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Abstract

We prove a main gap theorem for locally saturated submodels of a homogeneous
structure. We also study the number of locally saturated models, which are not
elementarily embeddable into each other.

Hard experience has indicated that before we speak on this particular paper,
we should say something on classification theory for nonelementary classes and of
the specific context chosen here. Classification theory for first order theories is so
established now that many tend to forget that there are other possibilities. There
are some good reasons to consider these other possibilities: first, it is better to
understand a more general context, we like to classify more; second, concerning
applications many classes arising in ’nature’ are not first order; third, understanding
more general contexts may shed light on the first order one.

Of course, we may suspect that applying to a wider context will leave us with
less content, but only trying will teach us if there are enough interesting things to
discover.
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In any case, ’not first order’ does not define our family of classes of models. We
are in particular interested in generalizing the main gap theorem for ℵε−saturated
models (see more below). Tending to the general case, we may consider replacing
the first order theory by an Lκ+,ω -sentence ψ . Fixing the vocabulary, the notion
of elementary submodel is with respect to this logic (all formulas with finitely many
free variables) or at least with respect to a fragment, a family of formulas of Lκ+,ω of
cardinality ≤ κ closed under subformulas and including ψ . We may even consider
abstract such classes discarding the logic altogether and working with ’algebraic’
properties of the class of models. For such an approach see [Sh4], [Sh5], [Sh9],
Makkai and Shelah [MS], and [Sh8],[Sh15] (both on universal classes), Grossberg and
Hart [GH], Hart and Shelah [HaS], Kolman and Shelah [KS], [Sh12], [Sh13], [Sh14],
Shelah and Villaveces [SV1], [SV2] and Villaveces [Vi]. (See [Sh13] on history and
earlier works.) See also the closely related Grossberg and Shelah [GS1],[GS2], [GS3],
Grossberg [Gr] and Baldwin and Shelah [BS1], [BS2], [BS3]. Naturally much of the
work is on categoricity (as was the early history of the first order case). Anyhow in
those cases even a very weak form of compactness may fail: ’compactness of types’,
see below.

To explain this we have to say first what we mean by ’the elements a and b
realize the same type over the set B in the model A ’. If for simplicity we assume
that for our class of models and our notion of elementary submodel ≺ , there is a
monster model M , then ’the elements a and b realize the same type over the set
B in the model A ’ means that there is an automorphism of M which maps a to b
and is the identity on B . (Without the monster we should say that this occurs in
some extension of A . If we have amalgamation this works nicely.) Now ’failure of
compactness for types’ means that for some model A in our class, elements a and b
(or finite sequences) from A and a subset B of A , the type of the elements a and b
over the set B in the model A is not determined by their restrictions to finite subsets
of B ; i.e. for every finite subset A of B , there is an automorphism of M which is
the identity on A and maps a to b but for A = B there is no such automorphism.
(Another way to point out the difficulty is that for an increasing sequence of sets
or even models (Aα : α < δ), in the appropriate sense, if pα ∈ S(Aα) is increasing
with α , do we have a limit type i.e. does

⋃
α<δ pα exist? This means: is there

p ∈ S(
⋃
α<δ Aα) such that for every α < δ we have p � Aα = pα and is it unique?)

So the assumption that such a failure does not occur is quite reasonable.

Assuming that we have a class of models of ψ ∈ Lλ+,ω with amalgamation
and the joint embedding property and with ’compactness of types’, we can prove
the existence of a monster model M of cardinality κ , which is not saturated, but
is ’κ -homogeneous for sequences’. So our class of models K = KM is the class of
elementary submodels of M of cardinality < κ . Here ’κ -homogeneous for sequences’
means that, if f is a partial map from M to M which preserves the satisfaction
of first order formulas and has cardinality < κ , then it can be extended to an
automorphism of M . This give a situation where we cannot use compactness for
arbitrary sets of formulas, but types, defined as usually, behave ’normally’. Note
that M is determined up to isomorphism by its cardinality κ and its finite diagram:

D(M) = {t(a, ∅) : a a finite sequence from M} .
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Classification theory in this context (i.e. using the family of elementary sub-
models of a κ-homogeneous for sequences monster model M as the class of models
and the usual notion of elementary submodel) was started in [Sh1], (and [Sh2] ,
called there context IV, see page 250, particularly Theorem 1.13) and continued in
[Hy1], [Hy2], [HS1], [HS2] and [GL3]. This is the context chosen here. Note that
some attention was given to some special cases of it: [Sh2] deal mainly with the
following two related cases: In the first M is the universal homogeneous model for
κ under usual embeddings for the class of models of T , a first order theory with
amalgamation and the joint embedding property. Then we can restrict ourselves to
existentially closed models. This is called context II there. The second is the class of
existentially closed models of a first order theory with the joint embedding property,
again under usual embeddings. This is called context III there. Lately Hrushovski
[Hr] has dealt with context II: he shows that for it, some hopeful properties of non
forking fail for simple such classes (on simple first order theories see e.g. [GIL] and
[KP]). See also [Pi].

Another simpler context is when instead stable we generalize ℵ0−stable, such
investigation have been carried by Grossberg and Lessmann [GL1], [GL2], Lessmann
[Le1],[Le2].

By [Sh10], a major result in classification theory is the main gap theorem for the
class of models of a first order countable T . This essentially gives an understanding
of the function counting the number of models of the class in a cardinality up to
isomorphism. Weaker but still very important one is the main gap for the class of
ℵε -saturated models of a first order theory. This is proved in [Sh6], [Sh7], and the
tenth chapter of [Sh10] is dedicated for representing it (or see the tenth chapter of
the book [La] and Part D of Baldwin’s book [Ba] ). Recall that in the first order
case, a model A is called ℵε -saturated if for every finite A ⊆ A and element a ∈M ,
there is an element b ∈ A , which is equivalent with a for every equivalence relations
with finitely many equivalence classes and definable by a first order formula with
parameters form A .

Our aim here is to prove a parallel of this theorem in our context (see [GH]
and [GL1] for other main gap results for nonelementary classes). Note that for this
we have to choose what is the right parallel of ℵε -saturation. Why was the case of
ℵε -saturated models more accessible to analysis? It has enough saturation to make
the existence of primary models work on the one hand, but not too much so that the
class of such models is closed under union of increasing elementary chains. We find
here a similar notion. For making it preserved by the union of increasing chains, it
only says that ’for every finite subset A of A we have B ≺ A such that . . . . In
order to have relevant primary models, we need to have something like the following
property of ℵε -saturated models: Let B be a subset of M , A a finite subset of
B and p ∈ S(B) be such that p � A does not have a forking extension q ∈ S(C)
over a bigger finite subset C of B including A . Now if A is an ℵε -saturated model
including A , then p is realized in A . This motivate our choice.

This work continues in particular [HS1]. Naturally, parallels to ’regular types’,
’decomposition theorems’ etc. play an important part.

Throughout this paper we let M be our monster model. As in [HS1], we assume
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that M is homogeneous and that |M| is strongly inaccessible. This can be done
without loss of generality.

By a , b , etc. we mean finite sequences of elements of M . Subsets of M of
power < |M| are denoted by A , B , etc. and we write A , B , etc. for elementary
submodels of M of power < |M| .

We assume that the reader is familiar with [HS1] and we use its notions and
results freely. Especially, we use the notion of independence defined in [HS1]. It is
similar to non-forking. In fact, if M is saturated, then it is the same as non-forking.

The difference is that in our situation, the independence notion does not have
all the properties of non-forking in the full strength. In [Sh8], a related notion has
been studied. We also assume that the reader knows the basic methods of using the
non-forking calculus.

Let A ⊆ M and p be a type over A . We say that p is M-consistent if it is
realized in M . We say that M is stable if there is λ < |M| such that for all A ⊆M
of power ≤ λ , the number of complete M-consistent types over A is ≤ λ . Here we
have a general rule: Mostly the notions used in this paper are got from their usual
definition from stability theory ([Sh10]) by replacing ’consistent’ by ’M -consistent’
and/or by replacing non-forking by the independence notion from [HS1]. E.g. FM

κ -
saturation is got from F sκ -saturation by this rule (see Definition 0.1 (i)). Like this
one, several of these concepts appeared already in [Sh1] (but with different notation
and in a slightly different context). The main exception to this rule is the notion of
strong type. Instead of the usual strong types we use Lascar strong types. In fact,
we do not talk about strong types over A but equivalence classes in the minimal
equivalence relation Emmin,A (over A and between sequences of length m).

Notice that M may be stable while Th(M) is unstable.

0.1 Definition.

(i) Suppose M is stable. We say that A is s-saturated if it is FM
λ(M) -saturated

i.e. for all A ⊆ A of power < λ(M) and a there is b ∈ A such that t(b, A) = t(a,A) .

(ii) We say that A is locally FM
κ -saturated if for all finite A ⊆ A there is

FM
κ -saturated B such that A ⊆ B ⊆ A . If M is stable, then we say that A is
e -saturated if it is locally FM

λ(M) -saturated.

(iii) Suppose M is stable. We say that A is strongly FM
κ -saturated if for all

A ⊆ A of power < κ and a there is b ∈ A such that b Emmin,A a . By a -saturated

we mean strongly FM
κ(M) -saturated.

0.2 Lemma.

(i) Every FM
κ -saturated model is locally FM

κ -saturated and so (assuming M is
stable) every s-saturated model is e -saturated.

(ii) Suppose M is stable. Then every e -saturated model is strongly FM
ω -

saturated.

(iii) Suppose M is superstable and κ ≥ λ(M) . Then every locally FM
κ -

saturated model is FM
κ -saturated, in particular every e -saturated model is s-satu-

rated.
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Proof. (i) is trivial and (ii) is immediate since by [HS1] Lemma 1.9 (iv), every
FM
λ(M) -saturated model is strongly FM

λ(M) -saturated. So we prove (iii): Assume A
is locally FM

κ -saturated. Notice that by (ii), A is a -saturated. Let A ⊆ A be of
power < κ and a arbitrary. We show that there is b ∈ A such that t(b, A) = t(a,A).
Clearly we may assume that a ∩ A = ∅ .

Choose finite B ⊆ A so that a ↓B A . Since A is locally FM
κ -saturated, we

can find FM
κ -saturated B such that B ⊆ B ⊆ A . Since by [HS1] Lemma 1.9 (iii)

B is strongly FM
κ -saturated, we can find ai ∈ B , i < κ , such that ai E

m
min,B a

and ai ↓B ∪j<iaj . Let I = {ai| i < κ} . For all i < κ(M), choose bi so that
t(bi,A) = t(a,A) and bi ↓A ∪j<ibj . Let J = {bi| i < κ(M)} . By [HS1] Corollaries
3.5 (iv) and 3.11, I ∪ J is indiscernible over B . So

Av(I, A) = Av(J,A) = t(a,A).

Since |A| < κ and κ(M) = ω , we can find C ⊆ B ∪ I of power < κ such that for
all c ∈ A , t(c,B ∪ I) does not split strongly over C . Let b ∈ I (⊆ B ⊆ A) be such
that b ∩ C = ∅ . Then clearly t(b, A) = Av(I,A) = t(a,A).

We prove a main gap theorem for e -saturated submodels of M . To some extend,
the proofs are similar to the related proofs in the case of complete first-order theories.

1. Regular types

In (the end of) the next section, regular types are needed. In this section we
prove the basic properties and the existence of regular types. In this section we
assume that M is stable.

1.1 Definition.
(i) We say that a stationary pair (p,A) is regular if the following holds: if

C ⊇ dom(p) , a |= p and a 6 ↓A C , then (p,A) is orthogonal to t(a,C) .
(ii) Assume A is s-saturated and p ∈ S(A) . We say that p is regular, if there

are A ⊆ B ⊆ A such that p does not split strongly over A , (p � B,A) is a regular
stationary pair and |B| < κ(M) .

1.2 Lemma. Assume A is s-saturated and p ∈ S(A) is regular, not orthog-
onal to t(a,A) and B is s-primary over A ∪ a . Then there is b ∈ B such that
t(b,A) = p .

Proof. Assume not. Let A ⊆ B ⊆ A be as in Definition 1.1 (ii). For all
i < κ(M) choose Ai as follows:

(i) A0 = A ,
(ii) if i is limit, then Ai ⊆ B is s-primary over ∪j<iAj ,
(iii) if i = j + 1 and there is bj ∈ B such that t(bj , B) = p � B and a 6 ↓Aj bj ,

then Ai ⊆ B is s-primary over Aj∪bj , if such bj does not exist then we let Ai = Aj .
Clearly there is i < κ(M) such that Ai = Ai+1 . Let i∗ be the least such ordinal.
Then

(*) t(a,Ai∗) is orthogonal to p .
Let A∗ be s-primary over Ai∗ ∪ a .

5

Paper Sh:676, version 2000-04-13 10. See https://shelah.logic.at/papers/676/ for possible updates.



Claim. Assume b |= p . Then p ` t(b,A∗).
Proof. Since p is not realized in B , for all i < i∗ , bi 6 ↓A Ai and so, since p

is regular, for all i < i∗ , p is orthogonal to t(bi,Aj). By induction on i ≤ i∗ it is
easy to see that p ` t(b,Ai). And so by (*) above, p ` t(b,A∗). Claim.

By Claim, p is orthogonal to t(a,A), a contradiction.

1.3 Corollary. Assume Ai , i < 3 , are s-saturated, pi ∈ S(Ai) and p1 is
regular. If p0 is not orthogonal to p1 and p1 is not orthogonal to p2 , then p0 is not
orthogonal to p2 .

Proof. Immediate by Lemma 1.2 and [HS1] Lemma 5.4 (iii).

1.4 Lemma. Assume that A is s -saturated, a 6 ↓A b and t(b,A) is regular.
Then a .A b .

Proof. Let λ = (λ(M))+ . Clearly we may assume that A is FM
λ -saturated.

For a contradiction, assume that there is c such that c ↓A a and c 6 ↓A b . Choose
A ⊆ B ⊆ B ⊆ A such that

(i) (t(b, B), A) is a regular stationary pair and b ↓A A ,
(ii) |B| < κ(M) and |B| = λ(M),
(iii) B is s -saturated and a ∪ b ∪ c ↓B A .

Then b 6 ↓B a , b 6 ↓B c ([HS1] Lemma 3.8 (iv)) and a ↓B c . Let A∗ be FM
λ -primary

over A ∪ a and C ⊆ A∗ s -primary over B ∪ a . Without loss of generality we may
assume that b ∪ c ↓C A .

For all i < κ(M), choose bi ∈ A∗ such that t(bi, C∪
⋃
j<i bj) = t(b, C∪

⋃
j<i bj).

Let I = {bi| i < κ(M)} . Then I ∪ {b} is indiscernible over C . Since b 6 ↓B C , it is
easy to see that I ∪ {b} is not B -independent. So we can choose finite J ⊆ I such
that

(*) J ∪ {b} is not B -independent.
If J is chosen so that |J | is minimal, then J is B -independent.

Let D be s-primary over B ∪ c . By (iii) and the choice of c , c ↓B A∗ . Then
J ↓B D and so J is D -independent. Since p is regular and b 6 ↓B D , J ↓D b and so
J ↓B b . Clearly this contradicts (*) above.

Assume A is s -saturated and a 6∈ A . We write Dp(a,A) > 0 if there is
s-primary model B over A ∪ a and b 6∈ B such that t(b,B) is orthogonal to A .

1.5 Lemma. Assume that M is superstable without (λ(M))+ -dop. Let
A be s-saturated, I be A-independent and a 6 ↓A I . If t(a,A) is regular and
Dp(a,A) > 0 , then there is b ∈ I such that a 6 ↓A b . And so by Lemma 1.4,
a ↓A ∪(I − {b}) .

Proof. Assume not. Clearly we may assume that |A| = λ(M). Choose ai , Ai
and Ci , i < α∗ , so that

(i) a ↓A ai ,
(ii) Ai is s-primary over A ∪ ai ,
(iii) {ai| i < α∗} is A-independent,
(iv) C0 = A0 and Ci+1 is s-primary over Ci ∪ Ai+1 ,
(v) a 6 ↓Ci Ai+1 ,
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(vi) (ai)i<α∗ is a maximal sequence satisfying (i)-(v) above and α∗ > 1.
Since M is superstable, α∗ < ω . Let n be such that α∗ = n+ 1. Let λ = (λ(M))+

and B be FM
λ -saturated model such that A ⊆ B and B ↓A Cn . Let Bi be FM

λ -
primary over B ∪ Ai and D FM

λ -primary over ∪i≤nBi . It is easy to see that Cn is
s-primary over ∪i≤nAi and so we may choose D so that Cn ⊆ D . Choose a′ ∈ D
so that t(a′, Cn) = t(a, Cn). Let A′ be s-primary over A ∪ a′ .

Claim 1. A′ ↓A B .
Proof. Immediate by Lemma 1.4. Claim 1.
Claim 2. For all i ≤ n , A′ ↓A Bi .
Proof. Clearly it is enough to show that a′ ↓A B∪Ai . Let I = {j ≤ n| j 6= i} .

By Claim 1 and (vi) above,
(*) a′ ↓Cn B .

By the choice of B , ∪j∈IAj ↓Ai B and so Cn ↓Ai B . With (*) above, this implies
that a′ ↓Ai B . Since a′ ↓A Ai , a′ ↓A B ∪ Ai . Claim 2.

Since Dp(a,A) > 0, there is b 6∈ A′ such that t(b,A′) is orthogonal to A and
b ↓A′ D . By Claim 2 and [HS1] Corollary 4.8, t(b,D) is orthogonal to Bi for all
i ≤ n . This contradicts the following claim:

Claim 3. (M is superstable without λ -dop.) Assume B , Bi , i ≤ n < ω , and
D are FM

λ -saturated, for all i ≤ n , B ⊆ Bi , (Bi)i≤n is B -independent and D is
FM
λ -primary over ∪i≤nBi . If b 6∈ D , then there is i ≤ n such that t(b,D) is not

orthogonal to Bi .
Proof. We prove this by induction on n . The case n = 0 is trivial and the

case n = 1 follows immediately from λ -ndop. So assume n > 1.
Let B′ be FM

λ -primary over ∪i<nBi and D′ be FM
λ -primary over B′ ∪ Bn .

By [HS1] Lemma 5.4 (ii), B′ ∪ Bn is FM
λ -constructible over ∪i≤nBi and so D′ is

FM
λ -primary over ∪i≤nBi . By the uniqueness of FM

λ -primary sets, we can choose
B′ and D′ so that D′ = D . Clearly we may assume that t(b,D) is orthogonal to
Bn .

By [HS1] Lemma 5.11, choose b′ 6∈ D so that t(b′,D) is a c -type ([HS1] Defi-
nition 5.10) and b .D b

′ . Since t(b,D) is orthogonal to Bn , so is t(b′,D). Then by
λ -ndop, t(b′,D) is not orthogonal to B′ . Since t(b′,D) is a c -type, there is b′′ 6∈ D
such that b′′ ↓B′ D and b′ .D b

′′ . By the induction assumption, there is i < n , such
that t(b′′,B′) is not orthogonal to Bi . Then t(b′′,D) is not orthogonal to Bi and
because b .D b

′′ , also t(b,D) is not orthogonal to Bi . Claim 3.

1.6 Lemma. Assume that M is superstable, A ⊆ B are s-saturated and
A 6= B . Then there is a singleton a ∈ B −A such that t(a,A) is regular.

Proof. As in the case of superstable theories (see e.g. [Ba] XII Exercise 2.4).

2. Superstable with ndop

Throughout this section we assume that M is superstable and does not have
λ(M)-dop. If P is a tree and t ∈ P is not the root, then by t− we mean the
immediate predecessor of t .
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2.1 Definition.
(i) We say that (P, f, g) = ((P,<), f, g) is an s-free tree of the (s-saturated)

model A if the following holds:
(1) (P,<) is a tree without branches of length > ω , f : (P − {r}) → A and

g : P → P (A) , where r ∈ P is the root of P and P (A) is the power set of A ,
(2) g(r) is an s -primary model (over ∅ i.e. saturated model of power λ(M)),
(3) if t is not the root and u− = t then t(f(u), g(t)) is orthogonal to g(t−) ,
(4) if t = u− then g(u) is s-primary over g(t) ∪ f(u) ,
(5) Assume T, V ⊆ P and u ∈ P are such that
(a) for all t ∈ T , t is comparable with u ,
(b) T is downwards closed.
(c) if v ∈ V then for all t such that v ≥ t > u , t 6∈ T .

Then ⋃
t∈T

g(t) ↓g(u)
⋃
v∈V

g(v).

(ii) We say that (P, f, g) is an s-decomposition of A if it is a maximal s -free
tree of A .

(iii) We say that (P, f, g) is an s-free tree, if it is an s -free tree of some A .

Notice that by Lemma 0.2 (iii) it is easy to see, that every e -saturated model
has an s-decomposition.

2.2 Theorem. (M superstable without λ(M)-dop) Assume A is e -saturated
and (P, f, g) is an s -decomposition of A . If B ⊆ A is s -primary over ∪t∈P g(t) ,
then B = A .

Proof. Immediate by Lemma 0.2 (iii) and [HS1] Theorem 5.13.

2.3 Corollary. Suppose A and B are e -saturated. If (P, f, g) is a decompo-
sition of both A and B , then A and B are isomorphic over ∪t∈P g(t) .

Proof. By Theorem 2.2, A is s-primary over ∪t∈P g(t). By [HS1] Theorem
5.3 (ii), there is an embedding f : A → B such that f � ∪t∈P g(t) = id∪t∈P g(t) . By
Theorem 2.2, rng(f) = B .

We say that an s-free tree (P, f, g) is regular if the following holds: if t, u ∈ P
are such that u is an immediate successor of t , then t(f(u), g(t)) is regular. We say
that (P, f, g) is a regular s-decomposition of e -saturated A , if it an s-decomposition
of A and a regular s-free tree.

2.4 Lemma. Every e -saturated model A has a regular s -decomposition.

Proof. For this, it is enough to show that every maximal regular s-free tree of
A is a maximal s -free tree of A . But this follows immediately from Lemma 1.6.

2.5 Definition.
(i) We say that M is shallow if every branch in every regular s -free tree is finite.

If M is not shallow, then we say that M is deep.
(ii) If P = (P,<) is a tree without infinite branches, then by Dp(P ) we mean

the depth of P .
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(iii) Assume that M is shallow. We define the depth of M to be

sup{Dp(P ) + 1| (P, f, g) is a regular s-free tree}.

2.6 Lemma. Assume that M is shallow. Then the depth of M is < λ(M)+ .

Proof. Choose a minimal regular s-free tree (P, f, g) so that the following
holds: for all t ∈ P and p ∈ S(g(t)), if (*) below holds, then there is an immediate
successor u ∈ P of t such that t(f(u), g(t)) = p .

(*) p is regular and if t has an immediate predecessor t− , then p is orthogonal
to g(t−).
Clearly Dp(P ) < λ(M)+ .

Claim. If (P ′, f ′, g′) is a regular s-free tree, then there is an order-preserving
function h : P ′ → P .

Proof. By induction on height(t), t ∈ P ′ , we define h(t) so that
(i) if u is an immediate predecessor of t , then h(u) is an immediate predecessor

of h(t),
(ii) there is an elementary function ht : g′(t)→ g(h(t)) such that if u is an im-

mediate predecessor of t , then ht(g
′(u)) ⊆ g(h(u)) and ht(g

′(t)) ↓ht(g′(u)) g(h(u)).
If height(t) = 0, then we let h(t) be the root of P . Then ht exists because

g′(t) and g(h(t)) are FM
λ(M) -saturated models of power λ(M) and thus isomorphic.

Assume then, that height(t) > 0. Let u be the immediate predecessor of t and let hu
be the function given by the induction assumption. Then there is h(t) ∈ P such that
it is an immediate successor of h(u), t(f(h(t)), hu(g′(u))) = hu(t(f ′(t), g′(u))) and
f(h(t)) ↓hu(g′(u)) g(h(u)). This is because the free extension of hu(t(f ′(t), g′(u)))
is clearly regular and if u− is an immediate predecessor of u , then by (ii) of the
induction assumption and [HS1] Corollary 4.8 the free extension of hu(t(f ′(t), g′(u)))
is orthogonal to g(h(u−)). We need to define ht .

Since g′(t) is s-primary over g(u) ∪ f(t), it is s-primitive over g(u) ∪ f(t). So
there is ht such that ht � g′(u) = hu (and so ht(g

′(u)) ⊆ g(h(u))), ht(f
′(t)) =

f(h(t)) and ht(g
′(t)) ⊆ g(h(t)). By the choice of h(t) and [HS1] Lemma 5.4 (i),

ht(g
′(t)) ↓ht(g′(u)) g(h(u)). Claim.
By Claim, if (P ′, f ′, g′) is a regular s -free tree, then Dp(P ′) ≤ Dp(P ) <

λ(M)+ .
By |L| we mean the number of L -formulas modulo the equivalence relation

|= ∀x(φ(x)↔ ψ(x)).

2.7 Theorem. Assume that M is shallow. Then the depth of M is <
(|S(∅)|ω)+ and so it is < (2|L|)+ .

Proof. By Lemma 2.6, we may assume that λ(M) > ω . Choose a minimal
regular s -free tree (P, f, g) so that if t ∈ P and p ∈ S(g(t)) is regular such that
if t has an immediate predecessor t− , then p is orthogonal to g(t−), then there is
an immediate successor u ∈ P of t and an automorphism h of g(t) such that such
that t(f(u), g(t)) = h(p).

Claim 1. Dp(P ) < (|S(∅)|ω)+ .
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Proof. Clearly it is enough to show that for all t ∈ P the number of immediate
successors of t is at most |S(∅)|ω . As in the proof of Lemma 0.2, for all p ∈ S(g(t)),
there is a countable indiscernible I ⊆ g(t) such that Av(I, g(t)) = p . Also if
t(I, ∅) = t(I ′, ∅), then there is an automorphism h of g(t) such that h(I) = I ′

(remember that g(t) is an FM
|g(t)| -saturated model of power λ(M) > ω ). So the

number of immediate successors of t is at most

|{t(I, ∅)| I ⊆ g(t) countable indiscernible}|.

Clearly this is at most |S(∅)|ω . Claim 1.
Claim 2. If (P ′, f ′, g′) is a regular s-free tree, then there is an order-preserving

function h : P ′ → P .
Proof. By induction on height(t), t ∈ P ′ , we define h(t) so that
(i) if u is an immediate predecessor of t , then h(u) is an immediate predecessor

of h(t),
(ii) there is an elementary function ht : g′(t)→ g(h(t)) such that if u is an im-

mediate predecessor of t , then ht(g
′(u)) ⊆ g(h(u)) and ht(g

′(t)) ↓ht(g′(u)) g(h(u)).
The case height(t) = 0 is as in the proof of Lemma 2.6. So assume that

height(t) > 0. Let u be the immediate predecessor of t and hu the isomorphism
given by the induction assumption. As in the proof of Lemma 2.6, we can find
h(t) ∈ P and and an automorphism h∗ of g(h(u)) such that h(t) is an immedi-
ate successor of h(u), t(f(h(t)), (h∗ ◦ hu)(g′(u))) = (h∗ ◦ hu)(t(f ′(t), g′(u))) and
f(h(t)) ↓(h∗◦hu)(g′(u)) g(h(u)). Now we can proceed as in the proof of Lemma 2.6
(h∗ ◦ hu in place of hu ). Claim 2.

As in the proof of Lemma 2.6, Claim 1 and 2 imply that the depth of M is
< (|S(∅)|ω)+ .

2.8 Theorem. Assume that M is shallow and γ∗ is the depth of M . Then
the number of non-isomorphic e -saturated models of power ℵα is at most iγ∗(|α|+
λ(M)) .

Proof. By Corollary 2.3, it is enough to count the number of ’non-isomorphic’
regular s-free trees (P, f, g) of power ℵα . This is an easy induction on Dp(P ), see
the related results in [Sh10].

2.9 Theorem. Assume that M is shallow and γ∗ is the depth of M . Let
κ = iγ∗(λ(M))+ . If Ai , i < κ , are e -saturated models, then there are i < j < κ
such that Ai is elementarily embeddable into Aj .

Proof. By Corollary 2.3, this question can be reduced to the question of ’em-
beddability’ of labelled trees. So this follows immediately from [Sh10] X Theorem
5.16C.

A cardinal κ is called beautiful if κ = ω or for all ξ < κ , κ w→ (ω)<ωξ , see [Sh3]
Definition 2.3.

2.10 Theorem. (M is superstable without λ(M) -dop but not necessarily
shallow.) Assume that there is a beautiful cardinal > λ(M) . Let κ∗ be the least
such cardinal. If Ai , i < κ∗ , are e -saturated models, then there are i < j < κ∗

such that Ai is elementarily embeddable into Aj .
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Proof. Again by Corollary 2.3, this follows immediately from [Sh3] Theorems
5.8 and 2.10.

If (P,<) is a tree without branches of length ≥ ω and t ∈ P , then by Dp(t, P )
we mean the depth of t in P .

2.11 Theorem. Assume that M is superstable, deep, does not have λ(M)-
dop and (λ(M))+ -dop and λ > λ(M) . Then there are s-saturated (and so e -
saturated) models Ai , i < 2λ , of power λ such that for all i < j < 2λ , Ai 6∼= Aj .

Remark. In the next section we show that M has many e -saturated models
if M is superstable and has λ(M)-dop. Similarly we can show that M has many
e -saturated models if M is superstable and has (λ(M))+ -dop.

Proof. Assume Xi ⊆ λ , i < 2, are such that X0 6= X1 and |Xi| = λ . Choose
regular s-free trees (Pi, fi, gi), i < 2, so that

(i) Pi does not have branches of length ≥ ω but for all t ∈ Pi , if t is not the
root, then Dp(f(t), g(t−)) > 0 (see just before Lemma 1.5),

(ii) for all α ∈ Xi , there are λ many t ∈ Pi such that the height of t is one
and Dp(t, Pi) = α and if Dp(t, Pi) = β and the height of t is one, then β ∈ Xi ,

(iii) for all t ∈ Pi , if Dp(t, Pi) = α and β < α , then |{u ∈ Pi| u− =
t and Dp(u, Pi) ≥ β}| = λ ,

(iv) if t, u ∈ Pi are not the root and t− = u− , then

t(fi(t), gi(t
−)) = t(fi(u), gi(u

−)),

we write pt− for this type.
Let ri be the root of Pi , Choose finite Ai ⊆ Bi ⊆ gi(ri) so that pri does not split
strongly over Ai and (pri � Bi, Ai) is a regular stationary pair. Then we require
also

(v) B0 = B1 (=B ), A0 = A1 (=A) and pr0 � B = pr1 � B .
Let Ai , i < 2, be s-primary over ∪t∈Pigi(t). We show that there is no isomor-

phism F : A0 → A1 such that F � B = idB . Clearly this is enough (since λ<ω < 2λ ,
’naming’ finite number of elements does not change the number of models and since
M is λ -stable, |Ai| = λ). For a contradiction we assume that F exists. Clearly we
may assume that F = idA0 , this simplifies the notation.

We let P ∗i be the set of those t ∈ Pi , which are not leaves. For all t ∈ P ∗0 , we
let G(t) ∈ P ∗1 be (some node) such that pt is not orthogonal to pG(t) (if exists).

Claim. G is an one-to-one function from P ∗0 onto P ∗1 .
Proof. Since for all t ∈ P ∗0 , |{u ∈ P0| u− = t}| = λ > λ(M), the existence of

G(t) follows easily. Since for all u, u′ ∈ P ∗1 , u 6= u′ , pu is orthogonal to pu′ , G(t)
is unique by Corollary 1.3. But then by symmetry, claim follows. Claim.

We prove a contradiction (with (i) above) by constructing a strictly increasing
sequence (tj)j<ω of elements of P ∗0 . We construct also a strictly increasing sequence
(uj)j<ω of elements of P1 , sets Iij , i < 2, and models Bj so that

(1) Dp(uj , P1) < Dp(tj , P0) and for all t ≥ tj , G(t) ≥ uj ,
(2) Iij ⊆ Pi is downwards closed, non-empty and of power ≤ λ(M) and Iij ⊆

Iij+1 ,
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(3) tj ∈ I0j+1 and G(tj) ∈ I1j+1 ,
(4) Bj is s-primary over ∪t∈I0

j
g0(t) and over ∪u∈I1

j
g1(u) and Bj ⊆ Bj+1 .

We do this by induction on j < ω .
j = 0: Choose I00 , I10 and B0 so that (2) and (4) above are satisfied (if B′ ⊆ B0

is s-primary over ∪t∈Ig(t), I ⊆ P0 , then by Theorem 2.2 and [HS1] Lemma 5.4
(ii), B0 is s-primary over B′ ∪

⋃
t∈P0

g(t)). Let t0 ∈ P0 be such that t0 6∈ I00 and
(t0)− = r0 . Then

(∗) f0(t0) ↓A B0.

By Lemma 1.5, there is u0 ∈ P1 − I11 such that f1(u0) 6 ↓B0
f0(t0) and (u0)− ∈ I10 .

By Lemma 1.4,
f0(t0) ↓B0

∪{g1(u)| u 6≥ u0}.

So u0 is unique and the latter half of (1) holds. By (*), (u0)− = r1 and so since
X0 6= X1 we can choose t0 so that Dp(u0, P1) 6= Dp(t0, P0). By symmetry, we may
assume that Dp(u0, P1) < Dp(t0, P0). Finally, this implies that t0 ∈ P ∗0 .

j = k + 1: Essentially, just repeat the argument above.

3. Superstable with dop or unstable

We start by making changes to a result from [Hy2]. Our conclusion is weaker
but so are the cardinal assumptions.

3.1 Theorem. Assume M is superstable with λ(M)-dop, κ > (λr(M))+ is

regular and ξ > (κ+)(λr(M)+) . Then there are FM
κ -saturated (and so e -saturated)

models Ai , i < 2ξ , of power ξ such that for all i 6= j , Ai is not isomorphic to Aj .

Proof. Let λ = (λr(M))+ . We write p ∈ FM
λ (A) if p � A FM

λ -isolates p . By
[HS1] Corollary 6.5, M has λ -sdop (see [HS1]) and so by [Hy] Corollary 2.3, there
are FM

λ -saturated models Ai of cardinality λ , i < 3, and an indiscernible sequence
I over A1 ∪A2 of power κ+ such that

(i) A0 ⊆ A1 ∩A2 , A1 ↓A0 A2 ,
(ii) there is D ⊆ A1 ∪ A2 of power < λ with the following property: if Ci ,

i < 3, are such that C0 ↓A0
A1 ∪ A2 and for i ∈ {1, 2} and all ci ∈ Ci , there is

Di ⊆ Ai ∪ C0 of power < λ such that t(ci, A1 ∪A2 ∪ C0 ∪ C3−i) ∈ FM
λ (Di), then

t(I, A1 ∪A2 ∪ C0 ∪ C1 ∪ C2) ∈ FM
λ (D).

Let η be a linear ordering. We define an FM
κ -saturated model Aη as follows. For

all i ∈ η we choose Bi and Ci so that t(Bi, A0) = t(A1, A0), t(Ci, A0) = t(A2, A0)
and {Bi| i ∈ η} ∪ {Ci| i ∈ η} is independent over A0 . For all i, j ∈ η we choose Iij
so that t(Iij ∪ Bi ∪ Cj , A0) = t(I ∪ A1 ∪ A2, A0). Then we let Aη be FM

κ -primary
over

⋃
{Bi| i ∈ η} ∪

⋃
{Ci| i ∈ η} ∪

⋃
{Iij | (i, j) ∈ η2, i < j} .

We let ψ(x, y), x = x1 _ x2, y = y1 _ y2 , length(x1) = length(x2) =
length(y1) = length(y2) = λ , be a formula (in some language), which says that
there is J such that t(J ∪ x1 ∪ y2, ∅) = t(I ∪A1 ∪A2, ∅). Then by [Hy] Lemma 2.5,
for all i, j ∈ η , i < j iff Aη |= ψ(Bi ∪ Ci, Bj ∪ Cj).
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Let τ be a similarity type and χ a cardinal. We say that ψ is a PC(Lχ,ω(τ))-
formula if ψ is of the form (∃fi)i<αφ , where α < χ , fi are new function symbols
and φ is a Lχ,ω -formula of similarity type τ ∪ {fi| i < α} . In Lχ,ω -formulas any
number of free variables may appear. We write PC(Lχ,ω) for PC(Lχ,ω(τ)) if τ is
the similarity type of M .

Claim.

(i) There is a PC(Lκ+,ω)-sentence ψ0 such that for all models C of power
< |M| , C |= ψ0 iff C is (isomorphic to) an FM

κ -saturated elementary submodel of
M .

(ii) There is a PC(Lκ++,ω)-formula ψ1(x, y) such that for all linear orderings
η and i, j ∈ η , Aη |= ψ1(Bi ∪ Ci, Bj ∪ Cj) iff i < j .

(iii) There is a PC(Lκ+,ω)-formula ψ2(x, y) such that for all linear orderings η
and i, j ∈ η , Aη |= ψ2(Bi ∪ Ci, Bj ∪ Cj) iff i ≥ j .

(iv) {ψ0, ψ1(c, d), ψ2(c, d)} is inconsistent, where c and d are sequences of new
constant symbols.

Proof. (i): To say that C is an elementary submodel of M , it is enough to say
that for all n < ω , C does not realize n -types over ∅ , which are not realized in M .
This can be expressed by an Lκ+,ω -sentence. To say that C is FM

κ -saturated, by
Lemma 0.2 (iii), it is enough to say that C is locally FM

κ -saturated. This can be
expressed by a PC(Lκ+,ω)-sentence.

(ii): Clearly ψ is equivalent to a PC(Lκ++,ω)-formula.

(iii): Let {ak| k < κ+} be an enumeration of I and D ⊇ I ∪ A1 ∪ A2 be an
s-saturated model. By [HS1] Lemma 4.3, there are finite D ⊆ E ⊆ D such that
(Av(I, E), D) is a stationary pair and Av(I,D) does not split strongly over D . Let
{ek| k < n} be an enumeration of E so that for some n′ ≤ n , D = {ek| k < n′} .
Now assume that J ⊆ D is such that t(J,A1 ∪ A2) = t((ai| i < κ), A1 ∪ A2),
Av(J,E) = Av(I, E) and Av(J,D) does not split strongly over D . Then

(*) J is not maximal in D over A1 ∪ A2 , i.e. there is b ∈ D − J such that
J ∪ {b} is indiscernible over A1 ∪ A2 .

For this, let D∗ = J ∪ A1 ∪ A2 ∪ {ai| i < κ} ∪ E . By the pigeonhole principle,
there is j < κ+ such that t(aj , D

∗) = Av(I,D∗). Then b = aj is as wanted:
For this it is enough to show that Av(I,D∗) = Av(J,D∗). By [HS1] Lemma 2.4
(ii), it is enough to find K such that |K| = κ(M) and both I ∪ K and J ∪ K
are indiscernible. For this choose ck , k < κ(M) so that t(ck, E) = Av(I, E) and
ck ↓D I ∪ J ∪E ∪ {cp| p < k} . By the choise of E and D and [HS1] Lemma 2.4 (i),
K = {ci| i < κ(M)} is as wanted.

By (*), the following formula is as wanted: There are functions fk , k < κ ,
such that for all bp , p < n , if t({bk| k < n} ∪Bi ∪ Cj , ∅) = t(E ∪ A1 ∪ A2, ∅), then
J = {fp(b0, ..., bn−1)| p < κ} is such that t(J∪Bi∪Cj , ∅) = t((ak| k < κ)∪A1∪A2, ∅),
it is a maximal in Aη over Bi∪Cj , Av(J, {bk| k ≤ n}) is a conjugate of Av(I, E) and
Av(J,Aη) does not split strongly over {bk| k < n′} . Notice that the last requirement
depends on t({fp(b0, ..., bn−1)| p < κ(M)} ∪ {bk| k < n}, ∅) only.

(iv): Immediate by (*). Claim.

By Claim, the theorem follows from [Sh11] Chapter III Theorem 3.23 (2).
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3.2 Remark. To strengthen the conclusion of Theorem 3.1 to ’Ai is not
elementaryly embeddable to Aj ’, we need the parallel of [Sh11] Chapter IV Theorem
3.1 for trees of height κ+ 1 dealing with sequences of length < κ (instead of height
ω + 1 and finite sequences). For humane reasons this has not been done in [Sh11].

3.3 Lemma. Assume that M is unstable. Let κ > |L| be a regular cardinal,
and η = (η,<) be a linear ordering. Then there are sequences ai , i ∈ η , a model
A and functions fi : Mni → M , i < 2<κ , such that ni < ω and if we write
L∗ = L ∪ {fi| i < 2<κ} then the following holds:

(i) (ai)i∈η is order-indiscernible inside A in the language L∗ ,

(ii) for all X ⊆ η , the closure AX of {ai| i ∈ X} under the functions of L∗ is
a locally FM

κ -saturated model (in the language L) and A = Aη ,

(iii) there is an L-formula φ(x, y) such that for all i, j ∈ η , |= φ(ai, aj) iff
i < j .

Proof. Define functions f ′i : Mni →M , i < 2<κ , so that

(*) the closure of any set under the functions fi is locally FM
κ -saturated (in L)

and L′ -elementary submodel of (M, f ′i)i<2<κ , where L′ = L ∪ {f ′i | i < 2<κ} .

By Erdös-Rado Theorem and [Sh1] I Lemma 2.10 (1), we can find sequences
(aki )i<k , k < ω , such that

(1) there is a formula φ(x, y) such that for all k < ω and i, j < k , |= φ(aki , a
k
j )

iff i < j ,

(2) (aki )i<k is order-indiscernible in the language L′ ,

(3) the L′ -type of (aki )i<k (over ∅) is the same as the L′ -type of (ak+1
i )i<k .

Since M is homogeneous, we can find for all i ∈ η , ai so that for all k < ω ,
if i0 < i1 < ... < ik−1 , then t((aij )j<k, ∅) = t((akj )j<k, ∅). Again, since M is
homogeneous (use e.g. [HS1] Lemma 1.1) we can define the functions fi so that for
all i0 < i1 < ... < ik−1 the following holds:

(**) If A1 is the closure of (aij )j<k under the functions fi and A2 is the closure
of (akj )j<k under the functions f ′i , then there is an L-isomorphism F : A1 → A2 ,

such that F (aij ) = akj and for all a, b ∈ A1 and i < 2<κ , fi(a) = b iff f ′i(F (a)) =
F (b).

Let A = Aη , i.e. the closure of {ai| i ∈ η} under the functions of L∗ . Then it is
easy to see that (iii) in the claim is satisfied.

(ii): Assume X ⊆ η . We show that AX is locally FM
κ -saturated. For this let

A ⊆ AX be finite. Then there is X ′ ⊆ X finite, such that A ⊆ AX′ . By (**) above,
AX′ is locally FM

κ -saturated. So there is FM
κ -saturated B such that A ⊆ B ⊆ AX .

(i): By (*) and (**) above it is easy to see that for all finite X ⊆ η , AX is an
L∗ -elementary submodel of A . By (2), (*) and (**) again, (i) follows.

3.4 Theorem. Assume M is unstable. Let λ and κ be regular cardinals,
λ > 2<κ and κ > |L| . Then there are locally FM

κ -saturated models Ai , i < 2λ ,
such that |Ai| = λ and if i 6= j , then Ai is not elementarily embeddable into Aj .

Proof. By Lemma 3.3 this follows from [Sh11] Chapter VI Theorem 3.1 (3).
Notice that the trees can be coded into linear orderings.
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4. Strictly stable

Through out this section we assume that M is stable but unsuperstable, and
that κ = cf(κ) > λr(M).

We write κ≤ω for {η : α→ κ| α ≤ ω} , κ<ω and κω = κ=ω are defined similarly
(of course these have also the other meaning, but it will be clear from the context,
which one we mean). Let J ⊆ 2≤κ . We order Pω(J) (=the set of all finite subsets
of J ) by defining u ≤ v if for every η ∈ u there is ξ ∈ v such that η is an initial
segment of ξ .

Since M is unsuperstable, by [HS1] Lemma 5.1, there are a and FM
λr(M) -satu-

rated models Ai , i < ω , of power λr(M) such that

(i) if j < i < ω , then Aj ⊆ Ai ,
(ii) for all i < ω , a 6 ↓Ai Ai+1 .

Let Aω be an FM
λr(M) -primary model over a ∪

⋃
i<ω Ai . Then for all η ∈ κ≤ω , we

can find Aη such that

(a) for all η ∈ κ≤ω , there is an automorphism fη of M such that fη(Alength(η))
= Aη ,

(b) if η is an initial segment of ξ , then fξ � Alength(η) = fη � Alength(η) ,

(c) if η ∈ κ<ω , α ∈ κ and X is the set of those ξ ∈ κ≤ω such that η _ (α) is
an initial segment of ξ , then

∪ξ∈XAξ ↓Aη ∪ξ∈(κ≤ω−X)Aξ.

For all η ∈ κω , we let aη = fη(a).

For each α < κ of cofinality ω , let ηα ∈ κω be a strictly increasing sequence
such that ∪i<ωηα(i) = α . Let S ⊆ {α < κ| cf(α) = ω} . By JS we mean the set

κ<ω ∪ {ηα| α ∈ S}.

Let IS = Pω(JS).

4.1 Lemma. For all S ⊆ {α < κ| cf(α) = ω} , there are sets Au , u ∈ IS ,
such that

(i) for all u, v ∈ IS , u ≤ v implies Au ⊆ Av ,

(ii) for all u ∈ IS , Au is FM
λr(M) -primary over ∪η∈uAη ,

(iii) if α ∈ κ− S , u ∈ IS and v ∈ Pω(JS ∩ α≤ω) is maximal such that v ≤ u ,
then

Au ↓Av ∪w∈Pω(JS∩α≤ω)Aw.

Proof. See [HS2] Lemmas 4 and 7.

For all S ⊆ {α < κ| cf(α) = ω} , let AS = ∪u∈ISAu . By Lemma 4.1 (i) and
(ii), AS is e -saturated and |AS | = κ .

4.2 Lemma. There are sets Si ⊆ {α < κ| cf(α) = ω} , i < 2κ , such that if
i 6= j , then Si − Sj is stationary.
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Proof. Let fi;κ → κ , i < 2, be one to one functions such that rng(f0) ∩
rng(f1) = ∅ . Let R′i , i < 2κ , be an enumeration of the power set of κ . We define
Ri , i < 2κ , so that f0(α) ∈ Ri iff α ∈ R′i and f1(α) ∈ Ri iff α 6∈ R′i . Then
clearly, i 6= j implies Ri −Rj 6= ∅ . By [Sh10] Appendix Theorem 1.3 (2), there are
pairwise disjoint stationary sets S′j ⊆ {α < κ| cf(α) = ω} , j < κ . For i < 2κ , we
let Si = ∪j∈RiS′j . Clearly these are as wanted.

4.3 Theorem. Assume M is stable and unsuperstable and κ = cf(κ) >
λr(M) . Then there are e -saturated models Ai , i < 2κ , of power κ such that if
i 6= j , then Ai is not elementarily embeddable into Aj .

Proof. For all i < 2κ , let Ai = ASi , where the sets Si are as in Lemma 4.2.
Assume i 6= j . We show that there are no elementary map F : Ai → Aj .

For a contradiction, assume that F exists. For all α < κ , let IαSi be the set
of those u ∈ ISi such that for all η ∈ u , sup{η(i)| i < length(η)} < α . Let
Aαi = ∪u∈Iα

Si
Au . IαSj and Aαj are defined similarly. We say that α is closed if for

all a ∈ Ai , a ∈ Aαi iff F (a) ∈ Aαj . Let C be the set of all closed ordinals and Clim
the set of all limit points in C . Then S0 = Clim ∩ (Si − Sj) is stationary.

For all α ∈ S0 , let uα ∈ ISj be such that F (aηα) ∈ Auα . By g(α) we mean the
least β ∈ C such that uα ↓Aβ

j
Aαj . By Lemma 4.1 (iii) and the fact that S0∩Sj = ∅ ,

g(α) < α . So there is stationary S1 ⊆ S0 such that g � S1 is constant. Let α∗ be
this constant value.

Then there is S2 ⊆ S1 and n < ω such that |S2| = κ and for all β, γ ∈ S2 , if
β 6= γ , then ηβ(n) 6= ηγ(n). By choosing n so that it is minimal, we may assume
that for all β ∈ S2 , ηβ(n − 1) < α∗ . Clearly we may assume that for all β ∈ S2 ,
ηβ(n) > α∗ .

Then by Lemma 4.1 (iii),
(i) (F (Aηβ�(n+1)))β∈S2 is F (Aα∗i )-independent.

Since F (aηβ ) ↓Aα∗
j
F (Aηβ�(n+1)) and F (aηβ ) 6 ↓F (Aα∗

i
) F (Aηβ�(n+1)),

(ii) for all β ∈ S2 , F (Aηβ�(n+1)) 6 ↓F (Aα∗
i

) Aα
∗

j .

Since κ(M) < κ , |Aα∗j | < κ and |S2| = κ , (i) and (ii) are contradictory.

4.4 Remark. By using [Sh11] Chapter IV Theorem 3.1 (3), it is possible to
replace the assumption κ = cf(κ) > λr(M) by κ > λr(M) in Theorem 4.3.
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