SUCCESSOR OF SINGULARS: COMBINATORICS AND NOT COLLAPSING CARDINALS $\leq \kappa$ IN $(<\kappa)$-SUPPORT ITERATIONS SH667

Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center - Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA
Department of Mathematics
University of Wisconsin
Madison, WI USA

Abstract

On the one hand we deal with $(<\kappa)$-supported iterated forcing notions which are $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$-complete, have in mind problems on Whitehead groups, uniformizations and the general problem. We deal mainly with the caes of a successor of the singular cardinal. This continues [Sh 587]. On the other hand we deal with complimentary ZFC combinatorial results.

I would like to thank Alice Leonhardt for the beautiful typing.
This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.
Publ. 667; Notes - Spring '96
Received November 16, 1998 and in revised form March 5, 2001.
Corrected after Proofreading for the Journal.
First Typed - 97/June/30
Latest Revision - 03/Apr/30

Annotated Content

GCH implies for successor of singular no stationary S has uniformization [For λ strong limit singular, for stationary $S \subseteq S_{\mathrm{cf}(\lambda)}^{\lambda^{+}}$we prove strong negation of uniformization for some S-ladder system and even weak versions of diamond. E.g. if λ is singular strong limit and $2^{\lambda}=\lambda^{+}$, then there are $\gamma_{i}^{\delta}<\delta$ increasing in $i<\operatorname{cf}(\lambda)$ with limit δ for each $\delta \in S$ such that for every $f: \lambda^{+} \rightarrow \alpha^{*}<\lambda$ for stationarily many $\delta \in S$, for every i we have $\left.f\left(\gamma_{2 i}^{\delta}\right)=f\left(\gamma_{2 i+1}^{\delta}\right).\right]$

Forcing for successor of singulars
[Let λ be strong limit singular $\kappa=\lambda^{+}=2^{\lambda}, S \subseteq S_{\mathrm{cf}(\lambda)}^{\kappa}$ stationary not reflecting. We present the consistency of a forcing axiom implying e.g.: if h_{δ} is a function from A_{δ} to $\theta, A_{\delta} \subseteq \delta=\sup \left(A_{\delta}\right), \operatorname{otp}\left(A_{\delta}\right)=\operatorname{cf}(\lambda), \theta<\lambda$ then for some $h: \kappa \rightarrow \theta$ for every $\delta \in S$ we have $h_{\delta} \subseteq^{*} h$.]
κ^{+}-c.c. and κ^{+}-pic
[In the forcing axioms we would like to allow forcing notions of cardinality $>\kappa$; for this we use a suitable chain condition (allowed here and in
[Sh 587]). This sheds more light on the strongly inaccessible case and we comment on this (and forcing against cases of diamonds).]

Existence of non-free Whitehead groups (and $\operatorname{Ext}(G, \mathbb{Z})=0)$ abelian groups in successor of singulars
[We use the information on the existence of weak version of the diamond for $S \subseteq S_{\mathrm{cf}(\lambda)}^{\lambda^{+}}, \lambda$ strong limit singular with $2^{\lambda}=\lambda^{+}$, to prove that there are some abelian groups with special properties (from reasonable assumptions). We also get more combinatorial principles on $\lambda=\mu^{+}, \mu>\operatorname{cf}(\mu)$ (even if just $\lambda=\lambda^{2^{\sigma}}$).]

§1 GCH implies for successor of singular no stationary S has unformization

We show that a major improvement in [Sh 587] over [Sh 186] for inaccessible (every ladder on S has uniformization rather than some ladder on S) cannot be done for successor of singulars. This is continued in $\S 4$.

1.1 Fact: Assume

(a) λ is strong limit singular with $2^{\lambda}=\lambda^{+}$, let $\operatorname{cf}(\lambda)=\sigma$
(b) $S \subseteq\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\sigma\right\}$ is stationary.

Then we can find $\left.\left\langle<\gamma_{i}^{\delta}: i<\sigma\right\rangle: \delta \in S\right\rangle$ such that
(α) γ_{i}^{δ} is increasing (with i) with limit δ
(β) if $\mu<\lambda$ and $f: \lambda^{+} \rightarrow \mu$ then the following set is stationary:
$\left\{\delta \in S: f\left(\gamma_{2 i}^{\delta}\right)=f\left(\gamma_{2 i+1}^{\delta}\right)\right.$ for every $\left.i<\sigma\right\}$.
Moreover
$(\beta)^{+}$if $f_{i}: \lambda^{+} \rightarrow \mu_{i}, \mu_{i}<\lambda$ for $i<\sigma$ then the following set is stationary:
$\left\{\delta \in S: f_{i}\left(\gamma_{2 i}^{\delta}\right)=f_{i}\left(\gamma_{2 i+1}^{\delta}\right)\right.$ for every $\left.i<\sigma\right\}$.

Proof. This will prove 1.2, too. We first concentrate on $(\alpha)+(\beta)$ only.
Let $\lambda=\sum_{i<\sigma} \lambda_{i}, \lambda_{i}$ a cardinal increasing continuous with $i, \lambda_{i+1}>2^{\lambda_{i}}, \lambda_{0}>2^{\sigma}$. For $\alpha<\lambda^{+}$, let $\alpha=\bigcup_{i<\sigma} a_{\alpha, i}$ such that $\left|a_{\alpha, i}\right| \leq \lambda_{i}$. Without loss of generality $\delta \in S \Rightarrow \delta$ divisible by λ^{ω} (ordinal exponentiation). For $\delta \in S$ let $\left\langle\beta_{i}^{\delta}: i<\sigma\right\rangle$ be increasing continuous with limit $\delta, \beta_{i}^{\delta}$ divisible by λ and >0. For $\delta \in S$ let $\left\langle b_{i}^{\delta}: i<\sigma\right\rangle$ be such that: $b_{i}^{\delta} \subseteq \beta_{i}^{\delta},\left|b_{i}^{\delta}\right| \leq \lambda_{i}, b_{i}^{\delta}$ is increasing continuous with i and $\delta=\bigcup_{i<\sigma} b_{i}^{\delta}$ (e.g. we can let $\left.b_{i}^{\delta}=\bigcup_{j_{1}, j_{2}<i} a_{\beta_{j_{1}}^{\delta}, j_{2}} \cup \lambda_{i}\right)$. We further demand $\lambda_{i} \subseteq b_{i}^{\delta} \cap \lambda$. Let $\left\langle f_{\alpha}^{*}: \alpha<\lambda^{+}\right\rangle$ list the two-place functions with domain an ordinal $<\lambda^{+}$and range $\subseteq \lambda^{+}$. Let $S=\bigcup_{\mu<\lambda} S_{\mu}$, with each S_{μ} stationary and $\left\langle S_{\mu}: \mu<\lambda\right\rangle$ pairwise disjoint. We now fix $\mu<\lambda$ and will choose $\bar{\gamma}^{\delta}=\left\langle\gamma_{i}^{\delta}: i<\sigma\right\rangle$ for $\delta \in S_{\mu}$ such that clause (α) holds and clause (β) holds (that is for every $f: \lambda^{+} \rightarrow \mu$ for stationary many $\delta \in S_{\mu}$ the conclusion of clause (β) holds), this clearly suffices.
Now for $\delta \in S_{\mu}$ and $i<j<\sigma$ we can choose $\zeta_{i, j, \varepsilon}^{\delta}\left(\right.$ for $\varepsilon<\lambda_{j}$) (really here we use just $\varepsilon=0,1$) such that:
(A) $\left\langle\zeta_{i, j, \varepsilon}^{\delta}: \varepsilon<\lambda_{j}\right\rangle$ is a strictly increasing sequence of ordinals
(B) $\beta_{i}^{\delta}<\zeta_{i, j, \varepsilon}^{\delta}<\beta_{i+1}^{\delta}$, (can even demand $\zeta_{i, j, \varepsilon}^{\delta}<\beta_{i}^{\delta}+\lambda$)
(C) $\zeta_{i, j, \varepsilon}^{\delta} \notin\left\{\zeta_{i_{1}, j_{1}, \varepsilon_{1}}^{\delta}: j_{1}<j, \varepsilon_{1}<\lambda_{j_{1}}\right.$ (and $i_{1}<\sigma$, really only $i_{1}=i$ matters) $\}$
(D) for every $\alpha_{1}, \alpha_{2} \in b_{j}^{\delta}$, the sequence $\left\langle\operatorname{Min}\left\{\lambda_{j}, f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, j, \varepsilon}^{\delta}\right)\right\}: \varepsilon<\lambda_{j}\right\rangle$ is constant i.e.: one of the following occurs:
$(\alpha) \varepsilon<\lambda_{j} \Rightarrow\left(\alpha_{2}, \zeta_{i, j, \varepsilon}^{\delta}\right) \notin \operatorname{Dom}\left(f_{\alpha_{1}}^{*}\right)$
(β) $\varepsilon<\lambda_{j} \Rightarrow f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, j, \varepsilon}^{\delta}\right)=f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, j, 0}^{\delta}\right)$, well defined
$(\gamma) \varepsilon<\lambda_{j} \Rightarrow f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, j, \varepsilon}^{\delta}\right) \geq \lambda_{j}$, well defined.

For each $i<j<\sigma$ we use " λ is strong limit $>\lambda_{j} \geq \sum_{j_{1}<j} \lambda_{j_{1}}+\sigma$ ".
Let $G=\{g: g$ a function from σ to σ such that $(\forall i<\sigma)(i<g(i)\}$.
For each function $g \in G$ we try $\bar{\gamma}^{g, \delta}=\left\langle\zeta_{i, g(i), 0}^{\delta}, \zeta_{i, g(i), 1}^{\delta}: i<\sigma\right\rangle$ i.e. $\left\langle\zeta_{2 i}^{g, \delta}, \zeta_{2 i+1}^{g, \delta}\right\rangle=$ $\left\langle\gamma_{i, g(i), 0}^{\delta}, \gamma_{i, g(i), 1}^{\delta}\right\rangle$.
Now we ask for each $g \in G$:
$\underline{\text { Question }}_{g}^{\mu}$: Does $\left\langle\bar{\gamma}^{g, \delta}: \delta \in S_{\mu}\right\rangle$ satisfy $\left(\forall f \in \lambda^{+} \mu\right)\left(\exists^{\text {stat }} \delta \in S_{\mu}\right)\left(\bigwedge_{i<\sigma} f\left(\gamma_{2 i}^{g, \delta}\right)=f\left(\gamma_{2 i+1}^{g, \delta}\right)\right) ?$.
If for some $g \in G$ the answer is yes, we are done. Assume not, so for each $g \in G$ we can find $f_{g}: \lambda^{+} \rightarrow \mu$ and a club E_{g} of λ^{+}such that:

$$
\delta \in S_{\mu} \cap E_{g} \Rightarrow(\exists i<\sigma)\left(f_{g}\left(\gamma_{2 i}^{g, \delta}\right) \neq f_{g}\left(\gamma_{2 i+1}^{g, \delta}\right)\right)
$$

which means

$$
\delta \in S_{\mu} \cap E_{g} \Rightarrow(\exists i<\sigma)\left[f_{g}\left(\zeta_{i, g(i), 0}^{\delta}\right) \neq f_{g}\left(\zeta_{i, g(i), 1}^{\delta}\right)\right]
$$

Let $G=\left\{g_{\varepsilon}: \varepsilon<2^{\sigma}\right\}$, so we can find a 2-place function f^{*} from λ^{+}to μ satisfying $f^{*}(\varepsilon, \alpha)=f_{g_{\varepsilon}}(\alpha)$ when $\varepsilon<2^{\sigma}, \alpha<\lambda^{+}$. Hence for each $\alpha<\lambda^{+}$there is $\gamma[\alpha]<\lambda^{+}$ such that $f^{*} \upharpoonright \alpha=f_{\gamma[\alpha]}^{*}$.
Let $E^{*}=\bigcap_{\varepsilon<2^{\sigma}} E_{g_{\varepsilon}} \cap\left\{\delta<\lambda^{+}\right.$: for every $\alpha<\delta$ we have $\left.\gamma[\alpha]<\delta\right\}$. Clearly it is a club of λ^{+}, hence we can find $\delta \in S_{\mu} \cap E^{*}$. Now $\beta_{i+1}^{\delta}<\delta$ hence $\gamma\left[\beta_{i+1}^{\delta}\right]<\delta$ (as $\delta \in E^{*}$) but $\delta=\bigcup_{i<\sigma} b_{i}^{\delta}$ hence for some $j<\sigma, \gamma\left[\beta_{i+1}^{\delta}\right] \in b_{j}^{\delta}$; as b_{j}^{δ} increases with
j we can define a function $h: \sigma \rightarrow \sigma$ by $h(i)=\operatorname{Min}\left\{j: j>i+1\right.$ and $\mu<\lambda_{j}$ and $\left.\gamma\left[\beta_{i+1}^{\delta}\right] \in b_{j}^{\delta}\right\}$. So $h \in G$ hence for some $\varepsilon(*)<2^{\sigma}$ we have $h=g_{\varepsilon(*)}$. Now looking at the choice of $\zeta_{i, h(i), 0}^{\delta}, \zeta_{i, h(i), 1}^{\delta}$ we know (remember $2^{\sigma}<\lambda_{0} \subseteq b_{j}^{\delta}$ and $\mu<\lambda_{h(i)}$)

$$
\begin{aligned}
\left(\forall \varepsilon<2^{\sigma}\right)\left(\forall \alpha \in b_{h(i)}^{\delta}\right)\left[\operatorname{Rang}\left(f_{\alpha}^{*}\right) \subseteq \mu \& \quad \operatorname{Dom}\left(f_{\alpha}^{*}\right) \supseteq \beta_{i+1}^{\delta}\right. & \rightarrow f_{\alpha}^{*}\left(\varepsilon, \zeta_{i, h(i), 0}^{\delta}\right) \\
& \left.=f_{\alpha}^{*}\left(\varepsilon, \zeta_{i, h(i), 1}^{\delta}\right)\right]
\end{aligned}
$$

In particular this holds for $\varepsilon=\varepsilon(*), \alpha=\gamma\left[\beta_{i+1}^{\delta}\right]$, so we get

$$
f_{\gamma\left[\beta_{i+1}^{\delta}\right]}^{*}\left(\varepsilon(*), \zeta_{i, h(i), 0}^{\delta}\right)=f_{\gamma\left[\beta_{i+1}^{\delta}\right]}^{*}\left(\varepsilon(*), \zeta_{i, h(i), 1}^{\delta}\right) .
$$

By the choice of f^{*} and of $\gamma\left[\beta_{i+1}^{\delta}\right]$ this means

$$
f_{g_{\varepsilon(*)}}\left(\zeta_{i, h(i), 0}^{\delta}\right)=f_{g_{\varepsilon(*)}}\left(\zeta_{i, h(i), 1)}^{\delta}\right)
$$

but $h=g_{\varepsilon(*)}$ and the above equality means $f_{g_{\varepsilon(*)}}^{*}\left(\gamma_{2 i}^{g_{\varepsilon(*)}, \delta}\right)=f_{g_{\varepsilon(*)}}^{*}\left(\gamma_{2 i+1}^{g_{\varepsilon(*)}, \delta}\right)$, and this holds for every $i<\sigma$, and $\delta \in E^{*} \Rightarrow \delta \in E_{g_{\varepsilon(*)}}$ so we get a contradiction to the choice of $\left(f_{g_{\varepsilon(*)}}, E_{\varepsilon(*)}\right)$.
So we have finished proving $(\alpha)+(\beta)$.
How do we get $(\beta)^{+}$of 1.1, too?
The first difference is in phrasing the question, now it is, for $g \in G$:
$\underline{\text { Question }}_{g}^{\mu}$: Does $\left\langle\bar{\gamma}^{g, \delta}: \delta \in S_{\mu}\right\rangle$ satisfy:

$$
\left(\left(\forall f_{0} \in^{\lambda^{+}} \mu_{0}\right)\left(\forall f_{1} \in{ }^{\lambda^{+}} \mu_{1}\right) \ldots\left(\forall f_{i} \in{ }^{\lambda^{+}} \mu_{i}\right) \ldots\right)_{i<\sigma}\left(\exists^{\text {stat }} \delta \in S_{\mu}\right)\left(\bigwedge_{i<\sigma} f_{i}\left(\gamma_{2_{i}}^{g, \delta}\right)=f_{i}\left(\gamma_{2 i+1}^{g, \delta}\right)\right) .
$$

If for some g the answer is yes, we are done, so assume not so we have $f_{g, i} \in{ }^{\lambda^{+}}\left(\mu_{i}\right)$ for $g \in G, i<\sigma$ and club E_{g} of λ^{+}such that

$$
\delta \in S_{\mu} \cap E_{g} \Rightarrow(\exists i<\sigma)\left(f_{g, i}\left(\gamma_{2 i}^{g, \delta}\right) \neq f_{g, i}\left(\gamma_{2 i+1}^{g, \delta}\right)\right) .
$$

A second difference is the choice of f^{*} as $f^{*}(\sigma \varepsilon+i, \alpha)=f_{g_{\varepsilon}, i}(\alpha)$ for $\varepsilon<2^{\sigma}$, $i<\sigma, \alpha<\lambda^{+}$.
Lastly, the equations later change slightly.
$\square_{1.1}$
1.2 Fact: 1) Under the assumptions (a) + (b) of 1.1 letting $\bar{\lambda}=\left\langle\lambda_{i}: i<\sigma\right\rangle$ be increasingly continuous with limit λ such that $2^{\sigma}<\lambda_{0}, 2^{\lambda_{i}}<\lambda_{i+1}$ we have $(*)_{1}+(*)_{2}$ where
$(*)_{1}$ we can find $\left.\left\langle<\gamma_{\zeta}^{\delta}: \zeta<\lambda\right\rangle: \delta \in S\right\rangle$ such that
(α) γ_{ζ}^{δ} is increasing in ζ with limit δ
$(\beta)^{+}$if $f_{i}: \lambda^{+} \rightarrow \lambda_{i+1}$, for $i<\sigma$, then the following set is stationary $\left\{\delta \in S: f_{i}\left(\gamma_{\zeta}^{\delta}\right)=f_{i}\left(\gamma_{\xi}^{\delta}\right)\right.$ when $\zeta, \xi \in\left[\lambda_{i}, \lambda_{i+1}\right)$ for every $\left.i<\sigma\right\}$
$(*)_{2}$ moreover if $F_{i}:\left[\lambda^{+}\right]^{<\lambda} \rightarrow\left[\lambda^{+}\right]^{\lambda^{+}}$for $i<\sigma$ (or just $F_{i}:\left[\lambda^{+}\right]^{<\lambda} \rightarrow\left[\lambda^{+}\right]^{\lambda}$) and $\sup (w)<\min \left(F_{i}(w)\right)$ for $w \in\left[\lambda^{+}\right]^{<\lambda}$, for each $i<\sigma$, then in addition we can demand
(i) $\left\{\gamma_{\zeta}^{\delta}: \zeta \in\left[\lambda_{i}, \lambda_{i+1}\right]\right\} \subseteq F_{i}\left(\left\{\gamma_{\zeta}^{\delta}: \zeta<\lambda_{i}\right\}\right)$,
(ii) $\left|\left\{\left\langle\gamma_{\zeta}^{\delta}: \zeta<\zeta^{*}\right\rangle: \gamma_{\zeta^{*}}^{\delta}=\gamma\right\}\right| \leq \lambda$ for each $\gamma<\lambda^{+}$and $\zeta^{*}<\sigma$
2) Assume $\lambda,\left\langle\lambda_{i}: i<\sigma\right\rangle$ are as in part (1) and $\left\langle C_{\delta}: \delta \in S\right\rangle$ is given, it guess clubs (for λ^{+}, which mean that for every club E of λ^{+}the set $\left\{\delta \in S: C_{\delta} \subseteq E\right\}$ is a stationary subset of λ^{+}) and $C_{\delta}=\{\alpha[\delta, i]: i<\sigma\}, \alpha[\delta, i]$ divisible by λ^{ω} increasing in i with limit $\delta,\langle\operatorname{cf}(\alpha[\delta, i+1]): i<\sigma\rangle$ is increasing with limit λ and let $\beta(\delta, i)=\sum_{j<i} \lambda_{j} \times \operatorname{cf}(\alpha[\delta, j])$. Then
(*) we can find $\left\langle\left\langle\gamma_{\zeta}^{\delta}: \zeta\langle\lambda\rangle: \delta \in S\right\rangle\right.$ such that
(α) $\left\langle\gamma_{\zeta}^{\delta}: \zeta<\lambda\right\rangle$ is increasing with limit δ, (for $\delta \in S$)
(β) $\sup \left\{\gamma_{\zeta}^{\delta}: \gamma_{\zeta}^{\delta}<\beta[\delta, j+1]\right\}=\alpha[\delta, j]$
(γ) for every $f_{i} \in{ }^{\left(\lambda^{+}\right)}\left(\mu_{i}\right)$ for $i<\sigma$ where $\mu_{i}<\lambda$ and club E of λ^{+}, for stationarily many $\delta \in S$ we have $\left\{\gamma_{i}^{\delta}: i<\lambda\right\} \subseteq E$ and $f_{i}\left(\gamma_{\zeta}^{\delta}\right)=f_{i}\left(\gamma_{\varepsilon}^{\delta}\right)$, when $\zeta, \varepsilon \in\left[\beta[\delta, i]+\lambda_{i} \xi, \beta[\delta, i]+\lambda_{i} \xi+\lambda_{i}\right)$ and $\left.\xi<\operatorname{cf}(\alpha[\delta, i])\right)$.

Proof. 1) The same proof as in 1.1 for $(*)_{1}$, but see a proof after the proof of 4.2. 2) Should be clear, too.

$\S 2$ Case C: Forcing for successor of singular

We continue [Sh 587].
2.1 Hypothesis. 1) λ strong limit singular $\sigma=\operatorname{cf}(\lambda)<\lambda, \kappa=\lambda^{+}, \mu^{*} \geq \kappa, 2^{\lambda}=\lambda^{+}$.
2.2 Definition. 1) Let $\mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$ be the family of $\hat{\mathscr{E}}_{0} \subseteq\left\{\bar{a}: \bar{a}=\left\langle a_{i}: i \leq \alpha\right\rangle\right.$ where $\alpha<\kappa, a_{i} \in\left[\mu^{*}\right]^{<\kappa}$ increasing continuous, and $\left.a_{i} \cap \kappa \in \kappa\right\}$ such that: for every $\theta=\operatorname{cf}(\theta)<\lambda, \chi$ large enough and $x \in \mathscr{H}(\chi)$ we can find $\left\langle N_{i}: i \leq \theta\right\rangle$ obeying $\bar{a} \in \hat{\mathscr{E}}_{0}$ (with error some n see $\left[\operatorname{Sh} 587\right.$, B.5.1(1)]) and such that $x \in N_{0}$; this repeats [Sh 587 , B.5.1(2)]; formally we should say that \bar{N} obeys \bar{a} for μ^{*}.
2) $\mathfrak{C}_{<\kappa}^{1}\left(\mu^{*}\right)$ is the family of $\hat{\mathscr{E}}_{1} \subseteq\left\{\bar{a}: \bar{a}=\left\langle a_{i}: i \leq \sigma\right\rangle, a_{i}\right.$ increasing continuous, $i<\sigma \Rightarrow\left|a_{i}\right|<\lambda$ and $\left.\lambda+1 \subseteq \bigcup_{i<\sigma} a_{i}\right\}$.
2.3 Definition. 1) We say $\bar{M}=\left\langle M_{i}: i \leq \sigma\right\rangle$ is ruled by ($\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}$) if, for some $\chi>\mu^{*}$:
(a) $\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right), \hat{\mathscr{E}}_{1} \in \mathfrak{C}_{<\kappa}^{1}\left(\mu^{*}\right)$
(b) for ${ }^{1}$ some $\left\langle\bar{M}^{i}:-1 \leq i<\sigma\right\rangle$ and $\left\langle\bar{N}^{i}:-1 \leq i<\sigma\right\rangle$ we have:
(α) $\quad M_{i} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(β) \bar{M} obeys some $\bar{a} \in \hat{\mathscr{E}}_{1}$ for some finite error (so for some n, for every $\left.i, a_{i} \subseteq M_{i} \cap \mu^{*} \subseteq a_{i+n}\right)$ and $\bar{M} \upharpoonright(i+1) \in M_{i+1}$ and $j<i \Rightarrow M_{j} \prec M_{j}$ and M_{i} is increasing continuous
$(\gamma) \quad\left[M_{i+1}\right]^{2^{\left\|M_{i}\right\|}} \subseteq M_{i+1}$ for i a limit ordinal $<\sigma$
($\delta) \quad \bar{M}^{i}=\left\langle M_{\alpha}^{i}: \alpha \leq \delta_{i}\right\rangle, \bar{N}^{i}=\left\langle N_{\alpha}^{i}: \alpha \leq \delta_{i}\right\rangle$ and $M_{\alpha}^{i} \prec N_{\alpha}^{i} \prec(\mathscr{H}(\chi), \in$,$\left.<_{\chi}^{*}\right)$ and $\lambda+1 \subseteq N_{\alpha}^{i}$ and $\left\|M_{\alpha}^{i}\right\|=\left\|M_{\alpha}^{i}\right\|^{\left\|M_{i}\right\|}$ for $\alpha<\delta_{i}$ non limit, $\left[M_{\beta}^{i}\right]^{\left\|M_{i}\right\|} \subseteq M_{\beta+1}^{i}, \beta<\delta_{i}$
(ع) $\left\langle N_{\alpha}^{i}: \alpha \leq \delta_{i}\right\rangle=\bar{N}^{i}$ obeys some $\bar{b}_{i} \in \hat{\mathscr{E}}_{0}$ for some finite error and \bar{M}^{i}, \bar{N}^{i} are increasing continuous
(广) $\quad M_{i+1}=M_{\delta_{i}}^{i} \subseteq N_{\delta_{i}}^{i}$ and $\left\langle\left(\bar{M}^{j}, \bar{N}^{j}\right): j<i\right\rangle \in M_{0}^{i}$
$(\eta) \quad \delta_{i} \subseteq M_{i+1}$ (hence $\delta_{i}<\lambda$) and $\lambda \subseteq N_{\alpha}^{i}$,
(θ) $\operatorname{cf}\left(\delta_{i}\right)>2^{\left\|M_{i}\right\|}$ for i limit,
(८) $\bar{N}^{i} \upharpoonright(\alpha+1), \bar{M}^{i} \upharpoonright(\alpha+1) \in M_{\alpha+1}^{i}$ for $\alpha<\delta_{i}, i<\sigma$ hence $N_{\beta}^{i}=$ $\mathrm{Sk}_{\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)}\left(M_{\beta}^{i} \cup \lambda\right)$ when $i<\omega \sigma$ and $\beta \leq \delta_{i}$ is a limit ordinal

[^0](к) $N_{\delta_{i}}^{i} \prec N_{0}^{j}$ for $i<j$
(λ) $M_{i} \prec M_{0}^{i}, M_{i} \in M_{0}^{i}$.
2) We say above that $\left(\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle\right)$ is an $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$-approximation to \bar{M}.
3) Let $\mathfrak{C}_{<\kappa}{ }_{\kappa}\left(\mu^{*}\right)$ be the family of $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ such that:
(a) $\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$ and $\hat{\mathscr{E}}_{1} \in \mathfrak{C}_{<\kappa}^{1}\left(\mu^{*}\right)$
(b) for χ large enough and $x \in \mathscr{H}(\chi)$ we can find \bar{M} which is ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ and $x \in M_{0}$
(c) $\hat{\mathscr{E}}_{0}$ is closed (see below).
4) $\hat{\mathscr{E}}_{0}$ is closed if $\left\langle a_{i}: i \leq \alpha\right\rangle \in \hat{\mathscr{E}}_{0}, \gamma \leq \beta \leq \alpha$ implies $\left\langle a_{i}: i \in[\beta, \gamma]\right\rangle \in \hat{\mathscr{E}}_{0}$.

Remark. 1) In Definition 2.3(1), letting $\bar{N}=\bar{N}^{0}{ }^{\wedge} \bar{N}^{1} \ldots$ i.e. $\bar{N}=\left\langle N_{i}: i<\right.$ $\lambda\rangle, N_{\varepsilon}=: N_{\alpha}^{i}$ if $\varepsilon=\sum_{j<i} \delta_{j}+\alpha$; so $\ell g(\bar{N})=\lambda$ and $\bar{N} \upharpoonright\left(i_{0}+1\right) \in N_{i_{0}+1}$ so \bar{N} is \prec-increasingly continuous, and $\gamma<\lambda \Rightarrow \bar{N} \upharpoonright \gamma \in N_{\gamma+1}$.
2.4 Claim. 1) Assume $\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$ and $\overline{\mathbb{Q}}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{i}: i<\gamma\right\rangle$ is a $(<\kappa)$-support iteration such that $\Vdash_{\mathbb{P}_{i}}$ " \mathbb{Q}_{i} is strongly $\hat{\mathscr{E}}_{0}$-complete" for each $i<\gamma$, see [Sh 587, B.5.3(3)].

Then \mathbb{P}_{γ} is strongly $\hat{\mathscr{E}}_{0}$-complete (hence $\mathbb{P}_{\gamma} / \mathbb{P}_{\beta}$).
2) If \mathbb{Q} is $\hat{\mathscr{E}}_{0}$-complete, then $\mathbf{V}^{\mathbb{Q}} \models \hat{\mathscr{E}}_{0}$ non-trivial.

Proof. By [Sh 587, B.5.6] (here the choice "for any regular cardinal $\theta<\kappa$ " rather than "for any cardinal $\theta<\kappa$ " in [Sh 587, B.5.1(2)] is important).
2.5 Definition. Let $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\epsilon}}\left(\mu^{*}\right)$ and let \mathbb{Q} be a forcing notion.

1) For a sequence $\bar{M}=\left\langle M_{i}: i \leq \sigma\right\rangle$ ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ with an $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$-approximation $\left(\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle\right)$ and a condition $r \in \mathbb{Q}$ we define a game $\mathfrak{G}_{\bar{M},\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle}(\mathbb{Q}, r)$ between two players COM and INC.

The play lasts σ moves during which the players construct a sequence $\left\langle i_{0}, p,\left\langle p_{i}, \bar{q}_{i}\right.\right.$: $\left.\left.i_{0}-1 \leq i<\sigma\right\rangle\right\rangle$ such that $i_{0}<\sigma$ is non-limit, $p \in M_{i_{0}} \cap \mathbb{Q}, p_{i} \in M_{i+1} \cap \mathbb{Q}, \bar{q}_{i}=$ $\left\langle q_{i, \varepsilon}: \varepsilon<\delta_{i}\right\rangle \subseteq \mathbb{Q}\left(\right.$ where $\left.\delta_{i}+1=\ell g\left(\bar{N}^{i}\right)\right)$.

The player INC first decides what is $i_{0}<\delta$ and then it chooses a condition $p \in \mathbb{Q} \cap M_{i_{0}}$ stronger than r. Next, at the stage $i \in\left[i_{0}-1, \delta\right)$ of the game, COM chooses $p_{i} \in \widehat{\mathbb{Q}} \cap M_{i+1}$ such that:
(i) $p \leq_{\mathbb{Q}} p_{i}$
(ii) $(\forall j<i)\left(\forall \varepsilon<\delta_{j}\right)\left(q_{j, \varepsilon \leq{ }_{Q}} p_{i}\right)$,
(iii) if i is a non-limit ordinal, then $p_{i} \in \widehat{\mathbb{Q}}$ is minimal satisfying (i) + (ii)
$(i v)$ if i is a limit ordinal, then $p_{i} \in \mathbb{Q}$.
Now the player INC answers choosing an increasing sequence $\bar{q}_{i}=\left\langle q_{i, \varepsilon}: \varepsilon<\delta_{i}\right\rangle$ such that $p_{i} \leq \mathbb{Q} q_{i, 0}$ and \bar{q}_{i} is $\left(\bar{N}^{i} \upharpoonright\left[\alpha, \delta_{i}\right], \mathbb{Q}\right)^{*}$-generic for some $\alpha<\delta_{i}$ (see [Sh 587, B.5.3.1]) and $\beta<\delta_{i} \Rightarrow \bar{q}_{i} \upharpoonright(\beta+1) \in M_{i, \beta+1}$.

The player COM wins if it has always legal moves and the sequence $\left\langle p_{i}: i<\omega \sigma\right\rangle$ has an upper bound in \mathbb{Q}.
2) We say that the forcing notion \mathbb{Q} is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ or $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$-complete if
(a) \mathbb{Q} is strongly complete for $\hat{\mathscr{E}}_{0}$ and
(b) for a large enough regular χ, for some $x \in \mathscr{H}(\chi)$, for every sequence \bar{M} ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ with an $\hat{\mathscr{E}}_{0}$-approximation $\left(\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle\right)$ and such that $x \in M_{0}$ and for any condition $r \in \mathbb{Q} \cap M_{0}$, the player INC does not have a winning strategy in the game $\mathfrak{G}_{\bar{M},\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle}(\mathbb{Q}, r)$.

2.6 Proposition. Assume

(a) $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\omega}_{\kappa}}\left(\mu^{*}\right)$,
(b) \mathbb{Q} is a forcing notion for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$.

Then $\Vdash_{\mathbb{Q}} "\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\leftrightarrow}}\left(\mu^{*}\right)$ ".

Proof. Straightforward (and not used in this paper).
2.7 Proposition. Assume that $\hat{\mathscr{E}} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$ is closed and $\overline{\mathbb{Q}}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha}: \alpha<\gamma\right\rangle$ is a
$(<\kappa)$-support iteration of forcing notions which are strongly complete for $\hat{\mathscr{E}}$. Let $\mathscr{T}=\left(T,<^{+} M, \mathrm{rk}\right)$ be a standard $\left(w, \alpha_{0}\right)^{\gamma}$-tree (see [Sh 587, A.3.3]), $\|T\|<\lambda, w \subseteq$ γ, α_{0} an ordinal, and let $\bar{p}=\left\langle p_{t}: t \in T\right\rangle \in F \operatorname{Tr}^{\prime}(\overline{\mathbb{Q}})$, see [Sh 587, A.3.2]. Suppose that \mathscr{I} is an open dense subset of \mathbb{P}_{γ}. Then there is $\bar{q}=\left\langle q_{t}: t \in T\right\rangle \in F \operatorname{Tr}^{\prime}(\overline{\mathbb{Q}})$ such that $\bar{p} \leq \bar{q}$ and for each $t \in T$
(a) $q_{t} \in\{q \upharpoonright \operatorname{rk}(t): q \in \mathscr{I}\}$, and
(b) for each $\alpha \in \operatorname{Dom}\left(q_{t}\right)$, one of the following occurs:
(i) $q_{t}(\alpha)=p_{t}(\alpha)$
(ii) $\Vdash_{\mathbb{P}_{\alpha}} " q_{t}(\alpha) \in \mathbb{Q}_{\alpha}$ " (not just in the completion $\hat{\mathbb{Q}}_{\alpha}$)
(iii) $\Vdash_{\mathbb{P}_{\alpha}}$ "there is $r \in{\underset{\sim}{\mathbb{Q}}}_{\alpha}$ such that ${\underset{\sim}{\mathbb{Q}}}_{\alpha} \models p_{t}(\alpha) \leq r \leq q_{t}(\alpha)$ " (not really needed).

Proof. Just like the proof of [Sh 587, B.7.1].
Our next proposition corresponds to [Sh 587, B.7.2] which corresponds to [Sh 587, A.3.6]. The difference with [Sh 587, B.7.2] is the appearance of the \bar{M}, \bar{M}^{i}.
2.8 Proposition. Assume that $\hat{\mathscr{E}} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$ is closed and $\overline{\mathbb{Q}}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha}: \alpha<\gamma\right\rangle$ is a $(<\kappa)$-support iteration and $x=\left\langle{\underset{\sim}{\alpha}}_{\alpha}: \alpha<\gamma\right\rangle$ is such that

$$
\vdash_{\mathbb{P}_{\alpha}} "{\underset{\sim}{\mathbb{Q}}}_{\alpha} \text { is strongly complete for } \hat{\mathscr{E}} \text { with witness }{\underset{\sim}{x}}_{\alpha} "
$$

(for $\alpha<\gamma$). Further suppose that
(α) (\bar{N}, \bar{a}) is an $\hat{\mathscr{E}}$-complementary pair (see [Sh 587, B.5.1]), $\bar{N}=\left\langle N_{i}: i \leq \delta\right\rangle$ and $x, \hat{\mathscr{E}}, \overline{\mathbb{Q}} \in N_{0}$,
$(\beta) \mathscr{T}=\left(T,<^{+}, \mathrm{rk}\right) \in N_{0}$ is a standard $\left(w, \alpha_{0}\right)^{\gamma}$-tree, $w \subseteq \gamma \cap N_{0},\|w\|<$ $\operatorname{cf}(\delta), \alpha_{0}$ is an ordinal, $\alpha_{1}=\alpha_{0}+1$ and $0 \in w$
$(\gamma) \bar{p}=\left\langle p_{t}: t \in T\right\rangle \in F T r^{\prime}(\overline{\mathbb{Q}}) \cap N_{0}, w \in N_{0}$, (of course $\alpha_{0} \in N_{0}$, on $F T r^{\prime}$ see [Sh 587, A.3.2]),
(δ) $\bar{M}=\left\langle M_{i}: i \leq \delta\right\rangle, M_{i} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right), M_{i}$ is increasing continuous, $\left[M_{i}\right]^{\|w\|+|\mathscr{T}|} \subseteq M_{i+1}$ and the pair $(\bar{M} \upharpoonright(i+1), \bar{N} \upharpoonright(i+1))$ belongs to $M_{i+1}, M_{i} \prec N_{i}$ and $w \cup\left\{x, \hat{\mathscr{E}}_{0}, \mathbb{Q}\right\} \in M_{0}$
(ε) for $i \leq \delta, \mathscr{T}_{i}=\left(T_{i},<_{i}, \mathrm{rk}_{i}\right)$ is such that T_{i} consists of all sequences $t=\left\langle t_{\zeta}\right.$: $\zeta \in \operatorname{dom}(t)\rangle$ such that $\operatorname{dom}(t)$ is an initial segment of w, and
(i) each t_{ζ} is a sequence of length α_{1}
(ii) $\left\langle t_{\zeta} \upharpoonright \alpha_{0}: \zeta \in \operatorname{dom}(t)\right\rangle \in T$
(iii) for each $\zeta \in \operatorname{dom}(t)$, either $t_{\zeta}\left(\alpha_{0}\right)=*$ or $t_{\zeta}\left(\alpha_{0}\right) \in M_{i}$ is a \mathbb{P}_{ζ}-name for an element of \mathbb{Q}_{ζ} and if $t_{\zeta}(\alpha) \neq *$ for some $\alpha<\alpha_{0}$, then $t_{\zeta}\left(\alpha_{0}\right) \neq *$,
(iv) $\mathrm{rk}_{i}(t)=\min (w \cup\{\zeta\} \backslash \operatorname{dom}(t))$ and $<_{i}$ is the extension relation.

Then

(a) each \mathscr{T}_{i} is a standard $\left(w, \alpha_{1}\right)^{\gamma}$-tree, $\left\|T_{i}\right\| \leq\|T\| \cdot\left\|M_{i}\right\| \| w$ and if $i<\delta$ then $T_{i} \in N_{i+1}$
(b) \mathscr{T} is the projection of each \mathscr{T}_{i} onto $\left(w, \alpha_{0}\right)$ and \mathscr{T}_{i} is increasing with i
(c) there is $\bar{q}=\left\langle q_{t}: t \in T_{\delta}\right\rangle \in F \operatorname{Tr}^{\prime}(\overline{\mathbb{Q}})$ such that
(i) $\bar{p} \leq_{\operatorname{proj}_{T}^{T_{\delta}}} \bar{q}$
(ii) if $t \in T_{\delta} \backslash\{\langle \rangle\}$ then the condition $q_{t} \in \mathbb{P}_{\mathrm{rk}_{\delta}(t)}^{\prime}$ is an upper bound of an $\left(\bar{N} \upharpoonright\left[i_{0}, \delta\right], \mathbb{P}_{\mathrm{rk}_{\delta}(t)}\right)^{*}$-generic sequence (where $i_{0}<\delta$ is such that $t \in T_{i_{0}}$) and for every $\beta \in \operatorname{dom}\left(q_{t}\right)=N_{\delta} \cap \operatorname{rk}(t), q_{t}(\beta)$ is a name for the least upper bound in $\hat{\mathbb{Q}}_{\beta}$ of an $\left(\bar{N}\left[G_{\beta}\right] \upharpoonright[\xi, \delta), \mathbb{Q}_{\beta}\right)^{*}$-generic sequence (for some $\xi<\delta$).
[Note that by [Sh 587, B.5.5], the first part of the demand on q_{t} implies that if $i_{0} \leq \xi$ then $q_{t} \upharpoonright \beta$ forces that $\left(\bar{N}\left[G_{\beta}\right] \upharpoonright[\xi, \delta], \bar{a} \upharpoonright[\xi, \delta]\right)$ is an $\hat{\mathscr{S}}$-complementary pair.]
(iii) if $t \in T_{\delta}, t^{\prime}=\operatorname{proj}_{T}^{T_{\delta}}(t) \in T, \zeta \in \operatorname{dom}(t)$ and $t_{\zeta}\left(\alpha_{0}\right) \neq *$, then $q_{t} \upharpoonright \zeta \Vdash_{\mathbb{P}_{\zeta}} " p_{t^{\prime}}(\zeta) \leq_{\hat{\mathbb{Q}}_{\zeta}} t_{\zeta}\left(\alpha_{0}\right) \Rightarrow t_{\zeta}\left(\alpha_{0}\right) \leq_{\hat{\mathbb{Q}}_{\zeta}} q_{t}(\zeta) "$,
(iv) $q_{<>}=p_{<>}$.

Proof. Clauses (a) and (b) should be clear. Clause (c) is proved as in [Sh 587, B.7.2].

Remark. In 2.9 below is proved as in the inaccessible case i.e. the proofs of ([Sh 587, B.7.3]) with $\bar{M},\left\langle\bar{N}^{i}: i<\sigma\right\rangle$ as in Definition 2.5. We define the trees point: in stage i using trees \mathscr{T}_{i} with set of levels $w_{i}=M_{i} \cap \gamma$ and looking at all possible moves of COM, i.e. $p_{i} \in M_{i+1} \cap \mathbb{P}_{\gamma}$, so constructing this tree of conditions in δ_{i} stages, in stage $\varepsilon<\delta_{i}$, has $\left|N_{\varepsilon}^{i} \cap M_{i+1}\right|^{\mid \|^{2 M_{i} \|}}$ nodes.
Now

$$
\begin{aligned}
& p \in \mathbb{P}_{\gamma} \cap M_{i+1} \nRightarrow \operatorname{Dom}(p) \subseteq M_{i+1} \text { but } \\
& p \in \mathbb{P}_{\gamma} \cap M_{i+1} \Rightarrow \operatorname{Dom}(p) \subseteq M_{\sigma}=\bigcup_{i<\omega \sigma} N_{\delta_{i}}^{i} \\
& p \in \mathbb{P}_{\gamma} \cap N_{\varepsilon}^{i} \Rightarrow \operatorname{Dom}(p) \subseteq N_{\varepsilon}^{i} .
\end{aligned}
$$

So in limit cases $i<\sigma$: the existence of limit is by the clause (μ) of Definition 2.3. In the end we use the winning of the play and then need to find a branch in the tree of conditions of level σ : like Case A using $\hat{\mathscr{E}}_{0}$.
2.9 Theorem. Suppose that $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\omega}_{\kappa}}\left(\mu^{*}\right)\left(\right.$ so $\left.\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)\right)$ and $\overline{\mathbb{Q}}=$ $\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha}: \alpha<\gamma\right\rangle$ is a $(<\kappa)$-support iteration such that for each $\alpha<\kappa$

$$
\Vdash_{\mathbb{P}_{\alpha}} " \mathbb{Q}_{\alpha} \text { is complete for }\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) "
$$

Then
(a) $\Vdash_{\mathbb{P}_{\gamma}}\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\kappa_{\kappa}}\left(\mu^{*}\right)$, moreover
(b) \mathbb{P}_{γ} is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$.

Proof. We need only part (a) of the conclusion, so we concentrate on it. Let χ be a regular large enough regular cardinal, $\underset{\sim}{x}$ be a name for an element of $\mathscr{H}(\chi)$ and $p \in \mathbb{P}_{\gamma}$. Let ${\underset{\sim}{\alpha}}_{\alpha} \in \mathscr{H}(\chi)$ be a \mathbb{P}_{α}-name for the witness that \mathbb{Q}_{α} is (forced to be) complete for $\left.\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ and let $\bar{x}=\left\langle{\underset{\sim}{x}}_{\alpha}: \alpha<\gamma\right\rangle$. Since $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\omega}_{\kappa}}\left(\mu^{*}\right)$, we find $\bar{M}=\left\langle M_{i}: i \leq \sigma\right\rangle$ which is ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ with an $\hat{\mathscr{E}}_{0}$-approximation $\left\langle\bar{M}^{i}, \bar{N}^{i}:-1 \leq i<\sigma\right\rangle$ and such that $p, \overline{\mathbb{Q}}, x, \bar{x}, \hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1} \in M_{0}$ (see 2.3). Let $\bar{N}^{i}=$ $\left\langle N_{\varepsilon}^{i}: \varepsilon \leq \delta_{i}\right\rangle$ and let $\bar{a}^{i} \in \hat{\mathscr{E}}_{0}$ be such that $\left(\bar{N}^{i}, \bar{a}^{i}\right)$ is an $\hat{\mathscr{E}}_{0}$-complementary pair and let $\bar{M}^{i}=\left\langle M_{\varepsilon}^{i}: \varepsilon \leq \delta_{i}\right\rangle$. Let $w_{i}=\{0\} \cup \bigcup_{\omega j \leq i}\left(\gamma \cap M_{\omega j}\right)$ (for $i \leq \delta$). By the demands of 2.3 we know that $\left\|w_{i}\right\|<\operatorname{cf}\left(\delta_{i}\right), w_{i} \in M_{0}^{i}$.

By induction on $i \leq \sigma$ we define standard $\left(w_{i}, i\right)^{\gamma}$-trees $\mathscr{T}_{i} \in M_{i+1}$ and $\bar{p}^{i}=$ $\left\langle p_{t}^{i}: t \in T_{i}\right\rangle \in \operatorname{Tr}^{\prime}(\overline{\mathbb{Q}}) \cap M_{i+1}$ such that $\left\|T_{i}\right\| \leq\left\|M_{i}\right\|^{\left\|w_{i}\right\|} \leq\left\|M_{i+1}\right\|$ if i is limit or $0, w_{i+1}=w_{i}$ hence $\mathscr{T}_{i+1}=\mathscr{T}_{i}$, and if $j<i \leq \delta$ then $\mathscr{T}_{j}=\operatorname{proj}_{\left(w_{j}, j+1\right)}^{\left(w_{i}, i+1\right)}\left(\mathscr{T}_{i}\right)$ and $\bar{p}^{j} \leq \leq_{\operatorname{proj}_{\mathcal{J}_{j}}^{\mathscr{J}_{i}}} \bar{p}^{i}$.

CASE 1: $i=0$.

Lt T_{0}^{*} consist of all sequences $\left\langle t_{\zeta}: \zeta \in \operatorname{dom}(t)\right\rangle$ such that $\operatorname{dom}(t)$ is an initial segment of w_{0} and $t_{\zeta}=<>$ for $\zeta \in \operatorname{dom}(t)$. Thus T_{0}^{*} is a standard $\left(w_{0}, 0\right)^{\gamma}$-tree, $\left\|T_{0}^{*}\right\|=\left\|w_{0}\right\|+1$. For $t \in T_{0}^{*}$ let $p_{t}^{* 0}=p \upharpoonright \mathrm{rk}_{0}^{*}(t)$. Clearly the sequence $\bar{p}^{* 0}=\left\langle p_{t}^{* 0}\right.$: $\left.t \in T_{0}^{*}\right\rangle$ is in $F T r^{\prime}(\overline{\mathbb{Q}}) \cap N_{0}^{-1}$. Apply 2.8 to $\hat{\mathscr{E}}_{0}, \overline{\mathbb{Q}}, \bar{N}^{-1}, \mathscr{T}_{0}^{*}, w_{0}$ and $\bar{p}^{* 0}$ (note that $\left\|M_{\varepsilon}^{-1}\right\|\left\|w_{0}\right\| \subseteq M_{\varepsilon}^{-1}$ for $\varepsilon<\delta_{0}$). As a result we get a $\left(w_{0}, 1\right)^{\gamma}$-tree \mathscr{T}_{0} (the one called $\mathscr{T}_{\delta_{0}}$ there) and $\bar{p}^{0}=\left\langle p_{t}^{0}: t \in T_{0}\right\rangle \in F \operatorname{Tr}^{\prime}(\overline{\mathbb{Q}}) \cap M_{1}$ (the one called \bar{q} there) satisfying
clauses (ε),(c)(i)-(iv) of 2.8 and such that $\left\|T_{0}\right\| \leq\left\|N_{\delta_{0}}^{-1}\right\|\left\|w_{0}\right\|=\left\|M_{0}\right\|\left\|w_{0}\right\|=\left\|M_{0}\right\|$ (remember $\left.\operatorname{cf}\left(\delta_{0}\right)>2^{\left\|M_{0}\right\|}\right)$. So, in particular, if $t \in T_{0}, \zeta \in \operatorname{dom}(t)$ then $t_{\zeta}(0) \in M_{1}$ is either $*$ of a \mathbb{P}_{ζ}-name for an element of \mathbb{Q}_{ζ}.

Moreover, we additionally require that $\left(\mathscr{T}_{0}, \bar{p}^{0}\right)$ is the $<_{\chi}^{*}$-first with all these properties, so $\mathscr{T}_{0}, \bar{p}^{0} \in M_{1}$.

CASE 2: $i=i_{0}+1$.
We proceed similarly to the previous case. Suppose we have defined $\mathscr{T}_{i_{0}}$ and $\bar{p}^{i_{0}}$ such that $\mathscr{T}_{i_{0}}, \bar{p}^{i_{0}} \in M_{i_{0}+1},\left\|T_{i_{0}}\right\| \leq\left\|M_{i_{0}+1}\right\|$. Let \mathscr{T}_{i}^{*} be a standard $\left(w_{i}, i_{0}\right)^{\gamma}$-tree such that
T_{i}^{*} consists of all sequences $\left\langle t_{\zeta}: \zeta \in \operatorname{dom}(t)\right\rangle$ such that $\operatorname{dom}(t)$ is an initial segment of w_{i} and

$$
\left\langle t_{\zeta}: \zeta \in \operatorname{dom}(t) \cap w_{i_{0}}\right\rangle \in T_{i_{0}} \text { and }\left(\forall \zeta \in \operatorname{dom}(t) \backslash w_{i_{0}}\right)\left(\forall j<i_{0}\right)\left(t_{\zeta}(j)=*\right)
$$

Thus, $\mathscr{T}_{i_{0}}=\operatorname{proj}_{\left(w_{i_{0}}, i_{0}\right)}^{\left(w_{i}, i\right)}\left(\mathscr{T}_{i}^{*}\right)$ and $\left\|T_{i}^{*}\right\| \leq\left\|M_{i}\right\|$. Let $p_{t}^{* i}=p_{t^{\prime}}^{i_{0}} \upharpoonright \mathrm{rk}_{i}^{*}(t)$ for $t \in T_{i}^{*}, t^{\prime}=\operatorname{proj}_{\mathscr{T}_{i}}^{\mathscr{T}_{i}}(t)$. Now apply 2.8 to $\hat{\mathscr{E}_{0}}, \overline{\mathbb{Q}}, \bar{N}^{i_{0}}, \mathscr{T}_{i}^{*}, w_{i}$ and $\bar{p}^{* i}$ (check that the assumptions are satisfied). So we get a standard $\left(w_{i}, i_{0}+1\right)^{\gamma}$-tree \mathscr{T}_{i} and a sequence \bar{p}^{i} satisfying $(\varepsilon),(c)(i)-(i v)$ of 2.8 , and we take the $<_{\chi}^{*}$-pair $\left(\mathscr{T}_{i}, \bar{p}^{i}\right)$ with these properties. In particular, we will have $\left\|T_{i}\right\| \leq\left\|M_{i_{0}}\right\| \cdot\left\|N_{\delta_{i}}^{i_{0}}\right\|\left\|M_{i_{0}}\right\|=\left\|M_{i_{0}+1}\right\|$ and $\bar{p}^{i}, \mathscr{T}_{i} \in M_{i+1}$.

CASE 3: i is a limit ordinal.
Suppose we have defined $\mathscr{T}_{j}, \bar{p}^{j}$ for $j<i$ and we know that $\left\langle\left(\mathscr{T}_{j}, \bar{p}^{j}\right): j<\right.$ $i\rangle \in M_{i+1}$ (this is the consequence of taking "the $<_{\chi}^{*}$-first such that ..."). let $\mathscr{T}_{i}^{*}=\lim \left(\left\langle\mathscr{T}_{j}: j<i\right\rangle\right)$. Now, for $t \in T_{i}^{*}$ we would like to define $p_{t}^{* i}$ as the limit of $p_{\operatorname{pro}_{\mathscr{F}_{j}}^{\mathscr{S}_{i}^{*}}(t)}$. However, our problem is that we do not know if the limit exists. Therefore, we restrict ourselves to these t for which the respective sequence has an upper bound. To be more precise, for $t \in \mathscr{T}_{i}^{*}$ we apply the following procedure.
\otimes Let $t^{j}=\operatorname{proj} \mathscr{\mathscr { T }}_{\mathscr{T}_{j}^{*}}^{\mathscr{T}^{*}}(t)$ for $j<i$. Try to define inductively a condition $p_{t}^{* i} \in$ $\mathbb{P}_{\mathrm{rk}_{i}^{*}(t)}$ such that $\operatorname{dom}\left(p_{t}^{* i}\right)=\cup\left\{\operatorname{dom}\left(p_{t j}^{j}\right) \cap \operatorname{rk}_{i}^{*}(t): j<i\right\}$. Suppose we have successfully defined $p_{t}^{* i} \upharpoonright \alpha$ for $\alpha \in \operatorname{dom}\left(p_{t}^{* i}\right)$, in such a way that $p_{t}^{* i} \upharpoonright \alpha \geq p_{t^{j}}^{j} \upharpoonright \alpha$ for all $j<i$. We know that

$$
p_{t}^{* i} \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} \text { " the sequence }\left\langle p_{t^{j}}^{j}(\alpha): j<i\right\rangle \text { is } \leq_{\widehat{Q}_{\alpha}} \text {-increasing". }
$$

So now, if there is a \mathbb{P}_{α}-name $\underset{\sim}{\tau}$ for an element of \mathbb{Q}_{α} such that

$$
p_{t}^{* i} \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} "(\forall j<i)\left(p_{t^{j}}^{j}(\alpha) \leq_{\hat{\mathbb{Q}}_{\alpha}} \tau\right) ",
$$

then we take the \mathbb{P}_{α}-name of the lub of $\left\langle p_{t^{j}}^{j}(\alpha): j<i, p_{t^{j}}^{j}(\alpha) \neq *\right\rangle$ in $\hat{\mathbb{Q}}$, and we continue. If there is no such $\underset{\sim}{\tau}$ then we decide that $t \notin \mathscr{T}_{i}^{+}$and we stop the procedure ${ }^{2}$.

Now, let \mathscr{T}_{i}^{+}consist of those $t \in T_{i}^{*}$ for which the above procedure resulted in a successful definition of $p_{t}^{* i} \in \mathbb{P}_{\mathrm{rk}_{i}^{*}(t)}$. It might not be clear at the moment if T_{i}^{+} containss anything more than \rangle, but we will see that this is the case. Note that

$$
\left\|T_{i}^{+}\right\| \leq\left\|T_{i}^{*}\right\| \leq \prod_{j<i}\left\|T_{j}\right\| \leq \prod_{j<i}\left\|M_{j}\right\| \leq 2^{\left\|M_{i}\right\|} \leq\left\|M_{0}^{i}\right\| .
$$

Moreover, for nonlimit $\varepsilon>2$ we have $\left\|M_{\varepsilon}^{i}\right\|\left\|w_{i}\right\|+\left\|T_{i}^{+}\right\| \leq\left\|M_{\varepsilon}^{i}\right\|\left\|M_{i}\right\| \subseteq M_{\varepsilon+1}^{i}$ and $\mathscr{T}_{i}{ }^{+}, \bar{p}^{* i} \in M_{i+1}$. Let $\mathscr{T}_{i}=\mathscr{T}_{i}^{*}, \bar{p}^{i}=\bar{p}^{* i}$ (this time there is no need to take the $<_{\chi}^{*}$-first pair as the process leaves no freedom). So we have finished Case 3.

After the construction is carried out we continue in a similar manner as in [Sh 587, A.3.7] (but note slightly different meaning of the $*$'s here).

So we let $\mathscr{T}_{\sigma}=\lim \left(\left\langle\mathscr{T}_{i}: i<\sigma\right\rangle\right)$. It is a standard $(\sigma, \sigma)^{\gamma}$-tree. By induction on $\alpha \in w_{\sigma} \cup\{\gamma\}$ we choose $q_{\alpha} \in \mathbb{P}_{\alpha}^{\prime}$ and a \mathbb{P}_{α}-name t_{α} such that:
(a) $\vdash_{\mathbb{P}_{\alpha}} " t_{\alpha} \in T_{\omega \sigma} \& \operatorname{rk}_{\delta}({\underset{\alpha}{\alpha}})=\alpha$ " and let $i_{0}^{\alpha}=\min \left\{i<\delta: \alpha \in M_{i}\right\}<\sigma$,
(b) $\vdash_{\mathbb{P}_{\alpha}} " t_{\beta}=t_{\alpha} \upharpoonright \beta$ " for $\beta<\alpha$,
(c) $\operatorname{dom}\left(q_{\alpha}\right)=w_{\delta} \cap \alpha$,
(d) if $\beta<\alpha$ then $q_{\beta}=q_{\alpha} \upharpoonright \beta$,

(f) for each $\beta<\alpha$

[^1]$q_{\alpha} \Vdash_{\mathbb{P}_{\alpha}}$ " $\left.\forall i<\delta\right)\left(\left(t_{\beta+1}\right)_{\beta}(i)=* \Leftrightarrow i<i_{0}^{\beta}\right)$ and the sequence
$\left\langle i_{0}^{\beta}, p_{\operatorname{proj}_{\mathscr{F}_{i_{0}^{\beta}}^{\beta}}^{i_{0}^{\beta}}}^{\mathscr{T}_{\delta}}\left(\underline{t}_{\beta+1}\right)(\beta),\left\langle\left(t_{\beta+1}\right)_{\beta}(i), p_{\operatorname{proj}_{\mathscr{F}_{i}}^{i}}^{\mathscr{J}_{\boldsymbol{\delta}}\left(\underline{t}_{\beta+1}\right)}(\beta): i_{0}^{\beta} \leq i<\delta\right\rangle\right\rangle$ is a result of a play of the game $\mathfrak{G}_{\bar{M}\left[G_{\beta}\right],\left\langle\bar{N}^{i}\left[G_{\beta}\right]: i<\delta\right\rangle}^{\boldsymbol{\omega}}\left(\mathbb{Q}_{\beta}, 0_{\mathbb{Q}_{\beta}}\right)$, won by player COM",
(g) the condition q_{α} forces (in \mathbb{P}_{α}) that "the sequence $\bar{M}\left[G_{\mathbb{P}_{\alpha}}\right] \upharpoonright\left[i_{\alpha}, \delta\right]$ is ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$ and $\left\langle\bar{N}^{i}\left[G_{\mathbb{P}_{\alpha}}\right]: i_{0}^{\alpha} \leq i<\sigma\right\rangle$ is its $\hat{\mathscr{E}}_{0}$-approximation".
(Remember: $\hat{\mathscr{E}}_{1}$ is closed under end segments). This is done completely parallely to the last part of the proof of [Sh 587, A.3.7].

Finally, look at the condition q_{γ} and the clause (g) above.
2.10 Generalization 1) $\hat{\mathscr{E}}_{1}$ is a set of triples $\left\langle\bar{a},\left\langle\bar{b}^{i}, \bar{a}^{i}: i<\sigma\right\rangle, \bar{\lambda}\right\rangle, \bar{a}=\left\langle a_{i}: i \leq\right.$ $\sigma\rangle, \bar{a}^{i}=\left\langle a_{\alpha}^{i}: \alpha \leq \delta_{i}\right\rangle, \bar{b}^{i}=\left\langle b_{\alpha}^{i}: \alpha \leq \delta_{i}\right\rangle \in \hat{\mathscr{E}}_{0}, a_{\delta_{i}}^{i}=a_{i+1}, a_{i} \subseteq b_{0}^{i}, \lambda=\left\langle\lambda_{i}: i<\sigma\right\rangle$ an increasing sequence of cardinals $<\lambda, \sum \lambda_{i}=\lambda$.
2) We say ($\bar{M},\left\langle\bar{M}^{i}: i<\sigma\right\rangle,\left\langle\bar{N}^{i}: i<\sigma\right\rangle$) obeys ($\bar{a},\left\langle\bar{b} \bar{b}^{i}: i<\bar{\lambda}\right\rangle$ if: $M_{i} \cap \mu^{*}=a_{i}, \bar{N}^{i}$ obeys \bar{b}^{i} all things in 2.3 but $\lambda_{i} \geq\left\|M_{i}\right\|, \lambda_{i} \geq \prod_{j \leq i}\left\|M_{j}\right\|,\left[M_{\alpha}^{i}\right]^{\lambda_{i}} \subseteq M_{\alpha+1}^{i}$ for $\alpha<\delta_{i}$ (so earlier $\lambda_{i}=2^{\left\|M_{i}\right\|}$).

2.11 Conclusion 1) Assume

(a) $S \subseteq\{\delta<\kappa: \operatorname{cf}(\delta)=\sigma\}$ is stationary not reflecting
(b) $\overline{\mathbf{a}}=\left\langle\bar{a}_{\delta}: \delta \in S\right\rangle, \bar{a}_{\delta}=\left\langle a_{\delta, i}: i \leq \sigma\right\rangle, \delta=a_{\delta, \sigma}$ and $a_{\delta, i}$ increasing with i and $i<\sigma \Rightarrow\left|a_{\delta, i}\right|<\lambda$ and $\sup \left(a_{\delta, i}\right)<\delta$
[variant: $\bar{\lambda}^{\delta}=\left\langle\lambda_{i}^{\delta}: i<\sigma\right\rangle$ increasing with limit $\left.\lambda\right]$
(c) we let $\mu^{*}=\kappa, \hat{\mathscr{E}}_{0}=\hat{\mathscr{E}}_{0}[S]=\left\{\bar{a}: \bar{a}=\left\langle a_{i}: i \leq \alpha\right\rangle, \alpha<\kappa, a_{i} \in \kappa \backslash S\right.$ increasing continuous $\}$
(d) $\hat{\mathscr{E}}_{1}=\left\{\bar{a}_{\delta}: \delta \in S\right\}$
(or $\left\{\left\langle\bar{a}_{\delta},\left\langle\bar{a}^{\delta, i}, \bar{b}^{i}, \delta: i<\sigma\right\rangle, \bar{\lambda}^{\delta}\right\rangle: \delta \in S\right\}$ appropriate for (2.10)
(e) we assume the pair $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\omega}}\left(\mu^{*}\right)$
(f) $\mu=\mu^{\kappa}, \kappa<\tau=\operatorname{cf}(\tau)<\mu$.

Then for some $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$-complete forcing notion \mathbb{P} of cardinality μ we have

$$
\begin{aligned}
& \Vdash_{\mathbb{P}} \text { "forcing axiom for }\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \text {-complete forcing notion } \\
& \text { of cardinality } \leq \kappa \text { and }<\tau \text { of open dense sets" }
\end{aligned}
$$

and in $\mathbf{V}^{\mathbb{P}}$ the set S is still stationary (by preservation of ($\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}$)-nontrivial).
2) If clauses (a), (c) holds and \diamond_{S}, then for some $\overline{\mathbf{a}}$, if we define $\hat{\mathscr{E}}_{1}$ as in clause (d) then clause (b),(d),(e) holds.

Proof. 1) See more in the end of $\S 3$.
2) Easy.
2.12 Application: $\operatorname{In} \mathbf{V}^{\mathbb{P}}$ of 2.11:
(a) if
(i) $\theta<\lambda, A_{\delta} \subseteq \delta=\sup \left(A_{\delta}\right)$ for $\delta \in S$,
(ii) $\left|A_{\delta}\right|<\theta$
(iii) $\bar{h}=\left\langle h_{\delta}: \delta \in S\right\rangle, h_{\delta}: A \rightarrow \theta$
(iv) $A_{\delta} \subseteq \bigcup\left\{a_{\delta, i+1} \backslash a_{\delta, i}: i<\sigma\right\}$,
then for some $h: \kappa \rightarrow \theta$ and club E of κ we have $(\forall \delta \in S \cap E)\left[h_{\delta} \subseteq^{*} h\right]$ where $h^{\prime} \subseteq^{*} h^{\prime \prime}$ means that $\sup \left(\operatorname{Dom}\left(h^{\prime}\right)\right)>\sup \left\{\alpha: \alpha \in \operatorname{Dom}\left(h^{\prime}\right)\right.$ and $\alpha \notin \operatorname{Dom}\left(h^{\prime \prime}\right)$ or $\left.\alpha \in \operatorname{Dom}\left(h^{\prime \prime}\right) \& h^{\prime}(\alpha) \neq h^{\prime \prime}(\alpha)\right\}$
(b) if we add: " h_{δ} constant", then we can omit the assumption (iii)
(c) we can weaken $\left|A_{\delta}\right|<\theta$ to $\left|A_{\delta} \cap a_{\delta, i+1}\right| \leq\left|a_{\delta, i}\right|$
(d) in (c) we can weaken $\left|A_{\delta}\right| \leq \theta \vee\left|A_{\delta} \cap a_{\delta, i+1}\right| \leq\left|a_{\delta, i}\right|$ to $h_{\delta} \upharpoonright a_{\delta, i+1}$ belongs to $M_{i+1} \cap N_{\alpha}^{i}$ for some $\alpha<\delta_{i}$ $\left(\right.$ remember $\left.\operatorname{cf}\left(\sup a_{\delta, i+1}\right)>\lambda_{i}^{\delta}\right)$.
2.13 Remark. 1) Compared to [Sh 186] the new point in the application is (b).
2) You may complain why not having the best of (a) + (b), i.e. combine their good points. The reason is that this is impossible by $\S 1, \S 4$; the situation is different in the inaccessible case.

Proof. Should be clear. Still we say something in case h_{δ} constant, that is (b). Let

$$
\begin{aligned}
\mathbb{Q}=\{(h, C): & h \text { is a function with domain an ordinal } \\
& \alpha<\kappa=\lambda^{+}, \\
& C \text { a closed subset of } \alpha+1, \alpha \in C \\
& \text { and } \left.(\forall \delta \in C \cap S \cap(\alpha+1))\left(h_{\delta} \subseteq^{*} h\right)\right\} .
\end{aligned}
$$

with the partial order being inclusion.
For $p \in \mathbb{Q}$ let $p=\left(h^{p}, C^{p}\right)$.
So clearly if $(h, C) \in \mathbb{Q}$ and $\alpha=\operatorname{Dom}(h)<\beta \in \kappa$ then for some h_{1} we have $h \subseteq h_{1} \in \mathbb{Q}_{1}, \operatorname{Dom}\left(h_{1}\right)=\beta$; moreover, if $\gamma<\theta \quad \& \beta \notin S$ then $(h, C) \leq$ $\left(h \cup \gamma_{[\alpha, \beta]}, C \cup\{\beta\}\right) \in \mathbb{Q}$.
The main point is proving \mathbb{Q} is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$. Now " \mathbb{Q} is strongly complete for $\hat{\mathscr{E}}_{0} "$ is proved as in [Sh 587, B.6.5.1,B.6.5.2] (or 3.14 below which is somewhat less similar). The main point is clause (b) of $2.5(2)$; that is, let $\bar{M},\left\langle\bar{M}^{i}: i<\right.$ $\omega \sigma\rangle,\left\langle\bar{N}^{i}: i<\omega \sigma\right\rangle$ be as there. In the game $\mathfrak{G}_{\bar{M},\left\langle N_{i}: i<\omega \sigma\right\rangle}(r, \mathbb{Q})$ from 2.5(1), we can even prove that the player COM has a winning strategy: in stage i (non-trivial): if h_{δ} is constantly $\gamma<\theta$ or just $h_{\delta} \upharpoonright\left(A_{\delta} \cap a_{\delta, i+1} \backslash a_{\delta, i}\right)$ is constantly $\gamma<\theta$ then we let

$$
\begin{aligned}
p_{i}= & \left(\cup\left\{h^{q_{\zeta}^{j}}: j<i \text { and } \zeta<\delta_{i}\right\} \cup \gamma_{\left[N_{\delta_{i}}^{i} \cap \kappa, \beta_{i}\right)},\right. \\
& \left.\quad \operatorname{closure}\left(\cup\left\{C^{q_{\zeta}^{j}}: j<i \text { and } \zeta<\delta_{i}\right\} \cup\left\{\beta_{i}\right\}\right)\right)
\end{aligned}
$$

for some $\beta_{i} \in M_{i+1} \cap \kappa \backslash M_{i}$ large enough such that $A_{\delta} \cap M_{i+1} \cap \kappa \subseteq \beta_{i}$.

Remark. In the example of uniformizing (see [Sh 587]) if we use this forcing, the density is less problematic.
2.14 Claim. 1) In ?'s conclusion we can omit the club E that is let $E=\kappa$ and $\rightarrow \quad$ scite\{2.10\} undefined demand $(\forall \delta \in S)\left(h_{\delta} \subseteq^{*} h\right)$ provided that we add in ?, recalling $S \subseteq \kappa$ does not \rightarrow scite\{2.10\} undefined
reflect is a set of limit ordinals and

$$
\bar{A}=\left\langle A_{\delta}: \delta \in S\right\rangle, A_{\delta} \subseteq \delta=\sup \left(A_{\delta}\right)
$$

satisfies

$(*) \delta_{1} \neq \delta_{2}$ in $S \Rightarrow \sup \left(A_{\delta_{1}} \cap A_{\delta_{2}}\right)<\delta_{1} \cap \delta_{2}$.
2) If $(\forall \delta \in S)\left(\operatorname{otp}\left(A_{\delta}\right)=\theta\right.$ this always holds.

Proof. We define $\mathbb{Q}=\{h: \operatorname{Dom}(h)$ is an ordinal $<\kappa$ and $h(\beta) \neq 0 \wedge \beta \in$ $\operatorname{Dom}(h) \rightarrow(\exists \delta \in S)\left[h_{\delta}(\beta)=h(\beta)\right]$ and $\delta \in(\operatorname{Dom}(h)+1) \cap S$ implies $\left.h_{\delta} \subseteq^{*} h\right\}$ ordered by \subseteq. Now we should prove the parallel of the fact:
\boxtimes^{\prime} if $p \in \mathbb{Q}, \alpha=\operatorname{Dom}(p)<\beta<\kappa$ then there is q such that $p \leq q \in \mathbb{Q}$ and

$$
\operatorname{Dom}(q)=\beta
$$

Why this holds? We can find $\left\langle A_{\delta}^{\prime}: \delta \in S \cap(\beta+1)\right\rangle$ such that $A_{\delta}^{\prime} \subseteq A_{\delta}, \sup \left(A_{\delta} \backslash A_{\delta}^{\prime}\right)<$ δ and $\bar{A}^{\prime}=\left\langle A_{\delta}^{\prime}: \delta \in S \cap(\beta+1)\right\rangle$ is pairwise disjoint.
Now choose q as follows

$$
\begin{aligned}
& \operatorname{Dom}(q)=\beta \\
& q(j)=\left\{\begin{array}{lll}
p(j) & \text { if } \quad j<\alpha \\
h_{\delta}(j) & \underline{\text { if }} \quad j \in A_{\delta}^{\prime} \backslash \alpha \text { and } \delta \in S \cap(\beta+1) \backslash(\alpha+1) \\
0 & \underline{\text { if }} \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Why does \bar{A}^{\prime} exist? Prove by induction on β that for any $\bar{A}^{1},\left\langle A_{\delta}^{\prime}: \delta \in S \cap(\alpha+1)\right\rangle$ as above and β satisfying $\alpha<\beta<\kappa$, we can end extend \bar{A}^{1} to $\left\langle A_{\delta}^{\prime}: \delta \in S \cap(\beta+1)\right\rangle$ which is as above.
2.15 Remark. Note: concerning κ inaccessible we could immitate what is here: having $M_{i+1} \nsupseteq N_{\delta_{i}}^{i}, \bigcup_{i<\delta} M_{i}=\bigcup_{i<\delta} N_{\delta_{i}}^{i}$.

As long as we are looking for a proof that no sequence of length $<\kappa$ are added, the gain is meagre (restricting the \bar{q} 's by $\bar{q} \upharpoonright \alpha \in N_{\alpha+1}^{\prime}$). Still if you want to make the uniformization and some diamond we may consider this.
2.16 Comment: We can weaken further the demand, by letting COM have more influence. E.g. we have (in 2.3) $\delta_{i}=\lambda_{i}=\operatorname{cf}\left(\lambda_{i}\right)=\left\|M_{i+1}\right\|, D_{i}$ a $\left|a_{i}\right|^{+}$-complete filter on λ_{i}, the choice of \bar{q}^{i} in the result of a game in which INC should have chose a set of player $\in D_{i}$ and $\diamond_{D_{i}}$ holds (as in the treatment of case E^{*} here).
The changes are obvious, but I do not see an application at the moment.

$$
\S 3 \kappa^{+}{ }_{-\mathrm{C} . \mathrm{C} .} \text { AND } \kappa^{+}{ }_{-\mathrm{PIC}}
$$

We intend to generalize pic of [Sh:f, Ch.VIII, $\S 1]$. The intended use is for iteration with each forcing $>\kappa$ - see use in [Sh:f]. In [Sh 587, B.7.4] we assume each \mathbb{Q}_{i} of cardinality $\leq \kappa$. Usually $\mu=\kappa^{+}$.
Note: $\hat{\mathscr{E}}_{0}$ is as in the accessible case, in [Sh 587] but this part works in the other cases. In particular, in Cases A,B (in [Sh 587]'s context) if the length of $\bar{a} \in \hat{\mathscr{E}}_{0}$ is $<\lambda$ (remember $\kappa=\lambda^{+}$), then we have $(<\lambda)$-completeness implies $\widehat{\mathscr{E}}_{0}$-completeness AND in 3.7 even $\bar{a} \in \hat{\mathscr{E}}_{0} \Rightarrow \ell g(\bar{a})=\omega$ is O.K.

In Case A on the $S_{0} \subseteq S_{\lambda}^{\kappa}$ if $\ell g(\bar{a})=\lambda, a_{\lambda} \in S_{0}$ is O.K., too. STILL can start with other variants of completeness which is preserved.
3.1Context: We continue [Sh 587, B.5.1-B.5.7(1)] (except the remark [Sh 587, B.5.2(3)]) under the weaker assumption $\kappa=\kappa^{<\kappa}>\aleph_{0}$, so κ is not necessarily strongly inaccessible; also in our $\hat{\mathscr{E}}$'s we allow \bar{a} such that $\left|a_{\delta}\right|=|\delta|$ is strongly inaccessible.
3.2 Definition. Assume:
$\boxtimes(a) \mu=\operatorname{cf}(\mu)>|\alpha|^{<\kappa}$ for $\alpha<\mu$
(b) the triple $\left(\kappa, \mu^{*}, \hat{\mathscr{E}}_{0}\right)$ satisfies: $\kappa=\operatorname{cf}(\kappa)>\aleph_{0}, \mu^{*} \geq \kappa, \hat{\mathscr{E}}_{0} \subseteq\{\bar{a}: \bar{a}$ an increasing continuous sequence of members of $\left[\mu^{*}\right]^{<\kappa}$ of limit length $<\kappa$ with $\left.a_{i} \cap \kappa \in \kappa\right\}$ and
(c) $S^{\square} \subseteq\{\delta<\mu: \operatorname{cf}(\delta) \geq \kappa\}$ stationary.

For $\ell=1,2$ we say \mathbb{Q} satisfies $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-pic ${ }_{\ell}$ if: for some $x \in \mathscr{H}(\chi)$ (can be omitted, essentially, i.e. replaced by \mathbb{Q}) we have
(*) if
(α) $S \subseteq S^{\square}$ is stationary and $\left\langle\mu, S, \hat{\mathscr{E}}_{0}, x\right\rangle \in N_{0}^{\alpha}$
(β) for $\alpha \in S, \delta_{\alpha}<\kappa$, and
(i) if $\ell=1, \bar{N}^{\alpha}=\left\langle N_{i}^{\alpha}: i \leq \delta_{\alpha}\right\rangle$ and $c_{\alpha}=\delta_{\alpha}$ and $\bar{N}^{\alpha, *}=\bar{N}^{\alpha}$
(ii) if $\ell=2$ then $\bar{N}^{\alpha, *}=\left\langle N_{i}^{\alpha}: i \leq \delta_{\alpha}\right\rangle, \bar{N}^{\alpha}=\left\langle N_{i}^{\alpha}: i \in c_{\alpha}^{+}\right\rangle$ where $c_{\alpha} \subseteq \delta_{\alpha}=\sup \left(c_{\alpha}\right), c_{\alpha}^{+}=c_{\alpha} \cup\left\{\delta_{\alpha}\right\}, c_{\alpha}$ is closed, $\gamma<\beta \in c_{\alpha} \Rightarrow c_{\alpha} \cap \gamma \in N_{\beta}^{\alpha}$
(γ) $\left(\bar{N}^{\alpha}, \bar{a}^{\alpha}\right)$ is $\hat{\mathscr{E}}_{0}$-complementary (see [Sh 587, B.5.3]); so \bar{N}^{α} obeys $\bar{a}^{\alpha} \in$ $\hat{\mathscr{E}}_{0}$ (with some error n_{α}) (so here we have $\left\|N_{\delta_{\alpha}}^{\alpha}\right\|<\kappa, \delta_{\alpha}<\kappa$)
(δ) \bar{p}^{α} is $\left(\bar{N}^{\alpha}, \mathbb{Q}\right)^{1}$-generic (see [Sh 587, Definition B.5.3.1])
($\varepsilon) \quad \alpha \in N_{0}^{\alpha}$ and
(i) if $\ell=1$, then for some club C of μ for every $\alpha \in S$ we have $\left\langle\left(\bar{N}^{\beta}, \bar{p}^{\beta}\right): \beta \in S \cap C \cap \alpha\right\rangle$ belong to N_{0}^{α}
(ii) if $\ell=2$, then for some club C of μ for every $\alpha \in S \cap C$ and $i<\delta_{\alpha}$ we have $\left\langle\left(\bar{N}^{\beta, *} \upharpoonright(i+1), \bar{p}^{\beta} \upharpoonright(i+1)\right): \beta \in S \cap C\right.$ belongs to N_{i+1}^{α}
(ε) we define a function g with domain S as follows: $g(\alpha)=\left(g_{0}(\alpha), g_{1}(\alpha)\right)$ where $g_{0}(\alpha)=N_{\delta_{\alpha}}^{\alpha} \cap\left(\bigcup_{\beta<\alpha} N_{\delta_{\beta}}^{\beta}\right)$ and $\left.g_{1}(\alpha)=\left(N_{\delta_{\alpha}}^{\alpha}, N_{i}^{\alpha}, c\right)_{i<\delta_{1}, c \in g_{0}(\alpha)}\right) \cong$,
then we can find a club C of μ such that:
if $\alpha<\beta \quad \& \quad g(\alpha)=g(\beta) \quad \& \quad \alpha \in C \cap S \quad \& \quad \beta \in C \cap S$ then $\delta_{\alpha}=$ $\delta_{\beta}, g(\alpha)=g(\beta)$, for some $h, N_{\delta_{\alpha}}^{\alpha} \cong N_{\delta_{\beta}}^{\beta}$ (really unique), and for each $i<\delta_{\alpha}$ the function h maps N_{i}^{α} to $N_{i}^{\beta}, p_{i}^{\alpha}$ to p_{i}^{β} and $\left\{p_{i}^{\alpha}: i<\delta_{\alpha}\right\} \cup\left\{p_{i}^{\beta}: i<\delta_{\beta}\right\}$ has an upper bound.
3.3 Claim. Assume \boxtimes, i.e. (a), (b), (c) of 3.2 and
(d) $\hat{\mathscr{E}}_{0}$ is non-trivial, which means:
for every χ large enough and $x \in \mathscr{H}(\chi)$ there is $\bar{N}=\left\langle N_{i}: i \leq \delta\right\rangle$ increasingly continuous, $N_{i} \prec(\mathscr{H}(\chi), \in), x \in N_{i},\left\|N_{i}\right\|<\kappa, \bar{N} \upharpoonright(i+1) \in N_{i+1}$ and \bar{N} obeys some $\bar{a} \in \hat{E}_{0}$ with some finite error n)
(e) \mathbb{Q} is a strongly $\mathrm{cl}\left(\hat{\mathscr{E}}_{0}\right)$-complete forcing notion (hence adding no new bounded subsets of κ) where $c \ell\left(\hat{\mathscr{E}}_{0}\right)=:\left\{\bar{a} \upharpoonright[\alpha, \beta]: \bar{a} \in \hat{\mathscr{E}}_{0}\right.$ and $\left.\alpha \leq \beta \leq \ell g(\bar{a})\right\}$
$(f) \mathbb{Q}$ satisfies $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-pice where $\ell \in\{1,2\}$.
Then \mathbb{Q} satisfies the μ-c.c. provided that
(*) $\ell=1$ or $\ell=2$ and $\hat{\mathscr{E}}_{0}$ is fat, see below.
3.4 Definition. We say $\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}^{-}\left(\mu^{*}\right)$ is fat, if in the following game $\partial_{\kappa, \mu^{*}}\left(\hat{\mathscr{E}}_{0}\right)$ between fat and lean, the fat player has a winning strategy.

A play last κ moves; in the α-th move:
Case 1: α nonlimit.
The player lean chooses a club $Y_{\alpha} \subseteq\left[\mu^{*}\right]^{<\kappa}$, the fat player chooses $a_{\alpha} \in Y_{\alpha}$ and $\mathscr{P}_{\alpha} \subseteq\{c: c \subseteq \alpha$ is closed $\}$ of cardinality $<\kappa$.

Case 2: α limit.

We let $Y_{\alpha}=\left[\mu_{0}\right]^{<\kappa}$ and $a_{\alpha}=\cup\left\{a_{\beta}: \beta<\alpha\right\}$ and the player fat chooses $\mathscr{P}_{\alpha} \subseteq$ $\{C: C \subseteq \alpha$ is closed $\}$ of cardinality $<\kappa\}$.

In a play, fat wins iff for some limit ordinal α and $c \in \mathscr{P}_{\alpha}$ we have:
$(*)(i) \beta \in c \Rightarrow c \cap \beta \in \mathscr{P}_{\beta}$
(ii) $\alpha=\sup (c)$
(iii) $\left\langle a_{\beta}: \beta \in c \cup\{\alpha\}\right\rangle \in \hat{\mathscr{E}}_{0}$.
3.5 Remark. 0) With more care in the game Definition 3.10 we incorporate choosing the \bar{p}^{α} 's. In $3.7(*)(\varepsilon)(i i)$ we can add $\left\langle N_{i+1}^{\beta}: \beta \in \alpha \cap c\right\rangle$ belongs to N_{i+1}^{α}.

1) In the Definition 3.4, without loss of generality $c \in \mathscr{P}_{\alpha} \& \beta \in c \Rightarrow c \cap \beta \in \mathscr{P}_{\beta}$.
2) If κ is strongly inaccessible without loss of generality we have $\mathscr{P}_{\alpha}=\mathscr{P}(\alpha)$, so fat has a winning strategy.
3) In general being fat is a weak demand, e.g. if $\hat{\mathscr{E}}_{0} \supseteq\left\{\bar{a}: \bar{a}=\left\langle a_{i}: i \leq \omega\right\rangle, a_{\omega}=\right.$ $\bigcup_{n} a_{n}, a_{i} \in\left[\mu^{*}\right]^{<\kappa}$ is increasing.

Proof of 3.9. Case 1: $\ell=1$.
Assume $p_{\alpha} \in \mathbb{Q}$ for $\alpha<\mu$ and let χ be large enough and x as in Definition 3.2. We choose $\left(\bar{N}^{\alpha}, \bar{p}^{\alpha}\right)$ by induction on $\alpha<\mu$ as follows. If $\left\langle\left(\bar{N}^{\beta}, \bar{p}^{\beta}\right): \beta<\right.$ $\alpha\rangle$ is already defined, as $\hat{\mathscr{E}}_{0}$ is non-trivial there is a pair $\left(\bar{N}^{\alpha}, \bar{a}^{\beta}\right)$ which is $\hat{\mathscr{E}}_{0}{ }^{-}$ complementary and $\left\langle\left(\overline{N^{\beta}}, \bar{p}^{\beta}\right): \beta<\alpha\right\rangle, \mathbb{Q},\left\langle p_{\beta}: \beta<\mu\right\rangle, p_{\alpha}, \alpha, x$ belong to N_{0}^{α} and let $\bar{N}^{\alpha}=\left\langle N_{i}^{\alpha}: i \leq \delta_{i}\right\rangle$. So $p_{\alpha} \in N_{0}^{\alpha}$ and we can choose $p_{\alpha, i} \in N_{i+1}^{\alpha}$ such that $p_{\alpha}=p_{\alpha, 0}$ and $\left\langle p_{\alpha, i}: i<\delta_{\alpha}\right\rangle$ is $\left(\bar{N}^{\alpha}, \mathbb{Q}\right)^{1}$-generic.
[Why? By the proof of [Sh 587, B.5.6.4].] Now by " \mathbb{Q} is $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-pic ℓ ", for some $\alpha<\beta$ in $S^{\square},\left\{p_{i}^{\alpha}: i<\delta_{\alpha}\right\} \cup\left\{p_{i}^{\beta}: i<\delta_{\beta}\right\}$ has a common upper bound hence in particular, p_{α}, p_{β} are compatible.

Case 2: $\ell=2$.
Assume $p_{\alpha} \in \mathbb{Q}$ for $\alpha<\mu$ and let χ be large enough. Let $\mathbf{S t}$ be a winning strategy for the player fat in the game $\partial_{\kappa, \mu^{*}}\left(\hat{\mathscr{E}}_{0}\right)$. Now we choose by induction on $i<\kappa$. The tuple $\left(N_{i}^{\alpha}, \mathscr{P}_{i}^{\alpha}, Y_{i}^{\alpha}, \bar{p}_{i}^{\alpha}\right)$ where $\bar{p}_{i}^{\alpha}=\left\langle p_{i, c}^{\alpha}: c \in \mathscr{P}_{i}^{\alpha}\right\rangle$ for $\alpha<\mu$ such that:
$\boxtimes(a) M_{i}^{\alpha} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(b) M_{i}^{α} increasing continuous in i
(c) $\left\|M_{i}^{\alpha}\right\|<\kappa$ and $\left\langle M_{j}^{\alpha}: j \leq i\right\rangle \in M_{i+1}^{\alpha}$ and $M_{i}^{\alpha} \cap \kappa \in \kappa$ and $p_{\alpha} \in M_{i}^{\alpha}$,
(d) $\left\langle Y_{j}^{\alpha}, M_{j}^{\alpha} \cap \mu^{*}, \mathscr{P}_{j}^{\alpha}: j \leq i\right\rangle$ is an initial segment of a play of $\partial_{\kappa, \mu^{*}}\left(\hat{\mathscr{E}}_{0}\right)$ in which the player fat uses his winning strategy $\mathbf{S t}$
(e) $\left\langle\left(M_{j}^{\beta}, \mathscr{P}_{j}^{\beta}, Y_{j}^{\beta}, \bar{p}_{i}^{\beta}\right): j \leq i, \beta \in S\right\rangle$ belongs to N_{i+1}^{α} (hence $\mathscr{P}_{j}^{\alpha} \subseteq M_{j+1}^{\alpha}$, etc.)
(f) $p_{i, c}^{\alpha} \in \mathbb{Q} \cap N_{i+1}^{\alpha}$
(g) if $c \in \mathscr{P}_{i}^{\alpha}$ and $\left\langle p_{j, c \cap j}^{\alpha}: j \in c\right\rangle$ has an upper bound then $p_{i, c}^{\alpha}$ is such a bound
(h) $p_{i, c}^{\alpha} \in \cap\left\{\mathscr{I}: \mathscr{I} \in M_{i}^{\alpha}\right.$ is a dense open subset of $\left.\mathbb{Q}\right\}$.

Can we carry the induction?
For i limit let $M_{i}^{\alpha}=\cup\left\{M_{j}^{\alpha}: j<i\right\}$ and choose $Y_{i}^{\alpha}, \mathscr{P}_{i}^{\alpha}$ by clause (d) i.e. by the rules of the game $\partial_{\kappa, \mu^{*}}\left(\hat{\mathscr{E}}_{0}\right)$ and p_{i}^{α} by clause $(\mathrm{g})+(\mathrm{h})$ (possible as forcing by \mathbb{Q} adds no new sequences of length $<\kappa$ of members of $\mathbf{V})$. For i non-limit, let $x_{i}=\left\langle\left(M_{j}^{\beta}, \mathscr{P}_{j}^{\beta}, Y_{j}^{\beta}, \bar{p}_{j}^{\beta}\right): j \leq i, \beta \in S\right\rangle$ let $Y_{i}^{\alpha}=\left\{a: a \in\left[\mu^{*}\right]^{<\kappa}\right.$ and $\alpha \in a$ and $\left.a=\mu^{*} \cap \operatorname{Sk}_{\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)}^{<\kappa}\left(\left\{x_{i} \times \mathbb{Q}, \mathbf{S t}, \alpha\right\}\right)\right\}\left(S k^{<\kappa}\right.$ means $\left.a \in Y_{i}^{\alpha} \Rightarrow a \cap \kappa \in \kappa\right)$ and let $\left(a_{i}^{\alpha}, \mathscr{P}_{i}^{\alpha}\right)$ be the move which the strategy $\mathbf{S t}$ dictate to the player fat if the i-th move of lean is Y_{i}^{α} (and the play so far is $\left.\left\langle\left(Y_{j}^{\alpha}, M_{j}^{\alpha} \cap \mu^{*}, \mathscr{P}_{\alpha, j}\right): j<i\right)\right\rangle$. Now we choose $M_{i}^{\alpha}=\operatorname{Sk}_{\left(\mathscr{H}(\chi), \in,<{ }_{\chi}^{*}\right)}^{<\kappa}\left(\left\{x_{i}, \mathbb{Q}, \mathbf{S t}, \alpha\right\}\right)$ and \mathscr{P}_{i}^{α} has already been chosen and $\bar{p}_{i}^{\alpha}=\left\langle p_{i, c}^{\alpha}: c \in \mathscr{P}_{i}^{\alpha}\right\rangle$ as in the limit case.

Having carried the induction, for each $\alpha \in S$ in the play $\left\langle\left(Y_{i}^{\alpha}, M_{i}^{\alpha} \cap \mu^{*}, \mathscr{P}_{i}^{\alpha}\right)\right.$: $i<\kappa\rangle$ the player fat wins the game having used the strategy $\mathbf{S t}$, hence there are a limit ordinal $i_{\alpha}<\kappa$ and closed $c_{\alpha} \in \mathscr{P}_{i_{\alpha}}$ and $i_{\alpha}=\sup \left(c_{\alpha}\right)$ and $\left\langle M_{j}^{\alpha}: j \in c_{\alpha} \cup\left\{i_{\alpha}\right\}\right\rangle$ obeys some member \bar{a}_{α} of $\hat{\mathscr{E}}_{0}$. As \mathbb{Q} is $c \ell\left(\hat{\mathscr{E}}_{0}\right)$-complete we can prove by induction on $j \in c_{\alpha} \cup\left\{i_{\alpha}\right\}$ that $\varepsilon<j \& \varepsilon \in C_{\alpha} \Rightarrow \mathbb{Q} \models p_{\varepsilon, c_{\alpha} \cap \varepsilon}^{\alpha} \leq p_{j, c_{\alpha} \cap j}^{\alpha}$.

Let $\delta_{\alpha}=i_{\alpha}, N_{i}^{\alpha}=M_{i}^{\alpha}$ for $i \leq \delta_{\alpha}$ and $\bar{p}^{\alpha}=\left\langle p_{i}^{\alpha}: i \in c_{\alpha}\right\rangle$. Now continue as in Case 1.
3.6 Claim. If $(*)$ of Definition 3.2, we can allow $\operatorname{Dom}(g)$ to be a subset of $\operatorname{ScapC},\left\langle A_{i}\right.$: $i<\mu\rangle$ be an increasingly continuous sequence of sets, $\left|A_{i}\right|<\mu, N_{\delta_{\alpha}}^{\alpha} \subseteq A_{\alpha+1}$ replacing the definition of g, g_{0} and by $g_{0}(\alpha)=N_{\delta_{\alpha}}^{\alpha} \cap A_{\alpha}$ and g_{1} by $g_{1}(\alpha)=$ $\left.\left(N_{\delta_{\alpha}}^{\alpha}, N_{i}^{\alpha}, c\right)_{i<\delta_{\alpha}, c \in g_{0}(c)}\right) \cong$ (and get equivalent definition).

Remark. If $\operatorname{Dom}(g) \cap S^{\square}$ is not stationary, the definition says nothing.

Proof. Straight.
3.7 Claim. Assume clauses \boxtimes, i.e. (a), (b), (c) of 3.2 and (d) of 3.3.

For $(<\kappa)$-support iteration $\overline{\mathbb{Q}}=\left\langle\mathbb{P}_{i}, \mathbb{Q}_{i}: i<\alpha\right\rangle$, if we have $\Vdash_{\mathbb{P}_{i}}{ }^{\mathbb{Q}_{i}}$ is $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-pic ${ }_{\ell}$ for each $i<\alpha$ and forcing with $\operatorname{Lim}(\overline{\mathbb{Q}})$ add no bounded subsets of κ, then \mathbb{P}_{γ} and $\mathbb{P}_{\gamma} / \mathbb{P}_{\beta}$, for $\beta \leq \gamma \leq \ell g(\overline{\mathbb{Q}})$ are $\hat{\mathscr{E}}_{0}$-complete $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-picic .
3.8 Remark. We can omit the assumption " $\operatorname{Lim}(\overline{\mathbb{Q}})$ add no bounded subsets of κ " if we add the assumption $c \ell\left(\hat{\mathscr{E}}_{0}\right) \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$, see [Sh 587, Def.B.5.1(2)], because with the later assumption the former follows by [Sh 587, B.5.6].

Proof. Similar to [Sh:f, Ch.VIII]. We first concentrate on
Case 1: $\ell=1$.
It is enough to prove for \mathbb{P}_{α}.
We prove this by induction on α. Let $\Vdash_{\mathbb{P}_{i}}$ " ${\underset{\sim}{\mathbb{Q}}}_{i}$ is $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$-pic ℓ_{ℓ} as witnessed by ${\underset{\sim}{x}}_{i}$ and let $\underset{\sim}{\chi_{i}}=\operatorname{Min}\left\{\chi:{\underset{\sim}{x}}^{x} \in \mathscr{H}(\chi)\right\} "$.

Let $x=\left(\mu^{*}, \kappa, \mu, S^{\square}, \hat{\mathscr{E}}_{0},\left\langle\left(\chi_{i},{\underset{x}{x}}_{i}\right): i<\ell g(\overline{\mathbb{Q}})\right\rangle\right)$ and assume χ is large enough such that $x \in \mathscr{H}(\underline{\chi})$ and let $\left\langle\left(\bar{N}^{\alpha}, \bar{p}^{\alpha}\right): \alpha \in S\right\rangle$ be as in Definition 3.2, so $S \subseteq S^{\square}$ is stationary and $\bar{N}^{\alpha}=\left\langle N_{i}^{\alpha}: i \leq \delta_{\alpha}\right\rangle$. We define a g by
$\boxtimes_{1} g$ is a function with domain S
$\boxtimes_{2} g(\alpha)=\left\langle g_{\ell}(\alpha): \ell<2\right\rangle$ where

$$
g_{0}(\alpha)=\left(N_{\delta_{\alpha}}^{\alpha}\right) \cap\left(\bigcup_{\beta<\alpha} N_{\delta_{\beta}}^{\beta}\right)
$$

$$
g_{1}(\alpha)=\text { the isomorphic type of }\left(N_{\delta_{\alpha}}^{\alpha}, N_{i}^{\alpha}, p_{i}^{\alpha}, c\right)_{c \in g_{0}(\alpha)}
$$

Let C be a club of μ such that $\alpha \in S \cap C \Rightarrow\left\langle\left(\bar{N}^{\beta}, \bar{p}^{\beta}\right): \beta<\alpha\right\rangle \in N_{0}^{\alpha}$, (recall $\ell=1$).
Fix y such that $S_{y}=\{\alpha \in S: g(\alpha)=y$ and $\alpha \in C\}$ is stationary.
Let $w_{\alpha}=\bigcup_{i<\delta_{\alpha}} \operatorname{Dom}\left(p_{i}^{\alpha}\right), w_{y}^{*}=w_{\alpha} \cap g_{0}(\alpha)$ for $\alpha \in S_{y}$ (as $\alpha \in S_{y}$, clearly the set does not depend on the α). For each $\zeta \in w_{y}^{*}$ we define a \mathbb{P}_{ζ}-name, ${\underset{\sim}{y}}_{y, \zeta}$ as follows:

$$
\underset{\sim}{S_{y, \zeta}}=\left\{\alpha \in S_{y}:\left(\forall i<\delta_{\alpha}\right)\left(p_{i}^{\alpha} \upharpoonright \zeta \in G_{\mathbb{P}_{\zeta}}\right)\right\} .
$$

Now we try to apply Definition 3.2 in $\mathbf{V}^{\mathbb{P}_{\zeta}}$ to
$\left\langle\left(\left\langle N_{i}^{\alpha}\left[G_{\mathbb{P}_{\zeta}}\right]: i \leq \delta_{\alpha}\right\rangle,\left\langle p_{i}^{\alpha}(\zeta)\left[G_{\mathbb{P}_{\zeta}}\right]: i<\delta_{\alpha}\right\rangle\right): \alpha \in{\underset{\sim}{y, \zeta}}\left[G_{\mathbb{P}_{\zeta}}\right]\right\rangle$. Clearly, if ${\underset{\sim}{y, \zeta}}\left[G_{\mathbb{P}_{\zeta}}\right]$ is a stationary subset of μ, we can apply it and $g_{y, \zeta}$ be the \mathbb{P}_{ζ}-name of a function with domain $S_{y, \zeta}$ defined like g in $(*)$ of Definition 3.2. Now ${\underset{\sim}{y}}_{y, \zeta}$ is well defined, and actually can be computed if we use $A_{\beta}=\cup\left\{N_{\delta_{\alpha}}^{\alpha}\left[G_{\mathbb{P}_{\zeta}}\right]: \alpha<\beta\right\}$. So by an induction hypothesis on α there is a suitable \mathbb{P}_{ζ}-name ${\underset{\sim}{\zeta}}^{\text {of }}$ a club of μ such that in addition, if ${\underset{\sim}{y}, \zeta}\left[G_{\mathbb{P}_{\zeta}}\right]$ is not a stationary subset of μ, let ${\underset{\zeta}{\zeta}}_{C_{\zeta}}\left[G_{\mathbb{P}_{\zeta}}\right]$ be a club of μ
disjoint to it. But as \mathbb{P}_{ζ} satisfies the μ-c.c. without loss of generality ${\underset{\sim}{\zeta}}^{\zeta}=C_{\zeta}$ so $C^{\prime}=C \cap \bigcap_{\zeta \in w_{y}^{*}} C_{\zeta}$ is a club of μ. Now choose $\alpha_{1}<\alpha_{2}$ from $S_{y} \cap C^{\prime}$ and we choose by induction on $\varepsilon \in w^{\prime}=w_{y}^{*} \cup\{0, \ell g(\bar{Q})\}$ a condition $q_{\varepsilon} \in \mathbb{P}_{\varepsilon}$ such that:

$$
\begin{aligned}
& \boxtimes_{3}(i) \varepsilon_{1}<\varepsilon \Rightarrow q_{\varepsilon_{1}}=q_{\varepsilon} \upharpoonright \varepsilon_{1} \\
& \quad(i i) q_{\varepsilon} \text { is a bound to }\left\{p_{u}^{\alpha_{1}} \upharpoonright \varepsilon: i<\delta_{\alpha_{1}}\right\} \cup\left\{p_{i}^{\alpha_{2}} \upharpoonright \varepsilon: i<\delta_{\alpha_{2}}\right\} .
\end{aligned}
$$

For $\varepsilon=0$ let $q_{0}=\emptyset$. We have nothing to do really if ε is with no immediate predecessor in w, we let q_{ε} be $\cup\left\{q_{\varepsilon_{1}}: \varepsilon_{1}<\varepsilon, \varepsilon_{1} \in w^{\prime}\right\}$. So let $\varepsilon=\varepsilon_{1}+1, \varepsilon_{1} \in w^{\prime}$; now if $q_{\varepsilon} \in G \subseteq \mathbb{P}_{\varepsilon_{1}, 2}, G$ generic over V, then $\alpha_{1}, \alpha_{2} \in{\underset{\sim}{S}}_{y, \varepsilon_{1}}[G]$, hence $S_{\sim} S_{y, \zeta}[G] \cap C_{\varepsilon_{1}}$ is non-empty, hence is stationary, and we use Definition 3.2.
Case 2: $p=2$.
Similar proof.
3.9 Claim. Assume $\mu=c f(\mu)>\kappa,(\forall \alpha<\mu)\left(|\alpha|^{<\kappa}<\mu\right), S \subseteq\{\delta<\mu: c f(\delta) \geq \kappa\}$ is stationary. If $|\mathbb{Q}| \leq \kappa$ or just $<\mu, \mathscr{E}_{0} \in \mathfrak{C}_{<\kappa}^{-}\left(\mu^{*}\right)$, that is $\subseteq\{\bar{a}: \bar{a}$ increasingly continuous of length $<\kappa, a_{i} \in\left[\mu^{*}\right]^{<\kappa}$ and $\left.a_{i} \cap \kappa \in \kappa\right\}$ non-trivial, possibly just for one cofinality say \aleph_{0}, then \mathbb{Q} satisfies $\kappa^{+}{ }^{-}$pic c_{ℓ}.

Proof. Trivial, we get same sequence of condition or just see the proof of [Sh 587, B.7.4].
3.10 Discussion: 1) What is the use of pic?

In the forcing axioms instead " $|\mathbb{Q}| \leq \kappa$ " we can write " \mathbb{Q} satisfies the $\left(\mu, S^{\square}, \hat{\mathscr{E}}_{0}\right)$ pic". This strengthens the axioms.

In [Sh:f] in some cases the length of the forcing is bounded (there ω_{2}) but here no need (as in [Sh:f, Ch.VII, $\S 1]$).

This section applies to all cases in [Sh 587] and its branches.
2) Note that we can demand that the p_{i}^{α} satisfies some additional requirements (in Definition 3.2) say $p_{2 i}^{\alpha}=F_{\mathbb{Q}}\left(\bar{N} \upharpoonright(2 i+1), \bar{p}^{\alpha} \upharpoonright(2 i+1)\right)$.

Let us see how this gives some improvement of the results of [Sh 576, B.8] on $\mathfrak{C}_{<\kappa}^{\top}\left(\mu^{*}\right)$, see [Sh 587, B.5.7.3].

3.11 Definition. Assume

$\circledast \kappa>\aleph_{0}$ is strongly inaccessible and $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\oplus}\left(\mu^{*}\right)$ and θ_{0}, θ_{1} are regular cardinals $>\kappa, \theta_{2}$ a cardinal $>\kappa$ (let $\bar{\theta}=\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$, the usual case is $\theta_{0}=\kappa^{+}$) and $\hat{\mathscr{E}} \subseteq \hat{\mathscr{E}}_{1}$ is nontrivial (see in Definition 3.3, clause (d)) and $\ell \in\{1,2\}$.

Let $A x_{\theta_{1}, \theta_{2}}^{\kappa}\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}, \mathscr{E}\right)$, the forcing axiom for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}, \mathscr{E}\right)$, and $\bar{\theta}=\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$ be the following statement:
\boxtimes if
(i) \mathbb{Q} is a focing notion of cardinality $<\theta_{1}$
(ii) \mathbb{Q} is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$, see Definition [Sh 587, B.5.9(3)]
(iii) \mathbb{Q} satisfies $\left(\theta_{0}, S^{\square}, \hat{\mathscr{E}}\right)$-pic ℓ_{ℓ}
(iv) \mathscr{I}_{i} is a dense subset of \mathbb{Q} for $i<i^{*}<\theta_{2}$,
then there is a directed $H \subseteq \mathbb{Q}$ such that $\left(\forall i<i^{*}\right)\left(H \cap \mathscr{I}_{i} \neq \emptyset\right)$.
3.12 Theorem. Assume \circledast of Definition 3.11 and $\mu=\mu^{<\theta_{1}}=\mu^{<\theta_{0}} \geq \theta_{0}+\theta_{2}$. Then there is a forcing notion \mathbb{P} such that:
$(\alpha) \mathbb{P}$ is complete for $\hat{\mathscr{E}}_{0}$
$(\beta) \mathbb{P}$ has cardinality μ
$(\gamma) \mathbb{P}$ satisfies the θ_{0}-c.c. and even the $\left(\kappa, \theta_{0}, \hat{\mathscr{E}}\right)$-pic
($\delta) \mathbb{P}$ is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$, hence $\Vdash_{\mathbb{P}}$ " $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{*}\left(\mu^{*}\right)$ " and more
$(\varepsilon) \Vdash_{\mathbb{P}} " A x_{\bar{\theta}}^{\kappa}\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}, \mathscr{E}\right)$.

Proof. Like the proof of [Sh 587, B.8.2], using 3.7 instead of [Sh 587, B.7.4]. \qquad
We may wonder how large can a stationary $S \subseteq \kappa$ be?
3.13 Claim. 1) Assume
$\circledast(a) \kappa$ is strongly inaccessible $>\aleph_{0}$
(b) $S \subseteq \kappa$ is stationary
(c) for letting $\mu^{*}=\kappa$ and $\hat{\mathscr{E}}_{0}=\hat{\mathscr{E}}_{0}[S]=\left\{\bar{a} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)\right.$: for every $i \leq \ell g(\bar{a})$ we have $\left.a_{i} \notin S\right\}$ we have $\hat{\mathscr{E}}_{0} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)$
(d) we let $\hat{\mathscr{E}}_{1}=\hat{\mathscr{E}}_{1}[S]=\left\{\bar{a} \in \mathfrak{C}_{<\kappa}\left(\mu^{*}\right)\right.$: for every nonlimit $i \leq \operatorname{ellg}(\bar{a})$ we have $\left.a_{i} \notin S\right\}$.

Then

(α) $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right) \in \mathfrak{C}_{<\kappa}^{\boldsymbol{\omega}}\left(\mu^{*}\right)$, see [Sh 587, B.5.7(3)].
2) The parallel of 2.11 .

We now deal with forcing the failure of diamond on the set of inaccessibles.
3.14 Claim. Assume
(a) $\kappa, S, \hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}$ are as in 3.13
(b) if $S_{b d}=:\left\{\theta<\kappa: \theta\right.$ strongly inaccessible, $S \cap \theta$ is stationary in θ and $\left.\diamond_{S \cap \theta}\right\}$ is not a stationary subset of κ
(c) $\bar{A}=\left\langle A_{\alpha}: \alpha \in S\right\rangle, A_{\alpha} \subseteq \alpha$
(d) $\mathbb{Q}=\mathbb{Q}_{\bar{A}_{1}}$ is as in Definition 3.15 below
(e) $\hat{\mathscr{E}} \subseteq \hat{\mathscr{E}}_{0}$ is nontrivial.

Then
(α) \mathbb{Q} is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$
(β) \mathbb{Q} satisfies the $\left(\kappa, \kappa^{+}, \hat{\mathscr{E}}\right)$-pic \boldsymbol{c}_{ℓ}
$(\gamma) \mathbb{Q}$ satisfies the κ^{+}-c.c.
3.15 Definition. For $\kappa=\operatorname{cf}(\kappa), S \subseteq \kappa=\sup (S), \bar{A}=\left\langle A_{\alpha}: \alpha \in S\right\rangle$, with $A_{\alpha} \subseteq \alpha$ we define the forcing notions $\mathbb{Q}=\mathbb{Q}_{A}^{a d}$ as follows:
(a) $p \in \mathbb{Q}$ iff
(i) $p=(c, A)=\left(c^{p}, A^{p}\right)$
(ii) c is \emptyset or a closed bounded subset of κ hence has a last element
(iii) $A \subseteq \sup (c)$ such that
(iv) if $\alpha \in C \cap S$ then $A \cap \alpha \neq A_{\alpha}$
(b) $p \leq q$ iff
(i) c^{p} is an initial segment of c^{q}
(ii) $A^{p}=A^{q} \cap \sup \left(c^{p}\right)$.

Proof of 3.14. We concentrate on part (1), part (2)'s proof is similar. Now
$(*)_{1}$ for every $\alpha<\kappa, \mathscr{I}_{\alpha}=\left\{p \in \mathbb{Q}: \alpha<\sup \left(c^{p}\right)\right\}$ is dense open.
[Why? If $p \in \mathbb{Q}$, let $\beta=\sup \left(c^{p}\right)+1+\alpha$ and $q=\left(c^{p} \cup\{\beta\}, A^{p}\right)$, so $\left.p \leq q \in \mathscr{I}_{\alpha}.\right]$
$(*)_{2}$ If $\delta<\kappa$ is a limit ordinal, $\left\langle p_{i}: i<\delta\right\rangle$ is $\leq_{\mathbb{Q}}$-increasing and $\sup \left(c^{p_{i}}\right) \leq \alpha_{i+1}<$ $\sup \left(c^{p_{i+1}}\right)$ for $i<\delta$, and for limit $i, \alpha_{i}=\cup\left\{\alpha_{j}: j<i\right\}$ and $\left\{\alpha_{1+i}: i<\delta\right\}$
is disjoint to S, then $p=\left(\bigcup_{i<\delta} c_{i}^{p_{i}}, \bigcup_{i<\delta} A^{p_{i}}\right)$ is a $\leq_{\mathbb{Q}}$-lub of $\left\langle p_{i}: i<\delta\right\rangle$.
[Why? Just think.]
$(*)_{3}$ forcing with \mathbb{Q} add no new sequences of length $<\kappa$ of ordinals (or members of \mathbf{V}).
[Why? By $(*)_{2}+$ the assumption \circledast, clause (c) of Claim 3.13 as in [Sh 587, B.6].]
$(*)_{4} \mathbb{Q}$ is complete for $\hat{\mathscr{E}}_{0}$
[Why? Just think.]
$(*)_{5} \mathbb{Q}$ is complete for $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$, see [Sh 587, Def.B.5.9(3)].
[Why? Let χ be large enough and let $\left\langle M_{i}: i<\delta\right\rangle$ be ruled by $\left(\hat{\mathscr{E}}_{0}, \hat{\mathscr{E}}_{1}\right)$, with $\hat{\mathscr{E}}_{0}$-approximation $\left\langle\left(\bar{N}^{i}, \bar{a}^{i}\right): i<\delta\right\rangle$, see [Sh 587, Def.B.5.9(1)] and $r \in \mathbb{Q} \cap M_{0}$ and $S, \kappa, \bar{A} \in M_{0}$ and we have to prove that the player COM has a winning strategy in the game $\partial_{\bar{M},\left\langle\bar{N}^{i}: i<\delta\right\rangle}(\mathbb{Q}, r)$.]
For this we proved by induction on $\delta<\kappa$ (a limit ordinal) the statement
$\boxtimes_{\delta} \quad$ if $\left\langle M_{i}: i \leq \delta\right\rangle,\left\langle\bar{N}^{i}: i<\delta\right\rangle, r$ are as above (but α may be a nonlimit ordinal) $\bar{b}=\left\langle b_{i}: i<\delta\right\rangle, b_{i} \in\left[M_{i+1} \cap \kappa \backslash M_{i}\right] \leq\left\|M_{i}\right\|$ and $B \subseteq M_{\delta} \cap \kappa$ (or just $B \subseteq \cup\left\{b_{i}: i<\delta\right\}$, then we can find p such that $r \leq p \in \mathbb{Q}$ and $A^{p} \cap b_{i}=B \cap b_{i}$ for every $i<\delta$ and $\sup \left(c^{p}\right)=M_{\delta} \cap \kappa$.

Case 1: α nonlimit. Trivial.
Case 2: α limit and for some $i<\alpha$ we have $\operatorname{cf}(\delta) \leq\left\|M_{i}\right\|$.
Let $\theta=\operatorname{cf}(\theta)$ and let $\left\langle\delta_{\varepsilon}: \varepsilon \leq \theta\right\rangle$ be increasing continuous, $\delta_{0}=0,\left\|M_{\delta_{1}}\right\|>\theta$ and $\delta_{\theta}=\delta$.

Choose $b \subseteq M_{\delta_{1}+1} \cap \kappa \backslash M_{\delta_{1}} \backslash b_{\delta_{1}}$ of cardinality θ and choose $b^{\prime} \subseteq b$ such that $\zeta \in(\varepsilon, \delta] \Rightarrow A_{M_{\delta_{\zeta}} \cap \kappa} \cap b \neq b^{\prime}$. By the induction hypothesis, we can find $r_{\delta_{1}} \in M_{\delta_{1}+1}$ such that $\sup \left(c^{r_{1}}\right)=M_{\delta_{1}} \cap \kappa, r \leq r_{\delta_{0}}, \beta<\delta_{1} \Rightarrow A^{r_{1}} \cap b_{\beta}=B \cap b_{\beta}$ and r_{1} is $\left(M_{\beta}, \mathbb{Q}\right)$-generic for every $\beta \leq \delta_{1}$. Let r_{1}^{+}be such that $r_{\delta_{1}} \leq r_{\delta_{1}}^{+} \in \mathbb{Q} \cap M_{\delta_{1}+1}$ and $\sup \left(b_{\delta_{1}} \cup b\right)<\sup \left(r_{\delta_{1}}^{+}\right)$and $A^{r_{\delta_{1}}^{+}} \cap b_{\delta_{1}}=B \cap b_{\delta_{1}}$ and $A^{r_{1}^{+}} \cap b=b^{\prime}$. Now we choose by induction on $\varepsilon \in[2, \delta]$, a condition r_{ε} such that $r_{\varepsilon} \in M_{\delta_{\varepsilon}+1}, \sup \left(c^{r_{\varepsilon}}\right)=M_{\delta_{\varepsilon}} \cap$ $\kappa, r_{1}^{+} \leq r_{\varepsilon},\left[\zeta \in[2, \varepsilon) \Rightarrow r_{\zeta} \leq r_{\varepsilon}\right]$ and $\beta<\delta_{\varepsilon} \Rightarrow A^{r_{\varepsilon}} \cap b_{\beta}=B \cap b_{\varepsilon}$ and r_{ε} is ($\left.M_{\gamma}, \mathbb{Q}\right)$ generic for $\gamma \leq \delta_{\varepsilon}$. For limit $\varepsilon, r_{\varepsilon}$ is uniquely determined and it $\in \mathbb{Q}$ by the choice of r_{1}^{+}. For ε nonlimit use the induction hypothesis for $\left\langle M_{\beta}: \beta \in\left[\delta_{\varepsilon}+1, \delta_{\varepsilon+1}\right]\right\rangle$.

Case 3: Neither Case 1 nor Case 2.
So α is strongly inaccessible, call it θ and $\theta=M_{\theta} \cap \kappa$; so as $\{\kappa, S\} \in M_{\theta} \prec$ $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$, necessarily $\delta=\sup (S), \delta \in S_{\mathrm{bd}}$ and $\neg \diamond_{\theta \cap S}$ (e.g. $\theta \cap S$ is not
stationary in S. Choose for each $\beta<\theta$, an ordinal $\gamma_{\beta} \in M_{\beta+1} \cap \kappa \backslash M_{\beta} \backslash b_{\beta}$ and let $A_{i}^{\prime}=\left\{j<i: \gamma_{j} \in A_{M_{\beta} \cap \kappa}\right\}$ for $i \in S \cap \theta$.

Now $\left\langle A_{i}^{\prime}: i \in S \cap \theta\right\rangle$ cannot be a diamond sequence for θ hence we can find $X \subseteq \theta$ and club C^{-}of θ such that $\delta \in X \cap S \Rightarrow A_{\delta}^{-} \neq X \cap \delta$. Let $C=\{i<\theta: i$ limit, $(\forall j<i)\left(\gamma_{j}<i\right)$ and $i \in C^{-}$and $\left.M_{i} \cap \kappa=i\right\}$, clearly C is a club of θ. Let $b_{\beta}^{+}=a_{\beta} \cup\left\{\gamma_{\beta}\right\}, B^{+}=B \cup\left\{\gamma_{\beta}: \beta \in X\right\}$, and proceed naturally.
3.16 Remark. So we can iterate and get that (G.C.H. and) diamond fail for "most" stationary subsets of any strongly inaccessibles. We shall return to this elsewhere.

§4 Existence of non-free Whitehead (and $\operatorname{Ext}(G, \mathbb{Z})=\{0\})$ abelian groups in successor of singulars

In [Sh 587], the consistency with GCH of the following is proved for some regular uncountable κ : there is a κ-free nonfree abelian group of cardinality κ, and all such groups are Whitehead. We use κ inaccessible, here we ask: is this assumption necessary for the first such κ ?
The following claim seems to support the hope for a positive answer.
4.1 Claim. Assume
(a) λ is strong limit singular, $\sigma=c f(\lambda)<\lambda, \kappa=\lambda^{+}=2^{\lambda}$
(b) $S \subseteq\{\delta<\kappa: c f(\delta)=\sigma\}$ is stationary
(c) S does not reflect or at least
$(c)^{-} \bar{A}=\left\langle A_{\delta}: \delta \in S\right\rangle, \operatorname{otp}\left(A_{\delta}\right)=\sigma, \sup \left(A_{\delta}\right)=\delta$ and
\bar{A} is λ-free, i.e., for every $\alpha^{*}<\kappa$ we can find $\left\langle\alpha_{\delta}: \delta \in \alpha^{*} \cap S\right\rangle, \alpha_{\delta}<\delta$ such that $\left\langle A_{\delta} \backslash \alpha_{\delta}: \delta \in S \cap \alpha^{*}\right\rangle$ is a sequence of pairwise disjoint sets
(d) $\left\langle G_{i}: i \leq \sigma\right\rangle$ is a sequence of abelian groups such that:
(α) $\delta<\sigma$ limit $\Rightarrow G_{\delta}=\bigcup_{i<\delta} G_{i}$
(β) $\quad i<j \leq \sigma \Rightarrow G_{j} / G_{i}$ free and $G_{i} \subseteq G_{j}$
(γ) $G_{\sigma} / \bigcup_{i<\sigma} G_{i}$ is not Whitehead
($\delta) \quad\left|G_{\sigma}\right|<\lambda$
($\varepsilon) \quad G_{0}=\{0\}$.

Then

1) There is a strongly κ-free abelian group of cardinality κ which is not Whitehead, in fact $\Gamma(G) \subseteq S$.
2) There is a strongly κ-free abelian group G^{*} of cardinality κ satisfying $\operatorname{HOM}\left(G^{*}, \mathbb{Z}\right)=$ $\{0\}$, in fact $\Gamma\left(G^{*}\right) \subseteq S$ (in fact the same abelian group can serve).
3) We can rephrase clause $(d)(\gamma)$ of the assumption, i.e. " $G_{\sigma} / \bigcup_{i<\sigma} G_{i}$ is not Whitehead" by:
$(d)(\gamma)^{-}$some $f^{*} \in \operatorname{HOM}\left(\bigcup_{i<\sigma} G_{i}, \mathbb{Z}\right)$ cannot be extended to $f^{\prime} \in \operatorname{HOM}\left(G_{\sigma}, \mathbb{Z}\right)$.

We first note:
4.2 Claim. Assume
(a) λ strong limit singular, $\sigma=c f(\lambda)<\lambda, \kappa=2^{\lambda}=\lambda^{+}$
(b) $S \subseteq\left\{\delta<\kappa: c f(\delta)=\sigma\right.$ and λ^{ω} divides δ for simplicity $\}$ is stationary
(c) $A_{\delta} \subseteq \delta=\sup \left(A_{\delta}\right)$, otp $\left(A_{\delta}\right)=\sigma, A_{\delta}=\left\{\alpha_{\delta, \zeta}: \zeta<\sigma\right\}$ increasing with ζ
(d) let $h_{0}: \kappa \rightarrow \kappa$ and $h_{1}: \kappa \rightarrow \sigma$ be such that
$(\forall \alpha<\kappa)(\forall \zeta<\sigma)(\forall \gamma \in(\alpha, \kappa))\left(\exists^{\lambda} \beta \in[\gamma, \gamma+\lambda]\right)\left(h_{0}(\beta)=\alpha\right.$ and $\left.h_{1}(\beta)=\zeta\right)$, and $(\forall \alpha<\kappa) h_{0}(\alpha) \leq \alpha$
(e) Let $\bar{\lambda}=\left\langle\lambda_{\zeta}: \zeta\langle\sigma\rangle\right.$ be increasing continuous with limit λ such that $\lambda_{0}=0$ and $\zeta<\sigma \Rightarrow \lambda_{\zeta+1}=c f\left(\lambda_{\zeta+1}\right)>\sigma$.

Then we can choose $\left\langle\left(g_{\delta},\left\langle\gamma_{\zeta}^{\delta}: \zeta\langle\lambda\rangle\right): \delta \in S\right\rangle\right.$ such that
$\bigodot_{1}(i)\left\langle\gamma_{\zeta}^{\delta}: \zeta<\lambda\right\rangle$ is strictly increasing with limit δ
(ii) if $\lambda_{\zeta} \leq \xi<\lambda_{\zeta+1}$ then $h_{0}\left(\gamma_{\xi}^{\delta}\right)=h_{0}\left(\gamma_{\lambda_{\zeta}}^{\delta}\right)=\alpha_{\delta, \zeta}$ and $h_{1}\left(\gamma_{\xi}^{\delta}\right)=h_{1}\left(\gamma_{\lambda_{\zeta}}^{\delta}\right)=\zeta$
(iii) h_{δ}^{*} a partial function from κ to $\kappa, \sup \left(\operatorname{Dom}\left(h_{\delta}^{*}\right)\right)<\gamma_{\zeta}^{\delta}$ for $\delta \in S$
\bigodot_{2} for every $f: \kappa \rightarrow \kappa, B \in[\kappa]^{<\lambda}$ and $g_{\zeta}^{2}: \kappa \rightarrow \lambda_{\zeta+1}$ for $\zeta<\sigma$ there are stationarily many $\delta \in S$ such that:
(i) $h_{\delta}^{*}=f \upharpoonright B$
(ii) if $\lambda_{\zeta} \leq \xi<\lambda_{\xi+1}$ then $g_{\zeta}^{2}\left(\gamma_{\xi}^{\delta}\right)=g_{\zeta}^{2}\left(\gamma_{\lambda_{\zeta}}^{\delta}\right)$.

Remark. Note that when subtraction or division ${ }^{3}$ is meaningful, \bigodot_{2} is quite strong.

Proof. By the proofs of 1.1, 1.2 (can use guessing clubs by $\alpha_{\delta, \zeta}$'s, can demand that $\beta_{2 \zeta}^{\delta}, \beta_{2 \zeta+1}^{\delta} \in\left[\alpha_{\delta, \zeta}, \alpha_{\delta, \zeta}+\lambda\right)$.

But to help the reader we give a proof.
Let $\lambda=\sum_{i<\sigma} \lambda_{i}, \lambda_{i}$ increasing continuous, $\lambda_{i+1}>2^{\lambda_{i}}, \lambda_{0}=0, \lambda_{1}>2^{\sigma}$. Let $M_{i} \prec$ $\left(\mathscr{H}\left(\left(2^{\kappa}\right)^{+}\right), \in,<^{*}\right)$ be increasing continuous, $\left\|M_{i}\right\|=\lambda,\left\langle M_{j}: j \leq i\right\rangle \in M_{i+1}, \lambda+$ $1 \subseteq M_{i}$ and $\left\{\bar{A}, h_{0}, h_{1}, \bar{\lambda}\right\} \in M_{0}$. For $\alpha<\lambda^{+}$, let $\alpha=\bigcup_{i<\sigma} a_{\alpha, i}$ such that $\left|a_{\alpha, i}\right| \leq \lambda_{i}$ and $a_{\alpha, i} \in M_{\alpha+1}$ and even $\left\langle<a_{\beta, i}: i<\sigma>: \beta \leq \alpha\right\rangle \in M_{\alpha+1}$. Without loss of generality $\delta \in S \Rightarrow \delta$ divisible by λ^{ω} (ordinal exponentiation). For $\delta \in S$

[^2]let $\bar{\beta}^{\delta}=\left\langle\beta_{i}^{\delta}: i<\sigma\right\rangle$ be increasing continuous with limit $\delta, \beta_{i}^{\delta}$ divisible by λ and >0. For $\delta \in S$ let $\left\langle b_{i}^{\delta}: i<\sigma\right\rangle$ be such that: $b_{i}^{\delta} \subseteq \beta_{i}^{\delta},\left|b_{i}^{\delta}\right| \leq \lambda_{i}, b_{i}^{\delta}$ is increasingly continuous in i and $\delta=\bigcup_{i<\sigma} b_{i}^{\delta}$ (e.g. $b_{i}^{\delta}=\bigcup_{j_{1}, j_{2}<i} a_{\beta_{j_{1}, j_{2}}^{\delta}} \cup \lambda_{i}$). We further demand $\lambda_{i} \subseteq b_{i}^{\delta} \cap \lambda$. Let $\left\langle f_{\alpha}^{*}: \alpha<\lambda^{+}\right\rangle$list the two-place functions with domain an ordinal $<\lambda^{+}$and range $\subseteq \lambda^{+}$. Let H be the set of functions $h, \operatorname{Dom}(h) \in[\kappa]^{<\lambda}, \operatorname{Rang}(h) \subseteq \kappa$, so $|H|=\kappa$. Let $S=\cup\left\{S_{h}: h \in H\right\}$, with each S_{h} stationary and $\left\langle S_{h}: h \in H\right\rangle$ pairwise disjoint. Without loss of generality $\delta \in S_{h} \Rightarrow \sup (\operatorname{Dom}(h))<\beta_{0}^{\delta}$. Let h_{δ}^{*} be h when $\delta \in S_{h}$. We now fixed $h \in H$ and will choose $\bar{\gamma}^{\delta}=\left\langle\gamma_{i}^{\delta}: i<\lambda\right\rangle$ for $\delta \in S_{h}$ such that clauses $\bigodot_{1}+\bigodot_{2}$ for our fixed h (and $\delta \in S_{h}$ ignoring h in \bigodot_{2}) hold, this clearly suffices.
Now for $\delta \in S_{h}$ and $i<\sigma$ and $g \in{ }^{\sigma} \sigma$ we can choose $\zeta_{i, g, \varepsilon}^{\delta}$ (for $\varepsilon<\lambda_{i+1}$) such that:
(A) $\left\langle\zeta_{i, g, \varepsilon}^{\delta}: \varepsilon<\lambda_{i+1}\right\rangle$ is a strictly increasing sequence of ordinals
(B) $\beta_{i}^{\delta}<\zeta_{i, g, \varepsilon}^{\delta}<\beta_{i+1}^{\delta}$, (can even demand $\zeta_{i, j, \varepsilon}^{\delta}<\beta_{i}^{\delta}+\lambda$)
(C) $h_{0}\left(\zeta_{i, g, \varepsilon}^{\delta}\right)=\alpha_{\delta, i}$ and $h_{1}\left(\zeta_{i, g, \varepsilon}^{\delta}\right)=i$
(D) for ${ }^{4}$ every $\alpha_{1}, \alpha_{2} \in b_{g(i)}^{\delta}$, the sequence $\left\langle\operatorname{Min}\left\{\lambda_{g(i)}, f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, g, \varepsilon}^{\delta}\right): \varepsilon<\lambda_{i+1}\right\}\right\rangle$ is constant i.e. one of the following occurs:
$(\alpha) \varepsilon<\lambda_{i+1} \Rightarrow\left(\alpha_{2}, \zeta_{i, g, \varepsilon}^{\delta}\right) \notin \operatorname{Dom}\left(f_{\alpha_{1}}^{*}\right)$
(β) $\varepsilon<\lambda_{i+1} \Rightarrow f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, g, \varepsilon}^{\delta}\right)=f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, j, 0}^{\delta}\right)$ well defined
$(\gamma) \varepsilon<\lambda_{j}, f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, g, \varepsilon}^{\delta}\right) \geq \lambda_{j}$, well defined. We can add $\left\langle f_{\alpha_{1}}^{*}\left(\alpha_{2}, \zeta_{i, g, \varepsilon}^{\delta}\right):\right.$ $\left.\varepsilon<\lambda_{i}\right\rangle$ is constant or strictly increasing.
(E) for some $j<\sigma$, we have $\left(\forall \varepsilon<\lambda_{i+1}\right)\left[\zeta_{i, g, \varepsilon}^{\delta} \in a_{\alpha, j}\right]$ where
$\alpha=\sup \left\{\zeta_{i, g, \varepsilon}^{\delta}: \varepsilon<\lambda_{i+1}\right\}$, (remember $\sigma \neq \lambda_{i+1}$ are regular).
For each function $g \in{ }^{\sigma} \sigma$ we try $\bar{\gamma}^{g, \delta}=\left\langle\gamma_{\varepsilon}^{\delta, g}: \varepsilon<\lambda\right\rangle$ be: if $\lambda_{i} \leq \varepsilon<\lambda_{i+1}$ then $\gamma_{\alpha}^{\delta, g}=\zeta_{i, g, \varepsilon}^{\delta}$.
Now for some g it works.

Proof of 1.2(1). Let $\left.M=\cup\left\{M_{\alpha}: \alpha<\kappa\right\}, M_{\alpha} \prec\left(\mathscr{H}\left(2^{\kappa}\right)^{+}\right), \in\right)$ has cardinality λ, M_{α} is increasing continuous, $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle \in M_{\alpha}$ and $\left\langle F_{i}: i<\sigma\right\rangle$ belongs to M_{0}. Let $E_{0}=\left\{\delta<\kappa: M_{\delta} \cap \kappa=\delta\right\}$ and $E=\operatorname{acc}(E)$. The proof is like the proof of 4.2 with the following changes:
(i) $\beta_{i}^{\delta} \in E_{0}$ for $\delta \in S \cap E$

[^3](ii) in clause (A) we demand $\left\langle\zeta_{i, g, \varepsilon}^{\delta}: g \in G, \varepsilon<\lambda_{i+1}\right\rangle$ belongs to $M_{\beta_{i+1}^{\delta}}$ (hence also $\left\langle\zeta_{j, g, \varepsilon}^{\delta}: g \in G, \varepsilon<\lambda_{j+1}: j \leq i\right\rangle$ belongs to $M_{\beta_{i+1}^{\delta}}$)
(iii) clause (c) is replaced by: $\zeta_{i, g, \varepsilon}^{\delta} \in F_{i}\left(\left\{\zeta_{j, g \upharpoonright(j+1), \varepsilon}^{\delta}: \varepsilon<\lambda_{j+1}\right.\right.$ and $\left.\left.j<i\right\}\right)$.

Proof of 4.1. 1) We apply 4.2 to the $\left\langle A_{\delta}: \delta \in S\right\rangle$ from 4.1, and any h_{0}, h_{1} as in clause (d) of 4.2.
Let $\left\{t_{\gamma}^{i, j}+G_{i}: \gamma<\theta^{i, j}\right\}$ be a free basis of G^{j} / G^{i} for $i<j \leq \sigma$. If $i=0, j=\sigma$ we may omit the i, j, i.e. $t_{\zeta}=t_{\zeta}^{0, \sigma}$ and $\theta=\theta^{0, \sigma}$. Let $\theta+\aleph_{0}=\left|G_{\sigma}\right|<\lambda$; actually $\theta^{\zeta, \zeta+1}<\lambda_{\zeta}$ is enough; without loss of generality $\theta<\lambda_{1}$ in 4.2. Let $\beta_{\zeta, i}^{\delta}=\gamma_{\xi(\zeta, i)}^{\delta}$ where $\xi(\zeta, i)=\bigcup_{\varepsilon<\zeta} \lambda_{\varepsilon}+1+i$ for $\delta \in S, \zeta<\sigma, i<\theta$.
Let $\beta_{\delta}(*)=\operatorname{Min}\left\{\beta: \beta \in \operatorname{Dom}\left(h_{\delta}^{*}\right), h_{\delta}^{*}(\beta) \neq 0\right\}$, if well defined where h_{δ}^{*} is from 4.2.

Clearly (see $\bigodot_{1}(i i i)$ of 4.2) we have $\beta_{\delta}(*) \notin\left\{\beta_{\zeta, i}^{\delta}: \zeta<\sigma, i<\theta\right\}$ (or omit $\lambda_{\zeta}, \beta_{\zeta, i}^{\delta}$ for ζ too small). We define an abelian group G^{*} : it is generated by $\left\{x_{\alpha}: \alpha<\right.$ $\kappa\} \cup\left\{y_{\gamma}^{\delta}: \gamma<\theta\right.$ and $\left.\delta \in S\right\}$ freely except for the relations:

$$
\begin{aligned}
& (*)_{1} \sum_{\gamma<\theta} a_{\gamma} y_{\gamma}^{\delta}=\sum\left\{b_{\zeta, \gamma}\left(x_{\beta_{\zeta, \gamma}^{\delta}}-x_{\gamma_{\lambda_{\zeta}}^{\delta}}\right): \zeta<\sigma \text { and } \gamma<\theta^{\zeta, \zeta+1}\right\} \\
& \text { when } G_{\sigma} \models \sum_{\gamma<\theta^{0, \sigma}} a_{\gamma} t_{\gamma}=\sum\left\{b_{\zeta, \gamma} t_{\gamma}^{\zeta, \zeta+1}: \zeta<\sigma \text { and } \gamma<\theta^{\zeta, \zeta+1}\right\} \text { where }
\end{aligned}
$$ $a_{\gamma}, b_{\zeta, \gamma} \in \mathbb{Z}$ but all except finitely many are zero.

There is a (unique) homomorphism \mathbf{g}_{δ} from G_{σ} into G^{*} induced by $\mathbf{g}_{\delta}\left(t_{\gamma}\right)=y_{\gamma}^{\delta}$. As usual it is an embedding. Let $\operatorname{Rang}\left(\mathbf{g}_{\delta}\right)=G^{<\delta>}$.
For $\beta<\kappa$ let G_{β}^{*} be the subgroup of G^{*} generated by $\left\{x_{\alpha}: \alpha<\beta\right\} \cup\left\{y_{\gamma}^{\delta}: \gamma<\right.$ $\theta^{0, \sigma}$ and $\left.\delta \in \beta \cap S\right\}$. It can be described similarly to G^{*}.

Fact A: G^{*} is strongly λ-free.

Proof. For $\alpha^{*}<\beta^{*}<\kappa$, we can find $\left\langle\alpha_{\delta}: \delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]\right\rangle$ such that $\left\langle A_{\delta} \backslash \alpha_{\delta}\right.$: $\left.\delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]\right\rangle$ are pairwise disjoint and disjoint to α^{*} hence the sequence $\left\langle\left\{\beta_{\zeta, i}^{\delta}: i<\theta, \zeta \in\left(\operatorname{Min}\left\{\xi<\sigma: \beta_{\zeta, 0}^{\delta}>\alpha_{\delta}\right\}, \sigma\right)\right\}: \delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]\right\rangle$ is a sequence of pairwise disjoint sets.
For $\delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]$, let $\zeta_{\delta}=\operatorname{Min}\left\{\zeta: \beta_{\zeta, 0}^{\delta}>\alpha_{\delta}\right\}<\sigma$. Now easily $G_{\beta^{*}+1}^{*}$ is generated as an extension of $G_{\alpha^{*}+1}^{*}$ by $\left\{\mathbf{g}_{\delta}\left(t_{\gamma}^{\zeta_{\gamma}, \sigma}\right): \gamma<\theta^{\zeta_{\delta}, \sigma}\right.$ and $\left.\delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]\right\} \cup\left\{x_{\alpha}\right.$:
$\alpha \in\left(\alpha^{*}, \beta^{*}\right]$ and for no $\delta \in S \cap\left(\alpha^{*}, \beta^{*}\right]$ do we have $\alpha \in\left\{\beta_{\zeta, i}^{\delta}: i<\theta^{\zeta, \sigma}\right.$ and $\left.\left.\zeta<\zeta_{\delta}\right\}\right\}$; moreover $G_{\beta^{*}+1}^{*}$ is freely generated (as an extension of $G_{\alpha^{*}+1}^{*}$). So $G_{\beta^{*}+1}^{*} / G_{\alpha^{*}+1}^{*}$ is free, as also G_{1}^{*} is free we have shown Fact A.

Fact B: G^{*} is not Whitehead.

Proof. We choose by induction on $\alpha \leq \kappa$, an abelian group H_{α} and a homomorphism $\mathbf{h}_{\alpha}: H_{\alpha} \rightarrow G_{\alpha}^{*}=\left\langle\left\{x_{\beta}: \beta<\alpha\right\} \cup\left\{y_{\gamma}^{\delta}: \gamma<\theta, \delta \in S \cap \alpha\right\}\right\rangle_{G^{*}}$ increasing continuous in α, with kernel $\mathbb{Z}, \mathbf{h}_{0}=$ zero and $\mathbf{k}_{\alpha}: G_{\alpha}^{*} \rightarrow H_{\alpha}$ is a not necessarily linear mapping such that $\mathbf{h}_{\alpha} \circ \mathbf{k}_{\alpha}=\operatorname{id}_{G_{\alpha}^{*}}$. We identify the set of members of $H_{\alpha}, G_{\alpha}, \mathbb{Z}$ with subsets of $\lambda \times(1+\alpha)$ such that $O_{H_{\alpha}}=O_{\mathbb{Z}}=0$.
Usually we have no freedom or no interesting freedom. But we have for $\alpha=\delta+1$, $\delta \in S$. What we demand is ($G^{\langle\delta\rangle}$ - see before Fact A):
$(*)_{2}$ letting $H^{<\delta>}=\left\{x \in H_{\delta+1}: \mathbf{h}_{\delta+1}(x) \in G^{<\delta>}\right\}$, if $s^{*}=g_{\delta}\left(x_{\beta_{\delta}(*)}\right) \in \mathbb{Z} \backslash\{0\}$ (g_{δ} from 4.2), then there is no homomorphism $f_{\delta}: G^{<\delta>} \rightarrow H^{<\delta>}$ such that
(α) $f_{\delta}\left(x_{\beta_{\zeta, i}^{\delta}}\right)-\mathbf{k}_{\delta}\left(x_{\beta_{\zeta, i}^{\delta}}\right) \in \mathbb{Z}$ is the same for all $i \in\left(\bigcup_{\varepsilon<\zeta} \lambda_{\varepsilon}, \lambda_{\zeta}\right]$
(β) $\mathbf{h}_{\delta+1} \circ f_{\delta}=\operatorname{id}_{G}<\delta>$.
[Why is this possible? By non-Whiteheadness of $G^{\sigma} / \bigcup_{i<\sigma} G^{i}$ that is see $(d)(\gamma)^{-}$in 4.1.]

The rest should be clear.

Proof of 4.1(2). Of course, similar to that of 4.1(1) but with some changes.
Step A: Without loss of generality there is a homomorphism f^{*} from $\bigcup_{i<\sigma} G^{i}$ to \mathbb{Z} which cannot be extended to a homormopshim from G_{σ} to \mathbb{Z}.
[Why? Standard, see [Fu].]
Step B: During the construction of G^{*}, we choose G_{α}^{*} by induction on $\alpha \leq \kappa$, but if $h_{\delta}^{*}(0)$ from 4.2 is a member of G_{δ}^{*} in $(*)_{1}$ we replace $\left(x_{\beta_{\zeta, \gamma}^{\delta}}-x_{\gamma_{\lambda_{\zeta}}^{\delta}}\right)$ by $\left(x_{\beta_{\zeta, \gamma}^{\delta}}-x_{\beta_{\lambda_{\zeta}}^{\delta}}+f^{*}\left(t_{\gamma}^{\zeta, \zeta+1}\right) g_{\delta}(0)\right)$, note that $f^{*}\left(t_{\gamma}^{\zeta, \zeta+1}\right) \in \mathbb{Z}$ and $h_{\delta}^{*}(0) \in G_{\delta}^{*}$.
So if in the end $f: G^{*} \rightarrow \mathbb{Z}$ is a non-zero homomorphism, let $x^{*} \in G^{*}$ be such that
$f\left(x^{*}\right) \neq 0 \operatorname{and}^{5}\left|f^{*}\left(x^{*}\right)\right|$ is minimal under this, so without loss of generality it is 1. Hence for some $\delta \in S$ we have:

$$
\begin{aligned}
& (*)_{3} f\left(g_{\delta}(0)\right)=1_{\mathbb{Z}} \\
& (*)_{4} f\left(x_{\gamma_{\lambda}+1+1+\gamma}^{\delta}\right)=f\left(x_{\gamma_{\lambda_{\zeta}}^{\delta}}\right) \text { for } \gamma \in \lambda_{\zeta+1} \backslash \lambda_{\zeta}
\end{aligned}
$$

that is $f\left(x_{\beta_{\zeta, \gamma}^{\delta}}^{\delta}\right)=f\left(x_{\gamma_{\lambda_{z} \text { eta }}^{\delta}}\right)$
(in fact this holds for stationarily many ordinals $\delta \in S$).
So we get an easy contradiction.
$3)$ The proof is included in the proof of part (2).

We also note the following consequence of a conclusion of an instance of GCH.
4.3 Claim. Assume
(a) $\lambda=\mu^{+}$and $\mu>\sigma=c f(\mu)$
(b) $\lambda=\lambda^{\theta}$ where $\theta=2^{\sigma}$
(equivalently $\mu^{\theta}=\mu^{+}>2^{\theta}$)
(c) $S \subseteq\{\delta<\lambda: c f(\delta)=\sigma\}$ is stationary
(d) $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle$ with η_{δ} an increasing sequence of length σ with limit δ.

Then we can find $\left\langle\bar{A}^{\delta}: \delta \in S\right\rangle$ such that:
(α) $\bar{A}^{\delta}=\left\langle A_{i}^{\delta}: i<\sigma\right\rangle$
(β) $A_{i}^{\delta} \in[\delta]^{<\mu}$ and $\sup \left(A_{i}^{\delta}\right)<\delta$
$(\beta)^{+}$for some $\left\langle\lambda_{i}^{*}: i<\sigma\right\rangle$ increasing with limit $\lambda,\left|A_{i}^{\delta}\right|<\lambda_{i}^{*}$,
(γ) for every $h: \lambda \rightarrow \lambda$, for stationarily many $\delta \in S$ we have $(\forall i<\sigma)\left[h\left(\eta_{\delta}(i)\right) \in\right.$ A_{i}^{δ}].
4.4 Remark. 1) We can restrict ourselves to $h: \lambda \rightarrow \mu$ in clause (γ), and then, of course, can use $\left\langle\left\langle A_{i}^{\delta}: i<\sigma\right\rangle: \delta \in S\right\rangle$ with $A_{i}^{\delta} \subseteq \mu$.
2) We can add to the conclusion " $A_{i}^{\delta} \subseteq \eta_{\delta}(i+1)$ " if $\bar{\eta}$ guess clubs.

Proof. Let $\left\langle\lambda_{i}: i<\sigma\right\rangle$ be increasing continuous with limit μ. Let $\left\langle\bar{\alpha}_{\gamma}: \gamma<\lambda\right\rangle$ list ${ }^{\theta} \lambda$, so $\bar{\alpha}_{\gamma}=\left\langle\alpha_{\gamma, \varepsilon}: \varepsilon<\theta\right\rangle$ and without loss of generality $\alpha_{\gamma, \varepsilon} \leq \gamma$. For each $\delta \in S$ let $\left\langle b_{i}^{\delta}: i<\sigma\right\rangle$ be an increasing continuous sequence of subsets of δ with union δ such that $\left|b_{i}^{\delta}\right|<\mu$ and $\sup \left(b_{i}^{\delta}\right)<\delta$; for $(\beta)^{+}$, moreover $\left|b_{i}^{\delta}\right| \leq \lambda_{i}$;

[^4]this is possible as $\operatorname{cf}(\delta)=\sigma=\operatorname{cf}(\mu)<\mu$. Let $\left\langle g_{\varepsilon}: \varepsilon<\theta\right\rangle$ list ${ }^{\sigma} \sigma$ and define $A_{i}^{\varepsilon, \delta}=:\left\{\alpha_{\gamma, \varepsilon}: \gamma \in b_{g_{\varepsilon}(i)}^{\delta}\right\}$. Now $A_{i}^{\varepsilon, \delta}$ is a set of cardinality $\leq\left|b_{g_{\varepsilon}(i)}^{\delta}\right|<\mu$ and $\sup \left(A_{i}^{\varepsilon, \delta}\right) \leq \sup \left(b_{g_{\varepsilon}(i)}^{\delta}\right)$ (as we have demanded that $\alpha_{\gamma, \varepsilon} \leq \gamma$) but $\sup \left(b_{g_{\varepsilon}(i)}^{\delta}\right)<\delta$ by the choice of the b_{j}^{δ} 's hence $\sup \left(A_{i}^{\varepsilon, \delta}\right)<\delta$. So for each $\varepsilon<\theta$ the sequence $\overline{\mathbf{A}}^{\varepsilon}=:\left\langle\bar{A}^{\varepsilon, \delta}: \delta \in S\right\rangle$, where $\bar{A}^{\varepsilon, \delta}=\left\langle A_{i}^{\varepsilon, \delta}: i<\sigma\right\rangle$ satisfies clauses $(\alpha)+(\beta)$ and $(\beta)^{+}$when relevant. Hence it suffices to prove that for some $\varepsilon<\theta$ the sequence $\overline{\mathbf{A}}^{\varepsilon}$ satisfy clause (γ), too. Assume toward contradiction that for every $\varepsilon<\theta$ the sequence $\overline{\mathbf{A}}^{\varepsilon}$ fails clause (γ) hence there is $h_{\varepsilon}: \lambda \rightarrow \lambda$ which exemplifies this, that is for some club E_{ε} of $\lambda, \delta \in E_{\varepsilon} \cap S \Rightarrow(\exists i<\sigma)\left[h_{\varepsilon}\left(\eta_{\delta}(i)\right) \notin A_{i}^{\varepsilon, \delta}\right]$. So for every $\beta<\lambda$ the sequence $\left\langle h_{\varepsilon}(\beta): \varepsilon<\theta\right\rangle$ belongs to ${ }^{\theta} \lambda$, hence is equal to $\bar{\alpha}_{h(\beta)}$ for some $h(\beta)<\lambda$. Clearly $E=\{\delta<\lambda: \delta$ a limit ordinal and $(\forall \beta<\delta) h(\beta)<\delta\}$ is a club of λ (recall $\theta<\lambda$) hence we can find $\delta(*) \in E \cap S$. We define $g^{*}: \sigma \rightarrow \sigma$ by $g^{*}(i)=\operatorname{Min}\left\{j<\sigma: h\left(\eta_{\delta(*)}(j)\right) \in b_{j}^{\delta}\right\}$, now g^{*} is well defined as, for $i<\sigma$ the ordinal $h\left(\eta_{\delta(*)}(i)\right)$ is $<\delta(*)($ as $\delta(*) \in E)$ and $\left.\eta_{\delta(*)}(i)<\delta(*)\right)$ and $\delta=\bigcup_{j<\sigma} b_{j}^{\delta}$. As $g^{*} \in{ }^{\sigma} \sigma$ clearly for some $\varepsilon(*)<\theta$ we have $g_{\varepsilon(*)}=g^{*}$.

So, for any $i<\sigma$ let $\gamma_{i}=h\left(\eta_{\delta(*)}(i)\right)$, now $h\left(\eta_{\delta(*)}(i)\right) \in b_{g^{*}(i)}^{\delta}$ (by the choice of g^{*}) and $g^{*}(i)=g_{\varepsilon(*)}(i)$ by the choice of $\varepsilon(*)$, together $\gamma_{i} \in b_{g_{\varepsilon(*)}(i)}^{\delta}$. But $A_{i}^{\varepsilon(*), \delta(*)}=$ $\left\{\alpha_{\gamma, \varepsilon(*)}: \gamma \in b_{g_{\varepsilon(*)}(i)}^{\delta}\right\}$ by the choice of $A_{i}^{\varepsilon(*), \delta(*)}$ hence $\alpha_{\gamma_{i}, \varepsilon(*)} \in A_{i}^{\varepsilon(*), \delta(*)}$, but as $\gamma_{i}=h\left(\eta_{\delta(*)}(i)\right)$, by the choice of h we have $h_{\varepsilon(*)}\left(\eta_{\delta(*)}(i)\right)=\alpha_{\gamma_{i}, \varepsilon(*)} \in A_{i}^{\varepsilon(*), \delta(*)}$.

So $(\forall i<\sigma)\left(h_{\varepsilon}\left(\eta_{\delta(*)}(i)\right) \in A_{i}^{\varepsilon(*), \delta(*)}\right)$, which by the choice of h_{ε} implies $\delta(*) \notin$ $E_{\varepsilon(*)}$ but $\delta(*) \in E \subseteq \bigcap_{\varepsilon<\sigma} E_{\varepsilon}$, contradiction.

REFERENCES.

[Fu] Laszlo Fuchs. Infinite Abelian Groups, volume I, II. Academic Press, New York, 1970, 1973.
[Sh 186] Saharon Shelah. Diamonds, uniformization. The Journal of Symbolic Logic, 49:1022-1033, 1984.
[Sh:f] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer, 1998.
[Sh 576] Saharon Shelah. Categoricity of an abstract elementary class in two successive cardinals. Israel Journal of Mathematics, 126:29-128, 2001.
[Sh 587] Saharon Shelah. Not collapsing cardinals $\leq \kappa$ in $(<\kappa)$-support iterations. Israel Journal of Mathematics, 136:29-115, 2003.

[^0]: ${ }^{1}$ we may later ignore the $i=-1$ in our notation

[^1]: ${ }^{2}$ Generally in such situation we can act as in 2.7 to get a real decision, i.e. if $p_{t}^{* i} \upharpoonright(\alpha+1)$ is not well defined while $p_{t}^{* i} \upharpoonright \alpha$ is well defined then $p_{t}^{* i} \upharpoonright \alpha \Vdash$ "the sequence $\left\langle p_{t^{j}}^{j}(\alpha): j<i\right\rangle$ has no $\leq_{\hat{\mathbb{Q}}_{\alpha}}$-upper bound. But the need has not arisen here.

[^2]: ${ }^{3}$ i.e. x_{β} belongs to some additive group G^{*} for $\beta<\kappa, \hat{g} \in \operatorname{Hom}\left(G^{*}, H^{*}\right), g(\beta)=\hat{g}\left(x_{\beta}\right)$ then for some δ as in \bigodot_{2}, we have $g\left(x_{\beta_{\xi}^{\delta}}^{0}-x_{\lambda_{\lambda_{\zeta}}^{\delta}}\right)$ is $0_{H^{*}}$; similarly for multiplicative groups

[^3]: ${ }^{4}$ we can use a colouring which uses e.g. $\left\langle\zeta_{j, g, \varepsilon}^{\delta}: j<i, \varepsilon<\lambda_{j+1}\right\rangle$ as a parameter

[^4]: ${ }^{5}$ What does this mean? $f^{*}\left(x^{*}\right)$ is an integer so its absolute value is well defined

