SUCCESSOR OF SINGULARS: COMBINATORICS AND NOT COLLAPSING CARDINALS $\leq \kappa$ IN (< κ)-SUPPORT ITERATIONS SH667

SAHARON SHELAH

The Hebrew University of Jerusalem Einstein Institute of Mathematics Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel

Department of Mathematics Hill Center - Busch Campus Rutgers, The State University of New Jersey 110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA

> Department of Mathematics University of Wisconsin Madison, WI USA

ABSTRACT. On the one hand we deal with $(<\kappa)$ -supported iterated forcing notions which are $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -complete, have in mind problems on Whitehead groups, uniformizations and the general problem. We deal mainly with the cases of a successor of the singular cardinal. This continues [Sh 587]. On the other hand we deal with complimentary ZFC combinatorial results.

Received November 16, 1998 and in revised form March 5, 2001.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

I would like to thank Alice Leonhardt for the beautiful typing.

This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.

Publ. 667; Notes - Spring '96

Corrected after Proofreading for the Journal.

First Typed - 97/June/30

Latest Revision - 03/Apr/30

2

SAHARON SHELAH

ANNOTATED CONTENT

§1 GCH implies for successor of singular no stationary S has uniformization

[For λ strong limit singular, for stationary $S \subseteq S_{cf(\lambda)}^{\lambda^+}$ we prove strong negation of uniformization for some S-ladder system and even weak versions of diamond. E.g. if λ is singular strong limit and $2^{\lambda} = \lambda^+$, then there are $\gamma_i^{\delta} < \delta$ increasing in $i < cf(\lambda)$ with limit δ for each $\delta \in S$ such that for every $f : \lambda^+ \to \alpha^* < \lambda$ for stationarily many $\delta \in S$, for every i we have $f(\gamma_{2i}^{\delta}) = f(\gamma_{2i+1}^{\delta})$.]

§2 Forcing for successor of singulars

[Let λ be strong limit singular $\kappa = \lambda^+ = 2^{\lambda}, S \subseteq S_{\mathrm{cf}(\lambda)}^{\kappa}$ stationary not reflecting. We present the consistency of a forcing axiom implying e.g.: if h_{δ} is a function from A_{δ} to $\theta, A_{\delta} \subseteq \delta = \sup(A_{\delta}), \operatorname{otp}(A_{\delta}) = \operatorname{cf}(\lambda), \theta < \lambda$ then for some $h : \kappa \to \theta$ for every $\delta \in S$ we have $h_{\delta} \subseteq^* h$.]

§3 κ^+ -c.c. and κ^+ -pic

[In the forcing axioms we would like to allow forcing notions of cardinality $> \kappa$; for this we use a suitable chain condition (allowed here and in [Sh 587]). This sheds more light on the strongly inaccessible case and we comment on this (and forcing against cases of diamonds).]

§4 Existence of non-free Whitehead groups (and $\text{Ext}(G, \mathbb{Z}) = 0$) abelian groups in successor of singulars

[We use the information on the existence of weak version of the diamond for $S \subseteq S_{cf(\lambda)}^{\lambda^+}$, λ strong limit singular with $2^{\lambda} = \lambda^+$, to prove that there are some abelian groups with special properties (from reasonable assumptions). We also get more combinatorial principles on $\lambda = \mu^+, \mu > cf(\mu)$ (even if just $\lambda = \lambda^{2^{\sigma}}$).]

1 GCH implies for successor of singularNo stationary S has unformization

We show that a major improvement in [Sh 587] over [Sh 186] for inaccessible (every ladder on S has uniformization rather than some ladder on S) cannot be done for successor of singulars. This is continued in §4. <u>1.1 Fact</u>: Assume

- (a) λ is strong limit singular with $2^{\lambda} = \lambda^{+}$, let $cf(\lambda) = \sigma$
- (b) $S \subseteq \{\delta < \lambda^+ : cf(\delta) = \sigma\}$ is stationary.

<u>Then</u> we can find $\langle < \gamma_i^{\delta} : i < \sigma >: \delta \in S \rangle$ such that

- (α) γ_i^{δ} is increasing (with *i*) with limit δ
- (β) if $\mu < \lambda$ and $f : \lambda^+ \to \mu$ then the following set is stationary: $\{\delta \in S : f(\gamma_{2i}^{\delta}) = f(\gamma_{2i+1}^{\delta}) \text{ for every } i < \sigma\}.$ Moreover
- $\begin{aligned} (\beta)^+ & \text{if } f_i : \lambda^+ \to \mu_i, \mu_i < \lambda \text{ for } i < \sigma \text{ <u>then</u> the following set is stationary:} \\ & \{\delta \in S : f_i(\gamma_{2i}^{\delta}) = f_i(\gamma_{2i+1}^{\delta}) \text{ for every } i < \sigma \}. \end{aligned}$

Proof. This will prove 1.2, too. We first concentrate on $(\alpha) + (\beta)$ only. Let $\lambda = \sum_{i < \sigma} \lambda_i, \lambda_i$ a cardinal increasing continuous with $i, \lambda_{i+1} > 2^{\lambda_i}, \lambda_0 > 2^{\sigma}$. For $\alpha < \lambda^+$, let $\alpha = \bigcup_{i < \sigma} a_{\alpha,i}$ such that $|a_{\alpha,i}| \leq \lambda_i$. Without loss of generality $\delta \in S \Rightarrow \delta$ divisible by λ^{ω} (ordinal exponentiation). For $\delta \in S$ let $\langle \beta_i^{\delta} : i < \sigma \rangle$ be increasing continuous with limit δ, β_i^{δ} divisible by λ and > 0. For $\delta \in S$ let $\langle b_i^{\delta} : i < \sigma \rangle$ be such that: $b_i^{\delta} \subseteq \beta_i^{\delta}, |b_i^{\delta}| \leq \lambda_i, b_i^{\delta}$ is increasing continuous with i and $\delta = \bigcup_{i < \sigma} b_i^{\delta}$ (e.g. we can let $b_i^{\delta} = \bigcup_{j_1, j_2 < i} a_{\beta_{j_1}^{\delta}, j_2} \cup \lambda_i$). We further demand $\lambda_i \subseteq b_i^{\delta} \cap \lambda$. Let $\langle f_{\alpha}^* : \alpha < \lambda^+ \rangle$ list the two-place functions with domain an ordinal $< \lambda^+$ and range $\subseteq \lambda^+$. Let $S = \bigcup_{\mu < \lambda} S_{\mu}$, with each S_{μ} stationary and $\langle S_{\mu} : \mu < \lambda \rangle$ pairwise disjoint. We now fix $\mu < \lambda$ and will choose $\bar{\gamma}^{\delta} = \langle \gamma_i^{\delta} : i < \sigma \rangle$ for $\delta \in S_{\mu}$ such that clause (α) holds and clause (β) holds (that is for every $f : \lambda^+ \to \mu$ for stationary many $\delta \in S_{\mu}$ the conclusion of clause (β) holds), this clearly suffices.

Now for $\delta \in S_{\mu}$ and $i < j < \sigma$ we can choose $\zeta_{i,j,\varepsilon}^{\delta}$ (for $\varepsilon < \lambda_j$) (really here we use just $\varepsilon = 0, 1$) such that:

- (A) $\langle \zeta_{i,j,\varepsilon}^{\delta} : \varepsilon < \lambda_j \rangle$ is a strictly increasing sequence of ordinals
- $(B) \ \beta_i^{\delta} < \zeta_{i,j,\varepsilon}^{\delta} < \beta_{i+1}^{\delta}, \, (\text{can even demand } \zeta_{i,j,\varepsilon}^{\delta} < \beta_i^{\delta} + \lambda)$
- $(C) \ \zeta_{i,j,\varepsilon}^{\delta} \notin \{\zeta_{i_1,j_1,\varepsilon_1}^{\delta} : j_1 < j, \varepsilon_1 < \lambda_{j_1} \text{ (and } i_1 < \sigma, \text{ really only } i_1 = i \text{ matters})\}$
- (D) for every $\alpha_1, \alpha_2 \in b_j^{\delta}$, the sequence $\langle \operatorname{Min}\{\lambda_j, f_{\alpha_1}^*(\alpha_2, \zeta_{i,j,\varepsilon}^{\delta})\} : \varepsilon < \lambda_j \rangle$ is constant i.e.: one of the following occurs:
 - (α) $\varepsilon < \lambda_j \Rightarrow (\alpha_2, \zeta_{i,j,\varepsilon}^{\delta}) \notin \operatorname{Dom}(f_{\alpha_1}^*)$
 - (β) $\varepsilon < \lambda_j \Rightarrow f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,j,\varepsilon}) = f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,j,0})$, well defined
 - (γ) $\varepsilon < \lambda_j \Rightarrow f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,j,\varepsilon}) \ge \lambda_j$, well defined.

For each $i < j < \sigma$ we use " λ is strong limit $> \lambda_j \ge \sum_{j_1 < j} \lambda_{j_1} + \sigma$ ".

Let $G = \{g : g \text{ a function from } \sigma \text{ to } \sigma \text{ such that } (\forall i < \sigma)(i < g(i)\}.$ For each function $g \in G$ we try $\bar{\gamma}^{g,\delta} = \langle \zeta_{i,g(i),0}^{\delta}, \zeta_{i,g(i),1}^{\delta} : i < \sigma \rangle$ i.e. $\langle \zeta_{2i}^{g,\delta}, \zeta_{2i+1}^{g,\delta} \rangle = \langle \gamma_{i,g(i),0}^{\delta}, \gamma_{i,g(i),1}^{\delta} : i < \sigma \rangle$ i.e. $\langle \zeta_{2i}^{g,\delta}, \zeta_{2i+1}^{g,\delta} \rangle = \langle \gamma_{i,g(i),0}^{\delta}, \gamma_{i,g(i),1}^{\delta} \rangle.$ Now we ask for each $g \in G$:

Question^{$$\mu$$}_g: Does $\langle \bar{\gamma}^{g,\delta} : \delta \in S_{\mu} \rangle$ satisfy
 $(\forall f \in {}^{\lambda^{+}}\mu)(\exists^{\text{stat}}\delta \in S_{\mu})(\bigwedge_{i < \sigma} f(\gamma_{2i}^{g,\delta}) = f(\gamma_{2i+1}^{g,\delta}))?.$

If for some $g \in G$ the answer is yes, we are done. Assume not, so for each $g \in G$ we can find $f_g : \lambda^+ \to \mu$ and a club E_g of λ^+ such that:

$$\delta \in S_{\mu} \cap E_g \Rightarrow (\exists i < \sigma) (f_g(\gamma_{2i}^{g,\delta}) \neq f_g(\gamma_{2i+1}^{g,\delta}))$$

which means

$$\delta \in S_{\mu} \cap E_g \Rightarrow (\exists i < \sigma) [f_g(\zeta_{i,g(i),0}^{\delta}) \neq f_g(\zeta_{i,g(i),1}^{\delta})].$$

Let $G = \{g_{\varepsilon} : \varepsilon < 2^{\sigma}\}$, so we can find a 2-place function f^* from λ^+ to μ satisfying $f^*(\varepsilon, \alpha) = f_{g_{\varepsilon}}(\alpha)$ when $\varepsilon < 2^{\sigma}, \alpha < \lambda^+$. Hence for each $\alpha < \lambda^+$ there is $\gamma[\alpha] < \lambda^+$ such that $f^* \upharpoonright \alpha = f^*_{\gamma[\alpha]}$.

Let $E^* = \bigcap_{\varepsilon < 2^{\sigma}} E_{g_{\varepsilon}} \cap \{\delta < \lambda^+ : \text{for every } \alpha < \delta \text{ we have } \gamma[\alpha] < \delta\}$. Clearly it is a club of λ^+ , hence we can find $\delta \in S_{\mu} \cap E^*$. Now $\beta_{i+1}^{\delta} < \delta$ hence $\gamma[\beta_{i+1}^{\delta}] < \delta$ (as $\delta \in E^*$) but $\delta = \bigcup_{i < \sigma} b_i^{\delta}$ hence for some $j < \sigma, \gamma[\beta_{i+1}^{\delta}] \in b_j^{\delta}$; as b_j^{δ} increases with

j we can define a function $h: \sigma \to \sigma$ by $h(i) = \text{Min}\{j: j > i+1 \text{ and } \mu < \lambda_j \text{ and } \gamma[\beta_{i+1}^{\delta}] \in b_j^{\delta}\}$. So $h \in G$ hence for some $\varepsilon(*) < 2^{\sigma}$ we have $h = g_{\varepsilon(*)}$. Now looking at the choice of $\zeta_{i,h(i),0}^{\delta}, \zeta_{i,h(i),1}^{\delta}$ we know (remember $2^{\sigma} < \lambda_0 \subseteq b_j^{\delta}$ and $\mu < \lambda_{h(i)}$)

$$\begin{aligned} (\forall \varepsilon < 2^{\sigma})(\forall \alpha \in b_{h(i)}^{\delta})[\operatorname{Rang}(f_{\alpha}^{*}) \subseteq \mu \& \operatorname{Dom}(f_{\alpha}^{*}) \supseteq \beta_{i+1}^{\delta} \to f_{\alpha}^{*}(\varepsilon, \zeta_{i,h(i),0}^{\delta}) \\ &= f_{\alpha}^{*}(\varepsilon, \zeta_{i,h(i),1}^{\delta})]. \end{aligned}$$

In particular this holds for $\varepsilon = \varepsilon(*), \alpha = \gamma[\beta_{i+1}^{\delta}]$, so we get

$$f^*_{\gamma[\beta_{i+1}^{\delta}]}(\varepsilon(*),\zeta_{i,h(i),0}^{\delta}) = f^*_{\gamma[\beta_{i+1}^{\delta}]}(\varepsilon(*),\zeta_{i,h(i),1}^{\delta}).$$

By the choice of f^* and of $\gamma[\beta_{i+1}^{\delta}]$ this means

$$f_{g_{\varepsilon(*)}}(\zeta_{i,h(i),0}^{\delta}) = f_{g_{\varepsilon(*)}}(\zeta_{i,h(i),1}^{\delta})$$

but $h = g_{\varepsilon(*)}$ and the above equality means $f_{g_{\varepsilon(*)}}^*(\gamma_{2i}^{g_{\varepsilon(*)},\delta}) = f_{g_{\varepsilon(*)}}^*(\gamma_{2i+1}^{g_{\varepsilon(*)},\delta})$, and this holds for every $i < \sigma$, and $\delta \in E^* \Rightarrow \delta \in E_{g_{\varepsilon(*)}}$ so we get a contradiction to the choice of $(f_{g_{\varepsilon(*)}}, E_{\varepsilon(*)})$.

So we have finished proving $(\alpha) + (\beta)$.

How do we get $(\beta)^+$ of 1.1, too?

The first difference is in phrasing the question, now it is, for $g \in G$:

<u>Question</u>^{μ}_g: Does $\langle \bar{\gamma}^{g,\delta} : \delta \in S_{\mu} \rangle$ satisfy:

$$\left((\forall f_0 \in {}^{\lambda^+} \mu_0) (\forall f_1 \in {}^{\lambda^+} \mu_1) \dots (\forall f_i \in {}^{\lambda^+} \mu_i) \dots \right)_{i < \sigma} (\exists^{\text{stat}} \delta \in S_{\mu}) (\bigwedge_{i < \sigma} f_i(\gamma_{2_i}^{g, \delta}) = f_i(\gamma_{2_i+1}^{g, \delta}))$$

If for some g the answer is yes, we are done, so assume not so we have $f_{g,i} \in \lambda^+(\mu_i)$ for $g \in G, i < \sigma$ and club E_g of λ^+ such that

$$\delta \in S_{\mu} \cap E_g \Rightarrow (\exists i < \sigma)(f_{g,i}(\gamma_{2i}^{g,\delta}) \neq f_{g,i}(\gamma_{2i+1}^{g,\delta})).$$

A second difference is the choice of f^* as $f^*(\sigma \varepsilon + i, \alpha) = f_{g_{\varepsilon},i}(\alpha)$ for $\varepsilon < 2^{\sigma}$, $i < \sigma, \alpha < \lambda^+$. Lastly, the equations later change slightly. $\Box_{1.1}$

<u>1.2 Fact</u>: 1) Under the assumptions (a) + (b) of 1.1 letting $\overline{\lambda} = \langle \lambda_i : i < \sigma \rangle$ be increasingly continuous with limit λ such that $2^{\sigma} < \lambda_0, 2^{\lambda_i} < \lambda_{i+1}$ we have $(*)_1 + (*)_2$ where

- $(*)_1$ we can find $\langle <\gamma^\delta_\zeta:\zeta<\lambda>:\delta\in S\rangle$ such that
 - (α) γ_{ζ}^{δ} is increasing in ζ with limit δ
 - $(\beta)^+ \text{ if } f_i : \lambda^+ \to \lambda_{i+1}, \text{ for } i < \sigma, \text{ then the following set is stationary} \\ \{\delta \in S : f_i(\gamma_{\zeta}^{\delta}) = f_i(\gamma_{\xi}^{\delta}) \text{ when } \zeta, \xi \in [\lambda_i, \lambda_{i+1}) \text{ for every } i < \sigma \}$
- (*)₂ moreover if $F_i : [\lambda^+]^{<\lambda} \to [\lambda^+]^{\lambda^+}$ for $i < \sigma$ (or just $F_i : [\lambda^+]^{<\lambda} \to [\lambda^+]^{\lambda}$) and $\sup(w) < \min(F_i(w))$ for $w \in [\lambda^+]^{<\lambda}$, for each $i < \sigma$, then in addition we can demand

(i)
$$\{\gamma_{\zeta}^{\delta}: \zeta \in [\lambda_i, \lambda_{i+1}]\} \subseteq F_i(\{\gamma_{\zeta}^{\delta}: \zeta < \lambda_i\}),$$

 $(ii) |\{\langle \gamma_{\zeta}^{\delta}: \zeta < \zeta^* \rangle: \gamma_{\zeta^*}^{\delta} = \gamma\}| \leq \lambda \text{ for each } \gamma < \lambda^+ \text{ and } \zeta^* < \sigma$

2) Assume $\lambda, \langle \lambda_i : i < \sigma \rangle$ are as in part (1) and $\langle C_{\delta} : \delta \in S \rangle$ is given, it guess clubs (for λ^+ , which mean that for every club E of λ^+ the set { $\delta \in S : C_{\delta} \subseteq E$ } is a stationary subset of λ^+) and $C_{\delta} = \{\alpha[\delta, i] : i < \sigma\}, \alpha[\delta, i]$ divisible by λ^{ω} increasing in i with limit $\delta, \langle \operatorname{cf}(\alpha[\delta, i+1]) : i < \sigma \rangle$ is increasing with limit λ and let $\beta(\delta, i) = \sum_{j \leq i} \lambda_j \times \operatorname{cf}(\alpha[\delta, j])$. Then

- (*) we can find $\langle < \gamma^{\delta}_{\zeta} : \zeta < \lambda >: \delta \in S \rangle$ such that
 - (α) $\langle \gamma_{\zeta}^{\delta} : \zeta < \lambda \rangle$ is increasing with limit δ , (for $\delta \in S$)
 - $(\beta) \quad \sup\{\gamma_{\zeta}^{\delta}: \gamma_{\zeta}^{\delta} < \beta[\delta, j+1]\} = \alpha[\delta, j]$
 - (γ) for every $f_i \in {}^{(\lambda^+)}(\mu_i)$ for $i < \sigma$ where $\mu_i < \lambda$ and club E of λ^+ , for stationarily many $\delta \in S$ we have $\{\gamma_i^{\delta} : i < \lambda\} \subseteq E$ and $f_i(\gamma_{\zeta}^{\delta}) = f_i(\gamma_{\varepsilon}^{\delta})$, when $\zeta, \varepsilon \in [\beta[\delta, i] + \lambda_i \xi, \beta[\delta, i] + \lambda_i \xi + \lambda_i)$ and $\xi < \operatorname{cf}(\alpha[\delta, i])$.

Proof. 1) The same proof as in 1.1 for $(*)_1$, but see a proof after the proof of 4.2. 2) Should be clear, too. $\Box_{1,2}$

§2 Case C: Forcing for successor of singular

We continue [Sh 587].

2.1 Hypothesis. 1) λ strong limit singular $\sigma = cf(\lambda) < \lambda, \kappa = \lambda^+, \mu^* \ge \kappa, 2^{\lambda} = \lambda^+.$

2.2 Definition. 1) Let $\mathfrak{C}_{<\kappa}(\mu^*)$ be the family of $\hat{\mathscr{E}}_0 \subseteq \{\bar{a} : \bar{a} = \langle a_i : i \leq \alpha \rangle$ where $\alpha < \kappa, a_i \in [\mu^*]^{<\kappa}$ increasing continuous, and $a_i \cap \kappa \in \kappa\}$ such that: for every $\theta = \operatorname{cf}(\theta) < \lambda, \chi$ large enough and $x \in \mathscr{H}(\chi)$ we can find $\langle N_i : i \leq \theta \rangle$ obeying $\bar{a} \in \hat{\mathscr{E}}_0$ (with error some *n* see [Sh 587, B.5.1(1)]) and such that $x \in N_0$; this repeats [Sh 587, B.5.1(2)]; formally we should say that \bar{N} obeys \bar{a} for μ^* .

2) $\mathfrak{C}^1_{<\kappa}(\mu^*)$ is the family of $\hat{\mathscr{E}}_1 \subseteq \{\bar{a} : \bar{a} = \langle a_i : i \leq \sigma \rangle, a_i \text{ increasing continuous,}$ $i < \sigma \Rightarrow |a_i| < \lambda \text{ and } \lambda + 1 \subseteq \bigcup_{i < \sigma} a_i \}.$

2.3 Definition. 1) We say $\overline{M} = \langle M_i : i \leq \sigma \rangle$ is ruled by $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ if, for some $\chi > \mu^*$:

- (a) $\hat{\mathscr{E}}_0 \in \mathfrak{C}_{<\kappa}(\mu^*), \hat{\mathscr{E}}_1 \in \mathfrak{C}^1_{<\kappa}(\mu^*)$
- (b) for 1 some $\langle \bar{M}^i : -1 \leq i < \sigma \rangle$ and $\langle \bar{N}^i : -1 \leq i < \sigma \rangle$ we have: (α) $M_i \prec (\mathscr{H}(\chi), \in, <^*_{\gamma})$
 - (β) \overline{M} obeys some $\overline{a} \in \hat{\mathscr{E}}_1$ for some finite error (so for some n, for every $i, a_i \subseteq M_i \cap \mu^* \subseteq a_{i+n}$) and $\overline{M} \upharpoonright (i+1) \in M_{i+1}$ and $j < i \Rightarrow M_j \prec M_j$ and M_i is increasing continuous
 - $(\gamma) \quad [M_{i+1}]^{2^{\parallel M_i \parallel}} \subseteq M_{i+1} \text{ for } i \text{ a limit ordinal} < \sigma$
 - (δ) $\bar{M}^{i} = \langle M^{i}_{\alpha} : \alpha \leq \delta_{i} \rangle, \bar{N}^{i} = \langle N^{i}_{\alpha} : \alpha \leq \delta_{i} \rangle \text{ and } M^{i}_{\alpha} \prec N^{i}_{\alpha} \prec (\mathscr{H}(\chi), \in \langle \chi \rangle) \text{ and } \lambda + 1 \subseteq N^{i}_{\alpha} \text{ and } \|M^{i}_{\alpha}\| = \|M^{i}_{\alpha}\|^{\|M_{i}\|} \text{ for } \alpha < \delta_{i} \text{ non limit, } [M^{i}_{\beta}]^{\|M_{i}\|} \subseteq M^{i}_{\beta+1}, \beta < \delta_{i}$
 - (ε) $\langle N^i_{\alpha} : \alpha \leq \delta_i \rangle = \bar{N}^i$ obeys some $\bar{b}_i \in \hat{\mathscr{E}}_0$ for some finite error and \bar{M}^i, \bar{N}^i are increasing continuous
 - $(\zeta) \quad M_{i+1} = M^i_{\delta_i} \subseteq N^i_{\delta_i} \text{ and } \langle (\bar{M}^j, \bar{N}^j) : j < i \rangle \in M^i_0$
 - (η) $\delta_i \subseteq M_{i+1}$ (hence $\delta_i < \lambda$) and $\lambda \subseteq N^i_{\alpha}$,
 - (θ) cf(δ_i) > 2^{||M_i||} for *i* limit,
 - (*i*) $\bar{N}^i \upharpoonright (\alpha + 1), \bar{M}^i \upharpoonright (\alpha + 1) \in M^i_{\alpha+1}$ for $\alpha < \delta_i, i < \sigma$ hence $N^i_\beta =$ $\operatorname{Sk}_{(\mathscr{H}(\chi), \in, <^*_{\chi})}(M^i_\beta \cup \lambda)$ when $i < \omega\sigma$ and $\beta \leq \delta_i$ is a limit ordinal

¹we may later ignore the i = -1 in our notation

8

SAHARON SHELAH

 $\begin{array}{ll} (\kappa) & N^i_{\delta_i} \prec N^j_0 \text{ for } i < j \\ (\lambda) & M_i \prec M^i_0, M_i \in M^i_0. \end{array}$

2) We say above that $(\langle \bar{M}^i : i < \sigma \rangle, \langle \bar{N}^i : i < \sigma \rangle)$ is an $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -approximation to \bar{M} .

- 3) Let $\mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*)$ be the family of $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ such that:
 - (a) $\hat{\mathscr{E}}_0 \in \mathfrak{C}_{<\kappa}(\mu^*)$ and $\hat{\mathscr{E}}_1 \in \mathfrak{C}^1_{<\kappa}(\mu^*)$
 - (b) for χ large enough and $x \in \mathscr{H}(\chi)$ we can find \overline{M} which is ruled by $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ and $x \in M_0$
 - (c) $\hat{\mathscr{E}}_0$ is closed (see below).
- 4) $\hat{\mathscr{E}}_0$ is closed if $\langle a_i : i \leq \alpha \rangle \in \hat{\mathscr{E}}_0, \gamma \leq \beta \leq \alpha$ implies $\langle a_i : i \in [\beta, \gamma] \rangle \in \hat{\mathscr{E}}_0$.

Remark. 1) In Definition 2.3(1), letting $\bar{N} = \bar{N}^0 \wedge \bar{N}^1 \dots$ i.e. $\bar{N} = \langle N_i : i < \lambda \rangle, N_{\varepsilon} =: N_{\alpha}^i$ if $\varepsilon = \sum_{j < i} \delta_j + \alpha$; so $\ell g(\bar{N}) = \lambda$ and $\bar{N} \upharpoonright (i_0 + 1) \in N_{i_0+1}$ so \bar{N} is \prec -increasingly continuous, and $\gamma < \lambda \Rightarrow \bar{N} \upharpoonright \gamma \in N_{\gamma+1}$.

2.4 Claim. 1) Assume $\hat{\mathscr{E}}_0 \in \mathfrak{C}_{<\kappa}(\mu^*)$ and $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_i : i < \gamma \rangle$ is a $(<\kappa)$ -support iteration such that $\Vdash_{\mathbb{P}_i}$ " \mathbb{Q}_i is strongly $\hat{\mathscr{E}}_0$ -complete" for each $i < \gamma$, see [Sh 587, B.5.3(3)]. <u>Then</u> \mathbb{P}_{γ} is strongly $\hat{\mathscr{E}}_0$ -complete (hence $\mathbb{P}_{\gamma}/\mathbb{P}_{\beta}$). 2) If \mathbb{Q} is $\hat{\mathscr{E}}_0$ -complete, then $\mathbf{V}^{\mathbb{Q}} \models \hat{\mathscr{E}}_0$ non-trivial.

Proof. By [Sh 587, B.5.6] (here the choice "for any regular cardinal $\theta < \kappa$ " rather than "for any cardinal $\theta < \kappa$ " in [Sh 587, B.5.1(2)] is important).

2.5 Definition. Let $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*)$ and let \mathbb{Q} be a forcing notion. 1) For a sequence $\overline{M} = \langle M_i : i \leq \sigma \rangle$ ruled by $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ with an $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -approximation $(\langle \overline{M}^i : i < \sigma \rangle, \langle \overline{N}^i : i < \sigma \rangle)$ and a condition $r \in \mathbb{Q}$ we define a game $\mathfrak{G}^{\bigstar}_{\overline{M}, \langle \overline{M}^i : i < \sigma \rangle, \langle \overline{N}^i : i < \sigma \rangle}(\mathbb{Q}, r)$ between two players COM and INC.

The play lasts σ moves during which the players construct a sequence $\langle i_0, p, \langle p_i, \bar{q}_i : i_0 - 1 \leq i < \sigma \rangle$ such that $i_0 < \sigma$ is non-limit, $p \in M_{i_0} \cap \mathbb{Q}, p_i \in M_{i+1} \cap \mathbb{Q}, \bar{q}_i = \langle q_{i,\varepsilon} : \varepsilon < \delta_i \rangle \subseteq \mathbb{Q}$ (where $\delta_i + 1 = \ell g(\bar{N}^i)$).

The player INC first decides what is $i_0 < \delta$ and then it chooses a condition $p \in \mathbb{Q} \cap M_{i_0}$ stronger than r. Next, at the stage $i \in [i_0 - 1, \delta)$ of the game, COM chooses $p_i \in \hat{\mathbb{Q}} \cap M_{i+1}$ such that:

- (i) $p \leq_{\mathbb{Q}} p_i$
- (*ii*) $(\forall j < i)(\forall \varepsilon < \delta_j)(q_{j,\varepsilon \leq \mathbb{Q}}p_i),$
- (*iii*) if *i* is a non-limit ordinal, then $p_i \in \hat{\mathbb{Q}}$ is minimal satisfying (i) + (ii)
- (iv) if *i* is a limit ordinal, <u>then</u> $p_i \in \mathbb{Q}$.

Now the player INC answers choosing an increasing sequence $\bar{q}_i = \langle q_{i,\varepsilon} : \varepsilon < \delta_i \rangle$ such that $p_i \leq_{\mathbb{Q}} q_{i,0}$ and \bar{q}_i is $(\bar{N}^i \upharpoonright [\alpha, \delta_i], \mathbb{Q})^*$ -generic for some $\alpha < \delta_i$ (see [Sh 587, B.5.3.1]) and $\beta < \delta_i \Rightarrow \bar{q}_i \upharpoonright (\beta + 1) \in M_{i,\beta+1}$.

The player COM wins if it has always legal moves and the sequence $\langle p_i : i < \omega \sigma \rangle$ has an upper bound in \mathbb{Q} .

2) We say that the forcing notion \mathbb{Q} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ or $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -complete if

- (a) \mathbb{Q} is strongly complete for \mathscr{E}_0 and
- (b) for a large enough regular χ , for some $x \in \mathscr{H}(\chi)$, for every sequence \overline{M} ruled by $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ with an $\hat{\mathscr{E}}_0$ -approximation $(\langle \overline{M}^i : i < \sigma \rangle, \langle \overline{N}^i : i < \sigma \rangle)$ and such that $x \in M_0$ and for any condition $r \in \mathbb{Q} \cap M_0$, the player INC does not have a winning strategy in the game $\mathfrak{G}_{\overline{M}, \langle \overline{M}^i : i < \sigma \rangle, \langle \overline{N}^i : i < \sigma \rangle}(\mathbb{Q}, r)$.

2.6 Proposition. Assume

- (a) $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*),$
- (b) \mathbb{Q} is a forcing notion for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$.

Then $\Vdash_{\mathbb{Q}} ``(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}_{<\kappa}^{\bigstar}(\mu^*)".$

Proof. Straightforward (and not used in this paper).

2.7 Proposition. Assume that $\hat{\mathscr{E}} \in \mathfrak{C}_{<\kappa}(\mu^*)$ is closed and $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \gamma \rangle$ is a $(<\kappa)$ -support iteration of forcing notions which are strongly complete for $\hat{\mathscr{E}}$. Let $\mathscr{T} = (T, <^+ M, \mathrm{rk})$ be a standard $(w, \alpha_0)^{\gamma}$ -tree (see [Sh 587, A.3.3]), $||T|| < \lambda, w \subseteq \gamma, \alpha_0$ an ordinal, and let $\bar{p} = \langle p_t : t \in T \rangle \in FTr'(\overline{\mathbb{Q}})$, see [Sh 587, A.3.2]. Suppose that \mathscr{I} is an open dense subset of \mathbb{P}_{γ} . Then there is $\bar{q} = \langle q_t : t \in T \rangle \in FTr'(\overline{\mathbb{Q}})$ such that $\bar{p} \leq \bar{q}$ and for each $t \in T$

- (a) $q_t \in \{q \upharpoonright \operatorname{rk}(t) : q \in \mathscr{I}\}, \text{ and }$
- (b) for each $\alpha \in \text{Dom}(q_t)$, one of the following occurs:
 - (i) $q_t(\alpha) = p_t(\alpha)$
 - (*ii*) $\Vdash_{\mathbb{P}_{\alpha}}$ " $q_t(\alpha) \in \mathbb{Q}_{\alpha}$ " (not just in the completion $\hat{\mathbb{Q}}_{\alpha}$)
 - (*iii*) $\Vdash_{\mathbb{P}_{\alpha}}$ "there is $r \in \mathbb{Q}_{\alpha}$ such that $\hat{\mathbb{Q}}_{\alpha} \models p_t(\alpha) \leq r \leq q_t(\alpha)$ " (not really needed).

Proof. Just like the proof of [Sh 587, B.7.1].

Our next proposition corresponds to [Sh 587, B.7.2] which corresponds to [Sh 587, A.3.6]. The difference with [Sh 587, B.7.2] is the appearance of the \bar{M}, \bar{M}^i .

2.8 Proposition. Assume that $\hat{\mathscr{E}} \in \mathfrak{C}_{<\kappa}(\mu^*)$ is closed and $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \gamma \rangle$ is a $(<\kappa)$ -support iteration and $x = \langle x_{\alpha} : \alpha < \gamma \rangle$ is such that

 $\Vdash_{\mathbb{P}_{\alpha}} ``\mathbb{Q}_{\alpha} \text{ is strongly complete for } \hat{\mathscr{E}} \text{ with witness } \underline{x}_{\alpha}"$

(for $\alpha < \gamma$). Further suppose that

- (α) (\bar{N}, \bar{a}) is an $\hat{\mathscr{E}}$ -complementary pair (see [Sh 587, B.5.1]), $\bar{N} = \langle N_i : i \leq \delta \rangle$ and $x, \hat{\mathscr{E}}, \bar{\mathbb{Q}} \in N_0$,
- (β) $\mathscr{T} = (T, <^+, \mathrm{rk}) \in N_0$ is a standard $(w, \alpha_0)^{\gamma}$ -tree, $w \subseteq \gamma \cap N_0, ||w|| < \mathrm{cf}(\delta), \alpha_0$ is an ordinal, $\alpha_1 = \alpha_0 + 1$ and $0 \in w$
- (γ) $\bar{p} = \langle p_t : t \in T \rangle \in FTr'(\bar{\mathbb{Q}}) \cap N_0, w \in N_0$, (of course $\alpha_0 \in N_0$, on FTr' see [Sh 587, A.3.2]),
- (δ) $\overline{M} = \langle M_i : i \leq \delta \rangle, M_i \prec (\mathscr{H}(\chi), \in, <^*_{\chi}), M_i$ is increasing continuous, $[M_i]^{\|w\|+|\mathscr{T}|} \subseteq M_{i+1}$ and the pair $(\overline{M} \upharpoonright (i+1), \overline{N} \upharpoonright (i+1))$ belongs to $M_{i+1}, M_i \prec N_i$ and $w \cup \{x, \hat{\mathscr{E}}_0, \mathbb{Q}\} \in M_0$
- (ε) for $i \leq \delta$, $\mathscr{T}_i = (T_i, <_i, \mathrm{rk}_i)$ is such that T_i consists of all sequences $t = \langle t_{\zeta} : \zeta \in \mathrm{dom}(t) \rangle$ such that $\mathrm{dom}(t)$ is an initial segment of w, and
 - (i) each t_{ζ} is a sequence of length α_1
 - (*ii*) $\langle t_{\zeta} \upharpoonright \alpha_0 : \zeta \in \operatorname{dom}(t) \rangle \in T$
 - (*iii*) for each $\zeta \in \text{dom}(t)$, either $t_{\zeta}(\alpha_0) = *$ or $t_{\zeta}(\alpha_0) \in M_i$ is a \mathbb{P}_{ζ} -name for an element of \mathbb{Q}_{ζ} and

if $t_{\zeta}(\alpha) \neq *$ for some $\alpha < \alpha_0$, then $t_{\zeta}(\alpha_0) \neq *$,

11

(*iv*) $\operatorname{rk}_i(t) = \min(w \cup \{\zeta\} \setminus \operatorname{dom}(t))$ and $<_i$ is the extension relation. Then

- (a) each \mathscr{T}_i is a standard $(w, \alpha_1)^{\gamma}$ -tree, $||T_i|| \leq ||T|| \cdot ||M_i||^{||w||}$ and if $i < \delta$ then $T_i \in N_{i+1}$
- (b) \mathscr{T} is the projection of each \mathscr{T}_i onto (w, α_0) and \mathscr{T}_i is increasing with i
- (c) there is $\bar{q} = \langle q_t : t \in T_{\delta} \rangle \in FTr'(\bar{\mathbb{Q}})$ such that
 - (i) $\bar{p} \leq_{\operatorname{proj}_T^{T_\delta}} \bar{q}$
 - (ii) if $t \in T_{\delta} \setminus \{<>\}$ then the condition $q_t \in \mathbb{P}'_{\mathrm{rk}_{\delta}(t)}$ is an upper bound of an $(\bar{N} \upharpoonright [i_0, \delta], \mathbb{P}_{\mathrm{rk}_{\delta}(t)})^*$ -generic sequence (where $i_0 < \delta$ is such that $t \in T_{i_0}$) and for every $\beta \in \mathrm{dom}(q_t) = N_{\delta} \cap \mathrm{rk}(t), q_t(\beta)$ is a name for the least upper bound in $\hat{\mathbb{Q}}_{\beta}$ of an $(\bar{N}[\tilde{G}_{\beta}] \upharpoonright [\xi, \delta), \mathbb{Q}_{\beta})^*$ -generic

sequence (for some $\xi < \delta$).

[Note that by [Sh 587, B.5.5], the first part of the demand on q_t implies that if $i_0 \leq \xi$ then $q_t \upharpoonright \beta$ forces that $(\bar{N}[\tilde{G}_{\beta}] \upharpoonright [\xi, \delta], \bar{a} \upharpoonright [\xi, \delta])$ is an

 $\hat{\mathscr{S}}$ -complementary pair.]

(*iii*) if $t \in T_{\delta}, t' = \operatorname{proj}_{T}^{T_{\delta}}(t) \in T, \zeta \in \operatorname{dom}(t) \text{ and } t_{\zeta}(\alpha_{0}) \neq *$, then $q_{t} \upharpoonright \zeta \Vdash_{\mathbb{P}_{\zeta}} "p_{t'}(\zeta) \leq_{\hat{\mathbb{Q}}_{\zeta}} t_{\zeta}(\alpha_{0}) \Rightarrow t_{\zeta}(\alpha_{0}) \leq_{\hat{\mathbb{Q}}_{\zeta}} q_{t}(\zeta)",$

$$(iv) \quad q_{<>} = p_{<>}.$$

Proof. Clauses (a) and (b) should be clear. Clause (c) is proved as in [Sh 587, B.7.2]. $\Box_{2.8}$

Remark. In 2.9 below is proved as in the inaccessible case i.e. the proofs of ([Sh 587, B.7.3]) with $\overline{M}, \langle \overline{N}^i : i < \sigma \rangle$ as in Definition 2.5. We define the trees point: in stage i using trees \mathscr{T}_i with set of levels $w_i = M_i \cap \gamma$ and looking at all possible moves of COM, i.e. $p_i \in M_{i+1} \cap \mathbb{P}_{\gamma}$, so constructing this tree of conditions in δ_i stages, in stage $\varepsilon < \delta_i$, has $|N_{\varepsilon}^i \cap M_{i+1}|^{2^{||M_i||}}$ nodes.

$$p \in \mathbb{P}_{\gamma} \cap M_{i+1} \Rightarrow \operatorname{Dom}(p) \subseteq M_{i+1} \text{ but}$$
$$p \in \mathbb{P}_{\gamma} \cap M_{i+1} \Rightarrow \operatorname{Dom}(p) \subseteq M_{\sigma} = \bigcup_{i < \omega\sigma} N^{i}_{\delta_{i}}$$
$$p \in \mathbb{P}_{\gamma} \cap N^{i}_{\varepsilon} \Rightarrow \operatorname{Dom}(p) \subseteq N^{i}_{\varepsilon}.$$

So in limit cases $i < \sigma$: the existence of limit is by the clause (μ) of Definition 2.3. In the end we use the winning of the play and then need to find a branch in the tree of conditions of level σ : like Case A using $\hat{\mathscr{E}}_0$. $\Box_{2.9}$

2.9 Theorem. Suppose that $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}_{<\kappa}(\mu^*)$ (so $\hat{\mathscr{E}}_0 \in \mathfrak{C}_{<\kappa}(\mu^*)$) and $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \gamma \rangle$ is a $(<\kappa)$ -support iteration such that for each $\alpha < \kappa$

$$\Vdash_{\mathbb{P}_{\alpha}}$$
 " \mathbb{Q}_{α} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ ".

Then

(a) $\Vdash_{\mathbb{P}_{\gamma}} (\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}) \in \mathfrak{C}^{\bigstar}_{<\kappa}(\mu^{*}), \text{ moreover}$ (b) \mathbb{P}_{γ} is complete for $(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}).$

Proof. We need only part (a) of the conclusion, so we concentrate on it. Let χ be a regular large enough regular cardinal, x be a name for an element of $\mathscr{H}(\chi)$ and $p \in \mathbb{P}_{\gamma}$. Let $x_{\alpha} \in \mathscr{H}(\chi)$ be a \mathbb{P}_{α} -name for the witness that \mathbb{Q}_{α} is (forced to be) complete for $\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}$) and let $\bar{x} = \langle x_{\alpha} : \alpha < \gamma \rangle$. Since $(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}) \in \mathfrak{C}_{<\kappa}^{\bullet}(\mu^{*})$, we find $\bar{M} = \langle M_{i} : i \leq \sigma \rangle$ which is ruled by $(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1})$ with an $\hat{\mathscr{E}}_{0}$ -approximation $\langle \bar{M}^{i}, \bar{N}^{i} : -1 \leq i < \sigma \rangle$ and such that $p, \bar{\mathbb{Q}}, x, \bar{x}, \hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1} \in M_{0}$ (see 2.3). Let $\bar{N}^{i} = \langle N_{\varepsilon}^{i} : \varepsilon \leq \delta_{i} \rangle$ and let $\bar{a}^{i} \in \hat{\mathscr{E}}_{0}$ be such that $(\bar{N}^{i}, \bar{a}^{i})$ is an $\hat{\mathscr{E}}_{0}$ -complementary pair and let $\bar{M}^{i} = \langle M_{\varepsilon}^{i} : \varepsilon \leq \delta_{i} \rangle$. Let $w_{i} = \{0\} \cup \bigcup_{\substack{\omega j \leq i \\ \omega j \leq i}} (\gamma \cap M_{\omega j})$ (for $i \leq \delta$). By the demands of 2.3 we know that $||w_{i}|| < \operatorname{cf}(\delta_{i}), w_{i} \in M_{0}^{i}$.

By induction on $i \leq \sigma$ we define standard $(w_i, i)^{\gamma}$ -trees $\mathscr{T}_i \in M_{i+1}$ and $\bar{p}^i = \langle p_t^i : t \in T_i \rangle \in FTr'(\bar{\mathbb{Q}}) \cap M_{i+1}$ such that $||T_i|| \leq ||M_i||^{||w_i||} \leq ||M_{i+1}||$ if i is limit or $0, w_{i+1} = w_i$ hence $\mathscr{T}_{i+1} = \mathscr{T}_i$, and if $j < i \leq \delta$ then $\mathscr{T}_j = \operatorname{proj}_{(w_j, j+1)}^{(w_i, i+1)}(\mathscr{T}_i)$ and $\bar{p}^j \leq_{\operatorname{proj}_{\mathscr{T}_i}^{\mathscr{T}_i}} \bar{p}^i$.

 $\underline{\text{CASE 1}}: i = 0.$

Lt T_0^* consist of all sequences $\langle t_{\zeta} : \zeta \in \operatorname{dom}(t) \rangle$ such that $\operatorname{dom}(t)$ is an initial segment of w_0 and $t_{\zeta} = <>$ for $\zeta \in \operatorname{dom}(t)$. Thus T_0^* is a standard $(w_0, 0)^{\gamma}$ -tree, $\|T_0^*\| = \|w_0\| + 1$. For $t \in T_0^*$ let $p_t^{*0} = p \upharpoonright \operatorname{rk}_0^*(t)$. Clearly the sequence $\bar{p}^{*0} = \langle p_t^{*0} : t \in T_0^* \rangle$ is in $FTr'(\bar{\mathbb{Q}}) \cap N_0^{-1}$. Apply 2.8 to $\hat{\mathscr{E}}_0, \bar{\mathbb{Q}}, \bar{N}^{-1}, \mathscr{T}_0^*, w_0$ and \bar{p}^{*0} (note that $\|M_{\varepsilon}^{-1}\|^{\|w_0\|} \subseteq M_{\varepsilon}^{-1}$ for $\varepsilon < \delta_0$). As a result we get a $(w_0, 1)^{\gamma}$ -tree \mathscr{T}_0 (the one called \mathscr{T}_{δ_0} there) and $\bar{p}^0 = \langle p_t^0 : t \in T_0 \rangle \in FTr'(\bar{\mathbb{Q}}) \cap M_1$ (the one called \bar{q} there) satisfying

clauses $(\varepsilon),(c)(i)$ -(iv) of 2.8 and such that $||T_0|| \leq ||N_{\delta_0}^{-1}||^{||w_0||} = ||M_0||^{||w_0||} = ||M_0||$ (remember $cf(\delta_0) > 2^{||M_0||}$). So, in particular, if $t \in T_0, \zeta \in dom(t)$ then $t_{\zeta}(0) \in M_1$ is either * of a \mathbb{P}_{ζ} -name for an element of \mathbb{Q}_{ζ} .

Moreover, we additionally require that $(\mathscr{T}_0, \bar{p}^0)$ is the $<^*_{\chi}$ -first with all these properties, so $\mathscr{T}_0, \bar{p}^0 \in M_1$.

<u>CASE 2</u>: $i = i_0 + 1$.

We proceed similarly to the previous case. Suppose we have defined \mathscr{T}_{i_0} and \bar{p}^{i_0} such that $\mathscr{T}_{i_0}, \bar{p}^{i_0} \in M_{i_0+1}, ||T_{i_0}|| \leq ||M_{i_0+1}||$. Let \mathscr{T}_i^* be a standard $(w_i, i_0)^{\gamma}$ -tree such that

 T_i^* consists of all sequences $\langle t_{\zeta} : \zeta \in \operatorname{dom}(t) \rangle$ such that $\operatorname{dom}(t)$ is an initial segment of w_i and

$$\langle t_{\zeta} : \zeta \in \operatorname{dom}(t) \cap w_{i_0} \rangle \in T_{i_0} \text{ and } (\forall \zeta \in \operatorname{dom}(t) \setminus w_{i_0}) (\forall j < i_0) (t_{\zeta}(j) = *).$$

Thus, $\mathscr{T}_{i_0} = \operatorname{proj}_{(w_{i_0}, i_0)}^{(w_i, i)}(\mathscr{T}_i^*)$ and $||T_i^*|| \leq ||M_i||$. Let $p_t^{*i} = p_{t'}^{i_0} \upharpoonright \operatorname{rk}_i^*(t)$ for $t \in T_i^*, t' = \operatorname{proj}_{\mathscr{T}_{i_0}}^{\mathscr{T}_i}(t)$. Now apply 2.8 to $\hat{\mathscr{E}}_0, \overline{\mathbb{Q}}, \overline{N}^{i_0}, \mathscr{T}_i^*, w_i$ and \overline{p}^{*i} (check that the assumptions are satisfied). So we get a standard $(w_i, i_0 + 1)^{\gamma}$ -tree \mathscr{T}_i and a sequence \overline{p}^i satisfying $(\varepsilon), (c)(i) - (iv)$ of 2.8, and we take the $<^*_{\chi}$ -pair $(\mathscr{T}_i, \overline{p}^i)$ with these properties. In particular, we will have $||T_i|| \leq ||M_{i_0}|| \cdot ||N_{\delta_i}^{i_0}||^{||M_{i_0}||} = ||M_{i_0+1}||$ and $\overline{p}^i, \mathscr{T}_i \in M_{i+1}$.

CASE 3: i is a limit ordinal.

Suppose we have defined $\mathscr{T}_{j}, \bar{p}^{j}$ for j < i and we know that $\langle (\mathscr{T}_{j}, \bar{p}^{j}) : j < i \rangle \in M_{i+1}$ (this is the consequence of taking "the $<^{*}_{\chi}$ -first such that ..."). let $\mathscr{T}_{i}^{*} = \lim(\langle \mathscr{T}_{j} : j < i \rangle)$. Now, for $t \in T_{i}^{*}$ we would like to define p_{t}^{*i} as the limit of $p_{\mathrm{proj}_{\mathscr{T}_{i}}^{*}(t)}^{j}$. However, our problem is that we do not know if the limit exists.

Therefore, we restrict ourselves to these t for which the respective sequence has an upper bound. To be more precise, for $t \in \mathcal{T}_i^*$ we apply the following procedure.

 \bigotimes Let $t^j = \operatorname{proj}_{\mathscr{T}_j}^{\mathscr{T}_i^*}(t)$ for j < i. Try to define inductively a condition $p_t^{*i} \in \mathbb{P}_{\mathrm{rk}_i^*(t)}$ such that $\operatorname{dom}(p_t^{*i}) = \bigcup \{\operatorname{dom}(p_{t^j}^j) \cap \operatorname{rk}_i^*(t) : j < i\}$. Suppose we have successfully defined $p_t^{*i} \upharpoonright \alpha$ for $\alpha \in \operatorname{dom}(p_t^{*i})$, in such a way that $p_t^{*i} \upharpoonright \alpha \ge p_{t^j}^j \upharpoonright \alpha$ for all j < i. We know that

 $p_t^{*i} \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}}$ "the sequence $\langle p_{t^j}^j(\alpha) : j < i \rangle$ is $\leq_{\hat{\mathbb{Q}}_{\alpha}}$ -increasing".

So now, if there is a \mathbb{P}_{α} -name τ for an element of \mathbb{Q}_{α} such that

$$p_t^{*i} \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} "(\forall j < i)(p_{t^j}^j(\alpha) \leq_{\hat{\mathbb{Q}}_{\alpha}} \tau)",$$

then we take the \mathbb{P}_{α} -name of the lub of $\langle p_{t^j}^j(\alpha) : j < i, p_{t^j}^j(\alpha) \neq * \rangle$ in $\hat{\mathbb{Q}}$, and we continue. If there is no such τ then we decide that $t \notin \mathscr{T}_i^+$ and we stop the procedure².

Now, let \mathscr{T}_i^+ consist of those $t \in T_i^*$ for which the above procedure resulted in a successful definition of $p_t^{*i} \in \mathbb{P}_{\mathrm{rk}_i^*(t)}$. It might not be clear at the moment if T_i^+ contains anything more than <>, but we will see that this is the case. Note that

$$||T_i^+|| \le ||T_i^*|| \le \prod_{j < i} ||T_j|| \le \prod_{j < i} ||M_j|| \le 2^{||M_i||} \le ||M_0^i||.$$

Moreover, for nonlimit $\varepsilon > 2$ we have $||M_{\varepsilon}^{i}||^{||w_{i}|| + ||T_{i}^{+}||} \leq ||M_{\varepsilon}^{i}||^{||M_{i}||} \subseteq M_{\varepsilon+1}^{i}$ and $\mathscr{T}_{i}^{+}, \bar{p}^{*i} \in M_{i+1}$. Let $\mathscr{T}_{i} = \mathscr{T}_{i}^{*}, \bar{p}^{i} = \bar{p}^{*i}$ (this time there is no need to take the $<_{\chi}^{*}$ -first pair as the process leaves no freedom). So we have finished Case 3.

After the construction is carried out we continue in a similar manner as in [Sh 587, A.3.7] (but note slightly different meaning of the *'s here).

So we let $\mathscr{T}_{\sigma} = \lim(\langle \mathscr{T}_i : i < \sigma \rangle)$. It is a standard $(\sigma, \sigma)^{\gamma}$ -tree. By induction on $\alpha \in w_{\sigma} \cup \{\gamma\}$ we choose $q_{\alpha} \in \mathbb{P}'_{\alpha}$ and a \mathbb{P}_{α} -name t_{α} such that:

- (a) $\Vdash_{\mathbb{P}_{\alpha}} ``t_{\alpha} \in T_{\omega\sigma} \& \operatorname{rk}_{\delta}(t_{\alpha}) = \alpha"$ and let $i_{0}^{\alpha} = \min\{i < \delta : \alpha \in M_{i}\} < \sigma$,
- (b) $\Vdash_{\mathbb{P}_{\alpha}} ``t_{\beta} = t_{\alpha} \upharpoonright \beta"$ for $\beta < \alpha$,
- (c) $\operatorname{dom}(q_{\alpha}) = w_{\delta} \cap \alpha$,
- (d) if $\beta < \alpha$ then $q_{\beta} = q_{\alpha} \upharpoonright \beta$,
- $(e) \ p^{i}_{\operatorname{proj}_{\mathscr{T}_{i}(\underline{t}_{\alpha})}} \text{ is well defined and } p^{i}_{\operatorname{proj}_{\mathscr{T}_{i}}^{\mathscr{T}_{\delta}}(\underline{t}_{\alpha})} \restriction \alpha \leq q_{\alpha} \text{ for each } i < \omega \sigma,$
- (f) for each $\beta < \alpha$

²Generally in such situation we can act as in 2.7 to get a real decision, i.e. if $p_t^{*i} \upharpoonright (\alpha + 1)$ is not well defined while $p_t^{*i} \upharpoonright \alpha$ is well defined then $p_t^{*i} \upharpoonright \alpha \Vdash$ "the sequence $\langle p_{tj}^j(\alpha) : j < i \rangle$ has no $\leq_{\hat{\mathbb{Q}}_{\alpha}}$ -upper bound. But the need has not arisen here.

$$q_{\alpha} \Vdash_{\mathbb{P}_{\alpha}} "(\forall i < \delta)((\underline{t}_{\beta+1})_{\beta}(i) = * \Leftrightarrow i < i_0^{\beta})$$
 and the sequence

$$\langle i_0^{\beta}, p_{\operatorname{proj}_{\mathscr{T}_i^{\beta}}^{\mathscr{T}_{\delta}}(\underline{t}_{\beta+1})}^{i_0^{\beta}}(\beta), \langle (\underline{t}_{\beta+1})_{\beta}(i), p_{\operatorname{proj}_{\mathscr{T}_i}^{\mathscr{T}_{\delta}}(\underline{t}_{\beta+1})}^i(\beta) : i_0^{\beta} \le i < \delta \rangle \rangle$$

is a result of a play of the game $\mathfrak{G}_{\bar{M}[\bar{G}_{\beta}],\langle \bar{N}^{i}[\bar{G}_{\beta}]:i<\delta\rangle}(\mathbb{Q}_{\beta},0_{\mathbb{Q}_{\beta}}),$

won by player COM",

(g) the condition q_{α} forces (in \mathbb{P}_{α}) that "the sequence $\overline{M}[G_{\mathbb{P}_{\alpha}}] \upharpoonright [i_{\alpha}, \delta]$ is ruled by $(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1})$ and $\langle \overline{N}^{i}[G_{\mathbb{P}_{\alpha}}] : i_{0}^{\alpha} \leq i < \sigma \rangle$ is its $\hat{\mathscr{E}}_{0}$ -approximation".

(Remember: $\hat{\mathscr{E}}_1$ is closed under end segments). This is done completely parallely to the last part of the proof of [Sh 587, A.3.7].

Finally, look at the condition q_{γ} and the clause (g) above.

 $\underbrace{2.10 \text{ Generalization } 1}_{\sigma \rangle, \bar{a}^{i}} = \langle a_{\alpha}^{i} : \alpha \leq \delta_{i} \rangle, \bar{b}^{i} = \langle b_{\alpha}^{i} : \alpha \leq \delta_{i} \rangle \in \hat{\mathcal{E}}_{0}, a_{\delta_{i}}^{i} = a_{i+1}, a_{i} \subseteq b_{0}^{i}, \lambda = \langle a_{i} : i < \sigma \rangle$ an increasing sequence of cardinals $\langle \lambda, \sum \lambda_{i} = \lambda$. 2) We say $(\bar{M}, \langle \bar{M}^{i} : i < \sigma \rangle, \langle \bar{N}^{i} : i < \sigma \rangle)$ obeys $(\bar{a}, \langle \bar{b}^{i} : i < \bar{\lambda} \rangle)$ if: $M_{i} \cap \mu^{*} = a_{i}, \bar{N}^{i}$ obeys \bar{b}^{i} all things in 2.3 but $\lambda_{i} \geq ||M_{i}||, \lambda_{i} \geq \prod_{j \leq i} ||M_{j}||, [M_{\alpha}^{i}]^{\lambda_{i}} \subseteq M_{\alpha+1}^{i}$ for $\alpha < \delta_{i}$

(so earlier $\lambda_i = 2^{\|M_i\|}$).

2.11 Conclusion 1) Assume

- (a) $S \subseteq \{\delta < \kappa : cf(\delta) = \sigma\}$ is stationary not reflecting
- (b) $\bar{\mathbf{a}} = \langle \bar{a}_{\delta} : \delta \in S \rangle, \bar{a}_{\delta} = \langle a_{\delta,i} : i \leq \sigma \rangle, \delta = a_{\delta,\sigma} \text{ and } a_{\delta,i} \text{ increasing with } i \text{ and} i < \sigma \Rightarrow |a_{\delta,i}| < \lambda \text{ and } \sup(a_{\delta,i}) < \delta$ [variant: $\bar{\lambda}^{\delta} = \langle \lambda_i^{\delta} : i < \sigma \rangle$ increasing with limit λ]
- (c) we let $\mu^* = \kappa$, $\hat{\mathscr{E}}_0 = \hat{\mathscr{E}}_0[S] = \{\bar{a} : \bar{a} = \langle a_i : i \leq \alpha \rangle, \alpha < \kappa, a_i \in \kappa \backslash S \text{ increasing continuous} \}$
- (d) $\hat{\mathscr{E}}_1 = \{ \bar{a}_{\delta} : \delta \in S \}$ (or $\{ \langle \bar{a}_{\delta}, \langle \bar{a}^{\delta,i}, \bar{b}^{i,\delta} : i < \sigma \rangle, \bar{\lambda}^{\delta} \rangle : \delta \in S \}$ appropriate for (2.10)
- (e) we assume the pair $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*)$
- $(f) \ \mu=\mu^{\kappa}, \kappa<\tau= \ \mathrm{cf}(\tau)<\mu.$

15

 $\square_{2.9}$

16

SAHARON SHELAH

<u>Then</u> for some $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -complete forcing notion \mathbb{P} of cardinality μ we have

 $\Vdash_{\mathbb{P}}$ "forcing axiom for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -complete forcing notion of cardinality ≤ κ and < τ of open dense sets"

and in $\mathbf{V}^{\mathbb{P}}$ the set S is still stationary (by preservation of $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$ -nontrivial).

2) If clauses (a),(c) holds and \diamondsuit_S , <u>then</u> for some $\bar{\mathbf{a}}$, if we define $\hat{\mathscr{E}}_1$ as in clause (d) then clause (b),(d),(e) holds.

Proof. 1) See more in the end of §3.2) Easy.

<u>2.12 Application</u>: In $\mathbf{V}^{\mathbb{P}}$ of 2.11:

- (a) if (i) $\theta < \lambda, A_{\delta} \subseteq \delta = \sup(A_{\delta})$ for $\delta \in S$, (ii) $|A_{\delta}| < \theta$ (iii) $\bar{h} = \langle h_{\delta} : \delta \in S \rangle, h_{\delta} : A \to \theta$ (iv) $A_{\delta} \subseteq \bigcup \{a_{\delta,i+1} \setminus a_{\delta,i} : i < \sigma\},$ <u>then</u> for some $h : \kappa \to \theta$ and club E of κ we have $(\forall \delta \in S \cap E)[h_{\delta} \subseteq^* h]$ where $h' \subseteq^* h''$ means that $\sup(\operatorname{Dom}(h')) > \sup\{\alpha : \alpha \in \operatorname{Dom}(h') \text{ and } \alpha \notin \operatorname{Dom}(h'') \text{ or } \alpha \in \operatorname{Dom}(h'') \& h'(\alpha) \neq h''(\alpha)\}$
 - (b) if we add: " h_{δ} constant", then we can omit the assumption (iii)
 - (c) we can weaken $|A_{\delta}| < \theta$ to $|A_{\delta} \cap a_{\delta,i+1}| \le |a_{\delta,i}|$
 - (d) in (c) we can weaken $|A_{\delta}| \leq \theta \vee |A_{\delta} \cap a_{\delta,i+1}| \leq |a_{\delta,i}|$ to $h_{\delta} \upharpoonright a_{\delta,i+1}$ belongs to $M_{i+1} \cap N^i_{\alpha}$ for some $\alpha < \delta_i$ (remember cf(sup $a_{\delta,i+1}) > \lambda^{\delta}_i$).

2.13 Remark. 1) Compared to [Sh 186] the new point in the application is (b). 2) You may complain why not having the best of (a) + (b), i.e. combine their good points. The reason is that this is impossible by $\S1$, $\S4$; the situation is different in the inaccessible case.

Proof. Should be clear. Still we say something in case h_{δ} constant, that is (b). Let

 $\Box_{2.11}$

 $\mathbb{Q} = \{(h, C) : h \text{ is a function with domain an ordinal} \}$

 $\alpha < \kappa = \lambda^+,$ C a closed subset of $\alpha + 1, \alpha \in C$ and $(\forall \delta \in C \cap S \cap (\alpha + 1))(h_{\delta} \subseteq^* h)$.

with the partial order being inclusion.

For $p \in \mathbb{Q}$ let $p = (h^p, C^p)$.

So clearly if $(h, C) \in \mathbb{Q}$ and $\alpha = \text{Dom}(h) < \beta \in \kappa \text{ then}$ for some h_1 we have $h \subseteq h_1 \in \mathbb{Q}_1$, $\text{Dom}(h_1) = \beta$; moreover, if $\gamma < \theta \& \beta \notin S$ then $(h, C) \leq (h \cup \gamma_{[\alpha,\beta]}, C \cup \{\beta\}) \in \mathbb{Q}$.

The main point is proving \mathbb{Q} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$. Now " \mathbb{Q} is strongly complete for $\hat{\mathscr{E}}_0$ " is proved as in [Sh 587, B.6.5.1,B.6.5.2] (or 3.14 below which is somewhat less similar). The main point is clause (b) of 2.5(2); that is, let $\overline{M}, \langle \overline{M}^i : i < \omega \sigma \rangle, \langle \overline{N}^i : i < \omega \sigma \rangle$ be as there. In the game $\mathfrak{G}_{\overline{M}, \langle N_i : i < \omega \sigma \rangle}(r, \mathbb{Q})$ from 2.5(1), we can even prove that the player COM has a winning strategy: in stage i (non-trivial): if h_{δ} is constantly $\gamma < \theta$ or just $h_{\delta} \upharpoonright (A_{\delta} \cap a_{\delta,i+1} \setminus a_{\delta,i})$ is constantly $\gamma < \theta$ then we let

$$p_{i} = \left(\cup \{h^{q_{\zeta}^{j}} : j < i \text{ and } \zeta < \delta_{i}\} \cup \gamma_{[N_{\delta_{i}}^{i} \cap \kappa, \beta_{i})}, \\ \text{closure}\left(\cup \{C^{q_{\zeta}^{j}} : j < i \text{ and } \zeta < \delta_{i}\} \cup \{\beta_{i}\}\right) \right)$$

for some $\beta_i \in M_{i+1} \cap \kappa \setminus M_i$ large enough such that $A_{\delta} \cap M_{i+1} \cap \kappa \subseteq \beta_i$. $\Box_{?}$ \rightarrow scite{2.10} undefined

Remark. In the example of uniformizing (see [Sh 587]) if we use this forcing, the density is less problematic.

2.14 Claim. 1) In ?'s conclusion we can omit the club E that is let $E = \kappa$ and \Rightarrow scite{2.10} undefined

demand $(\forall \delta \in S)(h_{\delta} \subseteq h)$ provided that we add in ?, recalling $S \subseteq \kappa$ does not $\rightarrow scite\{2.10\}$ undefined

reflect is a set of limit ordinals and

$$\bar{A} = \langle A_{\delta} : \delta \in S \rangle, A_{\delta} \subseteq \delta = \sup(A_{\delta})$$

satisfies

(*)
$$\delta_1 \neq \delta_2$$
 in $S \Rightarrow \sup(A_{\delta_1} \cap A_{\delta_2}) < \delta_1 \cap \delta_2$.

2) If $(\forall \delta \in S)(otp(A_{\delta}) = \theta$ this always holds.

Proof. We define $\mathbb{Q} = \{h : \text{Dom}(h) \text{ is an ordinal } < \kappa \text{ and } h(\beta) \neq 0 \land \beta \in \text{Dom}(h) \rightarrow (\exists \delta \in S)[h_{\delta}(\beta) = h(\beta)] \text{ and } \delta \in (\text{Dom}(h) + 1) \cap S \text{ implies } h_{\delta} \subseteq^* h\}$ ordered by \subseteq . Now we should prove the parallel of the fact:

 \boxtimes' if $p \in \mathbb{Q}, \alpha = \operatorname{Dom}(p) < \beta < \kappa$ then there is q such that $p \leq q \in \mathbb{Q}$ and $\operatorname{Dom}(q) = \beta$.

Why this holds? We can find $\langle A'_{\delta} : \delta \in S \cap (\beta+1) \rangle$ such that $A'_{\delta} \subseteq A_{\delta}$, $\sup(A_{\delta} \setminus A'_{\delta}) < \delta$ and $\bar{A}' = \langle A'_{\delta} : \delta \in S \cap (\beta+1) \rangle$ is pairwise disjoint.

Now choose q as follows

 $Dom(q) = \beta$

$$q(j) = \begin{cases} p(j) & \text{if} \quad j < \alpha \\ h_{\delta}(j) & \text{if} \quad j \in A'_{\delta} \setminus \alpha \text{ and } \delta \in S \cap (\beta+1) \setminus (\alpha+1) \\ 0 & \text{if otherwise.} \end{cases}$$

Why does \overline{A}' exist? Prove by induction on β that for any \overline{A}^1 , $\langle A'_{\delta} : \delta \in S \cap (\alpha + 1) \rangle$ as above and β satisfying $\alpha < \beta < \kappa$, we can end extend \overline{A}^1 to $\langle A'_{\delta} : \delta \in S \cap (\beta + 1) \rangle$ which is as above. $\Box_{2.14}$

2.15 Remark. Note: concerning κ inaccessible we could immitate what is here: having $M_{i+1} \underset{\neq}{\prec} N^i_{\delta_i}, \bigcup_{i < \delta} M_i = \bigcup_{i < \delta} N^i_{\delta_i}.$

As long as we are looking for a proof that no sequence of length $< \kappa$ are added, the gain is meagre (restricting the \bar{q} 's by $\bar{q} \upharpoonright \alpha \in N'_{\alpha+1}$). Still if you want to make the uniformization and some diamond we may consider this.

<u>2.16 Comment</u>: We can weaken further the demand, by letting COM have more influence. E.g. we have (in 2.3) $\delta_i = \lambda_i = cf(\lambda_i) = ||M_{i+1}||, D_i ||a_i||^+$ -complete filter on λ_i , the choice of \bar{q}^i in the result of a game in which INC should have chose a set of player $\in D_i$ and \Diamond_{D_i} holds (as in the treatment of case E^* here).

The changes are obvious, but I do not see an application at the moment.

§3 κ^+ -C.C. AND κ^+ -PIC

We intend to generalize pic of [Sh:f, Ch.VIII,§1]. The intended use is for iteration with each forcing > κ - see use in [Sh:f]. In [Sh 587, B.7.4] we assume each \mathbb{Q}_i of cardinality $\leq \kappa$. Usually $\mu = \kappa^+$.

Note: $\hat{\mathscr{E}}_0$ is as in the accessible case, in [Sh 587] <u>but</u> this part works in the other cases. In particular, in Cases A,B (in [Sh 587]'s context) if the length of $\bar{a} \in \hat{\mathscr{E}}_0$ is $< \lambda$ (remember $\kappa = \lambda^+$), <u>then</u> we have $(< \lambda)$ -completeness implies $\hat{\mathscr{E}}_0$ -completeness AND in 3.7 even $\bar{a} \in \hat{\mathscr{E}}_0 \Rightarrow \ell g(\bar{a}) = \omega$ is O.K.

In Case A on the $S_0 \subseteq S_{\lambda}^{\kappa}$ if $\ell g(\bar{a}) = \lambda, a_{\lambda} \in S_0$ is O.K., too. STILL can start with other variants of completeness which is preserved.

3.1<u>Context</u>: We continue [Sh 587, B.5.1-B.5.7(1)] (except the remark [Sh 587, B.5.2(3)]) under the weaker assumption $\kappa = \kappa^{<\kappa} > \aleph_0$, so κ is not necessarily strongly inaccessible; also in our $\hat{\mathscr{E}}$'s we allow \bar{a} such that $|a_{\delta}| = |\delta|$ is strongly inaccessible.

3.2 Definition. Assume:

 $\boxtimes(a) \ \mu = \ \mathrm{cf}(\mu) > |\alpha|^{<\kappa} \ \mathrm{for} \ \alpha < \mu$

- (b) the triple $(\kappa, \mu^*, \hat{\mathscr{E}}_0)$ satisfies: $\kappa = \mathrm{cf}(\kappa) > \aleph_0, \mu^* \ge \kappa, \hat{\mathscr{E}}_0 \subseteq \{\bar{a} : \bar{a} \text{ an increasing continuous sequence of members of } [\mu^*]^{<\kappa}$ of limit length $< \kappa$ with $a_i \cap \kappa \in \kappa\}$ and
- (c) $S^{\Box} \subseteq \{\delta < \mu : cf(\delta) \ge \kappa\}$ stationary.

For $\ell = 1, 2$ we say \mathbb{Q} satisfies $(\mu, S^{\Box}, \hat{\mathscr{E}}_0)$ -pic $_{\ell}$ if: for some $x \in \mathscr{H}(\chi)$ (can be omitted, essentially, i.e. replaced by \mathbb{Q}) we have

- (*) if
 - (a) $S \subseteq S^{\square}$ is stationary and $\langle \mu, S, \hat{\mathscr{E}}_0, x \rangle \in N_0^{\alpha}$
 - (β) for $\alpha \in S, \delta_{\alpha} < \kappa$, and
 - (i) if $\ell = 1, \bar{N}^{\alpha} = \langle N_i^{\alpha} : i \leq \delta_{\alpha} \rangle$ and $c_{\alpha} = \delta_{\alpha}$ and $\bar{N}^{\alpha,*} = \bar{N}^{\alpha}$ (ii) if $\ell = 2$ then $\bar{N}^{\alpha,*} = \langle N_i^{\alpha} : i \leq \delta_{\alpha} \rangle, \bar{N}^{\alpha} = \langle N_i^{\alpha} : i \in c_{\alpha}^+ \rangle$ where $c_{\alpha} \subseteq \delta_{\alpha} = \sup(c_{\alpha}), c_{\alpha}^+ = c_{\alpha} \cup \{\delta_{\alpha}\}, c_{\alpha}$ is closed, $\gamma < \beta \in c_{\alpha} \Rightarrow c_{\alpha} \cap \gamma \in N_{\beta}^{\alpha}$
 - (γ) $(\bar{N}^{\alpha}, \bar{a}^{\alpha})$ is $\hat{\mathscr{E}}_0$ -complementary (see [Sh 587, B.5.3]); so \bar{N}^{α} obeys $\bar{a}^{\alpha} \in \hat{\mathscr{E}}_0$ (with some error n_{α}) (so here we have $||N_{\delta_{\alpha}}^{\alpha}|| < \kappa, \delta_{\alpha} < \kappa$)
 - (δ) \bar{p}^{α} is $(\bar{N}^{\alpha}, \mathbb{Q})^1$ -generic (see [Sh 587, Definition B.5.3.1])

- $(\varepsilon) \quad \alpha \in N_0^{\alpha}$ and
 - (i) if $\ell = 1$, then for some club C of μ for every $\alpha \in S$ we have $\langle (\bar{N}^{\beta}, \bar{p}^{\beta}) : \beta \in S \cap C \cap \alpha \rangle$ belong to N_0^{α}
 - (*ii*) if $\ell = 2$, then for some club C of μ for every $\alpha \in S \cap C$ and $i < \delta_{\alpha}$ we have $\langle (\bar{N}^{\beta,*} \upharpoonright (i+1), \bar{p}^{\beta} \upharpoonright (i+1)) : \beta \in S \cap C$ belongs to N_{i+1}^{α}
- (ε) we define a function g with domain S as follows: $g(\alpha) = (g_0(\alpha), g_1(\alpha))$ where $g_0(\alpha) = N^{\alpha}_{\delta_{\alpha}} \cap (\bigcup_{\beta < \alpha} N^{\beta}_{\delta_{\beta}})$ and $g_1(\alpha) = (N^{\alpha}_{\delta_{\alpha}}, N^{\alpha}_i, c)_{i < \delta_1, c \in g_0(\alpha)} / \cong$,

then we can find a club C of μ such that:

if $\alpha < \beta$ & $g(\alpha) = g(\beta)$ & $\alpha \in C \cap S$ & $\beta \in C \cap S$ then $\delta_{\alpha} = \delta_{\beta}, g(\alpha) = g(\beta)$, for some $h, N^{\alpha}_{\delta_{\alpha}} \cong N^{\beta}_{\delta_{\beta}}$ (really unique), and for each $i < \delta_{\alpha}$ the function h maps N^{α}_i to $N^{\beta}_i, p^{\alpha}_i$ to p^{β}_i and $\{p^{\alpha}_i : i < \delta_{\alpha}\} \cup \{p^{\beta}_i : i < \delta_{\beta}\}$ has an upper bound.

3.3 Claim. Assume \boxtimes , *i.e.* (a), (b), (c) of 3.2 and

- (d) $\hat{\mathscr{E}}_0$ is non-trivial, which means: for every χ large enough and $x \in \mathscr{H}(\chi)$ there is $\bar{N} = \langle N_i : i \leq \delta \rangle$ increasingly continuous, $N_i \prec (\mathscr{H}(\chi), \in), x \in N_i, ||N_i|| < \kappa, \bar{N} \upharpoonright (i+1) \in N_{i+1}$ and \bar{N} obeys some $\bar{a} \in \hat{\mathscr{E}}_0$ with some finite error n)
- (e) \mathbb{Q} is a strongly $c\ell(\hat{\mathscr{E}}_0)$ -complete forcing notion (hence adding no new bounded subsets of κ) where $c\ell(\hat{\mathscr{E}}_0) =: \{\bar{a} \upharpoonright [\alpha, \beta] : \bar{a} \in \hat{\mathscr{E}}_0 \text{ and } \alpha \leq \beta \leq \ell g(\bar{a})\}$
- (f) \mathbb{Q} satisfies $(\mu, S^{\Box}, \hat{\mathscr{E}}_0)$ -pic $_{\ell}$ where $\ell \in \{1, 2\}$.

<u>Then</u> \mathbb{Q} satisfies the μ -c.c. provided that

(*) $\ell = 1$ or $\ell = 2$ and \mathcal{E}_0 is fat, see below.

3.4 Definition. We say $\hat{\mathscr{E}}_0 \in \mathfrak{C}^-_{<\kappa}(\mu^*)$ is fat, if in the following game $\partial_{\kappa,\mu^*}(\hat{\mathscr{E}}_0)$ between fat and lean, the fat player has a winning strategy.

A play last κ moves; in the α -th move:

<u>Case 1</u>: α nonlimit.

The player lean chooses a club $Y_{\alpha} \subseteq [\mu^*]^{<\kappa}$, the fat player chooses $a_{\alpha} \in Y_{\alpha}$ and $\mathscr{P}_{\alpha} \subseteq \{c : c \subseteq \alpha \text{ is closed}\}$ of cardinality $< \kappa$.

<u>Case 2</u>: α limit.

We let $Y_{\alpha} = [\mu_0]^{<\kappa}$ and $a_{\alpha} = \bigcup \{a_{\beta} : \beta < \alpha\}$ and the player fat chooses $\mathscr{P}_{\alpha} \subseteq \{C : C \subseteq \alpha \text{ is closed}\}$ of cardinality $< \kappa\}$.

In a play, fat wins iff for some limit ordinal α and $c \in \mathscr{P}_{\alpha}$ we have:

 $(*)(i) \ \beta \in c \Rightarrow c \cap \beta \in \mathscr{P}_{\beta}$ $(ii) \ \alpha = \sup(c)$ $(iii) \ \langle a_{\beta} : \beta \in c \cup \{\alpha\} \rangle \in \hat{\mathscr{E}}_{0}.$

3.5 Remark. 0) With more care in the game Definition 3.10 we incorporate choosing the \bar{p}^{α} 's. In 3.7(*)(ε)(ii) we can add $\langle N_{i+1}^{\beta} : \beta \in \alpha \cap c \rangle$ belongs to N_{i+1}^{α} .

1) In the Definition 3.4, without loss of generality $c \in \mathscr{P}_{\alpha}$ & $\beta \in c \Rightarrow c \cap \beta \in \mathscr{P}_{\beta}$. 2) If κ is strongly inaccessible without loss of generality we have $\mathscr{P}_{\alpha} = \mathscr{P}(\alpha)$, so fat has a winning strategy.

3) In general being fat is a weak demand, e.g. if $\hat{\mathscr{E}}_0 \supseteq \{\bar{a} : \bar{a} = \langle a_i : i \leq \omega \rangle, a_\omega = \bigcup a_n, a_i \in [\mu^*]^{<\kappa}$ is increasing.

Proof of 3.9. Case 1: $\ell = 1$.

Assume $p_{\alpha} \in \mathbb{Q}$ for $\alpha < \mu$ and let χ be large enough and x as in Definition 3.2. We choose $(\bar{N}^{\alpha}, \bar{p}^{\alpha})$ by induction on $\alpha < \mu$ as follows. If $\langle (\bar{N}^{\beta}, \bar{p}^{\beta}) : \beta < \alpha \rangle$ is already defined, as $\hat{\mathscr{E}}_0$ is non-trivial there is a pair $(\bar{N}^{\alpha}, \bar{a}^{\beta})$ which is $\hat{\mathscr{E}}_0$ complementary and $\langle (\bar{N}^{\beta}, \bar{p}^{\beta}) : \beta < \alpha \rangle, \mathbb{Q}, \langle p_{\beta} : \beta < \mu \rangle, p_{\alpha}, \alpha, x$ belong to N_0^{α} and let $\bar{N}^{\alpha} = \langle N_i^{\alpha} : i \leq \delta_i \rangle$. So $p_{\alpha} \in N_0^{\alpha}$ and we can choose $p_{\alpha,i} \in N_{i+1}^{\alpha}$ such that $p_{\alpha} = p_{\alpha,0}$ and $\langle p_{\alpha,i} : i < \delta_{\alpha} \rangle$ is $(\bar{N}^{\alpha}, \mathbb{Q})^1$ -generic.

[Why? By the proof of [Sh 587, B.5.6.4].] Now by " \mathbb{Q} is $(\mu, S^{\Box}, \hat{\mathcal{E}}_0)$ -pic_{ℓ}", for some $\alpha < \beta$ in $S^{\Box}, \{p_i^{\alpha} : i < \delta_{\alpha}\} \cup \{p_i^{\beta} : i < \delta_{\beta}\}$ has a common upper bound hence in particular, p_{α}, p_{β} are compatible.

<u>Case 2</u>: $\ell = 2$.

Assume $p_{\alpha} \in \mathbb{Q}$ for $\alpha < \mu$ and let χ be large enough. Let **St** be a winning strategy for the player fat in the game $\partial_{\kappa,\mu^*}(\hat{\mathscr{E}}_0)$. Now we choose by induction on $i < \kappa$. The tuple $(N_i^{\alpha}, \mathscr{P}_i^{\alpha}, Y_i^{\alpha}, \bar{p}_i^{\alpha})$ where $\bar{p}_i^{\alpha} = \langle p_{i,c}^{\alpha} : c \in \mathscr{P}_i^{\alpha} \rangle$ for $\alpha < \mu$ such that:

 $\boxtimes(a) \ M_i^{\alpha} \prec (\mathscr{H}(\chi), \in, <^*_{\chi})$

- (b) M_i^{α} increasing continuous in *i*
- (c) $||M_i^{\alpha}|| < \kappa$ and $\langle M_i^{\alpha} : j \le i \rangle \in M_{i+1}^{\alpha}$ and $M_i^{\alpha} \cap \kappa \in \kappa$ and $p_{\alpha} \in M_i^{\alpha}$,
- (d) $\langle Y_j^{\alpha}, M_j^{\alpha} \cap \mu^*, \mathscr{P}_j^{\alpha} : j \leq i \rangle$ is an initial segment of a play of $\partial_{\kappa,\mu^*}(\hat{\mathscr{E}}_0)$ in which the player fat uses his winning strategy **St**

- (e) $\langle (M_j^{\beta}, \mathscr{P}_j^{\beta}, Y_j^{\beta}, \bar{p}_i^{\beta}) : j \leq i, \beta \in S \rangle$ belongs to N_{i+1}^{α} (hence $\mathscr{P}_j^{\alpha} \subseteq M_{j+1}^{\alpha}$, etc.)
- (f) $p_{i,c}^{\alpha} \in \mathbb{Q} \cap N_{i+1}^{\alpha}$
- (g) if $c \in \mathscr{P}_i^{\alpha}$ and $\langle p_{j,c\cap j}^{\alpha} : j \in c \rangle$ has an upper bound then $p_{i,c}^{\alpha}$ is such a bound (h) $p_{i,c}^{\alpha} \in \cap \{ \mathscr{I} : \mathscr{I} \in M_i^{\alpha} \text{ is a dense open subset of } \mathbb{Q} \}.$

Can we carry the induction?

For *i* limit let $M_i^{\alpha} = \bigcup \{ M_j^{\alpha} : j < i \}$ and choose $Y_i^{\alpha}, \mathscr{P}_i^{\alpha}$ by clause (d) i.e. by the rules of the game $\partial_{\kappa,\mu^*}(\hat{\mathscr{E}}_0)$ and p_i^{α} by clause (g) + (h) (possible as forcing by \mathbb{Q} adds no new sequences of length $< \kappa$ of members of V). For *i* non-limit, let $\begin{aligned} x_i &= \langle (M_j^{\beta}, \mathscr{P}_j^{\beta}, Y_j^{\hat{\beta}}, \bar{p}_j^{\beta}) : j \leq i, \beta \in S \rangle \text{ let } Y_i^{\alpha} = \{a : a \in [\mu^*]^{<\kappa} \text{ and } \alpha \in a \text{ and} \\ a &= \mu^* \cap \operatorname{Sk}_{(\mathscr{H}(\chi), \in, <_{\chi}^*)}^{<\kappa} (\{x_i \times \mathbb{Q}, \operatorname{St}, \alpha\})\} \text{ (Sk}^{<\kappa} \text{ means } a \in Y_i^{\alpha} \Rightarrow a \cap \kappa \in \kappa) \text{ and} \end{aligned}$ let $(a_i^{\alpha}, \mathscr{P}_i^{\alpha})$ be the move which the strategy **St** dictate to the player fat if the *i*-th move of lean is Y_i^{α} (and the play so far is $\langle (Y_j^{\alpha}, M_j^{\alpha} \cap \mu^*, \mathscr{P}_{\alpha,j}) : j < i \rangle$). Now we choose $M_i^{\alpha} = \operatorname{Sk}_{(\mathscr{H}(\chi), \in, <^*_{\chi})}^{<\kappa}(\{x_i, \mathbb{Q}, \operatorname{St}, \alpha\})$ and \mathscr{P}_i^{α} has already been chosen and $\bar{p}_i^{\alpha} = \langle p_{i,c}^{\alpha} : c \in \mathscr{P}_i^{\alpha} \rangle$ as in the limit case.

Having carried the induction, for each $\alpha \in S$ in the play $\langle (Y_i^{\alpha}, M_i^{\alpha} \cap \mu^*, \mathscr{P}_i^{\alpha}) :$ $i < \kappa$ the player fat wins the game having used the strategy St, hence there are a limit ordinal $i_{\alpha} < \kappa$ and closed $c_{\alpha} \in \mathscr{P}_{i_{\alpha}}$ and $i_{\alpha} = \sup(c_{\alpha})$ and $\langle M_{j}^{\alpha} : j \in c_{\alpha} \cup \{i_{\alpha}\}\rangle$ obeys some member \bar{a}_{α} of $\hat{\mathscr{E}}_0$. As \mathbb{Q} is $\mathcal{C}(\hat{\mathscr{E}}_0)$ -complete we can prove by induction on $j \in c_{\alpha} \cup \{i_{\alpha}\}$ that $\varepsilon < j$ & $\varepsilon \in C_{\alpha} \Rightarrow \mathbb{Q} \models p_{\varepsilon,c_{\alpha}\cap\varepsilon}^{\alpha} \leq p_{j,c_{\alpha}\cap j}^{\alpha}$. Let $\delta_{\alpha} = i_{\alpha}, N_{i}^{\alpha} = M_{i}^{\alpha}$ for $i \leq \delta_{\alpha}$ and $\bar{p}^{\alpha} = \langle p_{i}^{\alpha} : i \in c_{\alpha} \rangle$. Now continue as in

Case 1. $\square_{3.3}$

3.6 Claim. If (*) of Definition 3.2, we can allow Dom(g) to be a subset of $ScapC, \langle A_i :$ $i < \mu$ be an increasingly continuous sequence of sets, $|A_i| < \mu, N^{\alpha}_{\delta_{\alpha}} \subseteq A_{\alpha+1}$ replacing the definition of g, g_0 and by $g_0(\alpha) = N^{\alpha}_{\delta_{\alpha}} \cap A_{\alpha}$ and g_1 by $g_1(\alpha) =$ $(N^{\alpha}_{\delta_{\alpha}}, N^{\alpha}_{i}, c)_{i < \delta_{\alpha}, c \in g_{0}(c)} \cong (and get equivalent definition).$

Remark. If $Dom(q) \cap S^{\square}$ is not stationary, the definition says nothing.

Proof. Straight.

3.7 Claim. Assume clauses \boxtimes , *i.e.* (a), (b), (c) of 3.2 and (d) of 3.3. For $(< \kappa)$ -support iteration $\overline{\mathbb{Q}} = \langle \mathbb{P}_i, \mathbb{Q}_i : i < \alpha \rangle$, if we have $\Vdash_{\mathbb{P}_i} \quad \mathbb{Q}_i$ is

 $(\mu, S^{\Box}, \hat{\mathscr{E}}_0)$ -pic_{ℓ}" for each $i < \alpha$ and forcing with $Lim(\bar{\mathbb{Q}})$ add no bounded subsets of κ , then \mathbb{P}_{γ} and $\mathbb{P}_{\gamma}/\mathbb{P}_{\beta}$, for $\beta \leq \gamma \leq \ell g(\bar{\mathbb{Q}})$ are $\hat{\mathscr{E}}_{0}$ -complete $(\mu, S^{\Box}, \hat{\mathscr{E}}_{0})$ -pic_{ℓ}.

3.8 Remark. We can omit the assumption " $\operatorname{Lim}(\mathbb{Q})$ add no bounded subsets of κ " if we add the assumption $c\ell(\mathscr{E}_0) \in \mathfrak{C}_{<\kappa}(\mu^*)$, see [Sh 587, Def.B.5.1(2)], because with the later assumption the former follows by [Sh 587, B.5.6].

Proof. Similar to [Sh:f, Ch.VIII]. We first concentrate on

Case 1: $\ell = 1$.

It is enough to prove for \mathbb{P}_{α} .

We prove this by induction on α . Let $\Vdash_{\mathbb{P}_i} ``\mathbb{Q}_i$ is $(\mu, S^{\Box}, \hat{\mathscr{E}}_0)$ -pic_{ℓ} as witnessed by x_i and let $\chi_i = \operatorname{Min}\{\chi : x_i \in \mathscr{H}(\chi)\}$ ".

Let $x = (\mu^*, \kappa, \mu, S^{\Box}, \hat{\mathscr{E}}_0, \langle (\chi_i, x_i) : i < \ell g(\bar{\mathbb{Q}}) \rangle)$ and assume χ is large enough such that $x \in \mathscr{H}(\underline{\chi})$ and let $\langle (\bar{N}^{\alpha}, \bar{p}^{\alpha}) : \alpha \in S \rangle$ be as in Definition 3.2, so $S \subseteq S^{\Box}$

is stationary and $\bar{N}^{\alpha} = \langle N_i^{\alpha} : i \leq \delta_{\alpha} \rangle$. We define a g by

 $\boxtimes_1 g$ is a function with domain S

$$\begin{split} \boxtimes_2 \ g(\alpha) &= \langle g_{\ell}(\alpha) : \ell < 2 \rangle \text{ where } \\ g_0(\alpha) &= (N^{\alpha}_{\delta_{\alpha}}) \cap (\bigcup_{\beta < \alpha} N^{\beta}_{\delta_{\beta}}) \\ g_1(\alpha) &= \text{the isomorphic type of } (N^{\alpha}_{\delta_{\alpha}}, N^{\alpha}_i, p^{\alpha}_i, c)_{c \in g_0(\alpha)} \end{split}$$

Let C be a club of μ such that $\alpha \in S \cap C \Rightarrow \langle (\bar{N}^{\beta}, \bar{p}^{\beta}) : \beta < \alpha \rangle \in N_0^{\alpha}$, (recall $\ell = 1$).

Fix y such that $S_y = \{ \alpha \in S : g(\alpha) = y \text{ and } \alpha \in C \}$ is stationary. Let $w_\alpha = \bigcup_{i < \delta} \text{Dom}(p_i^\alpha), w_y^* = w_\alpha \cap g_0(\alpha) \text{ for } \alpha \in S_y \text{ (as } \alpha \in S_y, \text{ clearly the set } \}$ does not depend on the α). For each $\zeta \in w_y^*$ we define a \mathbb{P}_{ζ} -name, $S_{y,\zeta}$ as follows:

$$S_{y,\zeta} = \{ \alpha \in S_y : (\forall i < \delta_\alpha) (p_i^\alpha \upharpoonright \zeta \in G_{\mathbb{P}_\zeta}) \}.$$

Now we try to apply Definition 3.2 in $\mathbf{V}^{\mathbb{P}_{\zeta}}$ to

 $\left\langle (\langle N_i^{\alpha}[\tilde{G}_{\mathbb{P}_{\zeta}}] : i \leq \delta_{\alpha} \rangle, \langle p_i^{\alpha}(\zeta)[\tilde{G}_{\mathbb{P}_{\zeta}}] : i < \delta_{\alpha} \rangle) : \alpha \in \tilde{S}_{y,\zeta}[\tilde{G}_{\mathbb{P}_{\zeta}}] \right\rangle. \quad \text{Clearly, if } S_{y,\zeta}[\tilde{G}_{\mathbb{P}_{\zeta}}]$ is a stationary subset of μ , we can apply it and $g_{y,\zeta}$ be the \mathbb{P}_{ζ} -name of a function with domain $S_{y,\zeta}$ defined like g in (*) of Definition 3.2. Now $g_{y,\zeta}$ is well defined, and actually can be computed if we use $A_{\beta} = \bigcup \{ N_{\delta_{\alpha}}^{\alpha} [\tilde{G}_{\mathbb{P}_{\zeta}}] : \alpha < \beta \}$. So by an induction hypothesis on α there is a suitable \mathbb{P}_{ζ} -name C_{ζ} of a club of μ such that in addition, if $\mathcal{I}_{y,\zeta}[G_{\mathbb{P}_{\zeta}}]$ is not a stationary subset of μ , let $\mathcal{L}_{\zeta}[G_{\mathbb{P}_{\zeta}}]$ be a club of μ

disjoint to it. But as \mathbb{P}_{ζ} satisfies the μ -c.c. without loss of generality $C_{\zeta} = C_{\zeta}$ so $C' = C \cap \bigcap_{\zeta \in w_y^*} C_{\zeta}$ is a club of μ . Now choose $\alpha_1 < \alpha_2$ from $S_y \cap C'$ and we choose

by induction on $\varepsilon \in w' = w_y^* \cup \{0, \ell g(\bar{Q})\}$ a condition $q_{\varepsilon} \in \mathbb{P}_{\varepsilon}$ such that:

$$\boxtimes_3(i) \ \varepsilon_1 < \varepsilon \Rightarrow q_{\varepsilon_1} = q_{\varepsilon} \upharpoonright \varepsilon_1$$

(*ii*) q_{ε} is a bound to $\{p_u^{\alpha_1} \upharpoonright \varepsilon : i < \delta_{\alpha_1}\} \cup \{p_i^{\alpha_2} \upharpoonright \varepsilon : i < \delta_{\alpha_2}\}.$

For $\varepsilon = 0$ let $q_0 = \emptyset$. We have nothing to do really if ε is with no immediate predecessor in w, we let q_{ε} be $\cup \{q_{\varepsilon_1} : \varepsilon_1 < \varepsilon, \varepsilon_1 \in w'\}$. So let $\varepsilon = \varepsilon_1 + 1, \varepsilon_1 \in w'$; now if $q_{\varepsilon} \in G \subseteq \mathbb{P}_{\varepsilon_1,2}, G$ generic over V, then $\alpha_1, \alpha_2 \in S_{y,\varepsilon_1}[G]$, hence $S_{y,\zeta}[G] \cap C_{\varepsilon_1}$ is non-empty, hence is stationary, and we use Definition 3.2.

 $\underline{\text{Case 2: } p = 2.}$

Similar proof.

3.9 Claim. Assume $\mu = cf(\mu) > \kappa$, $(\forall \alpha < \mu)(|\alpha|^{<\kappa} < \mu)$, $S \subseteq \{\delta < \mu : cf(\delta) \ge \kappa\}$ is stationary. If $|\mathbb{Q}| \le \kappa$ or just $< \mu, \mathcal{E}_0 \in \mathfrak{C}^-_{<\kappa}(\mu^*)$, that is $\subseteq \{\bar{a} : \bar{a} \text{ increasingly}$ continuous of length $< \kappa, a_i \in [\mu^*]^{<\kappa}$ and $a_i \cap \kappa \in \kappa\}$ non-trivial, possibly just for one cofinality say \aleph_0 , then \mathbb{Q} satisfies κ^+ -pic_l.

 $\Box_{3.7}$

Proof. Trivial, we get same sequence of condition or just see the proof of [Sh 587, B.7.4]. $\Box_{3.9}$

<u>3.10 Discussion</u>: 1) What is the use of pic?

In the forcing axioms instead " $|\mathbb{Q}| \leq \kappa$ " we can write " \mathbb{Q} satisfies the $(\mu, S^{\Box}, \hat{\mathscr{E}}_0)$ -pic". This strengthens the axioms.

In [Sh:f] in some cases the length of the forcing is bounded (there ω_2) but here no need (as in [Sh:f, Ch.VII,§1]).

This section applies to all cases in [Sh 587] and its branches.

2) Note that we can demand that the p_i^{α} satisfies some additional requirements (in Definition 3.2) say $p_{2i}^{\alpha} = F_{\mathbb{Q}}(\bar{N} \upharpoonright (2i+1), \bar{p}^{\alpha} \upharpoonright (2i+1))$.

Let us see how this gives some improvement of the results of [Sh 576, B.8] on $\mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*)$, see [Sh 587, B.5.7.3].

3.11 Definition. Assume

Let $Ax_{\theta_1,\theta_2}^{\kappa}(\hat{\mathscr{E}}_0,\hat{\mathscr{E}}_1,\mathscr{E})$, the forcing axiom for $(\hat{\mathscr{E}}_0,\hat{\mathscr{E}}_1,\mathscr{E})$, and $\bar{\theta} = (\theta_0,\theta_1,\theta_2)$ be the following statement:

 \boxtimes if

- (i) \mathbb{Q} is a focing notion of cardinality $< \theta_1$
- (*ii*) \mathbb{Q} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$, see Definition [Sh 587, B.5.9(3)]
- (*iii*) \mathbb{Q} satisfies $(\theta_0, S^{\Box}, \hat{\mathscr{E}})$ -pic $_{\ell}$
- (*iv*) \mathscr{I}_i is a dense subset of \mathbb{Q} for $i < i^* < \theta_2$,

<u>then</u> there is a directed $H \subseteq \mathbb{Q}$ such that $(\forall i < i^*)(H \cap \mathscr{I}_i \neq \emptyset)$.

3.12 Theorem. Assume \circledast of Definition 3.11 and $\mu = \mu^{<\theta_1} = \mu^{<\theta_0} \ge \theta_0 + \theta_2$. <u>Then</u> there is a forcing notion \mathbb{P} such that:

- (α) \mathbb{P} is complete for $\hat{\mathscr{E}}_0$
- (β) \mathbb{P} has cardinality μ
- (γ) \mathbb{P} satisfies the θ_0 -c.c. and even the $(\kappa, \theta_0, \hat{\mathscr{E}})$ -pic_{ℓ}
- (δ) \mathbb{P} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$, hence $\Vdash_{\mathbb{P}} "(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}^{\bigstar}_{<\kappa}(\mu^*)"$ and more
- $(\varepsilon) \Vdash_{\mathbb{P}} ``Ax_{\bar{\theta}}^{\kappa}(\hat{\mathscr{E}}_0,\hat{\mathscr{E}}_1,\mathscr{E}).$

Proof. Like the proof of [Sh 587, B.8.2], using 3.7 instead of [Sh 587, B.7.4]. $\Box_{3.12}$

We may wonder how large can a stationary $S \subseteq \kappa$ be?

3.13 Claim. 1) Assume

- (*) (a) κ is strongly inaccessible $> \aleph_0$
 - (b) $S \subseteq \kappa$ is stationary
 - (c) for letting $\mu^* = \kappa$ and $\hat{\mathscr{E}}_0 = \hat{\mathscr{E}}_0[S] = \{\bar{a} \in \mathfrak{C}_{<\kappa}(\mu^*) \colon \text{for every } i \leq \ell g(\bar{a}) \text{ we have } a_i \notin S\}$ we have $\hat{\mathscr{E}}_0 \in \mathfrak{C}_{<\kappa}(\mu^*)$
 - (d) we let $\hat{\mathscr{E}}_1 = \hat{\mathscr{E}}_1[S] = \{\bar{a} \in \mathfrak{C}_{<\kappa}(\mu^*): \text{ for every nonlimit } i \leq ellg(\bar{a}) \text{ we have } a_i \notin S\}.$

Then

- (α) $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1) \in \mathfrak{C}_{<\kappa}(\mu^*)$, see [Sh 587, B.5.7(3)].
- 2) The parallel of 2.11.

We now deal with forcing the failure of diamond on the set of inaccessibles.

26

SAHARON SHELAH

3.14 Claim. Assume

- (a) $\kappa, S, \hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1$ are as in 3.13
- (b) if $S_{bd} =: \{\theta < \kappa : \theta \text{ strongly inaccessible, } S \cap \theta \text{ is stationary in } \theta \text{ and } \diamondsuit_{S \cap \theta} \}$ is not a stationary subset of κ
- (c) $\bar{A} = \langle A_{\alpha} : \alpha \in S \rangle, A_{\alpha} \subseteq \alpha$
- (d) $\mathbb{Q} = \mathbb{Q}_{\bar{A}_1}$ is as in Definition 3.15 below
- (e) $\hat{\mathscr{E}} \subseteq \hat{\mathscr{E}}_0$ is nontrivial. <u>Then</u>
 - (α) \mathbb{Q} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$
 - (β) \mathbb{Q} satisfies the $(\kappa, \kappa^+, \hat{\mathscr{E}})$ -pic_{ℓ}
 - (γ) \mathbb{Q} satisfies the κ^+ -c.c.

3.15 Definition. For $\kappa = cf(\kappa), S \subseteq \kappa = sup(S), \overline{A} = \langle A_{\alpha} : \alpha \in S \rangle$, with $A_{\alpha} \subseteq \alpha$ we define the forcing notions $\mathbb{Q} = \mathbb{Q}_{\overline{A}}^{ad}$ as follows:

- (a) $p \in \mathbb{Q}$ iff
 - (*i*) $p = (c, A) = (c^p, A^p)$
 - (*ii*) c is \emptyset or a closed bounded subset of κ hence has a last element
 - (*iii*) $A \subseteq \sup(c)$ such that
 - (*iv*) if $\alpha \in C \cap S$ then $A \cap \alpha \neq A_{\alpha}$
- (b) $p \le q$ iff
 - (i) c^p is an initial segment of c^q
 - (*ii*) $A^p = A^q \cap \sup(c^p)$.

Proof of 3.14. We concentrate on part (1), part (2)'s proof is similar. Now

- (*)₁ for every $\alpha < \kappa$, $\mathscr{I}_{\alpha} = \{p \in \mathbb{Q} : \alpha < \sup(c^p)\}$ is dense open. [Why? If $p \in \mathbb{Q}$, let $\beta = \sup(c^p) + 1 + \alpha$ and $q = (c^p \cup \{\beta\}, A^p)$, so $p \leq q \in \mathscr{I}_{\alpha}$.]
- (*)₂ If $\delta < \kappa$ is a limit ordinal, $\langle p_i : i < \delta \rangle$ is $\leq_{\mathbb{Q}}$ -increasing and $\sup(c^{p_i}) \leq \alpha_{i+1} < \sup(c^{p_{i+1}})$ for $i < \delta$, and for limit $i, \alpha_i = \cup \{\alpha_j : j < i\}$ and $\{\alpha_{1+i} : i < \delta\}$

is disjoint to S, then $p = (\bigcup_{i < \delta} c_i^{p_i}, \bigcup_{i < \delta} A^{p_i})$ is a $\leq_{\mathbb{Q}}$ -lub of $\langle p_i : i < \delta \rangle$.

[Why? Just think.]

(*)₃ forcing with \mathbb{Q} add no new sequences of length $< \kappa$ of ordinals (or members of **V**).

[Why? By $(*)_2$ + the assumption \circledast , clause (c) of Claim 3.13 as in [Sh 587, B.6].]

- (*)₅ \mathbb{Q} is complete for $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$, see [Sh 587, Def.B.5.9(3)]. [Why? Let χ be large enough and let $\langle M_i : i < \delta \rangle$ be ruled by $(\hat{\mathscr{E}}_0, \hat{\mathscr{E}}_1)$, with $\hat{\mathscr{E}}_0$ -approximation $\langle (\bar{N}^i, \bar{a}^i) : i < \delta \rangle$, see [Sh 587, Def.B.5.9(1)] and $r \in \mathbb{Q} \cap M_0$ and $S, \kappa, \bar{A} \in M_0$ and we have to prove that the player COM has a winning strategy in the game $\partial_{\bar{M}, \langle \bar{N}^i: i < \delta \rangle}(\mathbb{Q}, r)$.]

For this we proved by induction on $\delta < \kappa$ (a limit ordinal) the statement

$$\begin{split} \boxtimes_{\delta} & \text{if } \langle M_{i} : i \leq \delta \rangle, \langle \bar{N}^{i} : i < \delta \rangle, r \text{ are as above (but } \alpha \text{ may be a nonlimit} \\ & \text{ordinal) } \bar{b} = \langle b_{i} : i < \delta \rangle, b_{i} \in [M_{i+1} \cap \kappa \backslash M_{i}]^{\leq ||M_{i}||} \text{ and } B \subseteq M_{\delta} \cap \kappa \text{ (or} \\ & \text{just } B \subseteq \cup \{b_{i} : i < \delta\}, \text{ then we can find } p \text{ such that } r \leq p \in \mathbb{Q} \text{ and} \\ & A^{p} \cap b_{i} = B \cap b_{i} \text{ for every } i < \delta \text{ and } \sup(c^{p}) = M_{\delta} \cap \kappa. \end{split}$$

<u>Case 1</u>: α nonlimit. Trivial.

<u>Case 2</u>: α limit and for some $i < \alpha$ we have $cf(\delta) \leq ||M_i||$.

Let $\theta = cf(\theta)$ and let $\langle \delta_{\varepsilon} : \varepsilon \leq \theta \rangle$ be increasing continuous, $\delta_0 = 0$, $||M_{\delta_1}|| > \theta$ and $\delta_{\theta} = \delta$.

Choose $b \subseteq M_{\delta_1+1} \cap \kappa \backslash M_{\delta_1} \backslash b_{\delta_1}$ of cardinality θ and choose $b' \subseteq b$ such that $\zeta \in (\varepsilon, \delta] \Rightarrow A_{M_{\delta_{\zeta}} \cap \kappa} \cap b \neq b'$. By the induction hypothesis, we can find $r_{\delta_1} \in M_{\delta_1+1}$ such that $\sup(c^{r_1}) = M_{\delta_1} \cap \kappa, r \leq r_{\delta_0}, \beta < \delta_1 \Rightarrow A^{r_1} \cap b_{\beta} = B \cap b_{\beta}$ and r_1 is (M_{β}, \mathbb{Q}) -generic for every $\beta \leq \delta_1$. Let r_1^+ be such that $r_{\delta_1} \leq r_{\delta_1}^+ \in \mathbb{Q} \cap M_{\delta_1+1}$ and $\sup(b_{\delta_1} \cup b) < \sup(r_{\delta_1}^+)$ and $A^{r_{\delta_1}^+} \cap b_{\delta_1} = B \cap b_{\delta_1}$ and $A^{r_1^+} \cap b = b'$. Now we choose by induction on $\varepsilon \in [2, \delta]$, a condition r_{ε} such that $r_{\varepsilon} \in M_{\delta_{\varepsilon}+1}$, $\sup(c^{r_{\varepsilon}}) = M_{\delta_{\varepsilon}} \cap \kappa, r_1^+ \leq r_{\varepsilon}, [\zeta \in [2, \varepsilon) \Rightarrow r_{\zeta} \leq r_{\varepsilon}]$ and $\beta < \delta_{\varepsilon} \Rightarrow A^{r_{\varepsilon}} \cap b_{\beta} = B \cap b_{\varepsilon}$ and r_{ε} is (M_{γ}, \mathbb{Q}) -generic for $\gamma \leq \delta_{\varepsilon}$. For limit $\varepsilon, r_{\varepsilon}$ is uniquely determined and it $\in \mathbb{Q}$ by the choice of r_1^+ . For ε nonlimit use the induction hypothesis for $\langle M_{\beta} : \beta \in [\delta_{\varepsilon} + 1, \delta_{\varepsilon+1}] \rangle$.

<u>Case 3</u>: Neither Case 1 nor Case 2.

So α is strongly inaccessible, call it θ and $\theta = M_{\theta} \cap \kappa$; so as $\{\kappa, S\} \in M_{\theta} \prec (\mathscr{H}(\chi), \in, <^*_{\chi})$, necessarily $\delta = \sup(S), \delta \in S_{bd}$ and $\neg \diamondsuit_{\theta \cap S}$ (e.g. $\theta \cap S$ is not

stationary in S). Choose for each $\beta < \theta$, an ordinal $\gamma_{\beta} \in M_{\beta+1} \cap \kappa \setminus M_{\beta} \setminus b_{\beta}$ and let $A'_i = \{j < i : \gamma_j \in A_{M_\beta \cap \kappa}\}$ for $i \in S \cap \theta$.

Now $\langle A'_i : i \in S \cap \theta \rangle$ cannot be a diamond sequence for θ hence we can find $X \subseteq \theta$ and club C^- of θ such that $\delta \in X \cap S \Rightarrow A^-_{\delta} \neq X \cap \delta$. Let $C = \{i < \theta : i \text{ limit}, (\forall j < i)(\gamma_j < i) \text{ and } i \in C^- \text{ and } M_i \cap \kappa = i\}$, clearly C is a club of θ . Let $b^+_{\beta} = a_{\beta} \cup \{\gamma_{\beta}\}, B^+ = B \cup \{\gamma_{\beta} : \beta \in X\}$, and proceed naturally. $\Box_{3.14}$

3.16 Remark. So we can iterate and get that (G.C.H. and) diamond fail for "most" stationary subsets of any strongly inaccessibles. We shall return to this elsewhere.

§4 EXISTENCE OF NON-FREE WHITEHEAD (AND $Ext(G, \mathbb{Z}) = \{0\}$) ABELIAN GROUPS IN SUCCESSOR OF SINGULARS

In [Sh 587], the consistency with GCH of the following is proved for some regular uncountable κ : there is a κ -free nonfree abelian group of cardinality κ , and all such groups are Whitehead. We use κ inaccessible, here we ask: is this assumption necessary for the first such κ ?

The following claim seems to support the hope for a positive answer.

4.1 Claim. Assume

- (a) λ is strong limit singular, $\sigma = cf(\lambda) < \lambda, \kappa = \lambda^+ = 2^{\lambda}$
- (b) $S \subseteq \{\delta < \kappa : cf(\delta) = \sigma\}$ is stationary
- (c) S does not reflect or at least
- $(c)^{-}$ $\bar{A} = \langle A_{\delta} : \delta \in S \rangle, otp(A_{\delta}) = \sigma, \sup(A_{\delta}) = \delta$ and \overline{A} is λ -free, i.e., for every $\alpha^* < \kappa$ we can find $\langle \alpha_{\delta} : \delta \in \alpha^* \cap S \rangle, \alpha_{\delta} < \delta$ such that $\langle A_{\delta} \setminus \alpha_{\delta} : \delta \in S \cap \alpha^* \rangle$ is a sequence of pairwise disjoint sets
 - (d) $\langle G_i : i \leq \sigma \rangle$ is a sequence of abelian groups such that:
 - $\begin{aligned} (\alpha) \quad \delta < \sigma \ limit \ \Rightarrow G_{\delta} = \bigcup_{i < \delta} G_i \\ (\beta) \quad i < j \le \sigma \Rightarrow G_j/G_i \ free \ and \ G_i \subseteq G_j \end{aligned}$

 - $\begin{array}{ll} (\gamma) & G_{\sigma} / \bigcup_{i < \sigma} G_i \ is \ not \ Whitehead \\ (\delta) & |G_{\sigma}| < \lambda \end{array}$

$$(\varepsilon) \quad G_0 = \{0\}.$$

Then

1) There is a strongly κ -free abelian group of cardinality κ which is not Whitehead, in fact $\Gamma(G) \subseteq S$.

2) There is a strongly κ -free abelian group G^* of cardinality κ satisfying $HOM(G^*, \mathbb{Z}) =$ $\{0\}$, in fact $\Gamma(G^*) \subseteq S$ (in fact the same abelian group can serve).

3) We can rephrase clause $(d)(\gamma)$ of the assumption, i.e. " $G_{\sigma} / \bigcup_{i < \sigma} G_i$ is not White-

head" by:

$$(d)(\gamma)^{-}$$
 some $f^{*} \in HOM(\bigcup_{i < \sigma} G_{i}, \mathbb{Z})$ cannot be extended to $f' \in HOM(G_{\sigma}, \mathbb{Z})$.

We first note:

4.2 Claim. Assume

- (a) λ strong limit singular, $\sigma = cf(\lambda) < \lambda, \kappa = 2^{\lambda} = \lambda^+$
- (b) $S \subseteq \{\delta < \kappa : cf(\delta) = \sigma \text{ and } \lambda^{\omega} \text{ divides } \delta \text{ for simplicity}\}$ is stationary
- (c) $A_{\delta} \subseteq \delta = \sup(A_{\delta}), \ otp(A_{\delta}) = \sigma, A_{\delta} = \{\alpha_{\delta,\zeta} : \zeta < \sigma\}$ increasing with ζ
- (d) let $h_0: \kappa \to \kappa$ and $h_1: \kappa \to \sigma$ be such that $(\forall \alpha < \kappa)(\forall \zeta < \sigma)(\forall \gamma \in (\alpha, \kappa))(\exists^{\lambda}\beta \in [\gamma, \gamma + \lambda])(h_0(\beta) = \alpha \text{ and } h_1(\beta) = \zeta),$ and $(\forall \alpha < \kappa)h_0(\alpha) \le \alpha$
- (e) Let $\overline{\lambda} = \langle \lambda_{\zeta} : \zeta < \sigma \rangle$ be increasing continuous with limit λ such that $\lambda_0 = 0$ and $\zeta < \sigma \Rightarrow \lambda_{\zeta+1} = cf(\lambda_{\zeta+1}) > \sigma$.

<u>Then</u> we can choose $\langle (g_{\delta}, \langle \gamma_{\zeta}^{\delta} : \zeta < \lambda \rangle) : \delta \in S \rangle$ such that

 $\bigcirc_1(i) \langle \gamma_{\zeta}^{\delta} : \zeta < \lambda \rangle$ is strictly increasing with limit δ

(ii) if
$$\lambda_{\zeta} \leq \xi < \lambda_{\zeta+1}$$
 then $h_0(\gamma_{\xi}^{\delta}) = h_0(\gamma_{\lambda_{\zeta}}^{\delta}) = \alpha_{\delta,\zeta}$ and $h_1(\gamma_{\xi}^{\delta}) = h_1(\gamma_{\lambda_{\zeta}}^{\delta}) = \zeta$

- $(iii) \ h^*_\delta \ a \ partial \ function \ from \ \kappa \ to \ \kappa, sup(Dom(h^*_\delta)) < \gamma^\delta_\zeta \ for \ \delta \in S$
- \bigcirc_2 for every $f : \kappa \to \kappa, B \in [\kappa]^{<\lambda}$ and $g_{\zeta}^2 : \kappa \to \lambda_{\zeta+1}$ for $\zeta < \sigma$ there are stationarily many $\delta \in S$ such that:
 - (i) $h^*_{\delta} = f \upharpoonright B$
 - (ii) if $\lambda_{\zeta} \leq \xi < \lambda_{\xi+1}$ then $g_{\zeta}^2(\gamma_{\xi}^{\delta}) = g_{\zeta}^2(\gamma_{\lambda_{\zeta}}^{\delta})$.

Remark. Note that when subtraction or division³ is meaningful, \bigcirc_2 is quite strong.

Proof. By the proofs of 1.1, 1.2 (can use guessing clubs by $\alpha_{\delta,\zeta}$'s, can demand that $\beta_{2\zeta}^{\delta}, \beta_{2\zeta+1}^{\delta} \in [\alpha_{\delta,\zeta}, \alpha_{\delta,\zeta} + \lambda).$

But to help the reader we give a proof. Let $\lambda = \sum_{i < \sigma} \lambda_i, \lambda_i$ increasing continuous, $\lambda_{i+1} > 2^{\lambda_i}, \lambda_0 = 0, \lambda_1 > 2^{\sigma}$. Let $M_i \prec (\mathscr{H}((2^{\kappa})^+), \in, <^*)$ be increasing continuous, $||M_i|| = \lambda, \langle M_j : j \leq i \rangle \in M_{i+1}, \lambda + 1 \subseteq M_i$ and $\{\bar{A}, h_0, h_1, \bar{\lambda}\} \in M_0$. For $\alpha < \lambda^+$, let $\alpha = \bigcup_{i < \sigma} a_{\alpha,i}$ such that $|a_{\alpha,i}| \leq \lambda_i$ and $a_{\alpha,i} \in M_{\alpha+1}$ and even $\langle < a_{\beta,i} : i < \sigma >: \beta \leq \alpha \rangle \in M_{\alpha+1}$. Without loss of generality $\delta \in S \Rightarrow \delta$ divisible by λ^{ω} (ordinal exponentiation). For $\delta \in S$

³i.e. x_{β} belongs to some additive group G^* for $\beta < \kappa, \hat{g} \in \operatorname{Hom}(G^*, H^*), g(\beta) = \hat{g}(x_{\beta})$ then for some δ as in \bigodot_2 , we have $g(x_{\beta_{\xi}^{\delta}}^0 - x_{\beta_{\lambda_{\zeta}}^{\delta}})$ is 0_{H^*} ; similarly for multiplicative groups

let $\bar{\beta}^{\delta} = \langle \beta_i^{\delta} : i < \sigma \rangle$ be increasing continuous with limit δ, β_i^{δ} divisible by λ and > 0. For $\delta \in S$ let $\langle b_i^{\delta} : i < \sigma \rangle$ be such that: $b_i^{\delta} \subseteq \beta_i^{\delta}, |b_i^{\delta}| \leq \lambda_i, b_i^{\delta}$ is increasingly continuous in i and $\delta = \bigcup_{i < \sigma} b_i^{\delta}$ (e.g. $b_i^{\delta} = \bigcup_{j_1, j_2 < i} a_{\beta_{j_1, j_2}^{\delta}} \cup \lambda_i$). We

further demand $\lambda_i \subseteq b_i^{\delta} \cap \lambda$. Let $\langle f_{\alpha}^* : \alpha < \lambda^+ \rangle$ list the two-place functions with domain an ordinal $\langle \lambda^+$ and range $\subseteq \lambda^+$. Let H be the set of functions h, $\operatorname{Dom}(h) \in [\kappa]^{\langle \lambda}$, $\operatorname{Rang}(h) \subseteq \kappa$, so $|H| = \kappa$. Let $S = \bigcup \{S_h : h \in H\}$, with each S_h stationary and $\langle S_h : h \in H \rangle$ pairwise disjoint. Without loss of generality $\delta \in S_h \Rightarrow \sup(\operatorname{Dom}(h)) < \beta_0^{\delta}$. Let h_{δ}^* be h when $\delta \in S_h$. We now fixed $h \in H$ and will choose $\bar{\gamma}^{\delta} = \langle \gamma_i^{\delta} : i < \lambda \rangle$ for $\delta \in S_h$ such that clauses $\bigcirc_1 + \bigcirc_2$ for our fixed h(and $\delta \in S_h$ ignoring h in \bigcirc_2) hold, this clearly suffices.

Now for $\delta \in S_h$ and $i < \sigma$ and $g \in {}^{\sigma}\sigma$ we can choose $\zeta_{i,g,\varepsilon}^{\delta}$ (for $\varepsilon < \lambda_{i+1}$) such that:

- (A) $\langle \zeta_{i,q,\varepsilon}^{\delta} : \varepsilon < \lambda_{i+1} \rangle$ is a strictly increasing sequence of ordinals
- (B) $\beta_i^{\delta} < \zeta_{i,g,\varepsilon}^{\delta} < \beta_{i+1}^{\delta}$, (can even demand $\zeta_{i,j,\varepsilon}^{\delta} < \beta_i^{\delta} + \lambda$)
- $(C) \ h_0(\zeta_{i,g,\varepsilon}^{\delta}) = \alpha_{\delta,i} \text{ and } h_1(\zeta_{i,g,\varepsilon}^{\delta}) = i$
- (D) for⁴ every $\alpha_1, \alpha_2 \in b_{g(i)}^{\delta}$, the sequence $\langle \operatorname{Min}\{\lambda_{g(i)}, f_{\alpha_1}^*(\alpha_2, \zeta_{i,g,\varepsilon}^{\delta}) : \varepsilon < \lambda_{i+1}\} \rangle$ is constant i.e. one of the following occurs:
 - (α) $\varepsilon < \lambda_{i+1} \Rightarrow (\alpha_2, \zeta_{i,g,\varepsilon}^{\delta}) \notin \operatorname{Dom}(f_{\alpha_1}^*)$
 - (β) $\varepsilon < \lambda_{i+1} \Rightarrow f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,g,\varepsilon}) = f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,j,0})$ well defined
 - (γ) $\varepsilon < \lambda_j, f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,g,\varepsilon}) \ge \lambda_j$, well defined. We can add $\langle f^*_{\alpha_1}(\alpha_2, \zeta^{\delta}_{i,g,\varepsilon}) : \varepsilon < \lambda_i \rangle$ is constant or strictly increasing.
- (E) for some $j < \sigma$, we have $(\forall \varepsilon < \lambda_{i+1})[\zeta_{i,g,\varepsilon}^{\delta} \in a_{\alpha,j}]$ where $\alpha = \sup\{\zeta_{i,g,\varepsilon}^{\delta} : \varepsilon < \lambda_{i+1}\},$ (remember $\sigma \neq \lambda_{i+1}$ are regular).

For each function $g \in {}^{\sigma}\sigma$ we try $\bar{\gamma}^{g,\delta} = \langle \gamma_{\varepsilon}^{\delta,g} : \varepsilon < \lambda \rangle$ be: if $\lambda_i \leq \varepsilon < \lambda_{i+1}$ then $\gamma_{\alpha}^{\delta,g} = \zeta_{i,g,\varepsilon}^{\delta}$. Now for some g it works. $\Box_{4.2}$

Proof of 1.2(1). Let $M = \bigcup \{M_{\alpha} : \alpha < \kappa\}, M_{\alpha} \prec (\mathscr{H}(2^{\kappa})^+), \in)$ has cardinality λ, M_{α} is increasing continuous, $\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha}$ and $\langle F_i : i < \sigma \rangle$ belongs to M_0 . Let $E_0 = \{\delta < \kappa : M_{\delta} \cap \kappa = \delta\}$ and $E = \operatorname{acc}(E)$. The proof is like the proof of 4.2 with the following changes:

(i) $\beta_i^{\delta} \in E_0$ for $\delta \in S \cap E$

⁴we can use a colouring which uses e.g. $\langle \zeta_{j,g,\varepsilon}^{\delta} : j < i, \varepsilon < \lambda_{j+1} \rangle$ as a parameter

32

SAHARON SHELAH

(*ii*) in clause (A) we demand $\langle \zeta_{i,g,\varepsilon}^{\delta} : g \in G, \varepsilon < \lambda_{i+1} \rangle$ belongs to $M_{\beta_{i+1}^{\delta}}$ (hence also $\langle \zeta_{j,g,\varepsilon}^{\delta} : g \in G, \varepsilon < \lambda_{j+1} : j \leq i \rangle$ belongs to $M_{\beta_{i+1}^{\delta}}$)

(*iii*) clause (c) is replaced by: $\zeta_{i,g,\varepsilon}^{\delta} \in F_i(\{\zeta_{j,g \upharpoonright (j+1),\varepsilon}^{\delta} : \varepsilon < \lambda_{j+1} \text{ and } j < i\}).$ $\Box_{1.2}$

Proof of 4.1. 1) We apply 4.2 to the $\langle A_{\delta} : \delta \in S \rangle$ from 4.1, and any h_0, h_1 as in clause (d) of 4.2.

Let $\{t_{\gamma}^{i,j} + G_i : \gamma < \theta^{i,j}\}$ be a free basis of G^j/G^i for $i < j \le \sigma$. If $i = 0, j = \sigma$ we may omit the i, j, i.e. $t_{\zeta} = t_{\zeta}^{0,\sigma}$ and $\theta = \theta^{0,\sigma}$. Let $\theta + \aleph_0 = |G_{\sigma}| < \lambda$; actually $\theta^{\zeta,\zeta+1} < \lambda_{\zeta}$ is enough; without loss of generality $\theta < \lambda_1$ in 4.2. Let $\beta_{\zeta,i}^{\delta} = \gamma_{\xi(\zeta,i)}^{\delta}$ where $\xi(\zeta,i) = \bigcup_{\varepsilon < \zeta} \lambda_{\varepsilon} + 1 + i$ for $\delta \in S, \zeta < \sigma, i < \theta$.

Let $\beta_{\delta}(*) = \text{Min}\{\beta : \beta \in \text{Dom}(h_{\delta}^*), h_{\delta}^*(\beta) \neq 0\}$, if well defined where h_{δ}^* is from 4.2.

Clearly (see $\bigcirc_1(iii)$ of 4.2) we have $\beta_{\delta}(*) \notin \{\beta_{\zeta,i}^{\delta} : \zeta < \sigma, i < \theta\}$ (or omit $\lambda_{\zeta}, \beta_{\zeta,i}^{\delta}$ for ζ too small). We define an abelian group G^* : it is generated by $\{x_{\alpha} : \alpha < \kappa\} \cup \{y_{\gamma}^{\delta} : \gamma < \theta \text{ and } \delta \in S\}$ freely except for the relations:

$$\begin{aligned} (*)_1 \ \sum_{\gamma < \theta} a_{\gamma} y_{\gamma}^{\delta} &= \sum \left\{ b_{\zeta,\gamma} (x_{\beta_{\zeta,\gamma}^{\delta}} - x_{\gamma_{\lambda_{\zeta}}^{\delta}}) : \zeta < \sigma \text{ and } \gamma < \theta^{\zeta,\zeta+1} \right\} \\ \text{when } G_{\sigma} &\models \sum_{\gamma < \theta^{0,\sigma}} a_{\gamma} t_{\gamma} = \sum \left\{ b_{\zeta,\gamma} t_{\gamma}^{\zeta,\zeta+1} : \zeta < \sigma \text{ and } \gamma < \theta^{\zeta,\zeta+1} \right\} \text{ where} \\ a_{\gamma}, b_{\zeta,\gamma} \in \mathbb{Z} \text{ but all except finitely many are zero.} \end{aligned}$$

There is a (unique) homomorphism \mathbf{g}_{δ} from G_{σ} into G^* induced by $\mathbf{g}_{\delta}(t_{\gamma}) = y_{\gamma}^{\delta}$. As usual it is an embedding. Let $\operatorname{Rang}(\mathbf{g}_{\delta}) = G^{<\delta>}$. For $\beta < \kappa$ let G_{β}^* be the subgroup of G^* generated by $\{x_{\alpha} : \alpha < \beta\} \cup \{y_{\gamma}^{\delta} : \gamma < \theta^{0,\sigma} \text{ and } \delta \in \beta \cap S\}$. It can be described similarly to G^* .

<u>Fact A</u>: G^* is strongly λ -free.

Proof. For $\alpha^* < \beta^* < \kappa$, we can find $\langle \alpha_{\delta} : \delta \in S \cap (\alpha^*, \beta^*] \rangle$ such that $\langle A_{\delta} \setminus \alpha_{\delta} : \delta \in S \cap (\alpha^*, \beta^*] \rangle$ are pairwise disjoint and disjoint to α^* hence the sequence $\langle \{\beta_{\zeta,i}^{\delta} : i < \theta, \zeta \in (\operatorname{Min}\{\xi < \sigma : \beta_{\zeta,0}^{\delta} > \alpha_{\delta}\}, \sigma)\} : \delta \in S \cap (\alpha^*, \beta^*] \rangle$ is a sequence of pairwise disjoint sets.

For $\delta \in S \cap (\alpha^*, \beta^*]$, let $\zeta_{\delta} = \operatorname{Min}\{\zeta : \beta_{\zeta,0}^{\delta} > \alpha_{\delta}\} < \sigma$. Now easily $G_{\beta^*+1}^*$ is generated as an extension of $G_{\alpha^*+1}^*$ by $\{\mathbf{g}_{\delta}(t_{\gamma}^{\zeta_{\delta},\sigma}) : \gamma < \theta^{\zeta_{\delta},\sigma} \text{ and } \delta \in S \cap (\alpha^*, \beta^*]\} \cup \{x_{\alpha} : \beta^*\}$

 $\alpha \in (\alpha^*, \beta^*]$ and for no $\delta \in S \cap (\alpha^*, \beta^*]$ do we have $\alpha \in \{\beta_{\zeta,i}^{\delta} : i < \theta^{\zeta,\sigma} \text{ and } \zeta < \zeta_{\delta}\}\};$ moreover $G_{\beta^*+1}^*$ is freely generated (as an extension of $G_{\alpha^*+1}^*$). So $G_{\beta^*+1}^*/G_{\alpha^*+1}^*$ is free, as also G_1^* is free we have shown Fact A.

<u>Fact B</u>: G^* is not Whitehead.

Proof. We choose by induction on $\alpha \leq \kappa$, an abelian group H_{α} and a homomorphism $\mathbf{h}_{\alpha} : H_{\alpha} \to G_{\alpha}^* = \langle \{x_{\beta} : \beta < \alpha\} \cup \{y_{\gamma}^{\delta} : \gamma < \theta, \delta \in S \cap \alpha\} \rangle_{G^*}$ increasing continuous in α , with kernel \mathbb{Z} , \mathbf{h}_0 = zero and $\mathbf{k}_{\alpha} : G_{\alpha}^* \to H_{\alpha}$ is a not necessarily linear mapping such that $\mathbf{h}_{\alpha} \circ \mathbf{k}_{\alpha} = \operatorname{id}_{G_{\alpha}^*}$. We identify the set of members of $H_{\alpha}, G_{\alpha}, \mathbb{Z}$ with subsets of $\lambda \times (1 + \alpha)$ such that $O_{H_{\alpha}} = O_{\mathbb{Z}} = 0$.

Usually we have no freedom or no interesting freedom. But we have for $\alpha = \delta + 1$, $\delta \in S$. What we demand is $(G^{\langle \delta \rangle} - \text{see before Fact A})$:

- (*)₂ letting $H^{<\delta>} = \{x \in H_{\delta+1} : \mathbf{h}_{\delta+1}(x) \in G^{<\delta>}\}$, if $s^* = g_{\delta}(x_{\beta_{\delta}(*)}) \in \mathbb{Z} \setminus \{0\}$ (g_{δ} from 4.2), <u>then</u> there is no homomorphism $f_{\delta} : G^{<\delta>} \to H^{<\delta>}$ such that
 - (α) $f_{\delta}(x_{\beta_{\zeta,i}^{\delta}}) \mathbf{k}_{\delta}(x_{\beta_{\zeta,i}^{\delta}}) \in \mathbb{Z}$ is the same for all $i \in (\bigcup_{\varepsilon < \zeta} \lambda_{\varepsilon}, \lambda_{\zeta}]$

$$(\beta) \quad \mathbf{h}_{\delta+1} \circ f_{\delta} = \operatorname{id}_{G^{<\delta>}}.$$

[Why is this possible? By non-Whiteheadness of $G^{\sigma} / \bigcup_{i < \sigma} G^i$ that is see $(d)(\gamma)^-$ in

4.1.] The rest should be clear.

Proof of 4.1(2). Of course, similar to that of 4.1(1) but with some changes.

<u>Step A</u>: Without loss of generality there is a homomorphism f^* from $\bigcup_{i < \sigma} G^i$ to \mathbb{Z} which cannot be extended to a homormopshim from G_{σ} to \mathbb{Z} . [Why? Standard, see [Fu].]

<u>Step B</u>: During the construction of G^* , we choose G^*_{α} by induction on $\alpha \leq \kappa$, but if $h^*_{\delta}(0)$ from 4.2 is a member of G^*_{δ} in $(*)_1$ we replace $(x_{\beta^{\delta}_{\zeta,\gamma}} - x_{\gamma^{\delta}_{\lambda_{\zeta}}})$ by $(x_{\beta^{\delta}_{\zeta,\gamma}} - x_{\beta^{\delta}_{\lambda_{\zeta}}} + f^*(t^{\zeta,\zeta+1}_{\gamma})g_{\delta}(0))$, note that $f^*(t^{\zeta,\zeta+1}_{\gamma}) \in \mathbb{Z}$ and $h^*_{\delta}(0) \in G^*_{\delta}$. So if in the end $f: G^* \to \mathbb{Z}$ is a non-zero homomorphism, let $x^* \in G^*$ be such that

 $f(x^*) \neq 0$ and $|f^*(x^*)|$ is minimal under this, so without loss of generality it is 1. Hence for some $\delta \in S$ we have:

$$\begin{aligned} (*)_3 \ f(g_{\delta}(0)) &= 1_{\mathbb{Z}} \\ (*)_4 \ f(x_{\gamma^{\delta}_{\lambda_{\zeta}+1+1+\gamma}}) &= f(x_{\gamma^{\delta}_{\lambda_{\zeta}}}) \text{ for } \gamma \in \lambda_{\zeta+1} \backslash \lambda_{\zeta} \\ \text{ that is } f(x_{\beta^{\delta}_{\zeta,\gamma}}) &= f(x_{\gamma^{\delta}_{\lambda_{z}eta}}) \end{aligned}$$

(in fact this holds for stationarily many ordinals $\delta \in S$).

So we get an easy contradiction.

3) The proof is included in the proof of part (2).

We also note the following consequence of a conclusion of an instance of GCH.

 $\Box_{4.1}$

4.3 Claim. Assume

- (a) $\lambda = \mu^+$ and $\mu > \sigma = cf(\mu)$
- (b) $\lambda = \lambda^{\theta}$ where $\theta = 2^{\sigma}$ (equivalently $\mu^{\theta} = \mu^{+} > 2^{\theta}$)
- (c) $S \subseteq \{\delta < \lambda : cf(\delta) = \sigma\}$ is stationary
- (d) $\bar{\eta} = \langle \eta_{\delta} : \delta \in S \rangle$ with η_{δ} an increasing sequence of length σ with limit δ .

<u>Then</u> we can find $\langle \bar{A}^{\delta} : \delta \in S \rangle$ such that:

- $(\alpha) \ \bar{A}^{\delta} = \langle A_i^{\delta} : i < \sigma \rangle$
- (β) $A_i^{\delta} \in [\delta]^{<\mu}$ and $sup(A_i^{\delta}) < \delta$
- $(\beta)^+$ for some $\langle \lambda_i^* : i < \sigma \rangle$ increasing with limit $\lambda, |A_i^{\delta}| < \lambda_i^*$,
 - (γ) for every $h : \lambda \to \lambda$, for stationarily many $\delta \in S$ we have $(\forall i < \sigma)[h(\eta_{\delta}(i)) \in A_i^{\delta}]$.

4.4 *Remark.* 1) We can restrict ourselves to $h : \lambda \to \mu$ in clause (γ) , and then, of course, can use $\langle \langle A_i^{\delta} : i < \sigma \rangle : \delta \in S \rangle$ with $A_i^{\delta} \subseteq \mu$. 2) We can add to the conclusion " $A_i^{\delta} \subseteq \eta_{\delta}(i+1)$ " if $\bar{\eta}$ guess clubs.

Proof. Let $\langle \lambda_i : i < \sigma \rangle$ be increasing continuous with limit μ . Let $\langle \bar{\alpha}_{\gamma} : \gamma < \lambda \rangle$ list ${}^{\theta}\lambda$, so $\bar{\alpha}_{\gamma} = \langle \alpha_{\gamma,\varepsilon} : \varepsilon < \theta \rangle$ and without loss of generality $\alpha_{\gamma,\varepsilon} \leq \gamma$. For each $\delta \in S$ let $\langle b_i^{\delta} : i < \sigma \rangle$ be an increasing continuous sequence of subsets of δ with union δ such that $|b_i^{\delta}| < \mu$ and $\sup(b_i^{\delta}) < \delta$; for $(\beta)^+$, moreover $|b_i^{\delta}| \leq \lambda_i$;

⁵What does this mean? $f^*(x^*)$ is an integer so its absolute value is well defined

this is possible as $cf(\delta) = \sigma = cf(\mu) < \mu$. Let $\langle g_{\varepsilon} : \varepsilon < \theta \rangle$ list ${}^{\sigma}\sigma$ and define $A_i^{\varepsilon,\delta} =: \{\alpha_{\gamma,\varepsilon} : \gamma \in b_{g_{\varepsilon}(i)}^{\delta}\}$. Now $A_i^{\varepsilon,\delta}$ is a set of cardinality $\leq |b_{g_{\varepsilon}(i)}^{\delta}| < \mu$ and $\sup(A_i^{\varepsilon,\delta}) \leq \sup(b_{g_{\varepsilon}(i)}^{\delta})$ (as we have demanded that $\alpha_{\gamma,\varepsilon} \leq \gamma$) but $\sup(b_{g_{\varepsilon}(i)}^{\delta}) < \delta$ by the choice of the b_j^{δ} 's hence $\sup(A_i^{\varepsilon,\delta}) < \delta$. So for each $\varepsilon < \theta$ the sequence $\bar{\mathbf{A}}^{\varepsilon} =: \langle \bar{A}^{\varepsilon,\delta} : \delta \in S \rangle$, where $\bar{A}^{\varepsilon,\delta} = \langle A_i^{\varepsilon,\delta} : i < \sigma \rangle$ satisfies clauses $(\alpha) + (\beta)$ and $(\beta)^+$ when relevant. Hence it suffices to prove that for some $\varepsilon < \theta$ the sequence $\bar{\mathbf{A}}^{\varepsilon}$ satisfy clause (γ) , too. Assume toward contradiction that for every $\varepsilon < \theta$ the sequence $\bar{\mathbf{A}}^{\varepsilon}$ fails clause (γ) hence there is $h_{\varepsilon} : \lambda \to \lambda$ which exemplifies this, that is for some club E_{ε} of $\lambda, \delta \in E_{\varepsilon} \cap S \Rightarrow (\exists i < \sigma)[h_{\varepsilon}(\eta_{\delta}(i)) \notin A_i^{\varepsilon,\delta}]$. So for every $\beta < \lambda$ the sequence $\langle h_{\varepsilon}(\beta) : \varepsilon < \theta \rangle$ belongs to ${}^{\theta}\lambda$, hence is equal to $\bar{\alpha}_{h(\beta)}$ for some $h(\beta) < \lambda$. Clearly $E = \{\delta < \lambda : \delta$ a limit ordinal and $(\forall \beta < \delta)h(\beta) < \delta\}$ is a club of λ (recall $\theta < \lambda$) hence we can find $\delta(*) \in E \cap S$. We define $g^* : \sigma \to \sigma$ by $g^*(i) = \min\{j < \sigma : h(\eta_{\delta(*)}(j)) \in b_j^{\delta}\}$, now g^* is well defined as, for $i < \sigma$ the ordinal $h(\eta_{\delta(*)}(i))$ is $< \delta(*)$ (as $\delta(*) \in E$) and $\eta_{\delta(*)}(i) < \delta(*)$) and $\delta = \bigcup_{j < \sigma} b_j^{\delta}$.

 $g^* \in {}^{\sigma}\sigma$ clearly for some $\varepsilon(*) < \theta$ we have $g_{\varepsilon(*)} = g^*$.

So, for any $i < \sigma$ let $\gamma_i = h(\eta_{\delta(*)}(i))$, now $h(\eta_{\delta(*)}(i)) \in b_{g^*(i)}^{\delta}$ (by the choice of g^*) and $g^*(i) = g_{\varepsilon(*)}(i)$ by the choice of $\varepsilon(*)$, together $\gamma_i \in b_{g_{\varepsilon(*)}(i)}^{\delta}$. But $A_i^{\varepsilon(*),\delta(*)} = \{\alpha_{\gamma,\varepsilon(*)} : \gamma \in b_{g_{\varepsilon(*)}(i)}^{\delta}\}$ by the choice of $A_i^{\varepsilon(*),\delta(*)}$ hence $\alpha_{\gamma_i,\varepsilon(*)} \in A_i^{\varepsilon(*),\delta(*)}$, but as $\gamma_i = h(\eta_{\delta(*)}(i))$, by the choice of h we have $h_{\varepsilon(*)}(\eta_{\delta(*)}(i)) = \alpha_{\gamma_i,\varepsilon(*)} \in A_i^{\varepsilon(*),\delta(*)}$.

So $(\forall i < \sigma)(h_{\varepsilon}(\eta_{\delta(*)}(i)) \in A_i^{\varepsilon(*),\delta(*)})$, which by the choice of h_{ε} implies $\delta(*) \notin E_{\varepsilon(*)}$ but $\delta(*) \in E \subseteq \bigcap_{\varepsilon < \sigma} E_{\varepsilon}$, contradiction. $\Box_{4.3}$

36

SAHARON SHELAH

REFERENCES.

- [Fu] Laszlo Fuchs. Infinite Abelian Groups, volume I, II. Academic Press, New York, 1970, 1973.
- [Sh 186] Saharon Shelah. Diamonds, uniformization. The Journal of Symbolic Logic, **49**:1022–1033, 1984.
- [Sh:f] Saharon Shelah. *Proper and improper forcing*. Perspectives in Mathematical Logic. Springer, 1998.
- [Sh 576] Saharon Shelah. Categoricity of an abstract elementary class in two successive cardinals. *Israel Journal of Mathematics*, **126**:29–128, 2001.
- [Sh 587] Saharon Shelah. Not collapsing cardinals $\leq \kappa$ in $(< \kappa)$ -support iterations. Israel Journal of Mathematics, **136**:29–115, 2003.