
ON CIESIELSKI’S PROBLEMS

S. SHELAH

Abstract. In the present paper we discuss some problems formulated in
Ciesielski [3].

0. Introduction. I was asked to read and comment on Ciesielski’s
survey paper [3]. I have found it very exciting and illuminating. Quite
naturally I was not able to resist the temptation to look mainly at the open
problems formulated in this nice paper. Some of them are related to my
research in progress and may be solved soon. This is in particular the case
with Problems 5, 1 and 6, for which relevant information should be given by
Ciesielski Shelah [4] and Ros lanowski Shelah [14]. For some other problems
(like [3, Problem 3]) I have ideas that could work and this may materialize
in a continuation of the present paper.

Here we would like to present answers to three problems and address a
fourth one. In the first section we solve [3, Problem 8] and we show that,
consistently, dc is a singular cardinal and ec < dc (in 1.9; see 1.1 for the
definitions of ec, dc). In the next section we present some results relevant
for [3, Problem 9]. We do not solve the problem, but it was formulated in
a very general way (When does dc = d∗c or ec = e∗c hold?) making the full
answer rather difficult. The third section answers [3, Problem 7]. We show
there that the Martin Axiom for σ–centered forcing notions implies that for
every function f : R2 −→ R there are functions gn, hn : R −→ R, n < ω,

such that f(x, y) =
∞∑
n=0

gn(x) · hn(y). Finally, in the next section we deal
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2 S. SHELAH

with countably continuous functions and we show (in 4.2) that in the Cohen
model they are exactly the functions f with the property that

(∀U ∈ [R]ℵ1)(∃U∗ ∈ [U ]ℵ1)(f |̀U∗ is continuous).

This answers negatively [3, Problem 4].
Notation: Our notation is rather standard and compatible with that of
classical textbooks on Set Theory (like Jech [11] or Bartoszyński Judah [1]).
However in forcing we keep the convention that a stronger condition is the
larger one.

Notation 0.1. We will keep the following rules for our notation:

(1) α, β, γ, δ, ξ, ζ, i, j . . . will denote ordinals.
(2) κ, λ, µ, θ . . . will stand for cardinal numbers, c is the cardinality of

the continuum.
(3) A bar above a name indicates that the object is a sequence, usually

X̄ will be 〈Xi : i < `g(X̄)〉, where `g(X̄) denotes the length of X̄.
(4) A tilde indicates that we are dealing with a name for an object in

forcing extension (like x
˜

). The canonical P–name for a generic filter
is called G

˜
P.

(5) For a cardinal κ, the quantifiers (∃κi) and (∀κi) are abbreviations
for “there is κ many i such that. . . ” and “for all but less than κ
many i . . . ”, respectively.

(6) otp stands for “order type”. When using elements of the pcf–theory
we will follow the notation and terminology of [16]. In particular,
tcf will stand for “true cofinality” and Jbd

θ will denote the ideal of
bounded subsets of θ.

1. Around dκ and eκ.

Definition 1.1. Let θ ≤ κ be cardinals.

(1) Let Sθκ
def
=
∏
i<κ

[κ]<θ.

(2) We define the following cardinal coefficients of the space κκ:

dκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(∃κi<κ)(f(i) = g(i))},
eκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(∀κi<κ)(f(i) 6= g(i))},
dκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(∀κi<κ)(g(i) < f(i))},
bκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(∃κi<κ)(g(i) < f(i))},

c(κ, θ) = min{|G| : G ⊆ Sθκ & (∀g ∈ κκ)(∃S̄ ∈ G)(∀κi<κ)(g(i) ∈ Si)},
c−(κ, θ) = min{|G| : G ⊆ Sθκ & (∀g ∈ κκ)(∃S̄ ∈ G)(∃κi<κ)(g(i) ∈ Si)},
b(κ, θ) = min{|F | : F ⊆ κκ & (∀S̄ ∈ Sθκ)(∃f ∈ F )(∀κi<κ)(f(i) /∈ Si)}.

b−(κ, θ) = min{|F | : F ⊆ κκ & (∀S̄ ∈ Sθκ)(∃f ∈ F )(∃κi<κ)(f(i) /∈ Si)}.
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ON CIESIELSKI’S PROBLEMS 3

(3) For functions f, g ∈ κκ we say that f dominates g (in short: g <∗κ f)
if (∀κi<κ)(g(i) < f(i)).
[Thus bκ and dκ are the unbounded number and the dominating
number, respectively, of the partial order (κκ,<∗κ).]

Remark 1.2. (1) The cardinal invariants introduced in 1.1 are natural
generalizations of those studied in Set Theory of the Reals; see e.g.
Bartoszyński Judah [1] or Goldstern Shelah [10].

(2) Using 1.1, we may reformulate [3, Problem 8] as follows:
(a) Is it consistent that dc > ec?
(b) Can dc be a singular cardinal?
(see [3, 4.7, 4.12]).

Proposition 1.3. (1) The partial order (κκ,<∗κ) is bκ–directed. The
cardinal bκ is regular. If κ is regular then bκ = b−(κ, κ).

(2) bκ ≤ dκ. If κ is a successor then dκ = bκ.
(3) cf(κ) < c−(κ, κ) and θ < κ ⇒ κ < c−(κ, θ+).
(4) Assume that either θ < cf(κ) or θ = cf(κ) is a successor cardinal.

Then dκ = c−(κ, θ).

Proof 1) and 3) Should be clear.

2) For a function f ∈ κκ let f+ ∈ κκ be defined by f+(i) = f(i) + 1.
Clearly, if F ⊆ κκ is a family witnessing the minimum in the definition of
dκ then {f+ : f ∈ F} is a <∗κ–unbounded family. Hence bκ ≤ dκ.

Assume now that κ = µ+ and let F ⊆ κκ be <∗κ–unbounded, |F | = bκ.
Note that necessarily bκ > κ. For each α < κ fix a sequence 〈βα,ξ : ξ < µ〉
such that {βα,ξ : ξ < µ} = α+ 1. For f ∈ F and ξ < µ let hfξ ∈ κκ be such

that (∀i < κ)(hfξ (i) = βf(i),ξ). Let

F ∗
def
= {hfξ : f ∈ F & ξ < µ}.

Then |F ∗| ≤ |F | + µ = bκ. Suppose g ∈ κκ. By the choice of F , we find

f ∈ F such that the set A
def
= {i < κ : g(i) < f(i)} is of cardinality κ. For

i ∈ A let ξi < µ be such that g(i) = βf(i),ξi . Then for some ξ < µ the set

Aξ = {i ∈ A : ξi = ξ} is of size κ. Look at the function hfξ ∈ F ∗: for every

i ∈ Aξ we have g(i) = hfξ (i).

4) First note that plainly c−(κ, θ) ≤ dκ, so we have to show the converse
inequality (under our assumptions).

Assume θ < cf(κ). Let G ⊆ Sθκ be such that |G| = c−(κ, θ) and

(∀g ∈ κκ)(∃S̄ ∈ G)(∃κi<κ)(g(i) ∈ Si).
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4 S. SHELAH

For S̄ ∈ G and i < κ fix an enumeration {βS̄,iε : ε < εS̄,i} of Si (so εS̄,i < θ).

Next define functions hS̄ε ∈ κ (for S̄ ∈ G and ε < θ) by

hS̄ε (i) =

{
βS̄,iε if ε < εS̄,iε
0 otherwise.

Suppose that g ∈ κκ. Take S̄ ∈ G such that (∃κi<κ)(g(i) ∈ Si). Then for
some ε < θ we have

(∃κi<κ)(g(i) = βS̄,iε = hS̄ε (i)),

and hence we may conclude that dκ ≤ c−(κ, θ)+θ is witnessed by the family

{hS̄ε : S̄ ∈ G & ε < θ}. Finally we note that c−(κ, θ) + θ = c−(κ, θ) (by (3);
remember c−(κ, θ) ≥ c−(κ, κ)).

If θ = cf(κ) is a successor cardinal, say θ = µ+, then we proceed similarly:

we may assume that for each S̄ ∈ G and i < κ we have |Si| = µ = εS̄,i and
we finish as above (as µ < cf(κ)).

Proposition 1.4. Assume that κ is a strong limit singular cardinal, cf(κ) =
θ > ℵ0. Then

c−(κ, θ) = c(κ, θ) = dκ = 2κ.

Proof Clearly κ < c−(κ, θ) ≤ c(κ, θ) ≤ 2κ (remember 1.3(3)) and
c−(κ, θ) ≤ dκ ≤ 2κ, so it suffices to show that c−(κ, θ) ≥ 2κ.

Suppose that G ⊆ Sθκ, |G| = µ, κ < µ < µ+ ≤ 2κ.
Choose an increasing continuous sequence 〈κi : i < θ〉 such that

θ < κ0 and sup
i<θ

κi = κ and
(
∀i < θ)(2

∑
j<i

κj+ℵ0
< κi

)
.

Next, using [16, Ch. VIII, §1], pick χ̄ = 〈χi : i < θ〉 such that

(i) χ̄ is a strictly increasing sequence of regular cardinals,
(ii) κi < χi < κ for each i < θ,

(iii) tcf(
∏
i<θ

χi/J
bd
θ ) = µ+.

Now, for every S̄ ∈ G define a function hS̄ ∈
∏
i<θ

χi by

hS̄(i) = sup{α < χi : α ∈ Sγ and γ < κi}.

Note that |{α < χi : α ∈ Sγ , γ < κi}| ≤ κi · θ < χi, so (as χi is regular)

hS̄(i) < χi. It follows from (iii) that there a function h ∈
∏
i<θ

χi such that

(∀S̄ ∈ G)(hS̄ <Jbd
θ
h).
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ON CIESIELSKI’S PROBLEMS 5

Finally define a function g ∈ κκ by:

if sup
j<i

κj ≤ γ < κi then g(γ) = h(i).

Note that for each S̄ ∈ G we have

{γ < κ : g(γ) ∈ Sγ} ⊆
⋃{

[sup
j<i

κj , κi) : i < θ, hS̄(i) ≥ h(i)
}
⊆ κj(S̄),

where j(S̄) = min{j < θ : {i < θ : hS̄(i) ≥ h(i)} ⊆ j}. Consequently
the function g shows that the family G cannot witness the minimum in the
definition of c−(κ, θ) and we are done.

Remark 1.5. Actually much weaker assumptions are sufficient to get the
conclusion of 1.4. For example, almost always we may allow θ = ℵ0 (see
[17]).

Proposition 1.6. If κ is a singular cardinal, θ < κ then eκ = b(κ, θ) = κ+.

Proof First note that κ < eκ ≤ b(κ, θ), so it is enough to show that
b(κ, θ) ≤ κ+.

By [16, Ch. II, 1.5], we may find an increasing sequence 〈χi : i < cf(κ)〉
of regular cardinals cofinal in κ and such that

θ < χ0, tcf(
∏

i<cf(κ)

χi/J
bd
cf(κ)) = κ+ and (∀i < cf(κ))(sup

j<i
χj < χi < κ).

Let 〈hα : α < κ+〉 ⊆
∏

i<cf(κ)
χi be a <Jbd

cf(κ)
–increasing sequence cofinal in

(
∏

i<cf(κ)
χi, <Jbd

cf(κ)
). For i < cf(κ) put µi

def
= sup

j<i
χj . Then the sequence 〈µi :

i < cf(κ)〉 is increasing continuous with limit κ. Now we define functions
fα ∈ κκ (for α < κ+) by:

µi ≤ ξ < µi+1 & i < cf(κ) ⇒ fα(ξ) = hα(i+ 1).

We claim that

(∀S̄ ∈ Sθκ)(∃α < κ+)(∀κξ<κ)(fα(ξ) /∈ Sξ).

So suppose S̄ ∈ Sθκ. Define a function hS̄ ∈
∏

i<cf(κ)
χi by

hS̄(i) = sup{α < χi : α ∈ Sξ and ξ < µi}
(note that the set on the right-hand side of the formula above is of size < χi
so the supremum is below χi). Take α < κ+ and j∗ < cf(κ) such that

j∗ ≤ i < cf(κ) ⇒ hS̄(i) < hα(i),
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6 S. SHELAH

and note that then
{ξ < κ : fα(ξ) ∈ Sξ} ⊆ µj∗ .

So we are done.

Proposition 1.7. If κ is singular and θ < κ then

(a) dκ ≥ c−(κ, θ) ≥ ppJbd
cf(κ)

(κ),

(b) dκ ≥ eκ and if dκ = eκ then

cf(κ) ≤ θ < κ ⇒ ppθ(κ) = κ+.

Proof To show clause (a) take any µ < ppJbd
cf(κ)

(κ) and essentially repeat

the proof of 1.6 for µ+ (remember [16, Ch. II, 2.3]). The assertion (b) follows
from (a) and 1.6.

Proposition 1.8. Assume that P is a cf(θ)–cc forcing notion.

(1) `P“ (∀S̄ ∈ Sθκ)(∃S̄∗ ∈ Sθκ ∩V)(∀i < κ)(Si ⊆ S∗i ) ”.
(2) `P“ c(κ, θ) ≥ (c(κ, θ))V and c−(κ, θ) ≥ (c−(κ, θ))V ”.

(3) If κ<cf(θ) = κ then

`P “ c(κ, θ) = (c(κ, θ))V and c−(κ, θ) = (c−(κ, θ))V ”.

(4) If θ = cf(θ) < κ and either θ < cf(κ) or θ = cf(κ) is a successor
cardinal then `P“ dκ = (dκ)V ”.

Proof 1) Suppose that A
˜

is a P–name for a set of ordinals, `P |A
˜
| < θ.

Since P satisfies the cf(θ)–cc, we find a cardinal µ < θ and a P–name h
˜

such

that `P“ h
˜

: µ
onto−→ A

˜
”. By the cf(θ)–cc again, we find sets Bi (for i < µ)

such that |Bi| < cf(θ) and `P h
˜

(i) ∈ Bi. Let A =
⋃
i<µ

Bi. Then `P A
˜
⊆ A

and: if cf(θ) < θ then |A| ≤ µ · cf(θ) < θ and if cf(θ) = θ then |A| < θ as
µ < cf(θ). The rest should be clear.

4) Let F ⊆ κκ, F ∈ V be a family witnessing the minimum in the defini-
tion of dκ. We are going to show that

`P “ (∀g ∈ κκ)(∃f ∈ F )(∃κi<κ)(g(i) = f(i)) ”.

So suppose that p ∈ P and g
˜

are such that p `“g
˜
∈ κκ”. Choose a sequence

〈pi : i < κ〉 of conditions and a function g ∈ κκ such that

(∀i < κ)(p ≤ pi & pi `P g
˜

(i) = g(i)).

By the choice of F we find f ∈ F such that the set A
def
= {i < κ : g(i) = f(i)}

is of size κ. Next choose a condition q ≥ p such that

q `P “ |{i ∈ A : pi ∈ G
˜
P}| = κ ”.
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ON CIESIELSKI’S PROBLEMS 7

[Possible, as otherwise p `“|{i ∈ A : pi ∈ G
˜
P}| ≤ µ” for some µ < κ

(remember that θ ≤ cf(κ)). So we have a P–name h
˜

for a function from µ
into A such that p ` (∀i ∈ A)(pi ∈ G

˜
P ⇒ i ∈ rng(h

˜
)). For each ζ ∈ µ

the set Bζ = {i ∈ A : (∃p′ ≥ p)(p′ ` h
˜

(ζ) = i)} is of size < θ and hence
|
⋃
ζ<µ

Bζ | ≤ θ · µ < κ. Take any i ∈ A \
⋃
ζ<µ

Bζ and look at the condition pi.]

Now note that the condition q forces “ (∃κi ∈ A)(g
˜

(i) = g(i)) ”.

Thus we have proved that `P“dκ ≤ (dκ)V”. For the converse inequality
we use 1.3(4) and 1.8(2). Thus we get

`P “ dκ = c−(κ, θ) ≥ (c−(κ, θ))V = (dκ)V ”,

finishing the proof.

Now may get the affirmative answer to [3, Problem 8] (see 1.2(2)):

Conclusion 1.9. It is consistent that dc is a singular cardinal and ec < dc

(modulo existence of high enough measurables).

Proof First we force that there is κ satisfying the assumptions of 1.4 and
such that 2κ singular. How? Start with a supercompact Laver indestructible
κ and make 2κ to have cofinality κ+, κ still supercompact. Next force κ
to have cofinality ℵ1, say as in Magidor [13]. (By [15] we can make κ
to be the ω1–th fix point among the alephs.) So now we have dκ = 2κ,
cf(2κ) = κ+ < 2κ. Next add κ Cohen reals. Since this forcing satisfies
the ℵ1–cc and is of cardinality κ we conclude that, by 1.8(4), in the final
universe dκ = dc remains the same (so it is singular). Finally, by 1.6, we
know that in the resulting model ec = κ+ < dc.

Remark 1.10. (1) In fact, if we waive the requirement “dc is singular”
then 2κ = κ++ is enough for the proof, so we can get even κ = ℵω1 ,
dκ = ℵω1+2 and eκ = ℵω1+1.

(2) What is the consistency strength? By Gitik [8] the consistency
strength of
(⊕) κ is measurable and 2κ > κ+

is that of the existence of a measurable cardinal κ of Mitchell order
κ++. By Gitik [7], the consistency strength of
(⊗) κ is measurable and 2κ = ℵκ+
is that of the existence of a hypermeasurable cardinal with sequence
of measures of length ℵκ+ .

2. Around d∗κ and e∗κ. In this section we address [3, Problem 9]. The
problem reads

When does dc = d∗c or ec = e∗c hold?
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8 S. SHELAH

(see 2.1 for the definitions of d∗c , e
∗
c ). Though we do not answer the question

fully, we are able to give examples of situations in which the equalities hold.
The results here should be combined with those from the previous section,
of course.

Definition 2.1. We define the following cardinal coefficients of the space
κκ:

d∗κ =
min{|F | : F ⊆ κκ & (∀G∈ [κκ]κ)(∃f ∈F )(∀g∈G)(∃κi<κ)(f(i) = g(i))},

e∗κ =
min{|F | : F ⊆ κκ & (∀G∈ [κκ]κ)(∃f ∈F )(∀g∈G)(∀κi<κ)(f(i) 6= g(i))},

Proposition 2.2. (1) [Ciesielski and Jordan; see Jordan [12]] If κ = κ<κ

then dκ = d∗κ and eκ = e∗κ.
(2) If κ is a successor cardinal then d∗κ ≤ cf([dκ]κ,⊆).
(3) Suppose that λ̄ is an increasing sequence cofinal in κ, `g(λ̄) = δ ≤ κ

such that tcf
( ∏
i<δ

λi/J
bd
δ

)
= θ. Then eκ ≤ e∗κ ≤ θ ≤ dκ ≤ d∗κ.

(4) If κ is singular then eκ = e∗κ = κ+.

Proof 3) Repeat the proof of 1.6, 1.7 with suitable (minor) changes,
see below too.

4) A minor modification of the proof of 1.6 shows it. Proceed like there,

but instead of functions hS̄ (for S̄ ∈ Sθκ) consider functions hḡ ∈
∏

i<cf(κ)
χi

(for ḡ = 〈gξ : ξ < κ〉 ⊆ κκ) defined by

hḡ(i) = sup{α < χi : α = gξ(ζ), ξ, ζ < µi}.

The rest should be clear.

Remark 2.3. (1) Concerning the assumptions of 2.4 below, note that
by Gitik Shelah [9] there may be such ultrafilters in various cases.
Necessarily θ ≥ κ+; it can be κ+, which is the interesting case, and
can have 2κ singular. See more in Džamonja Shelah [5].

(2) Concerning 2.4(c), note that if κ is just strongly inaccessible, κ < µ
and f ∈ κκ satisfies (∀i < κ)(cf(f(i)) > |i|) (more if we want to
preserve being a large cardinal) then there is a κ–strategically closed
κ+–cc forcing notion Q such that `Q“

∏
i<κ

f(i)/Jbd
κ is µ–directed ”.

(Just iterate the forcing adding g ∈
∏
i<κ

f(i) dominating all members

Paper Sh:675, version 1998-02-02 10. See https://shelah.logic.at/papers/675/ for possible updates.



ON CIESIELSKI’S PROBLEMS 9

of
∏
i<κ

f(i) from the ground model; so a condition fixes g |̀α (for some

α < κ) and promises g ≥∗ g0 ∈
∏
i<κ

f(i).)

(3) So under the assumption of 2.4 (all parts), e∗κ ≤ dκ.

Proposition 2.4. Suppose that cardinals θ, κ are such that there is a normal
ultrafilter D on κ generated by θ sets. Then

(a) e∗κ ≤ θ + κ+,
(b) if for every family A ⊆ D of size < µ there is B ∈ D such that

(∀A ∈ A)(B ⊆∗ A) then µ ≤ dκ,
(c) if there is a function f ∈ κκ such that

∏
i<κ

f(i)/Jbd
κ is µ–directed

then µ ≤ dκ.

Proof (a) Let µ = κ+ and let us assume that otp(κκ/D) > κ+ (the
other case is handled similarly). Pick up a function f ∈ κκ such that

(∀i < j < κ)(i < f(i) < f(j) and f(i) is a regular cardinal)

and otp(
∏
i<κ

f(i)/D) = µ (remember that D is a normal ultrafilter on κ).

Let E ⊆ κ be a club of κ such that

(∀δ ∈ E)(∀i < δ)(f(i) < δ),

and let {Aα : α < θ} ⊆ D be a family generating D and such that Aα ⊆ E
(for all α < θ). Choose a sequence ḡ ⊆

∏
i<κ

f(i) such that `g(ḡ) = µ and

〈gζ/D : ζ < µ〉 is <D–increasing and cofinal in
∏
i<κ

f(i)/D, and gζ(i) > i (for

ζ < µ and i < κ).
For α < θ and ζ < µ we choose a function hα,ζ ∈ κκ such that hα,ζ(i) =

gζ(min(Aα \ i)) (for i < κ). Let F = {hα,ζ : α < θ, ζ < µ}, so |F | ≤ θ + µ.

Next, for a function h ∈ κκ define hf ∈
∏
i<κ

f(i) by:

hf (i) =

{
h(i) if h(i) < f(i),
0 if h(i) ≥ f(i).

and choose an ordinal ζ(h) < µ such that hf <D gζ(h). Then the set

Ah
def
= {i < κ : hf (i) < gζ(h)(i)} is in D. Since the set

Ah
def
= {i < κ : i is limit and (∀j < i)(h(j) < i)}

is a club of κ (so in D) we may choose α(h) < θ such that Aα(h) ⊆ Ah ∩Ah.
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10 S. SHELAH

Suppose now that G ∈ [κκ]κ, say G = {hξ : ξ < κ}. Take ζ < µ such
that sup

ξ<µ
ζ(hξ) < ζ and let α < θ be such that

Aα ⊆ 4
ξ<κ

Aα(hξ) ∩ 4
ξ<κ
{i < κ : gζ(hξ)(i) < gζ(i)}.

Claim 2.4.1. If ξ < i < κ then hξ(i) 6= hα,ζ(i).

Proof of the claim: First assume that ξ < i, i ∈ Aα. Then, by the choice
of α, we have gζ(hξ)(i) < gζ(i) and i ∈ Aα(hξ) ⊆ A

hξ . Consequently,

either hξ(i) ≥ f(i) or hξ(i) = (hξ)
f (i) < gζ(hξ)(i) < gζ(i) = hα,ζ(i) < f(i)

(and so hξ(i) 6= hα,ζ(i)). So suppose now that ξ < i, i /∈ Aα. Let j =
min(Aα \ i). Then j ∈ Aα(hξ) ⊆ Ahξ and i < j, so hξ(i) < j and hα,ζ(i) =

gζ(j) > j . Hence hξ(i) 6= hα,ζ(i).

It follows from 2.4.1 that the family F exemplifies e∗κ ≤ θ + µ.

(b) It is similar to (a). Using the assumptions we choose f,E,Aα, ḡ as
there and we define hf , ζ(h), α(h) (for h ∈ κκ) in the same manner. Exactly
as in 2.4.1 we show that for each h ∈ κκ and i ∈ κκ we have hα(h),ζ(h)(i) 6=
h(i) (just consider two cases: i ∈ Aα(h) and i /∈ Aα(h)).

(c) Similarly.

3. Representing functions on the plane. In this section we answer
[3, Problem 7] showing that it is consistent that c > ℵ1 but for every function
f : R2 −→ R there exist functions gn, hn : R −→ R, n < ω, such that

f(x, y) =
∞∑
n=0

gn(x) · hn(y).

Let us start with the following technical lemma.

Lemma 3.1. Assume MA(σ-centered). Suppose that B is an infinite subset
of ω, X is a set of size < c and f, gn : X −→ R (for n ∈ B) are such that

(⊗) the sets

Ax
def
= {n ∈ B : gn(x) 6= 0}

for x ∈ X are infinite almost disjoint.

Then there is a sequence 〈bn : n ∈ B〉 of rational numbers such that

(1) bn 6= 1
(n+1)2

for all n ∈ B, and

(2) f(x) =
∑
n∈B

gn(x) · bn for each x ∈ X.

Proof Let Q = Q(X, f,B, 〈gn : n ∈ B〉) be the following forcing notion:
a condition in Q is a triple p = (b̄p,mp, σp) = (b̄,m, σ) such that
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• m ∈ ω, σ is a finite function such that dom(σ) ⊆ X and rng(σ) ⊆
B ∩ (m+ 1),
• b̄ = 〈bn : n ∈ B ∩m〉 is a sequence of rational numbers, bn 6= 1

(n+1)2

for n ∈ B ∩m,
• for each x ∈ dom(σ), the sequence

〈|f(x)−
∑

n∈B∩k
gn(x) · bn| : k ∈ B ∩ [σ(x),m]〉

is non-increasing;

the order of Q is the natural one: p ≤ q if and only if

b̄p E b̄q, mp ≤ mq and σp ⊆ σq.

Claim 3.1.1. Q is a non-trivial σ–centered forcing notion.

Proof of the claim: Consider the space Xω equipped with the product
topology of discrete copies of ω. By Engelking Kar lowicz [6], this space is

separable (as |X| ≤ c). So let {ηk : k < ω} ⊆ Xω be a dense subset of Xω.
For m, k ∈ ω and a sequence b̄ = 〈bn : n ∈ B ∩m〉 of rationals let

Qm,b̄k
def
= {p ∈ Q : mp = m & b̄p = b̄ & σp ⊆ ηk}.

Since there are countably many possibilities for 〈m, b̄, k〉 as above and each

member of Q belongs to some Qm,b̄k (remember the choice of ηk’s), it is

enough to show that the sets Qm,b̄k are directed. So let p0, . . . , p`−1 ∈ Qm,b̄k .
Then b̄pi = b̄, mpi = m and σpi ⊆ ηk (for i < `). Put q = (b̄,m,

⋃
i<`

σpi). It

should be clear that q ∈ Qm,b̄k is a condition stronger than all p0, . . . , p`−1.

Now, for x ∈ X and a positive rational number ε let

Iεx
def
=

{
p ∈ Q : x ∈ dom(σp) & |f(x)−

∑
n∈B∩mp

gn(x) · bn| < ε

}
.

Claim 3.1.2. For every x ∈ X and a rational ε > 0 the set Iεx is an open
dense subset of Q.

Proof of the claim: Let q ∈ Q and let r ∈ Q be defined as follows. If
x ∈ dom(σq) then r = q, otherwise

b̄r = b̄q, mr = mq and σr = σq ∪ {(x,mq)}.

(So r is a condition stronger than q and x ∈ dom(σr).) Use the assumption
(⊗) to choose m∗ > mr such that

m∗ ∈ B ∩Ax ∩
⋂{

B \Ay : y ∈ dom(σr) \ {x}
}
,
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remember Ay = {n ∈ B : gn(y) 6= 0}. Let

ε∗ =
1

2
min{ε, |f(x)−

∑
n∈B∩mr

gn(x) · bn|}

(so ε > ε∗ ≥ 0) and let

• mp = min(B \ (m∗ + 1)), σp = σr,
• bpn = brn if n ∈ B∩mr, bpn = 0 if n ∈ B∩ [mr,m∗) and bpm∗ 6= 1

(m∗+1)2

be a rational number such that

f(x)−
∑

n∈B∩m∗
gn(x) · bpn − ε∗ ≤ gm∗(x) · bpm∗ ≤ f(x)−

∑
n∈B∩m∗

gn(x) · bpn + ε∗

(clearly the choice is possible as gm∗(x) 6= 0; if ε∗ = 0 then bpm∗ = 0).

One easily checks now that the above choice defines a condition p ∈ Iεx
stronger than r.

It follows from 3.1.1, 3.1.2 that we may use MA(σ-centered) to find a
directed set G ⊆ Q such that G ∩ Iεx 6= ∅ for each x ∈ X and a positive
rational ε. Let b̄ =

⋃
{b̄p : p ∈ G}. It should be clear that the sequence b̄ is

as required.

Definition 3.2. Let f : R2 −→ R . An f–approximation is a tuple p =
(Xp, ḡp0 , ḡ

p
1 ,Dp) = (X, ḡ0, ḡ1,D) such that

(a) X ⊆ R ,
(b) ḡ` = 〈g`,n : n < ω〉, g`,n : X −→ R (for ` < 2, n < ω),

for ` < 2, x ∈ X let ā`,x = 〈g`,n(x) : n < ω〉,
(c) (∀x, y ∈ X)(f(x, y) =

∞∑
n=0

g0,n(x) · g1,n(x)),

(d) D is a filter on ω including all co-finite subsets of ω and generated
by ≤ |X|+ ℵ0 sets,

(e) if x ∈ X, ` < 2 then{
n < ω : g`,n(x) ∈ {0, 1

(n+1)2
}
}
∈ D, and

Aā`,x = Apā`,x
def
=

{
n < ω : g`,n(x) = 1

(n+1)2

}
6= ∅ mod D,

(f) no finite union of sets Aā`,x (for ` < 2, x ∈ X) is in D,
(g) if (`1, x1) 6= (`2, x2), `1, `2 < 2, x1, x2 ∈ X then ā`1,x1 6= ā`2,x2 and

the intersection Apā`1,x1
∩Apā`2,x2 is finite.

The set APf of all approximations carries a natural partial order:
for f–approximations p, q we let p ≤ q if and only if

Xp ⊆ Xq, Dp ⊆ Dq and gp`,n ⊆ g
q
`,n (for ` < 2 and n < ω).
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Theorem 3.3. Assume MA(σ-centered). Let f : R2 −→ R . Suppose that
p ∈ APf is such that |Xp| < c and r∗ ∈ R \ Xp. Then there is q ∈ APf
such that

p ≤ q and Xq = Xp ∪ {r∗}.
Proof First choose pairwise disjoint infinite subsets B0, B1, B2 of ω\{0}
such that for m < 3:

(α) (∀B ∈ Dp)(Bm ⊆∗ B),
(β) (∀` < 2)(∀x ∈ Xp)(|Bm ∩Aāp

`,x
| = ℵ0),

(γ) no finite union of sets Aā`,x (for ` < 2, x ∈ X) almost includes Bm.

(There are such sets by MA(σ-centered); remember 3.2(e),(f).) Next choose
disjoint infinite subsets B0

0 , B
1
0 , B

2
0 of B0 such that for k < 3

(δ) (∀` < 2)(∀x ∈ Xp)(|Bk
0 ∩Aāp`,x | < ℵ0).

(Again, easily possible by our assumptions and 3.2(g) and (γ) above.)
Now we start defining an f–approximation q. We let

• Xq = Xp ∪ {r∗},
• Dq be the filter generated by Dp ∪ {B0},
• gq`,n(x) = gp`,n(x) for x ∈ Xp, ` < 2 and n < ω,

• if n ∈ ω \B1 then

gq0,n(r∗) =


1 if n = 0,

1
(n+1)2

if n ∈ B0
0 ,

0 if n ∈ ω \ (B1 ∪B0
0 ∪ {0});

and if n ∈ ω \B2 then

gq1,n(r∗) =


f(r∗, r∗) if n = 0,

1
(n+1)2

if n ∈ B1
0 ,

0 if n ∈ ω \ (B2 ∪B1
0 ∪ {0}).

Now we want to define gq0,n(r∗), gq1,n(r∗) for other n, but we have to be

careful with that to ensure that the clause 3.2(c) is satisfied. It should be
clear at the moment that we do not have to worry anymore about that clause
if x, y ∈ Xp or x = y = r∗ (for the last case inspect the definition above and
the choice of Bm, B

0
0 , B

1
0). So now we use 3.1 to finish the definition. First

note that for each x ∈ X the sets

{n ∈ ω \B1 : gq0,n(r∗) · gp1,n(x) 6= 0} and {n ∈ ω \B2 : gp0,n(x) · gq1,n(r∗) 6= 0}
are finite (remember clauses (α) and (δ)). Apply 3.1 to the set B1, functions
gp1,n (for n ∈ B1) and the mapping

x 7→ f(r∗, x)−
∑

n∈ω\B1

gq0,n(r∗) · gp1,n(x)
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(note that the sum is actually finite) to find gq0,n(r∗) (for n ∈ B1) such that

gq0,n(r∗) 6= 1
(n+1)2

and for each x ∈ X

f(r∗, x)−
∑

n∈ω\B1

gq0,n(r∗) · gp1,n(x) =
∑
n∈B1

gq0,n(r∗) · gp1,n(x).

Next use 3.1 for B2, gp0,n (for n ∈ B2) and the mapping

x 7→ f(x, r∗)−
∑

n∈ω\B2

gp0,n(x) · gq1,n(r∗)

to choose gq1,n(r∗) (for n ∈ B2) such that gq1,n(r∗) 6= 1
(n+1)2

and for x ∈ X

f(x, r∗)−
∑

n∈ω\B2

gp0,n(x) · gq1,n(r∗) =
∑
n∈B2

gp0,n(x) · gq1,n(r∗).

This finishes the definition of gq`,n(x) for ` < 2, x ∈ Xq and n < ω. Checking

that (Xq, ḡq0, ḡ
q
1,Dq) ∈ APf is as required is straightforward.

Since ≤–increasing sequences of f–approximations have (natural) upper
bounds we may use 3.3 to prove inductively the following.

Conclusion 3.4. Assume MA(σ-centered). Then for every function f :
R2 −→ R there are functions gn, hn : R −→ R, n < ω, such that

f(x, y) =
∞∑
n=0

gn(x) · hn(y).

Remark 3.5. Regarding the assumptions of 3.4, remember that by Bell [2]
MA(σ-centered) is equivalent to p = c.

Let us finish this section with the following “negative” result.

Proposition 3.6. Let P be the forcing notion for adding ℵ2 Cohen reals.
Then, in VP, there is a function f : R2 −→ R such that there are no
functions gn, hn : R −→ R satisfying

(∀x, y ∈ R)(f(x, y) =
∞∑
n=0

gn(x) · hn(y)).

Proof Since we may break P into two steps each adding ℵ2 Cohen
reals, we may assume that V |= ¬CH. So fix a sequence 〈ηi : i < ℵ2〉 of
pairwise distinct real numbers. Then P may be interpreted as the partial
order of all finite functions p such that dom(p) ⊆ {(ηi, ηj) : i, j < ℵ2} and
rng(p) ⊆ 2 ordered by the inclusion. For a set A ⊆ {(ηi, ηj) : i, j < ℵ2} let
PA = {p ∈ P : dom(p) ⊆ A} (so PA <◦ P).
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Let f
˜

be a P–name for a function from R2 to R such that `P
⋃
{p : p ∈

G
˜
P} ⊆ f

˜
. Suppose that g

˜
n, h

˜
n (for n < ω) are P–names for functions from

R to R.

Claim 3.6.1.

`P “ (∃i < j < ℵ2)(f
˜

(ηi, ηj) 6=
∞∑
n=0

g
˜
n(ηi) · h

˜
n(ηj)) ”.

Proof of the claim: Let q ∈ P. For each i < ℵ2 fix a countable subset
Ai of {(ηξ, ηζ) : ξ, ζ < ℵ2} such that dom(q) ⊆ Ai and for some PAi–names
r
˜
n, s

˜
n (for n < ω) we have `P“ g

˜
n(ηi) = r

˜
n and h

˜
n(ηi) = s

˜
n ”. Let

Bi
def
= {ξ : (∃ζ < ℵ2)((ηξ, ηζ) ∈ Ai or (ηζ , ηξ) ∈ Ai)}

(clearly each Bi is countable). Plainly, for i ∈ S2
1

def
= {δ < ℵ2 : cf(δ) = ℵ1}

we have sup(Bi ∩ i) < i and hence for some j < ℵ2 the set S = {i ∈
S2

1 : sup(Bi ∩ i) = j} is stationary. Choose i0 < i1 from S such that
sup(Bi0) < i1. Let

Y = {(ηξ, ηζ) : {ξ, ζ} ⊆ Bi0 or {ξ, ζ} ⊆ Bi1}.
Note that (ηi0 , ηi1) /∈ Y . Since g

˜
n(ηi0), h

˜
n(ηi1) are (essentially) PY –names

and q ∈ PY , we find a condition p ∈ PY stronger than q and deciding the

statement “
∞∑
n=0

g
˜
n(ηi0) · h

˜
n(ηi1) ≤ 1

2”. Let r ∈ P be a condition stronger

than p such that (ηi0 , ηi1) ∈ dom(r) and

r(ηi0 , ηi1) =

 1 if p `PY “
∞∑
n=0

g
˜
n(ηi0) · h

˜
n(ηi1) ≤ 1

2 ”,

0 otherwise.

Then

r `P f
˜

(ηi0 , ηi1) 6=
∞∑
n=0

g
˜
n(ηi0) · h

˜
n(ηi1),

finishing the proof.

4. Countably continuous functions. Our aim here is to show that,
consistently, CH fails but every f : R −→ R satisfying

(∀U ∈ [R]ℵ1)(∃U∗ ∈ [U ]ℵ1)(f |̀U∗ is continuous)

is countably continuous (see Definition 4.1 below). This answers negatively
[3, Problem 4].

Definition 4.1. A function f : R −→ R is countably continuous if there is
a partition 〈Xn : n < ω〉 of R such that the restriction of f to any Xn is
continuous.
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Theorem 4.2. It is consistent with ¬CH that every function f : R −→ R
such that

(⊕)f (∀U ∈ [R]ℵ1)(∃U∗ ∈ [U ]ℵ1)(f |̀U∗ is continuous)

is countably continuous.

Proof Start with V |= CH and let λ > ℵ1 be a cardinal such that
λℵ0 = λ. Let Pλ be a forcing notion for adding λ many Cohen reals. So Pλ
can be represented as the set of all finite partial functions p : dom(p) −→ 2,
dom(p) ⊆ λ, ordered by the inclusion.

For a set A ⊆ λ let PA = {p ∈ Pλ : dom(p) ⊆ A}. Then PA <◦ Pλ.
Plainly, Pλ is a ccc forcing notion and `Pλ c = λ > ℵ1.

We are going to show that in VPλ , every real function f satisfying (⊕)f
is countably continuous. To this end suppose that f

˜
is a Pλ–name for a

function from R into R such that

`Pλ “ f
˜

is not countably continuous ”.

By induction on α < ω1 choose an increasing continuous sequence 〈Aα :
α < ω1〉 such that for each α < ω1:

(1) Aα ∈ [λ]ℵ1 ;
(2) if η

˜
is a PAα–name for a real then f

˜
(η
˜

) is a PAα+1–name;

(3) if h̄
˜

= 〈h
˜
n : n < ω〉 is a PAα–name for an ω–sequence of partial real

functions such that dom(h
˜
n) is a Borel set and h

˜
n is continuous on

its domain (for n < ω) then each h
˜
n is a PAα+1–name and there is a

PAα+1–name η
˜

for a real such that

`PAα+1
“ (∀n < ω)(f

˜
(η
˜

) 6= h
˜
n(η

˜
)) ”.

(There are no problems with carrying out the construction.) Let A =⋃
α<ω1

Aα, so A ∈ [λ]ℵ1 and `PA CH. It should be clear that, by (2) above,

we have a PA–name f
˜

A such that `Pλ“ f
˜

A = f
˜
|̀R ∩VPA ”. Moreover, by

(3), we know that

`PA “ f
˜

A is not countably continuous ”.

Now, using [3, 3.11], we conclude that (remember that we have CH in VPA)

`PA “ (∃U ∈ [R]ℵ1)(∀U∗ ∈ [U ]ℵ1)(f
˜

A |̀U∗ is not continuous ) ”.

Let G ⊆ PA be a generic filter over V. Work in V[G]. Let U ∈ [R]ℵ1 be
such that f

˜

A[G] |̀U∗ is not continuous for any uncountable U∗ ⊆ U . We

want to show that this property of the function f
˜

A[G] and the set U is
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preserved by the quotient forcing Pλ/PA (which is isomorphic to Pλ\A, of
course). So suppose that p ∈ Pλ/PA is such that

p `Pλ/PA “ (∃U∗ ∈ [U ]ℵ1)(f
˜

A[G] |̀U∗ is continuous) ”.

Every continuous function on a set U∗ ⊆ R can be extended to a continuous
function on a Π0

2–set. Now, both Π0
2–sets and continuous functions on them

are coded by reals. Consequently we find a countable set B ⊆ λ \ A such
that dom(p) ⊆ B and for some PB–names W

˜
, h
˜

we have

p `Pλ/PA “ W
˜

is a Π0
2–subset of R , h

˜
: W

˜
−→ R is continuous and

(∃ℵ1η ∈ U)(η ∈W
˜

& f
˜

A[G](η) = h
˜

(η)) ”.

The property stated above is absolute from VPλ to VPA∪B , so the condition p
forces the respective sentence in PB. Now, the forcing notion PB is countable
so it has the property that every uncountable set of ordinals in the extension
contains an uncountable subset from the ground model. Consequently, we
find (still in V[G]) an uncountable set U0 ⊆ U such that

p `PB “ W
˜

is a Π0
2–subset of R, h

˜
: W

˜
−→ R is continuous and

(∀η ∈ U0)(η ∈W
˜

& f
˜

A[G](η) = h
˜

(η)) ”.

Thus p `PB “f
˜

A[G] |̀U0 is continuous ”, and hence easily this statement has
to hold in V[G] already, a contradiction.
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