (from reasonable assumptions).
We also get more combinatorial principles on A = p™,u > cf(u) (even if
just A = A27)]
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§1 GCH IMPLIES FOR SUCCESSOR OF SINGULAR
NO STATIONARY S HAS UNFORMIZATION

We show that a major improvement in [Sh 587] over [Sh 186] for inaccessible (every
ladder on S has uniformization rather than some ladder on S) cannot be done for
successor of singulars. This is continued in §4.

1.1 Fact: Assume

(a) A is strong limit singular with 2* = A, let c¢f(\) = &
(b) S C {6 < AT :cf(d) = o} is stationary.

Then we can find (< 79 : 4 < o >: 6 € S) such that

() 7¢ is increasing (with 4) with limit &
(B) if pw < XAand f: At — u then the following set is stationary:
[5€S: f(33) = f(41s) for every i < .
Moreover
(B)T if fi e AT — py, s < X for i < o then the following set is stationary:
{6€8:f,(73) = fi(’ygiJrl) for every i < o}.

Proof. This will prove 1.2, too. We first concentrate on (a)) + () only.
Let A\ = Z Ai, A; a cardinal increasing continuous with i, A\;11 > 2, Ao > 2°. For
1<o
a< AT, leta= U Qq,; such that |aq ;| < A;. Without loss of generality § € S = ¢
<o

divisible by A\“ (ordinal exponentiation). For § € S let (8 : i < o) be increasing

continuous with limit 4, 8¢ divisible by A and > 0. For § € S let (b? : i < o) be such

that: b2 C B?,|b2| < A;, b? is increasing continuous with i and § = U b (e.g. we
<o

can let b} = U ags j, U ;). We further demand \; C€ b9 N\, Let (f* :a < AT)

jlaj2<7;
list the two-place functions with domain an ordinal < AT and range C AT. Let
S = U S,., with each S, stationary and (S, : 4 < A) pairwise disjoint. We now
<A

fix u < A and will choose 3° = (v? : i < o) for § € S,, such that clause («) holds

and clause (8) holds (that is for every f: A\™ — p for stationary many 6 € S, the

conclusion of clause (8) holds), this clearly suffices.

Now for § € S, and ¢ < j < o we can choose Q&ys (for € < Aj) (really here we use

just € = 0,1) such that:
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(A) (¢ j.e 1€ < Aj) is a strictly increasing sequence of ordinals

)
(B) 55 <P < B, (can even demand (. < 87 + A

(&) ” ¢ {¢ e fJ1<Jye1 < Aj (and i; < o, really only i; = i matters)}
(D)

D) for every ai,an € b the sequence (Mm{)\J,fal(ag,C’J ) e < Aj) s

constant i.e.: one of the following occurs:
(@) e<Xj=(az,¢);.) ¢ Dom(fs,)
(B) e< A= f;l(ag,C,?j )= fr (a2, ¢ ), well defined

aq %,7,0/

(7) e<Aj= f;';l(ag,g“” .) > Aj, well defined.

For each 7 < j < o we use “) is strong limit > \; > Z Aj, +o”.
J1<J

Let G = {g: g a function from o to o such that (Vi < o)(i < g(i)}.

For each function g € G we try 9% = (Cfg(i) 07@9(1') i< o) ie

c. < 21 ’C21+1> -

s 5
(Vi g().00 Vig( 1)
Now we ask for each g € G:

Question’: Does (790 : § € S,,) satisfy
(Vf e AT p)(F* € S,) /\ f( ’721 = '721+1))?

1<o
If for some g € G the answer is yes, we are done. Assume not, so for each g € G
we can find f, : AT — p and a club E, of AT such that:

§ €S, NEy= (3i <o)(fy(v8) # f,(385))
which means

565 ﬂE :>(E|Z<O-)[fg(czg()0)7éfg(zg(z)l)]

Let G = {g. : € < 27}, so we can find a 2-place function f* from A™ to u satisfying
[*(e, @) = fy. () when e < 27, < AT. Hence for each o < A there is y[a] < AT
such that f* [ a = f;‘[a].

Let E* = ﬂ E,. N{6 < AT : for every a < § we have v[a] < 6}. Clearly it is a
e<2°
club of AT, hence we can find § € S, N E*. Now 3¢,; < & hence v[82,,] <4

(as d € E*) but 6 = U b) hence for some j < o,7[8,,] € bY; as b} increases with
<o
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J we can define a function h: 0 — o by h(i) = Min{j : j > ¢+ 1 and p < \; and
v[B,4] € b‘s} So h € G hence for some £(x) < 27 we have h = g.(,). Now looking

at the choice of C%h(l)’o, Cl’h(lm we know (remember 27 < \g C b? and 1 < Ap(iy)

(Ve <27)(Va € bh(z )[Rang(f%) € & Dom(f}) 2 By — file, ?,h(i),o)
= fale, f,h(i),l)]'

In particular this holds for & = &(x),a = v[82,,], so we get

f:[B(S (5(*)7C§,h(i),l)'

i+1]

CORCITE NP

i+1]

By the choice of f* and of v[3{,,] this means

fgs(*) (C’ih(l),()) = fge(*) (C’L(s,h,(l),l))

. e * £ 55
but h = ge() and the above equality means f )(7291< ) 6) = fa. )(fygzjrl) ), and

this holds for every ¢ < o, and 0 € E* = § € E;_, so we get a contradiction to
the choice of (fy, ., s Ee(«))-
So we have finished proving («) + (5).

How do we get (8)1 of 1.1, too?
The first difference is in phrasing the question, now it is, for g € G:

Question’: Does (99 : 5 € S,) satisfy:

((\ffoek*uo)(\ffle**m)...(\ﬁie”ui)...) (5 € SN £:008°) = Fi(85.0)-
1<o

1<o

If for some g the answer is yes, we are done, so assume not so we have f,; € AT (17)
for g € G,i < o and club E, of AT such that

6 € Sy N Ey = (i < 0)(foi(08") # fo.1(0350)
A second difference is the choice of f* as f*(oec +1i,a) = f,_ (@) for e < 27,

i< o,a< AT,
Lastly, the equations later change slightly. Oy 1
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1.2 Fact: 1) Under the assumptions (a) + (b) of 1.1 letting A\ = (\; : i < o)
be increasingly continuous with limit A such that 27 < Ao, 2N < Ai+1 we have
()1 + (*)2 where

(¥)1 we can find (< vg : ¢ < A>:0 € 8) such that
() 72 is increasing in ¢ with limit §

(B)* if fi + AT — Xi4q, for i < o, then the following set is stationary
{0€S: fi(hd) = fi(r2) when ¢, & € [A;, Aiy1) for every i < o}

()2 moreover if F; : [\T]<} = [ANF]A for i < o (or just F; : [ANF]< — M)
and sup(w) < min(F;(w)) for w € [A\*]<A, for each i < o, then in addition
we can demand

(1) {7¢:C€ il S F({n¢: ¢ <)),
(i1) {(2:¢<¢*) 7l =} < Aforeach v < AT and ¢* < o

2) Assume A, ()\; : i < o) are as in part (1) and (C5 : § € S) is given, it guess
clubs (for A*, which mean that for every club E of AT the set {§ € S : Cs C E}
is a stationary subset of AT) and Cs5 = {a[d,i] : i < o}, [d,i] divisible by A\*
increasing in ¢ with limit 6, (cf(a[d,7 4+ 1]) : ¢ < o) is increasing with limit A and let
B(6,i) =Y _Aj x cf(ad,5]). Then
j<i
(¥) we can find (< ’yg :( <A >:0 € S) such that
(o) (’yg : ( < A) is increasing with limit §, (for § € S)
(8) sup{y : 72 < Bl6,j + 1]} = a[d, j]
(v) for every f; € (>‘+)(,ui) for i < o where u; < A and club E of \*, for
stationarily many 0 € S we have {79 : i < A\} C F and f; (fyg) = £:(72),
when ¢, € [[6,1] + A&, 16,1 + Mé + M) and € < ci(als, 1)),

Proof. 1) The same proof as in 1.1 for (x)1, but see a proof after the proof of 4.2.
2) Should be clear, too. O 9
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§2 CASE C: FORCING FOR SUCCESSOR OF SINGULAR

We continue [Sh 587].

2.1 Hypothesis. 1) X strong limit singular 0 = cf(\) < A,k = AT, u* > K, 2% = AT,

2.2 Definition. 1) Let €., (x*) be the family of & C {a: a = (a; : i < a) where
a < K,a; € [p*]<" increasing continuous, and a; Nk € k} such that: for every
0 = cf(d) < A, x large enough and = € 5 (x) we can find (N; : i < ) obeying
a € & (with error some n see [Sh 587, B.5.1(1)]) and such that # € Ny; this repeats
[Sh 587, B.5.1(2)]; formally we should say that N obeys a for p*.

2) €L, (u*) is the family of & C {a :a = (a; : i < 0),a; increasing continuous,
i<o=la] <Xand A+ 1C | Jai}.
<o

2.3 Definition. 1) We say M = (M; : i < o) is ruled by (&, &) if, for some
X > p
(CL) goo S €<K(M*)7£al € Qtl<n(u*)
(b) for! some (M*: —1<i<o)and (N*: -1 <i < o) we have:
(@) M; < (A(x), & <)
(B) M obeys some a € & for some finite error (so for some n, for every
i,a; € MyNp* Cajyn)and M [ (i4+1) € M;1q and j <@ = M; < M;
and M; is increasing continuous
(7) [Mi+1]2”Mi ' M4 for i a limit ordinal < o
(6) Mi= (M} :a<§),N' =(N.:a<d)and M} < N¢ < ((x), €
,<3)and A+1 C N and [|[ME]| = ||ME||IM:l for o < 6; non limit,
(MM C ML B <6
(e) (Ni:a < d;) = N' obeys some b; € & for some finite error and
M? N are increasing continuous
) Miyy =M CNj and ((M7,N7):j <i)e M
) 6; € M, 11 (hence §; < \) and A C N,
(0) cf(6;) > 2IM:ll for 4 limit,
) Nl (a+1),M" | (a+1) € M., for @ < 6;,i < o hence Ng} =
Sk(%(x)7€’<;)(Mé UA) when i < wo and 8 < ¢; is a limit ordinal

Iwe may later ignore the i = —1 in our notation
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(k) N§ < N for i < j
()\) M; < Mé,Mi S Mé

2) We say above that ((M? :i < o), (N : i < o)) is an (&, & )-approximation to
3) Let ¢®_ (%) be the family of (&, &) such that:

(a) & € Cop(p*) and & € €L, (1u*)
(b) for x large enough and x € J#(x) we can find M which is ruled by (g"o, é"l)
and z € M,

(¢) & is closed (see below).

4) & is closed if (a; : i < o) € &,7 < 8 < a implies (a; : i € [8,7]) € &.

Remark. 1) In Definition 2.3(1), letting N = NO"N'... ie. N = (N; :i <

A),N. =: N if e = Zdj +a; 50 lg(N) = A and N | (ig + 1) € N;y41 so N is
j<i B

=<-increasingly continuous, and vy < A= N [y € N,y11.

2.4 Claim. 1) Assume & € € (p*) and Q = (Po, Qi 1 i <) is a (< k)-support

iteration such that I-p, “Q; is strongly gao—complete” for each i < 7y, see [Sh 587,

B.5.3(3)].
Then P is strongly &-complete (hence P.,/Pg).
2) If Q is &-complete, then V@ |= & non-trivial.

Proof. By [Sh 587, B.5.6] (here the choice “for any regular cardinal § < x” rather
than “for any cardinal § < x” in [Sh 587, B.5.1(2)] is important). w

2.5 Definition. Let (&, &) € €2, (1*) and let Q be a forcing notion.

1) For a sequence M = (M; : i < o) ruled by (&, &) with an (&, & )-approximation

((M?:i<0o),(N":i< o)) and acondition r € Q we define a game 6?7[

between two players COM and INC. 7
The play lasts o moves during which the players construct a sequence (ig, p, (p;, @ :

io — 1 < i < o)) such that ip < o is non-limit, p € M;, N Q,p; € M;11 N Q, G =

(qic € <) CQ (where §; + 1 = £g(N?)).

(Mii<o),(Nii<o) (Q,r)
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The player INC first decides what is 79 < 0 and then it chooses a condition
p € QN M,, stronger than r. Next, at the stage i € [ip — 1,9) of the game, COM
chooses p; € Q N M;11 such that:

(1) p <q pi
(id) (Vj <i)(Ve < 0;)(qje<opi);
(#4i) if i is a non-limit ordinal, then p; € Q is minimal satisfying (i) + (i)

(1v) if i is a limit ordinal, then p; € Q.

Now the player INC answers choosing an increasing sequence ¢; = (g : € < 9;)
such that p; <g ¢i 0 and g; is (N* | [, §;], Q)*-generic for some o < §; (see [Sh 587,
B531]) and 0 < 6; = q; | (5 + 1) S Mi”g_'_l.

The player COM wins if it has always legal moves and the sequence (p; : i < wo)
has an upper bound in Q.

2) We say that the forcing notion Q is complete for (&, &) or (&, & )-complete if

(a) Q is strongly complete for & and

(b) for a large enough regular y, for some = € #(x), for every sequence M
ruled by (&, &1) with an &-approximation ((M?:i < o), (N?:i < o)) and
such that x € My and for any condition r € Q N My, the player INC does
not have a winning strategy in the game 6:2[,(]\Zfi:i<a>,(]vi:i<a>(@’ r).

2.6 Proposition. Assume

(CL) (gOv(;@l) S an(ﬂ*)a
(b) Q is a forcing notion for (&, & ).

Then kg “(&, &) € €8, (1),
Proof. Straightforward (and not used in this paper).

2.7 Proposition. Assume that & € €, (u*) is closed and Q = (P,, Qu:a<y)isa

(< k)-support iteration of forcing notions which are strongly complete for &. Let
T = (T, <t M,1k) be a standard (w, ag)7-tree (see [Sh 587, A.3.3]), [|T|| < X\, w C
7, ap an ordinal, and let p = (p; : t € T) € FTr'(Q), see [Sh 587, A.3.2]. Suppose

that .# is an open dense subset of P,. Then there is ¢ = (¢; : t € T') € FTr'(Q)
such that p < g and for each t € T
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(a) g €{q | rk(t):q € S}, and
(b) for each a € Dom(g;), one of the following occurs:
(1) a(a) = pe(@)
(@) IFp, “g(a) € Q" (not just in the completion @a)

(43i) IFp, “thereis r € Q, such that @a Epi(a) <7 < ¢(a)” (not really
needed).

Proof. Just like the proof of [Sh 587, B.7.1].

Our next proposition corresponds to [Sh 587, B.7.2] which corresponds to [Sh 587,
A.3.6]. The difference with [Sh 587, B.7.2] is the appearance of the M, M*.

2.8 Proposition. Assume that & € €, (u*) is closed and Q = (P,, Qu:a<y)isa

(< k)-support iteration and = = (x, : @ < ) is such that

IFp, “Qq is strongly complete for & with witness o

(for av < 7). Further suppose that

(a) (N,a) is an &-complementary pair (see [Sh 587, B.5.1]), N = (N; : i < 4)
and :1:,(29,@ € Ny,

(B) 7 = (T,<*,rk) € Ny is a standard (w, ag)7-tree, w C v N Ny, [|[w] <
cf(d), o is an ordinal, ;1 = g+ 1 and 0 € w

(v) p=(pt:t€T) e FTr'(Q) N Ny, w € Ny, (of course ag € Ny, on FTr’ see
[Sh 587, A.3.2]),

(0) M = (M; : i < 9),M; < (5(x),€,<}),M; is increasing continuous,
[M)II+1Z71 € M,y and the pair (M | (i + 1), N | (i + 1)) belongs to
M;i1,M; < N; and wU {.I,@@(),Q} € My

(e) fori < 6,7 = (T;, <i,rk;) is such that T; consists of all sequences ¢t = (t¢ :
¢ € dom(t)) such that dom(t) is an initial segment of w, and
(7) each t¢ is a sequence of length o
(17) (t¢ lap:¢ € dom(t)) eT
(13i) for each ¢ € dom(t), either t¢(ag) = * or tc(a) € M; is a Pe-name
for an element of Q¢ and

if t¢(a) # * for some a < avg, then t¢ (o) # *,



Paper Sh:667, version 2003-04-28_10. See https://shelah.logic.at/papers/667/ for possible updates.

SUCCESSOR OF SINGULARS 11

(tv) rk;(t) = min(w U {¢}\ dom(t)) and <; is the extension relation.
Then

(a) each .7} is a standard (w, op)7-tree, | T;|| < ||T|| - || M;]|1*l and if i < 6 then
T, € N¢+1

(b) 7 is the projection of each .7; onto (w, ag) and .7; is increasing with ¢

(c) thereis g = (q : t € Ts) € FTr'(Q) such that
(’L) ]3 Sproj;:ts q_
(i) if t € T5\{<>} then the condition ¢ € P}, ;) is an upper bound of

an (N | [io, 6], Py (1)) *-generic sequence (where ip < & is such that
t € T;,) and for every f € dom(q;) = N5 N rk(t),q(B) is a name
for the least upper bound in Qg of an (N[Gg] | [€,6),Qp)*-generic

sequence (for some £ < 9).
[Note that by [Sh 587, B.5.5], the first part of the demand on ¢; implies
that if ig < £ then ¢, [ B forces that (N[Gg] [ [£,d],a [ [£,4]) is an

.¥-complementary pair.]

(i17) if t € Ts,t' = projii(t) € T,¢ € dom(t) and t¢(ag) # *, then
q: | ClFp. “pr(C) <g. te(an) = te(ao) <g 2:(¢)”,

(V) Q<> = P>

Proof. Clauses (a) and (b) should be clear. Clause (c) is proved as in [Sh 587,
B.7.2]. Ua.s

Remark. In 2.9 below is proved as in the inaccessible case i.e. the proofs of ([Sh
587, B.7.3]) with M, (N® : i < o) as in Definition 2.5. We define the trees point:
in stage i using trees .7; with set of levels w; = M; N~ and looking at all possible
moves of COM, i.e. p; € M;;1 NP, so constructing this tree of conditions in J;
stages, in stage € < §;, has |[NZ N Mi+1|2”Mi” nodes.

Now

pE ]P)W N Mi+1 +* Dom(p) - Mi+1 but
p€PyN My = Dom(p) C M, = | N},

<wo

p € P,NN!= Dom(p) C N.
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So in limit cases ¢ < o: the existence of limit is by the clause (u) of Definition 2.3.
In the end we use the winning of the play and then need to find a branch in the
tree of conditions of level o: like Case A using &p. Llog

2.9 Theorem. Suppose that (&,&1) € €2, (u*) (so & € Cop(p*)) and Q =
(Po, Qo : @ <) is a (< K)-support iteration such that for each a < k

IFp,, “Qq is complete for (cgpo,g’l)”.

Then

(a) IFp, (&, &) € €8, (1), moreover
(b) P is complete for (&, &).

Proof. We need only part (a) of the conclusion, so we concentrate on it. Let x
be a regular large enough regular cardinal, z be a name for an element of J#(x)

and p € P,. Let x, € J(x) be a Py-name for the witness that Q, is (forced
to be) complete for &, &) and let & = (x4 : a < 7). Since (&, &) € €, (u*),

we find M = (M; : i < o) which is ruled by (&, &) with an &-approximation
(M? N*: —1 < i < o) and such that p,Q,z,%,&,& € My (see 2.3). Let N =

(N :e<§;)and let @ € & be such that (N?, @) is an &-complementary pair and
let M? = (M!:e<6;). Let w; = {0} U U (yNM,;) (for i <§). By the demands
wi<t

of 2.3 we know that ||w;| < cf(6;), w; € M.

By induction on i < o we define standard (w;,1)7-trees F; € M;y1 and p' =
(pi =t € T;) € FTr'(Q) N My, such that |T5|| < || M;||lell < || My ]| if i is limit
or 0, w; i1 = w; hence ;11 = 7, and if j < i < § then .J; = projglw”;:;tll))(,%) and
]5] < Ti ﬁz-

~projg.

CASE 1: i = 0.

Lt T consist of all sequences (t; : ¢ € dom(t)) such that dom(¢) is an initial
segment of wy and t; =<> for ¢ € dom(t). Thus T} is a standard (wp,0)”-tree,
|75 || = ||wol| +1. Fort € T§ let p;° = p | tkg(t). Clearly the sequence p*° = (p;° :
t € Tg) is in FTr'(Q) N No_l. Apply 2.8 to &, Q, N1, T, wo and p*° (note that
| M| lwoll € M1 for € < §g). As a result we get a (wq, 1)7-tree .7 (the one called
Ts, there) and p° = (p : t € Ty) € FTr'(Q)NM; (the one called ¢ there) satisfying
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clauses (),(c)(i)-(iv) of 2.8 and such that ||Tp|| < ||N6_01H||WOII = || Mp||Ilwoll = || Mp||

(remember cf(5y) > 21Moll). So, in particular, if t € Tp,¢ € dom(t) then ¢¢(0) € M,
is either * of a P;-name for an element of @C-

Moreover, we additionally require that (J,p°) is the <} first with all these
properties, so %, p° € M.

CASE 2: 1 =i+ 1.

We proceed similarly to the previous case. Suppose we have defined .7;, and p®
such that 7, p" € M; 11, |Ti || < |Miy+1]|. Let Z* be a standard (w;,ig)?-tree
such that

T consists of all sequences (t; : ¢ € dom(t)) such that dom(t) is an
initial segment of w; and

(te : ¢ € dom(t) Nw;,) € T, and (V¢ € dom(t)\wi,) (V] < io)(tc(j) = *).

Thus, 5, = proj(,-") (%) and ||T7| < |Mi]. Let pi' = pif | 1ki(t) for
teTHt = projgjo (t). Now apply 2.8 to &, Q, N0, .7* w; and p*' (check that
the assumptions are satisfied). So we get a standard (w;,iy + 1)7-tree .7; and a
sequence p' satisfying (), (c)(¢) — (iv) of 2.8, and we take the <}-pair (.7, p') with
IMioll = || M1 |

these properties. In particular, we will have ||T;|| < || M;,|| - ||N§0
and p*, 7; € Mi11.

CASE 3: ¢ is a limit ordinal.

Suppose we have defined ;,p’ for j < i and we know that ((7;,p7) : j <
i) € M;y1 (this is the consequence of taking “the <}-first such that ...”). let
T* =1im((J; : j <i)). Now, for t € T} we would like to define p;’ as the limit

of p . . However, our problem is that we do not know if the limit exists.
proj . (t)
Therefore, we restrict ourselves to these ¢ for which the respective sequence has an

upper bound. To be more precise, for t € .7.* we apply the following procedure.

® Let t7 = proj gj (t) for j < i. Try to define inductively a condition p}* €
Pucr (1) such that dom(p;?) = U{dom(p‘zj) N rk;(t) : j < i}. Suppose we
have successfully defined p;* [ a for a € dom(p;*), in such a way that
Pt a > pij | o for all j < i. We know that

i [ alFp, “ the sequence <pgj (@) :j <) is <g_-increasing”.
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So now, if there is a P,-name 7 for an element of Q, such that

pit T alkp, “(Vj <i)(pl, () <g, T)"

then we take the P,-name of the lub of <pzj (@) :j < i,pij (@) # *) in Q,
and we continue. If there is no such 7 then we decide that t ¢ 7,7 and we

stop the procedure?.

Now, let 7, consist of those t € T for which the above procedure resulted in a
successful definition of p}' € Py (1. It might not be clear at the moment if Tf
containss anything more than <>, but we will see that this is the case. Note that

ITH < WTF < TS0 < T M50 < 20 < g

Jj<i i<i

Moreover, for nonlimit ¢ > 2 we have || M ||lwill+HIT5 < agi|| IVl ¢ M! | and
Tt p* € Miy1. Let J; = Z*,p* = p** (this time there is no need to take the
< -first pair as the process leaves no freedom). So we have finished Case 3.

After the construction is carried out we continue in a similar manner as in [Sh
587, A.3.7] (but note slightly different meaning of the *’s here).

So we let 7, =1im((.7; : i < 0)). It is a standard (o, 0)7-tree. By induction on
a € w, U{y} we choose ¢, € P/, and a P,-name ¢, such that:

(a) IFp, “ta € Tooe & 1ks(tn) =a” and let i =min{i < d:a € M;} < o,

b) IFp

«@

( “tﬁ _t I*/B?? forﬂ<a’
(
d) if B <« then ¢z =qq | B,

(
1l defined and
(e projg(t ) is well defined an ppr0J95(ta)

)
)
¢) dom(ga) = ws N,
)
) p

I a < q, for each i < wo,

(f) for each 5 < «

2Generally in such 51tuat10n we can act as in 2.7 to get a real decision, i.e. if pj* | (o + 1) is
not well defined while p}* | o is well defined then p;* | a I “the sequence <th () : j < i) has no
S@a -upper bound. But the need has not arisen here.
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do lFp, “(Vi <6)((tp41)p(i) =x & i < i) and the sequence

(ig, 0" (8) {(tg+1)p(0), ! (8) iy <i <))

3
proj 5’ (tasa) proj ! (ts+1)
‘0
: L)
is a result of a play of the game QjM[GﬂLWi[Gﬂ}:Ké) (Qp,0gy),

won by player COM”,

(g) the condition ¢, forces (in P,) that
“the sequence M[Gp,_] | [ia,d] is ruled by (&, &1) and

(Nt[Gp,] i <i < o) is its &-approximation”.
(Remember: & is closed under end segments). This is done completely parallely

to the last part of the proof of [Sh 587, A.3.7].
Finally, look at the condition ¢, and the clause (g) above. Os g

2.10 Generalization 1) & is a set of triples (@, (b%,a’ : i < o),A),a = (a; : i <
o),at = (al, : a < &), = (b, : a < &) € &, ab, = aip1,a; SHj, A= (N i <o)
an increasing sequence of cardinals < A\, > \; = A.

2) We say (M, (M :i < o),(N":i< ) obeys (@, (b" : i < A) if: M; N\ p* = a;, N?

obeys b’ all things in 2.3 but A; > |[M;]|, A > [ [ 1M1, [MA* € ML, for a < §;
J<i

(so earlier \; = 2/,

2.11 Conclusion 1) Assume

(a) S C {0 < k:cf(d) =0} is stationary not reflecting

(b)y a=(as:0€S5),as = (as; 1 <0),0 =as, and as,; increasing with ¢ and
1< 0= ]9571\ < A and sup(as,;) < 6
[variant: A% = ()¢ : i < o) increasing with limit )]

(¢) welet p* =k, & = &S] ={a:a=(a;:i < a),a <k, a; €K\ increasing
continuous}

(d) & ={as:6 €S} )
(or {{(as, (@, b"° : i < o), \%) : § € S} appropriate for (2.10)

(e) we assume the pair (&, &) € €, (1*)

(f) p=p"k<7= cf(r) < p.
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Then for some (éao, &)—complete forcing notion P of cardinality u we have

IFp “forcing axiom for (&, & )-complete forcing notion

of cardinality < k and < 7 of open dense sets”

and in V¥ the set S is still stationary (by preservation of (&, & )-nontrivial).

2) If clauses (a),(c) holds and {>s, then for some &, if we define & as in clause (d)
then clause (b),(d),(e) holds.

Proof. 1) See more in the end of §3.
2) Easy. U211

2.12 Application: In V¥ of 2.11:

(a) if

(1) <X As Co=sup(As) for d e S,

(i) [As] <0

(iii) h=1(hs:6€8S),hs:A—0
(v) As € U{as,i+1\as; i <o},
then for some h : k — 6 and club E of k we have (V§ € SN E)[hs C* h]
where b/ C* b means that sup(Dom(h’)) > sup{a : @« € Dom(h') and
a ¢ Dom(h"”) or a« € Dom(h”) & h'(a) # h'(a)}

(b) if we add: “hs constant”, then we can omit the assumption (iii)

(¢) we can weaken |As| < 0 to |As Nasiv1| < |as,|

(d) in (c) we can weaken [As| < OV |As Nasit1] < |asi| to hs | asi+1 belongs
to M;11 N N(i for some o < §;
(remember cf(sup as;+1) > A9).

2.13 Remark. 1) Compared to [Sh 186] the new point in the application is (b).

2) You may complain why not having the best of (a) + (b), i.e. combine their good
points. The reason is that this is impossible by §1, §4; the situation is different in
the inaccessible case.

Proof. Should be clear. Still we say something in case hs constant, that is (b).
Let
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Q = {(h,C) : h is a function with domain an ordinal
a<k=A",
C a closed subset of a +1,a € C
and (Vo e CNSN(a+1))(hs C" h)}.

with the partial order being inclusion.
For p € Q let p = (AP, CP).

So clearly if (h,C) € Q and o« = Dom(h) < 8 € &k then for some h; we have
h C hy € Qp, Dom(h;) = (; moreover, if v < 8 & [ ¢ S then (h,C) <
(h U a8, CU{B}) € Q.

The main point is proving Q is complete for (&, &1). Now “Q is strongly complete
for & is proved as in [Sh 587, B.6.5.1,B.6.5.2] (or 3.14 below which is somewhat
less similar). The main point is clause (b) of 2.5(2); that is, let M, (M® : i <
wo), (N : i < wo) be as there. In the game S 51, (N;i<wo) (1, Q) from 2.5(1), we can
even prove that the player COM has a winning strategy: in stage i (non-trivial): if
hs is constantly v < 6 or just hs | (As Nas,i+1\as,i) is constantly v < 6 then we let

i
p; = (U {h% :j <iand ¢ < ;} UW[Ngiﬂn,Bi)’

closure(U{C’qg rj<iand ( <6} U {Bz}>)

for some (; € M; 11 N k\M; large enough such that As N M; 1 Nk C G;. O
—> scite{2.10} undefined

Remark. In the example of uniformizing (see [Sh 587]) if we use this forcing, the
density is less problematic.

2.14 Claim. 1) In ?’s conclusion we can omit the club E that is let E = k and
—> scite{ 2.10} undefined

demand (Y6 € S)(hs C* h) provided that we add in ?, recalling S C k does not
—> scite{ 2.10} undefined

reflect is a set of limit ordinals and

A= (As:0€S),As C 6 =sup(As)
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satisfies
(%) 01 # d2 in S = sup(As, N As,) < 91 Nbs.
2) If (V6 € S)(otp(As) = 6 this always holds.

Proof. We define Q = {h : Dom(h) is an ordinal < k and h(8) # 0 A B €
Dom(h) — (36 € S)[hs(B) = h(B)] and § € (Dom(h) + 1) N S implies hs C* h}
ordered by C. Now we should prove the parallel of the fact:

X" if p € Q,a = Dom(p) < 8 < k then there is ¢ such that p < ¢ € Q and
Dom(q) = 8.

Why this holds? We can find (Ag : § € SN(B+1)) such that A5 C As,sup(As\Aj) <
dand A" = (A5 : 6 € SN (B + 1)) is pairwise disjoint.
Now choose ¢ as follows

Dom(q) = 8

p(j) i j<a
q(j) =< hs(j) i jeAj\aandde SN(B+1)\(a+1)

0 if otherwise.

Why does A’ exist? Prove by induction on 8 that for any A', (4} :6 € SN(a+1))
as above and f3 satisfying @ < 8 < k, we can end extend A' to (45 : 5 € SN(B+1))
which is as above. U2.14

2.15 Remark. Note: concerning x inaccessible we could immitate what is here:
having M4 < Ng, | M; = | Ni..
7 i<§ =
As long as we are looking for a proof that no sequence of length < k are added,
the gain is meagre (restricting the ¢’s by ¢ [ o € N/, ;). Still if you want to make
the uniformization and some diamond we may consider this.

2.16 Comment: We can weaken further the demand, by letting COM have more
influence. E.g. we have (in 2.3) §; = \; = cf(\;) = ||My1||, D; a |a;|T-complete
filter on \;, the choice of ¢* in the result of a game in which INC should have chose
a set of player € D; and {p, holds (as in the treatment of case E* here).

The changes are obvious, but I do not see an application at the moment.
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§3 kT-c.c. AND kT-PIC

We intend to generalize pic of [Sh:f, Ch.VIIL,§1]. The intended use is for iteration
with each forcing > k - see use in [Sh:f]. In [Sh 587, B.7.4] we assume each Q; of
cardinality < k. Usually u = s™.
Note: & is as in the accessible case, in [Sh 587] but this part works in the other
cases. In particular, in Cases A,B (in [Sh 587|’s context) if the length of a € &y is
< X (remember x = A1), then we have (< \)-completeness implies &y-completeness
AND in 3.7 even a € & = fg(a) = w is O.K.

In Case A on the Sy C S¥ if lg(a) = A, ax € Sp is O.K., too. STILL can start
with other variants of completeness which is preserved.

3.1Context: We continue [Sh 587, B.5.1-B.5.7(1)] (except the remark [Sh 587,
B.5.2(3)]) under the weaker assumption k = k<" > ¥j, so K is not necessarily

strongly inaccessible; also in our &’s we allow a such that |as| = || is strongly
inaccessible.

3.2 Definition. Assume:

M(a) p= cf(p) > |a|<" for a < p

(b) the triple (s, u*, &) satisfies: k = cf(k) > No,u* > k,& C {a : a an
increasing continuous sequence of members of [p*]<" of limit length < &k
with a; Nk € K} and

(c) SP C {6 < p:cf(0) > Kk} stationary.

For { = 1,2 we say Q satisfies (u, SZ, &)-picy if: for some = € J(x) (can be
omitted, essentially, i.e. replaced by Q) we have

(%) if
(a) S C SY is stationary and (i, S, &, z) € N&
(B) for a € 8,64 < K, and ) )
(i)if 6=1,N* = (NP :i < 6,) and ¢, = 6, and N** = N
(i4) if £ = 2 then N®* = (N® : i < 8,), N = (N® : 4 € ct)
where ¢, C 04 = sup(cy ), ¢t = co U {04}, cq is closed,
7<B€ca:>caﬂ’y€Ng
(7) (N®,a®) is &-complementary (see [Sh 587, B.5.3]); so N® obeys a® €
6o (with some error n,,) (so here we have || N§' || < k,d0 < k)

(6) pis (N%, Q) -generic (see [Sh 587, Definition B.5.3.1])
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() a € N§ and
(¢) if £ =1, then for some club C' of p for every a € S we have
(NB,p?): B € SNCnNa) belong to N§
(¢4) if £ =2, then for some club C of u for every a € SN C and
i < 8o we have (NP* [ (i+1),p° [ (i+1)):8€SNC
belongs to N/,
() we define a function g with domain S as follows: g(a) = (go(), g1(a))
where go(a) = Ngiﬂ( U N(sﬁﬂ) and g1 (a) = (Ng;,Nio‘, C)i<sy,cego(a)] =
B<a

then we can find a club C' of p such that:
ifa<p & gla)=9gB) & acCnS & € CNS then 6, =
s, 9(a) = g(B), for some h, N§* % N(;i (really unique), and for each i < d,

the function A maps N/ to Nf,p,? to pf and {p$ : i < 04} U {pf 11 <0}
has an upper bound.

3.3 Claim. Assume X, i.e. (a),(b),(c) of 3.2 and

(d) & is non-trivial, which means:
for every x large enough and x € S#(x) there is N = (N; : i < §) increas-
ingly continuous, N; < (H(x),€),x € Ni,|Nill < 5, N | (i +1) € Niyq
and N obeys some a € 30 with some finite error n)

(e) Q is a strongly cﬁ(go)womplete forcing notion (hence adding no new bounded
subsets of k) where cl(&) =:{a | [a, 5] :a € & and a < B < Lg(a)}

(f) Q satisfies (p, S5, & )-picy where £ € {1,2}.
Then Q satisfies the p-c.c. provided that

(x) £=10rl=2 and &y is fat, see below.

~

3.4 Definition. We say & € €2, (u*) is fat, if in the following game O+ (60)
between fat and lean, the fat player has a winning strategy.
A play last K moves; in the a-th move:

Case 1: « nonlimit.
The player lean chooses a club Y, C [u*]<", the fat player chooses a, € Y, and
Po C{c:cC ais closed} of cardinality < k.

Case 2: « limit.
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We let Y, = [po]<" and an, = U{ap : B < a} and the player fat chooses &, C
{C: C C «is closed} of cardinality < x}.
In a play, fat wins iff for some limit ordinal a and ¢ € &, we have:

(%)) Bec=>cnNpe P
(#1) «a =sup(c) )
(13i) (ag: B € cU{a}) € &.

3.5 Remark. 0) With more care in the game Definition 3.10 we incorporate choosing
the p®’s. In 3.7(x)(e)(ii) we can add <Nf+1 : B € anc) belongs to N7, ;.

1) In the Definition 3.4, without loss of generalityc € &, & fe€c=cNp e Ps.
2) If k is strongly inaccessible without loss of generality we have &2, = Z(a), so
fat has a winning strategy.

3) In general being fat is a weak demand, e.g. if & D {a:a = (a; : i < w),a, =
Uan, a; € [p*]<" is increasing.

n

Proof of 3.9. Case 1: { =1.

Assume p, € Q for o < p and let x be large enough and x as in Definition
3.2. We choose (N%,p%) by induction on o < i as follows. If (NP,pP) : B <
) is already defined, as & is non-trivial there is a pair (N, a?) which is &-
complementary and ((Nﬁ,pﬁ) B8 <a),Q,(ps: B < 1),Pa, T belong to N§ and
let N* = (N{ : i < §;). So pa € N§ and we can choose po; € N& such that
Pa = Pa,o and (pa; 1 i < d4) is (N, Q)!-generic.

[Why? By the proof of [Sh 587, B.5.6.4].] Now by “Q is (11, S5, &)-pice”, for some
a < fin SU {pf i < 64} U {pf 4 < g} has a common upper bound hence in
particular, p,,pg are compatible.

Case 2: ¢ = 2.

Assume p, € Q for @« < p and let x be large enough. Let St be a winning
strategy for the player fat in the game O, (d;@o). Now we choose by induction on
i < k. The tuple (N, 25, Y, p') where p* = (pf. : ¢ € &) for a < p such that:

Ma) M < (A (X), & <)
(b) M “ increasing continuous in ¢
(c) [M{]] <k and (M :j <i) € M2, and M* Nk € k and p, € M,
) .

c
(d) (Y, Mg np*, 2 . j <) is an initial segment of a play of O, (&) in
Wthh the player fat uses his winning strategy St
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(e) <(Mj6,@jﬁ,Yjﬁ,]§f) 1 j < i,8 € S) belongs to N2, (hence 7§ C M2,
etc.)

(f) pic € QN N2,
(9) if c€ P and (p§ ., 1 j € c) has an upper bound then pf, is such a bound

(h) pf. € {F + . € M is a dense open subset of Q}.

Can we carry the induction?

For 4 limit let M = U{M¢ : j < i} and choose Y, {* by clause (d) i.e. by
the rules of the game Oy ;- (&) and p& by clause (g) + (h) (possible as forcing by
Q adds no new sequences of length < k of members of V). For i non-limit, let
x; = ((Mf,t@f,ﬂ/f,ﬁf) 7 <i,0eS)let YV ={a:a€ [p*]"" and o € a and

a=p*n Sk(g;(x),e,q)({xi x Q,St,a})} (Sk<" means a € Y* = aNk € k) and

let (af, Z7¢) be the move which the strategy St dictate to the player fat if the i-th
move of lean is Y, (and the play so far is ((Y*, M N p*, P, ;) : j < i)). Now we

choose M = Skfjl;(x),ex;)({xi’(@’ St,a}) and Z¢ has already been chosen and

Py = (pf. s c € Zf) as in the limit case.

Having carried the induction, for each a € S in the play ((Y;*, M N p*, 225 -
i < k) the player fat wins the game having used the strategy St, hence there are a
limit ordinal i, < x and closed ¢, € &;, and i, = sup(cq) and (M5 : j € coU{ia})
obeys some member a, of &. As Q is cﬁ(c;‘"())—complete we can prove by induction
on j € co U{in} thate <j & e € Co = QF p. ne <Dfeonj-

Let 6o = ia, N& = MY for i < 0, and p® = (p : i € ¢q). Now continue as in
Case 1. Us.3

3.6 Claim. If (x) of Definition 3.2, we can allow Dom(g) to be a subset of ScapC, (A; :
i < p) be an increasingly continuous sequence of sets, |A;| < pu,Ng* C Aqt1
replacing the definition of g,go and by go(a) = Ng* N Ay and g1 by gi(a) =
(NG N, C)icsa,cego(e)/ = (and get equivalent definition).

Remark. If Dom(g) N SY is not stationary, the definition says nothing.

Proof. Straight.

3.7 Claim. Assume clauses X, i.e. (a), (b), (c) of 3.2 and (d) of 5.3.
For (< k)-support iteration Q = (P;,Q; : i < «), if we have Irp, “Q; is

(/L,SD,(;@O)—png 7 for each i < a and forcing with Lim(Q) add no bounded subsets
of k, then P, and P, /Pg, for B <~ < {g(Q) are &-complete (, SB, &) -picy.
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3.8 Remark. We can omit the assumption “Lim(Q) add no bounded subsets of x” if
we add the assumption /(&) € €. (u*), see [Sh 587, Def.B.5.1(2)], because with
the later assumption the former follows by [Sh 587, B.5.6].

Proof. Similar to [Sh:f, Ch.VIII]. We first concentrate on

Case 1: ¢ =1.
It is enough to prove for P,,.
We prove this by induction on . Let IFp, “Q; is (1, SH, 8v)-picy as witnessed by

z; and let x; = Min{x : z; € #(x)}".
Let © = (pu*, K, p, sH. &, <()~<i,agi) i < £g(Q))) and assume x is large enough

such that = € #(x) and let ((N®,p*) : a € S) be as in Definition 3.2, so S C SO
is stationary and N* = (N : i < d,). We define a g by

X, g is a function with domain S
Ko g(a) = (ge() : £ < 2) where

go(@) = (Ng) N (L N5)
B<a
g1(a) = the isomorphic type of (N§' , N, pf', ¢)ecgo(a)-

(2

Let C be a club of u such that « € SNC = ((N?,p?) : B < a) € N§, (recall
0=1).
Fix y such that S, = {a € S : g(a) = y and o € C'} is stationary.

Let w, = U Dom(pf'), w, = wa N go(a) for a € Sy (as a € Gy, clearly the set
1<8q
does not depend on the «). For each ¢ € w, we define a P¢-name, S, ¢ as follows:

Syc={a €Sy (Vi <da)(pi I ¢ € Gr.)}-

Now we try to apply Definition 3.2 in V¢ to

((N2[Gr) i < 80, (PE(OIGr,] 1 < 8a)) s @ € Syc[Gr,]). Clearly, if Sy¢[Gr,]
is a stationary subset of u, we can apply it and gy, be the Pc-name of a function
with domain S, ¢ defined like g in (x) of Definition 3.2. Now g, ¢ is well defined,
and actually can be computed if we use Ag = U{N§ [Gp.| : @ < B}. So by an
induction hypothesis on « there is a suitable Pc-name C¢ of a club of u such that

in addition, if Sy [Gp,] is not a stationary subset of u, let C¢[Gp,] be a club of 4
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disjoint to it. But as P¢ satisfies the p-c.c. without loss of generality C'c = C¢ so

C’'=Cn ﬂ C¢ is a club of u. Now choose a1 < ag from S, N C” and we choose
(ew;
by induction on € € w’ = w; U {0, £g(Q)} a condition ¢. € P. such that:

M3(i) e1<e= ¢ =¢: [ &1
(17) g is a bound to {pd* [€:i < dq, } U{py? [ €11 < dq,}-

For ¢ = 0 let g9 = 0. We have nothing to do really if ¢ is with no immediate
predecessor in w, we let g. be U{qe, : €1 < e€,e1 € w'}. Solet € =e1 + 1,61 € W';
now if ¢. € G C P, 2, G generic over V, then oy, as € Sy ¢, [G], hence S, ([G]NC¢,

is non-empty, hence is stationary, and we use Definition 3.2.

Case 2: p = 2.
Similar proof. Us.7

3.9 Claim. Assume p= cf(u) >k, Va < p)(Ja|<" < u),S C {0 < p:cfld) >k}
is stationary. If |Q| < Kk or just < p,& € €. (1*), that is C {a : a increasingly
continuous of length < k,a; € [u*|<" and a; N Kk € K} non-trivial, possibly just for
one cofinality say R, then Q satisfies k™ -picy.

Proof. Trivial, we get same sequence of condition or just see the proof of [Sh 587,
B.7.4]. Us.g

3.10 Discussion: 1) What is the use of pic?

In the forcing axioms instead “|Q| < k” we can write ”Q satisfies the (1, ST, &)-
pic”. This strengthens the axioms.

In [Sh:f] in some cases the length of the forcing is bounded (there wy) but here
no need (as in [Sh:f, Ch.VIIL,§1]).

This section applies to all cases in [Sh 587] and its branches.
2) Note that we can demand that the p$ satisfies some additional requirements (in

Definition 3.2) say p$; = Fo(N | (2i 4+ 1),p | (2i + 1)).

Let us see how this gives some improvement of the results of [Sh 576, B.8] on
¢, (u*), see [Sh 587, B.5.7.3].

3.11 Definition. Assume

® K > Vg is strongly inaccessible and (&, &) € €2, (u*) and 6y, 0, are regular

cardinals > k,60; a cardinal > & (let § = (6g,0;,02), the usual case is
6o = kT) and & C & is nontrivial (see in Definition 3.3, clause (d)) and
¢ e {1,2}.
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Let Ax§1792(£"0, &, &), the forcing axiom for (é”o, &, &), and 0 = (0, 01, 0) be the

following statement:

X if

(i

) Q is a focing notion of cardinality < 6,
(i4) Q is complete for (&, &), see Definition [Sh 587, B.5.9(3)]
)

(iii) Q satisfies (6, S5, 3)—pice
(iv) . is a dense subset of Q for i < i* < 6y,
then there is a directed H C Q such that (Vi < i*)(H N .#; # 0).

3.12 Theorem. Assume ® of Definition 3.11 and p = p< = <% > gy + 6.
Then there is a forcing notion P such that:

(o) P is complete for &
(B8) P has cardinality p

)
)
(7) P satisfies the 0y-c.c. and even the (k,00, &)-picy
8) P is complete for (&y, &), hence kp “(&y, &) € €2, (1) and more
)

(
() Irp “Ax(&, 1, 6).

Proof. Like the proof of [Sh 587, B.8.2], using 3.7 instead of [Sh 587, B.7.4]. O3 12

We may wonder how large can a stationary S C k be?
3.13 Claim. 1) Assume
®(a) K is strongly inaccessible > N
(b) S C k is stationary

(c) for letting p* = k and & = &[S] = {a € Co.(u*): for every i < lg(a) we
have a; ¢ S} we have & € €. (u*)

(d) we let & = &[S] = {a € €(u*): for every nonlimit i < ellg(a) we have

Then

(a) (&, &) € €®, (u*), see [Sh 587, B.5.7(3)].
2) The parallel of 2.11.

We now deal with forcing the failure of diamond on the set of inaccessibles.
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3.14 Claim. Assume

(a) k,S, &, & are as in 5.13

(b) if Spa =: {0 < Kk : 0 strongly inaccessible, SN0 is stationary in 6 and $sne '}
s not a stationary subset of k

() A={A,:a€eS), A, Ca

(d) Q= Q4, is as in Definition 3.15 below

(e) & C & is nontrivial.
Then

Q is complete for (&, &)

(@)
(B) Q satisfies the (k, kT, &)-picy
(v) Q satisfies the k™ -c.c.

3.15 Definition. For x = cf(k),S C k =sup(S), A = (A, : a € S), with A, C «
we define the forcing notions Q = Qfﬁ—ld as follows:

(a) peQiff

(1) p=(c,A) = (" AP)

(17) cis 0 or a closed bounded subset of k hence has a last element
) A C sup(c) such that
) ifa e CNSthen ANa # A,

(iii

(iv

(b) p < qiff
(i) P is an initial segment of 2
(1) AP = A7 N sup(cP).

Proof of 3.1/. We concentrate on part (1), part (2)’s proof is similar. Now

()1 for every a < k, o = {p € Q: a < sup(cP)} is dense open.
[Why? If p € Q, let § = sup(c?) + 1 + « and ¢ = (P U {8}, AP), so
P<q€ Il

(¥)2 If § < kisalimit ordinal, (p; : i < 0) is <g-increasing and sup(c”*) < @41 <
sup(cPi+t) for ¢ < 0, and for limit 4,; = U{e; 1 j < i} and {4 10 < d}
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is disjoint to S, then p = (U c, U AP?) is a <g-lub of (p; : i < §).
i<s  i<o
[Why? Just think.]

()3 forcing with Q add no new sequences of length < x of ordinals (or members
of V).
[Why? By (%)2+ the assumption ®, clause (c) of Claim 3.13 as in [Sh 587,
B.6].]

(¥)4 Q is complete for &
[Why? Just think.]

()5 Q is complete for (&, &), see [Sh 587, Def.B.5.9(3)].

[Why? Let y be large enough and let (M; : i < ) be ruled by (&, &),

with &-approximation ((N%,a') : i < &), see [Sh 587, Def.B.5.9(1)] and

r € QN My and S,k, A € My and we have to prove that the player COM

has a winning strategy in the game O 37 (yi.;<5 (Q,7).]

For this we proved by induction on § < x (a limit ordinal) the statement

Xs if (M; :i <6),(N®:i < d),r are as above (but o may be a nonlimit
ordinal) b = (b; : i < 6),b; € [Myy1 Ne\M;]=IM:ill and B € Msnx (or
just B C U{b; : i < ¢}, then we can find p such that » < p € Q and
AP Nb; = BN b; for every i < ¢ and sup(c?) = Ms N k.

Case 1: a nonlimit. Trivial.

Case 2: « limit and for some i < a we have cf(d) < ||M;]|.

Let 6 = cf(f) and let (J. : € < 6) be increasing continuous, g = 0, || Ms, || > 0
and 59 =4.

Choose b C Ms,+1 N k\Ms,\bs, of cardinality # and choose b’ C b such that
¢ € (g,0] = AMaC nxNb # . By the induction hypothesis, we can find r5, € Ms, +1
such that sup(c¢™) = M, Nk, r < 15,8 < )y = A" Nbg = BNbg and r; is
(Mg, Q)-generic for every 8 < ;. Let 7 be such that rs, < 7‘3’1 € QN M, 41 and

sup(bs, Ub) < sup(ry.) and AN bs, = BNbs, and A" Nb=1V. Now we choose
by induction on € € [2,6], a condition r. such that r. € Ms_11, sup(c™) = Ms. N
kT <o [C€2,e) = re <rand B <. = A= Nbg = BNb. and 7. is (M., Q)-
generic for v < §.. For limit e, r. is uniquely determined and it € Q by the choice
of ;. For & nonlimit use the induction hypothesis for (Mg : 8 € [6. + 1,6-41]).

Case 3: Neither Case 1 nor Case 2.
So « is strongly inaccessible, call it § and 0 = My N k; so as {k,S} € My <
(H(x), €,<%), necessarily § = sup(S5),d € Spa and =$gns (e.g. 0 NS is not
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stationary in S). Choose for each 8 < 6, an ordinal y3 € Mgy1 NKr\Mps\bg and let
Ay ={j<i:v; € Amyne} forie SN0.

Now (A} : i € SN #) cannot be a diamond sequence for 6 hence we can find
X C 6 andclub C~ of f such that 6 € XN S = Ay #XN6. Let C={i <0:1
limit, (V5 < i)(v; <) and i € C~ and M; Nk = i}, clearly C is a club of . Let
b; =agU{ys}, Bt = BU{vs: 8 € X}, and proceed naturally. O3 14

3.16 Remark. So we can iterate and get that (G.C.H. and) diamond fail for “most”
stationary subsets of any strongly inaccessibles. We shall return to this elsewhere.
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§4 EXISTENCE OF NON-FREE WHITEHEAD (AND
EXT(G,Z) = {0}) ABELIAN GROUPS IN SUCCESSOR OF SINGULARS

In [Sh 587], the consistency with GCH of the following is proved for some regular
uncountable k: there is a k-free nonfree abelian group of cardinality x, and all such
groups are Whitehead. We use k inaccessible, here we ask: is this assumption
necessary for the first such x?

The following claim seems to support the hope for a positive answer.

4.1 Claim. Assume

(a) X is strong limit singular, o = cf(\) < \,k = At = 2*
(b) SC{d<k:cflo) =0} is stationary
(c) S does not reflect or at least
(c)7 A= (As:0€5),otp(As) = o,sup(As) =6 and
A s A free, i.e., for every o < k we can find (s : 0 € a*NS),as < § such
that (As\as : § € SNa*) is a sequence of pairwise disjoint sets

(d) (Gi:1 <o) is a sequence of abelian groups such that:
(@) & <o limit =Gs=|]Gi
1<d
(B) i<j<o=G,;/G; free and G; C G,
(v) G,/ U G is not Whitehead

) 1Gal <A
©) Go= o).

Then

1) There is a strongly k-free abelian group of cardinality x which is not Whitehead,

in fact T'(G) C S.

2) There is a strongly k-free abelian group G* of cardinality k satisfying HOM(G*,Z) =

{0}, in fact T'(G*) C S (in fact the same abelian group can serve).

3) We can rephrase clause (d)(vy) of the assumption, i.e. “G,/ U G; is not White-
<o

head” by:

¥)~ some € i cannot be extended to [’ € /AR
d f* HOM G, 7 b ded to f’ HOM(G,,7Z

1<o

We first note:
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4.2 Claim. Assume

let hg : kK — k and hq : Kk — o be such that

(Va < ) (V¢ < 0)(Vy € (@, 5))(F*B € [v,7+A])(ho(B) = a and h1(B) = (),
and (Va < k)ho(a) < «

(e) Let A= (\¢ : ( < o) be increasing continuous with limit A such that Ao = 0
and ( <o = Aey1 = cf(Aep1) > 0.

Then we can choose ((gs, <’yg :( < A)):d€S) such that

ONO). ('yg : ¢ < A) is strictly increasing with limit o
(1) if A <& < ¢y then ho(v2) = ho(13,) = as¢c and hi(vd) = hi(73,) = ¢
(13i) h} a partial function from k to k, sup(Dom(h})) < ’yg foro e S

or every K — R, € |k and g; : K — 1 Jor ¢ < o there are
2 B <X and g2 At th
stationarily many 6 € S such that:

(i) hy=f1B
(i) if Ac <€ < Mgy then GZ(72) = g2 (13,)-

3

Remark. Note that when subtraction or division” is meaningful, (-, is quite strong.

Proof. By the proofs of 1.1, 1.2 (can use guessing clubs by «; ¢’s, can demand that
B3¢, Bcsn € las e, ase + A).
But to help the reader we give a proof.
Let A\ = Z/\i’)‘i increasing continuous, A\;y; > 2% Ao = 0, A\ > 2°. Let M; <
<o
(H((27)1), €,<*) be increasing continuous, ||M;|| = X\, (M, : j < i) € Mip1, A+
1 C M; and {A, hg,h1,\} € My. For a < AF, let o = U aq,; such that |aq ;| < \;
<o

and an,; € Mo+ and even (< ag; @@ < 0 > 3 < a) € Myy1. Without loss
of generality § € S = ¢ divisible by A\* (ordinal exponentiation). For § € S

3i.e. x5 belongs to some additive group G* for 8 < k,§ € Hom(G*,H*),g(B) = g(zg) then

for some ¢ as in (),, we have g(w%s — Tpgs ) is Ogr=; similarly for multiplicative groups
3 A¢
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let 3° = (B9 : i < o) be increasing continuous with limit &, 3 divisible by A

and > 0. For § € S let (b0 : i < o) be such that: b} C 82,69 < A\;, b9 is

. . . . 5 5 ‘

increasingly continuous in ¢ and § = U b; (e.g. b9 U ags UA). We
1<o J1,72<%

further demand A\; C b N A. Let (ff : a < A*) list the two-place functions

«

with domain an ordinal < AT and range C A". Let H be the set of functions
h, Dom(h) € [k]<*, Rang(h) C k, so |H| = k. Let S = U{Sy : h € H}, with
each Sy, stationary and (S;, : h € H) pairwise disjoint. Without loss of generality
§ € Sp = sup(Dom(h)) < 3. Let h% be h when § € Sj,. We now fixed h € H and
will choose 4° = (y? : i < A) for § € S, such that clauses ), + (), for our fixed h
(and 6 € S}, ignoring h in (-),) hold, this clearly suffices.

Now for 6 € S;, and 7 < 0 and g € 0 we can choose Cﬁg,e (for e < Aj41) such that:

(A) (¢ g € < Aig1) is a strictly increasing sequence of ordinals

) (¢}
(B) B! < C,g, Bz—l—l? (can even demand (ﬁjﬁ < B+ N)
(C) ho(¢l,.) = asi and hi(¢), ) =i

(D)

D) for* every ai, s € b? o(i)> the sequence (Min{ Ay, fa, (a2, C,?’g’g) te < Ai+1})
is constant i.e. one of the following occurs:

(@) &< A1 = (a2,¢3,.) ¢ Dom(f3,)
(B) &< Xig1= fi (2,0 0) =i (ag,C” o) well defined

1,9, a1

(v) e <A, fr (a2, (P g.e) = Ay, well defined. We can add ( ;1(042,@%) :
e < \)is constant or strictly increasing.

(E) for some j < o, we have (Ve < \j11)[¢?

¢ g € Qo j] where

o= sup{ng"E 1€ < Ait1}, (remember o # A1 are regular).

For each function g € 70 we try 9% = (y%9 : ¢ < A) be: if \; < € < \j;1 then

6,9 _ 6
Yo7 = %,g,"

Now for some g it works. Uy.2

Proof of 1.2(1). Let M = U{M,, : a < K}, M, < (A(2%)T),€) has cardinality
A, M, is increasing continuous, (Mgz : 8 < a) € M, and (F; : i < o) belongs to M.
Let BEg ={0 <k:MsNk=273}and E = acc(E). The proof is like the proof of 4.2
with the following changes:

(i) B0 € Egfor6 € SNE

4 i i § i .
we can use a colouring which uses e.g. (ijgﬁ 1 j <i,e < A\j41) as a parameter



Paper Sh:667, version 2003-04-28_10. See https://shelah.logic.at/papers/667/ for possible updates.

32 SAHARON SHELAH

(43) in clause (A) we demand (¢?, _: g € G,e < \iy1) belongs to Mpgs | (hence

7’7976
also <C;{g,5 19 € G,e < \jq1:j <1) belongs to MB‘5+1)
(iii) clause (c) is replaced by: ¢7  _ € Fi({C]‘?’gr(jH)’E re < Ajy1 and j <if).

|jl.2

Proof of 4.1. 1) We apply 4.2 to the (45 : 6 € S) from 4.1, and any hg, hy as in
clause (d) of 4.2.

Let {3/ + G : v < "7} be a free basis of G/ /G" fori < j <o. Ifi=0,j =0
we may omit the 7, j, i.e. t¢ = tg’o and 0 = 0%9. Let 0 + Xy = |G,| < \; actually
0%¢T1 < X\ is enough; without loss of generality § < A; in 4.2. Let 53,1 = 72(@21’)

where £((, 1) = U Ae+1+ifordeS (<oi<b.

e<(
Let B5(x) = Min{g : 8 € Dom(h}), h}(B) # 0}, if well defined where h} is from
4.2.
Clearly (see (), (74i) of 4.2) we have B5(x) ¢ {ﬁg’i 1 ( < o,i <0} (or omit AC’Bg,i
for ¢ too small). We define an abelian group G*: it is generated by {z, : a <
K} U {yg :y < 0 and § € S} freely except for the relations:

()1 Z ayyg = Z{b@y(xﬁgﬂ - fl?ygc) ¢ <oandy<gottt}

y<6
when G, = Z ayty = Z{bgmtg’“'l ¢ <o andy <09t} where

v<60%7
a~,b¢ 4 € Z but all except finitely many are zero.

There is a (unique) homomorphism g5 from G, into G* induced by g;s(t,) = yg.
As usual it is an embedding. Let Rang(gs) = G<°>.

For 8 < k let G be the subgroup of G* generated by {7, : @ < 8} U {yg ty <
0%7 and § € 3N S}. Tt can be described similarly to G*.

Fact A: G* is strongly A-free.

Proof. For o* < B* < K, we can find (a5 : 6 € SN (a*,5*]) such that (As\as :
§ € SN (af,B*]) are pairwise disjoint and disjoint to a* hence the sequence
<{6§,¢ 11 < 0, € Min{¢ < o : 52,0 > as},0)} 28 € SN (af,p*]) is a se-
quence of pairwise disjoint sets.

For § € SN (a*, 5*], let {5 = Min{( : 6270 > a5} < 0. Now easily G. ., is gener-
ated as an extension of G},.; by {g(;(tg“’”) 1y < 6%7 and § € SN (a*, B*]}U{z, :
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a € (a*, f*] and for no 6 € SN(a*, 5*] do we have a € {ﬁg’i i< 059 and ¢ < (s}
moreover G. ,, is freely generated (as an extension of G}..1). So G, ,/Gr- g
is free, as also G7 is free we have shown Fact A.

Fact B: G* is not Whitehead.

Proof. We choose by induction on o < k, an abelian group H, and a homomorphism
h, : Hy — G, = ({ap : B < a}U{y) : v < 0,6 € SNa})g- increasing continuous in
a, with kernel Z, hg = zero and k,, : G}, = H, is a not necessarily linear mapping
such that h, o ko, = idg:. We identify the set of members of H,,G,Z with
subsets of A x (1 4 «) such that Oy, = Oz = 0.

Usually we have no freedom or no interesting freedom. But we have for « = § + 1,

§ € S. What we demand is (G'? - see before Fact A):

(*)2 letting H<°> = {2 € Hsy1 : hsyi(z) € G2}, if s* = gs(wp,(4)) € Z\{0}
(g5 from 4.2), then there is no homomorphism f5 : G<°> — H<%> such
that
(@) fo(xgs ) —ks(zgs ) € Z s the same for all i € (I Aes ¢l

e<(

(B) hsyi0fs= idges>.

[Why is this possible? By non-Whiteheadness of G/ U G* that is see (d)(y)~ in
<o

4.1]

The rest should be clear.

Proof of 4.1(2). Of course, similar to that of 4.1(1) but with some changes.

Step A: Without loss of generality there is a homomorphism f* from U G'toZ
<o

which cannot be extended to a homormopshim from G, to Z.

[Why? Standard, see [Fu].|

Step B: During the construction of G*, we choose G}, by induction on a < &,

but if h3(0) from 4.2 is a member of G} in (x); we replace (Iﬁgﬁ — xﬁig) by

CI T3, T F*(t55+1)g5(0)), note that f*(t$¢+1) € Z and h3(0) € Gj.
So if in the end f : G* — Z is a non-zero homomorphism, let x* € G* be such that
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f(x*) # 0 and® |f*(2*)| is minimal under this, so without loss of generality it is 1.
Hence for some 6 € S we have:

(x)3 f(gs5(0)) =1z

(*)4 f(%gﬁlﬂﬂ) = f(x’yf\c) for v € Acr1\X¢
that is f<xf82 ) = f(w'yi . )

(in fact this holds for stationarily many ordinals § € 5).
So we get an easy contradiction.
3) The proof is included in the proof of part (2). 041

We also note the following consequence of a conclusion of an instance of GCH.

4.3 Claim. Assume

(@) A=p" and p>o0= cfln)
(b) A=\ where § = 2°
(equivalently p® = pt > 29)
(¢) SCH{o < A:cf(6) =0} is stationary
(d) 1= (ns:06 € S) with ns an increasing sequence of length o with limit §.

Then we can find (A° : § € S) such that:

a) A= (A?:i< o)
B) A € [6]<H and sup(A%) < §
(B)* for some (\f :i < o) increasing with limit \,|A2| < ¥,

(v) for every h : X — X, for stationarily many § € S we have (Vi < o)lh(ns(i)) €
A7)

4.4 Remark. 1) We can restrict ourselves to h : A — p in clause (), and then, of
course, can use (< A9 :i <o >:§ € S) with A% C p.
2) We can add to the conclusion “A¢ C ns(i + 1)” if i guess clubs.

Proof. Let (\; : i < o) be increasing continuous with limit p. Let (&, : v < A)
list ), so ay = (aye : € < 6) and without loss of generality a,. < 7. For
each 6 € S let (b} : i < o) be an increasing continuous sequence of subsets of &
with union d such that || < p and sup(b?) < 6; for (8)*, moreover |b?| < \;;

5What does this mean? f*(x*) is an integer so its absolute value is well defined
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this is possible as cf(d) = 0 = cf(u) < p. Let (g : € < 0) list 70 and define
A = {aye v €l )} Now A% s a set of cardinality < |bgs(i)| < p and

ge (i
Sup(A,f’é) < sup(bge(i)) (as we have demanded that a., . < ) but sup(b® ) < §

ge (1)
by the choice of the bg’s hence sup(Af’(S) < . So for each € < 60 the sequence
A =: (459 : § € §), where A%° = <Af’(S : 1 < o) satisfies clauses (a) + () and
(8)* when relevant. Hence it suffices to prove that for some ¢ < 6 the sequence
A* satisfy clause (7), too. Assume toward contradiction that for every ¢ < 6 the
sequence A€ fails clause () hence there is h. : A — A\ which exemplifies this, that
is for some club E. of \,6 € E- NS = (Ji < 0)[he(ns(i)) ¢ AS°]. So for every
B < X the sequence (h.(B) : € < ) belongs to ?), hence is equal to ap gy for some
h(B8) < A. Clearly E = {§ < X\ : J a limit ordinal and (V38 < §)h(B) < d} is a
club of A\ (recall 8 < A) hence we can find §(x) € ENS. We define g* : 0 — o
by ¢*(i) = Min{j < o : h(n5()(j)) € bg}, now ¢* is well defined as, for i < o the
ordinal h(ns(.(i)) is < 6(*) (as 6(x) € E) and 15, (i) < 0(x)) and § = U b?. As
i<o

g* € 70 clearly for some £(*) < 6 we have g.(,) = g*.

So, for any i < o let v; = h(n5(.)(@)), now h(ns (7)) € bg*(i) (by the choice of g*)
and g*(i) = ge(+)(7) by the choice of £(x), together v; € bgs(*)(i). But Af(*),é(*) -

. *),0(* *),0(*

{ay ) 7 € bgs(*)(i)} by the choice of Af-( )9 hence Oy, o(x) € Af( 9 put as

vi = h(n5((7)), by the choice of h we have h () (15 (7)) = ay, o) € Af(*)’a(*).
So (Vi < 0)(he(5(n (1)) € A Which by the choice of h. implies (%) ¢
E ) but 0(x) € £ C m E., contradiction. Cy3

e<o
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