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2 SAHARON SHELAH

§0 Introduction

Nicely definable forcing notions have been studied since the mid-eighties, espe-
cially for the case when “nicely definable” was interpreted as “Souslin” (see, e.g.,
[Sh 480], Judah and Shelah [JdSh 292] or Goldstern and Judah [GoJu]). Recently,
in [Sh 630], we have initialized investigations of a wide class of “reasonably” de-
finable forcing notions which satisfy the properness demand for countable models
which are not necessarily elementary submodels of some H (χ): the nep forcings.
The present paper continues that research in two directions.

In the first section we introduce a very strong variant of nep forcing, where the
the candidates (i.e., the models for which we postulate the existence of generic
conditions) do not have to be well-founded (Definition 1.1). We show that those
forcing notions, called nw-nep, cannot add dominating reals (Theorem 1.4). Then,
by a similar proof, we show that a proper forcing notion which adds a dominating
real and has sufficient amount of absoluteness for being predense, must force that
b = ℵ1 (see Theorem 1.6). This result applies to forcing notions like Amoeba for
measure, the Hechler forcing and the Universal Meagre forcing (see Corollary 1.7),
so in some sense it continues older work of Brendle, Judah and Shelah [BJSh 477]
and Brendle [Bn95]. As a conclusion to 1.7 we get that a Boolean Algebra P(x)/J ,
where J is a ℵ1-complete ideal on x, cannot be isomorphic to the Boolean Algebra
of the Amoeba forcing or the Universal Meagre forcing. This answers a question
of Kamburelis (though this solution was obtained already in 1977 and discussed in
[Sh 666, §4]).

In the second section we try to extend the results of [Sh 480] to nep forcing.
There we showed that if a Souslin c.c.c. forcing notion Q adds an unbounded real,
then it adds a Cohen real. Here we weaken the demands on Q (it is just nep c.c.c.),
but the Q-name for a Cohen real is constructed in VP, where P is a forcing notion
adding a dominating real and preserving Q-candidates.

We refer the reader to [Sh 666, §4] and [Sh 630] for more background and refer-
ences. This paper will be continued in [Sh:F642].

We would like to thank Jakob Kellner and Andrzej Roslanowski for reading the
paper extremely carefully resulting in considerable improvement of the presentation
and readability.
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ON NICELY DEFINABLE FORCING NOTIONS SH711 3

§1 Nwnep forcing notions

In [Sh 630] we introduced nep (non-elementary proper) forcing notions as the
ones with reasonable definitions and such that the generic conditions exist over
many countable models (not necessarily elementary submodels of H (χ)). Still,
those models (called “candidates”) were well-founded, see [Sh 630, §1] for details.

Here we consider a related property, allowing the candidates to be non-well
founded (so the new notion has a flavour of a stronger property). The defini-
tion below is ad-hoc to simplify the presentation. The “nw” stands for “non-well
founded”, of course.

1.1 Definition. 1) We say that N is x − 1-nw-candidate if, fixing some strong
limit χ, (a) or (b) holds where:

(a) N ≺ (H (χ),∈) is countable, x ∈ N
(b) for some N1 as in (a), N is an elementary extension of N1 not increasing ωN ;

i.e., if N |= “g < ω” then g ∈ N1, and if N |= “y is a subset of H (ℵ0)” then
y = {n ∈ N : N |= n ∈ y} (so really it should have one two-place relation
E,EN is the membership relation in N ; but we shall write N |= “x ∈ y”).

2) We say that N is a standard x− 2-nw-candidate if (for χ as above) (a) holds or

(b)′ for some N1 as in (a), N is a forcing extension of N1 (and the demand in
(b) on subsets of H (ℵ0) holds).

3) Let Q ⊆ ω2 or just Q ⊆P(H (ℵ0)). We say that Q is a 1-nw-nep forcing notion
if Q is a pair of formulas ϕ̄ = (ϕ0(x), ϕ1(x, y)), in the language of set theory (with
parameter r) such that (below we write Q-candidate instead of r−1-nw-candidate):

(a) ϕ0(x) defines a set of reals (= set of members of Q)

(b) ϕ1(x, y) defines a set of pairs of reals, a quasi order on {x : ϕ0(x)}, this is
≤Q

(c) ϕ0, ϕ1 are Σ1
1-formulas; equivalently1, are upward absolute from Q-candidates,

i.e., for Q-candidates N1 ⊆ N2, x ∈ QN1 ⇒ x ∈ QN2 ⇒ x ∈ Q and
x ≤N1

Q y ⇒ x ≤N2

Q y ⇒ x ≤Q y

(d) if N is a Q-candidate and p ∈ QN (i.e. N |= p ∈ Q) then there is q such
that: q ∈ Q, p ≤Q q and q is 〈N,Q〉-generic, i.e.

q 
 “QN ∩G is a subset of QN , directed by ≤NQ and G ∩I N 6= ∅”

whenever N |= “I ⊆ Q is predense”.

1because the candidates here are not necessarily well founded
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4 SAHARON SHELAH

4) We say Q is 2-nw-nep-forcing if above we replace r − 1-nw-candidate by r − 2-
candidates.
5) Let nw-nep mean 1-nw-nep.

The examples of nw-nep forcing notions include all ωω-bounding forcing notions
from [RoSh 470], that is the class K defined in [BaRo02, Def.0.4]. So, in particular,
the Silver forcing notion and the Sacks forcing notion are nw-nep. In the realm of
c.c.c. forcings, the natural examples of nw-nep are the Cohen forcing and the
random real forcing. They both are nw-nep because they are very Souslin c.c.c.,
where:

1.2 Definition. A forcing notion Q is very Souslin c.c.c. if it is Souslin c.c.c. and
the relation

“〈rn : n < ω〉 is a maximal antichain in Q”

is Σ1
1.

1.3 Proposition. Very Souslin c.c.c. forcing notions are nw-nep.

Roslanowski and Shelah [RoSh 672, 1.3.4](3),1.5.15 give more examples of very
Souslin c.c.c. (and thus also nw-nep) forcing notions.

1.4 Theorem. Assume Q is nw-nep. Then forcing with Q does not add a domi-
nating real.

Proof. Toward contradiction assume p∗ 
Q “η
˜

∗ ∈ ωω is a dominating real”.

Without loss of generality, p∗ 
 “η
˜

∗ is strictly increasing, η
˜

∗(n) > n”. Let

Γ0 = {η ∈ ω>ω : η strictly increasing and η(`) > ` for ` < `g(η)};

so p∗ 
Q “η
˜

∗ ∈ lim(Γ0)”. As Q is nw-nep there is p∗∗ such that

⊗1 p∗ ≤Q p
∗∗ and for each n there is a countable J ∗

n ⊆ Q which is an antichain
predense above p∗∗, such that each p ∈ J ∗

n forces a value to η
˜

∗(n) and is

above p∗ and above some p′ ∈J ∗
m for each m < n.
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ON NICELY DEFINABLE FORCING NOTIONS SH711 5

[Why? Take a countable model N ≺ (H (χ),∈) such that r, η
˜

∗, p∗ ∈ N (so N is a

Q-candidate). Inside N by induction on n < ω we choose J ∗
n ∈ N as above except

countability. Let p∗∗ be above p∗ and be 〈N,Q〉-generic.]

Clearly above any p ≥ p∗∗ there are two incompatible elements of Q, so without
loss of generality

⊗2 if m < n and p ∈J ∗
m then there are infinitely many members of J ∗

n which
are above p.

Let Γ denote a subset of Γ0 closed under initial segments such that 〈〉 ∈ Γ and
η ∈ Γ ⇒ (∃∞n)(η_〈n〉 ∈ Γ). We can find Γ, k̄ and choose p̄∗ such that:

⊗3(α) p̄∗ = 〈p∗η : η ∈ Γ〉 and p∗η ∈ Q (in fact p∗η ∈ {p∗} ∪
⋃
n

J ∗
n ),

(β) ν C η ⇒ Q |= p∗ν ≤ p∗η,

(γ) for n ∈ [1, ω) we have: 〈p∗η : η ∈ Γ∩nω〉 is an antichain of Q predense above
p∗∗,

(δ) k̄ = 〈kη : η ∈ Γ〉 where kη < ω,

(ε) if η ∈ ω>ω, η_〈m,n〉 ∈ Γ, then pη_〈m,n〉 forces a value to η
˜

∗(m), which we

call kη_<m,n> and n > kη_〈m,n〉 > m,

(ζ) p∗〈〉 = p∗ (= no information) and k̄〈〉 = 1.

So we choose Γ ∩ nω and kη, pη (for η ∈ Γ ∩ nω) by induction on n with η 6=<>⇒
p∗η ∈

⋃
n

J ∗
n .

For n = 0 let p<> = p∗, k<> = 1.
For n = 1 we declare that Γ ∩ 1ω = {< m >: m > 0}, 〈p∗<m> : m > 0〉 is an

enumeration of J ∗
0 and k<m> = 1.

For n+ 1, n ≥ 1, for each η ∈ nω let m = sup Rang(η) and let 〈pη,j : j < ω〉 list
the members of J ∗

m which are above pη, so for some kη,j we have pη,j 
Q η
˜

∗(m) =

kη,j . Let fη : ω → ω be strictly increasing such that kη,j < fη(j) and m < fη(j)
for j < ω, and lastly, let Γ ∩ n+1ω = {η_〈fη(j)〉 : η ∈ Γ ∩ nω and j < ω} and
kη_<fη(j)> = kη,j and pη

_〈fη(j)〉 = pη,j .
Let η

˜

′ be the Q-name of the ω-branch of Γ such that p∗∗ 
Q “pη
˜

′�n ∈ G
˜
Q” for each

n < ω. We claim that:

� if h : Γ −→ ω, then

p∗∗ 
Q “for every large enough n < ω we have η
˜

′(n) > h(η
˜

′ � n)”.
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6 SAHARON SHELAH

[Why? Let fh : ω −→ ω be

fh(n) = sup{h(η) : η ∈ Γ and sup Range(η) ≤ n}+ 1,

Note that the supremum is over a finite set as every η ∈ Γ is strictly increasing. So
assume p∗∗ ∈ G ⊆ Q, G is generic over V, η′ = η

˜

′[G], η∗ = η
˜

∗[G], and we shall find

n as required. Clearly for some n∗ > 2 we have m ∈ [n∗, ω)⇒ fh(m) < η∗(m). We
shall prove that m ∈ [n∗, ω)⇒ h(η′ � (m+ 1)) < η′(m+ 1).

So assume m ∈ [n∗, ω), then:
h(η′ � (m+ 1)) ≤ fh(η′(m)) by the definition of fh, η

′ being increasing,
fh(η′(m)) < η∗(η′(m)) as η′(m) ≥ m ≥ n∗ and the choice of n∗,
η∗(η′(m)) = kη′�(m+2) by clause (ε) and
kη′�(m+2) < η′(m+ 1) by (ε).]

For a limit ordinal α < ω1, let Ξα = {ρ̄ : ρ̄ = 〈ρδ : δ ≤ α where δ is limit〉 and
each ρδ is a (strictly) increasing ω-sequence converging to δ}. For ρ̄ ∈ Ξα, we define
a function gρ̄ from Γ to α+ 1, defining gρ̄(η) by induction on lg(η) as follows:

(B)(a) gρ̄(〈〉) = α,

(b) if gρ̄(η) = β + 1 and η_〈`〉 ∈ Γ, then gρ̄(η
_〈`〉) = β,

(c) if gρ̄(η) = δ, δ a limit ordinal and η_〈`〉 ∈ Γ, then gρ̄(η
_〈`〉) = ρδ(`),

(d) if gρ̄(η) = 0 and η_〈`〉 ∈ Γ then gρ̄(η
_〈`〉) = α.

Let An,ρ̄ = {η ∈ Γ : gρ̄(η) = α and |{` < lg(η) : gρ̄(η � `) = α}| = n}, so An,ρ̄ is a
front of Γ, and it is above Am,ρ̄ for m < n. Hence for each m we have p∗∗ 
 “η

˜

′ has

an initial segment in Am,ρ̄”. Let a Q-name h
˜
ρ̄ of a function from ω to ω be such

that v ∈ An,ρ̄ ⇒ p∗v 
 h
˜
ρ̄(n) = η

˜

∗(sup Rang(v)). Clearly In,ρ̄ = {p∗η : η ∈ An,ρ̄} is

predense above p∗∗, so2 p∗∗ 
Q “h
˜
ρ̄ ∈ ωω”.

Now there is a Q-candidate N , with (ω1)N not well ordered, and p∗, p∗∗p̄∗ ∈ N
such that N |= “all the above statements on p∗∗, ρ̄ ∈ Ξα”.
[Why? Let L be a countable fragment of Lω1,ω({∈}) and let N1 ≺L (H (χ),∈) be
such that Q, p∗∗, p̄∗ ∈ N1 and N1 ≺L N,N as above; ωN = ωN1 as in the Definition
1.1. See Keisler [Ke71]; alternatively, for a model N1 with Skolem functions define

PN1 = {Y : for some n = n(Y ), Y is a set of

decreasing sequences of countable cardinals such that if

n(Y ) > 0 then (∀α < ω1)(∃η ∈ Y )(α < min Rang(η))}

2the h
˜
ρ̄-s are here for clarification only, but they will be necessary in the proof of 1.6 below.
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ON NICELY DEFINABLE FORCING NOTIONS SH711 7

Y1 ≤ Y2 iff n(Y1) ≤ n(Y2) & (∀η ∈ Y2)(∃ν ∈ Y1)(ν E η).

If G ⊆ PN1 is generic over N1, we define N such that N1 ≺ N,αn ∈ N,N =
Sk(N1 ∪ {αn : n < ω}) and Y ∈ G⇒ 〈α0, . . . , αn(Y )−1〉 ∈ Y .]

Choose α∗n for n < ω such that N |= “α∗n+1 < α∗n are countable ordinals”.
Without loss of generality N |= “α∗n is a limit ordinal”, and so for some ρ̄ we have
N |= “ρ̄ ∈ Ξα∗0”. So clearly N |= “In,ρ̄ is predense above p∗∗” for each n. By
1.1(3)(d), there is r∗ ∈ Q above p∗∗ which is 〈N,Q〉-generic. Then

�1 I N
n,ρ̄ is predense above r∗ for each n < ω.

There is in V (not in N !) a function f0 : Γ −→ ω such that∨
n<ω

α∗n ≤N gρ̄(η) ⇒ (∀k)(k ≥ f0(η) & η_〈k〉 ∈ Γ→
∨
n<ω

α∗n ≤N gρ̄(η
_〈k〉)).

By � (as p∗ ≤Q r
∗) there are q and `0 < ω such that r∗ ≤Q q and q 
Q “for every

` > `0, η
˜

′(`) > f0(η
˜

′ � `)”. So for some `1, q forces that

`1 < ` < ω ⇒
∨
n

α∗n <
N gρ̄(η

˜

′ � `)N ⇒ (η
˜

′ � `) /∈
⋃
n

ANn,ρ̄.

Hence

�2 q 
Q “the number of n such that (∃`)(η
˜

′ � ` ∈ ANn,ρ̄) is finite”.

But �1 +�2 gives a contradiction. �1.4

1.5 Definition. Let Q be a forcing notion, I ,J ⊆ Q. We say that “I is predense
above J ” whenever

(∗) if p ∈ Q is above every q ∈J then p is compatible with some r ∈ I .

1.6 Theorem. Assume that

(a) Q is a (definable) forcing notion with set of elements ⊆ ω2 which is proper
(or at least the old countable sets of ordinals are cofinal in the new)

(b) η
˜

∗ ∈ ωω is a Q–name,

(c) p∗ ∈ Q forces that η
˜

∗ is a dominating real,

(d) “{p1, . . . , pn} is predense over {q, q1}, n < ω” as well as “p ∈ Q”, “p ≤Q q”
are upward absolute from Q-candidates in the sense of Definition 1.1(1), so
not necessarily well founded (i.e., these formulas are Σ1

1).
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8 SAHARON SHELAH

Then p∗ forces that b = ℵ1 in VQ.

Proof. It is enough to prove that some condition above p∗ forces b = ℵ1.
By the properness of Q (or just assumption (a)) without loss of generality there

are p∗∗ and 〈J ∗
n : n < ω〉 as in the beginning of 1.4. Let η

˜

∗,Γ, p̄∗ = 〈p∗η : η ∈

Γ〉, η
˜

′,Ξα for α < ω1 and gρ̄, h
˜
ρ̄ for ρ̄ ∈ Ξα, α < ω1 be as in the proof of 1.4. For

limit δ < ω1 choose ρ̄δ ∈ Ξδ so that ρ̄δ0 = ρ̄δ1 � (δ0 + 1) whenever δ0 < δ1 < ω1 are
limit. We are going to show that

p∗∗ 
 “{h
˜
ρ̄δ : δ < ω1 limit} is not bounded”,

what will complete the proof. So assume not, hence for some h
˜

∗ and q∗, we have

p∗∗ ≤Q q
∗ and

q∗ 
Q “h
˜

∗ ∈ ωω dominates {h
˜
ρ̄δ : δ < ω1 limit }”.

Without loss of generality h
˜

∗ is a hc (hereditarily countable) Q-name above q∗,

more specifically, for each n < ω we have an antichain 〈r∗n,` : ` < ω〉 of Q predense

over q∗ and such that r∗n,` 
Q “h
˜

∗(n) = kn,`”. So h
˜

∗ is

〈(n, `, r
˜

∗
n,`, kn,`) : n, ` < ω〉.

Choose a countable model M ≺ (H (χ),∈) such that h
˜

∗, p∗, p∗∗, p̄∗, 〈ρ̄δ : δ < ω1

limit〉 ∈ M , and choose a countable elementary extension N of M such that in N
there are α∗n for n < ω as in the proof of 1.4.

So in N, ρ̄ = ρ̄Nα∗0 is well defined, so as M ≺ N there are n∗, r∗ such that

(∗)0 N |= “r∗ ∈ Q and q∗ ≤Q r∗ and n∗ < ω and r∗ 
Q “h
˜
ρ̄ � [n∗, ω) < h

˜

∗ �

[n∗, ω)””.

Let n ∈ [n∗, ω) and ` < ω. Recalling that (in V hence in M hence in N) we have
r∗n,` 
Q “h

˜

∗(n) = kn,`” and recalling that every η ∈ Γ is strictly increasing and the

definition of hρ̄ in N , clearly

(∗)1
n,` the set An,` = {ν ∈ ANn,ρ̄: max Rang(ν) < kn,`} is finite.

Also, by (∗)0,

(∗)2
n,` in N the set {p∗ν : ν ∈ An,`} is predense (in QN ) above {r∗, r∗n,`}.
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ON NICELY DEFINABLE FORCING NOTIONS SH711 9

But by the clause (d) of the assumption this amount of predensity is upward abso-
lute (from N to V) hence

(∗)3
n,` in V the set {p∗ν : ν ∈ An,`} is predense (in Q) above {r∗, r∗n,`}.

But q∗ ≤Q r
∗ and {r∗n,` : ` < ω} is predense (in Q) above q∗, hence

(∗)4
n for each n < ω in V the set

⋃
`<ω

{p∗ν : ν ∈ An,`} is predense in Q above r∗.

Now
⋃
`<ω

{p∗ν : ν ∈ An,`} ⊆ {p∗ν : ν ∈ ANn,ρ̄} = I N
n,ρ̄. Hence

(∗)5 for every n,I N
n,ρ̄ is predense in Q above r∗.

This means that in the proof of 1.1 the statement �1 holds and continues as in the
proof of 1.4. �1.6

1.7 Corollary. Amoeba forcing forces b = ℵ1, and similarly dominating real forc-
ing (= Hechler forcing) and universal meagre forcing.

Proof. We will apply 1.6. The amoeba forcing Q is

{T ⊆ ω>2 :T is non empty closed under initial

segments and Leb(lim(T )) > 1/2},

ordered by inverse inclusion; note that for notational simplicity we allow trees with
maximal nodes.

Clearly “p ∈ Q”, “p ≤Q q” are Borel relations and any p, q ∈ Q has a l.u.b.: p∩ q
and “p, q are compatible” is Borel. The main point is to show that “{p` : ` < n}
is predense above {q1, q2}” is upward absolute for nw-candidates; we can replace
{q1, q2} by {q} where q = q1∩q2. Suppose that 0 < m, k < ω and for s ⊆ q1∩q2∩m2
define:

am(s) = Max{|s ∩ p`|/2m : ` < n},

this is a real number ∈ [0, 1], and we let

am,k = Min{am(s) : s ⊆ q1 ∩ q2 ∩ m2 and |s|/2m ≥ 1

2
+

1

k
}.
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10 SAHARON SHELAH

We shall show that the following statements are equivalent:

(α) there is r ∈ Q above q incompatible with p0, . . . , pn−1

(β) for some r ∈ Q we have Leb(lim(p`∩r)) ≤ 1
2−

1
k for ` < n and Leb(lim(r)) >

1
2 + 1

k for some k ∈ (0, ω)

(γ) lim sup〈am,k : m < ω〉 ≤ 1
2 −

1
k for some k ∈ (0, ω).

If (α) holds, let r exemplify it, so for some ε1 > 0, Leb(lim(r)) > 1
2 + ε1, and

Leb(lim(p` ∩ r)) ≤ 1
2 for ` < n. We can find, for ` < n, a clopen subset B` of ω2

such that Leb(lim(p` ∩ r) ∩ B`) > 0, Leb(B`) <
ε1
n+3 . Let r′ = {η ∈ r: there is

ρ ∈ ω2\
⋃
`

B` above η}, and k be large enough, they exemplify (β).

If (β) holds, exemplified by r, k, then ` < n⇒ Leb(lim(p` ∩ r)) ≤ 1
2 −

1
k . Hence

by the definition of Lebesque measure

(∗) 1
2 −

1
k ≥ lim〈|p` ∩ r ∩ m2|/2m : m < ω〉 for each ` < n,

and hence
1
2 −

1
k ≥ lim〈Max

`<n
|p` ∩ r ∩ m2|/2m : m < ω〉.

But am,k ≤ am(r∩m2) because |r∩m2|/2m ≥ Leb(lim(r)) ≥ 1
2 + 1

k and am(r∩m2) =
Max
`<n

(|p` ∩ r ∩ m2|/2m).

Putting together those inequalities and (∗) we have 1
2−

1
k ≥ lim sup〈am,k : m < ω〉

as required, so (γ) holds, i.e. we have proved (β)⇒ (γ).
Lastly, assume (γ) and we shall prove (α). For each m let sm ⊆ q ∩ m2 be

such that am(sm) = am,k and |sm|/2m ≥ 1
2 + 1

k . Let m be large enough such that

am,k <
1
2 −

1
4k and |q∩m2|/2m− Leb(lim(q)) < 1/4k. Let r = {ρ ∈ q: if `g(ρ) ≥ m

then ρ � m ∈ sm}. Clearly r ⊆ q is a subtree, and

Leb(lim(r)) ≥ Leb(lim(q))− Leb{η ∈ ω2 : η ∈ lim(q) but η � m /∈ sm)}
≥ Leb(lim(q))− (|q ∩ m2|/2m − |sm|/2m)

≥ Leb(lim(q))− ((Leb(lim(q)) + 1/4k)− |sm|/2m)

= |sm|/2m − 1/4k ≥ 1

2
+

1

k
− 1

4k
>

1

2
.

So r ∈ Q, also for ` < n, the conditions r, p` are incompatible as Leb(lim(p` ∩ r)) ≤
Leb(lim({η ∈ p`: if `g(η) ≥ m then η � m ∈ sm)}) ≤ Leb({η ∈ ω2 : η � m ∈
p` ∩ m2 ∩ sm}) = |p` ∩ sm|/2m ≤ am(sm) < 1

2 −
1
4k <

1
2 .

So we have finished proving (γ)⇒ (α) hence proving (α)⇔ (β)⇔ (γ). �1.7
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1.8 Conclusion. 1) There is no ℵ1-complete ideal J on a set X such that the Boolean
algebra P(X)/J isomorphic to the Boolean algebra of the Amoeba forcing (or any
other c.c.c. forcing satisfying the assumption of 1.6).
2) The following is impossible

(a) J is a (< κ)-complete ideal on a set X, and

(b) P(X)/J is isomorhpic to the Boolean algebra of the forcing notion Q which
satisfies the κ+-c.c.,

(c) forcing with Q adds a dominating real, and

(d) forcing with Q makes b ≤ κ (κ as an ordinal).

Proof. 1) Follows by part (2) for κ = ℵ1 below and Corollary 1.7.
2) The proof is close to [GiSh 357, 3.1] and [GiSh 412], but we give a self contained
proof.
Let κ1 be maximal such that J is (< κ1)-complete, so J is not (< κ+

1 )-complete,
now replacing κ by κ1, clauses (a)-(d) are still satisfied, so without loss of generality
J is not (< κ+)-complete.

Let g : Q→P(X)/J be a dense embedding (remember assumption (b)).
Let G ⊆ Q be generic over V, and define D

˜
[G] = {Y ⊆ X : g(p) ⊆ Y mod J

for some p ∈ G}. Then D
˜

[G] is an ultrafilter on X, i.e., on the Boolean algebra

P(X)V disjoint to J . As P(X)/J satisfies the κ+-c.c. and J is κ-complete (in
V) clearly the ultrapower VX/D

˜
[G] = {f/D

˜
[G] : f ∈ XV is from V} is well

founded so we identify it with its Mostowski collapse M . Let j be the natural
elementary embedding of V into M . Clearly in V[G] the model M is closed under
taking sequences of length ≤ κ. In particular M contains all ω-sequences of natural
numbers from V[G] hence (ωω)M = (ωω)V[G].

As M contains all (≤ κ)-sequences of reals from V[G] and V[G] |= b < κ, clearly
in V[G] there are θ ≤ κ and a sequence f̄ = 〈fα : α < θ〉 exemplifying b = θ ≤ κ,
hence f̄ ∈M . So necessarily M |= “b ≤ θ” but M |= “θ ≤ κ < j(κ)” hence by  Loś
theorem also V |= b < κ. So let f̄ ′ be such that V |= “f̄ ′ = 〈f ′α : α < θ〉 exemplifies
b ≤ θ”, hence as θ < κ, clearly j(f̄) = f̄ , so {fα : α < θ} ⊆ (ωω)M is unbounded
in (ωω)M but the latter is (ωω)V[G] in which there is a η

˜
∈ ωω dominating (ωω)V

hence f̄ , a contradiction. �1.8

1.9 Remark.: 1) Suppose that κ is a measurable cardinal and force with FS iteration
of the Hecher forcing notions, κ in length, and then consider Q = P(κ)/J . Then

Q “b = d = λ” where λ = cf(κκ/D) in V.
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12 SAHARON SHELAH

The aim of the series of papers [GiSh 357], [GiSh 412], [GiSh 582] is to show that
the general situation is similar to this.
2) The original aim of 1.6 was to deal with c.c.c. simply defined forcing notions.
For this the demands on Q in 1.6 seem to be reasonable.
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§2 Around “adding a Cohen real”

In [Sh 480] we have proved that if a Souslin-c.c.c. forcing notion Q adds an un-
bounded real, then it adds a Cohen real. Here, we try to extend the result to nep
forcing. The proof here does not rely on [Sh 480] (and the results imply the results
there).

More fully we use the following: let N be a countable elementary submodel of
(H (χ),∈) to which P,Q belongs, G a subset of PN generic over N then N [G] is a
Q-candidate. It may be clearer to let M be the ordinal collapse of N, j : N → M
the isomorphism and demand M [j′′G] is a Q-candidate.

2.1 Definition. 1) Let K be a class of countable submodels of (H (χ),∈), all of
a large part of ZFC, and let Q be a forcing notion with set of elements ⊆ ω2. We
say that Q if K-nep if for some pair ϕ̄ = (ϕ0, ϕ1) of Σ1

1-formulas with a parameter
r ∈ ω2 we have

(a) the set of elements of Q and ≤Q are defined by ϕ0(x), ϕ1(x, y),

(b) if N ∈ K, ϕ̄ ∈ N and p ∈ QN then for some q ∈ Q we have

(α) Q |= p ≤ q,
(β) q is (N,Q)-generic, which means that for every I ∗ ∈ pd(N,Q) =

{I ∈ N : N |= “I is predense in Q”}, the set {r : N |= “r ∈ I ∗”} is
predense in Q above q and q 
 “G ∩QN is ≤Qn0 -directed”.

2) Let P be a proper forcing notion. We define the class KP as the collection of all
countable models N such that

(a) either N ≺ (H (χ),∈),

(b) or for some countable model M ≺ (H (χ),∈) such that P ∈ M and some
generic G ⊆ P ∩M over M we have N = M [G].

2.2 Proposition. 1) Assume

(a) P is a proper forcing notion, Q is a KP-nep-forcing which is c.c.c., and

(b) 
Q “f
˜
∈ ωω is not dominated by any old f ∈ ωω”, and

(c) P adds a dominating real g
˜
∈ ωω.
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Then in VP

~1 forcing with Q adds a Cohen real.

2) Assume that we replace clause (b) above by

(b)′ 
Q “η
˜
∈ ω2 is not equal to any old member of ω2”.

Then, in VP,

~2 there is a strictly increasing sequence 〈ni : i < ω〉 such that for every q∗ ∈ Q
for all i < ω large enough:
2i ≤ |{η ∈ ni2: some q′ above q∗ forces that η = η

˜
� ni}|.

Proof. Of course, it is enough to prove that for a dense set of q ∈ Q, the result
holds above q. For part (1) let t be 1, f

˜

t = f
˜

and for part (2) let t = 2 and f
˜

t = η
˜
.

So f
˜

t is actually 〈(r∗n,`, kn,` : n < ω, ` < ω〉 where r∗n,` 
 “f
˜

t(n) = kn,`” and, for

each n < ω, 〈r∗n,` : ` < ω〉 is a maximal antichain of Q; similarly for the P-name g
˜

as we can replace P by P≥p and P is proper. Without loss of generality f
˜

1, g
˜

are

(forced to be) strictly increasing; note that for f
˜

1 this just means that

n1 < n2 & kn1,`1 ≥ kn2,`2 ⇒ (r∗n1,k1 , r
∗
n2,k2 are incompatible)

so it is absolute enough. Suppose q∗ ∈ Q. Let (χ be strong limit and) N ≺
(H (χ),∈) be a countable model such that {P, g

˜
, q∗,Q} ∈ N and f

˜

t ∈ N , i.e.,

〈(r∗n,`, kn,`) : n < ω, ` < ω〉 belongs to N . Now

(∗)1 N |= “P is a forcing notion, g
˜

is a P-name of an increasing member of ωω

dominating all old ones”.

Observe:

(∗)2 if M ∈ KP, r̄ = 〈r` : ` < ω〉 is a maximal antichain of Q and r̄ ∈M, r` ∈ QM ,
then M |= “r̄ is a maximal antichain of Q”.

[Why? First, if n < m < ω,M |= “rn, rm are compatible in Q” let r ∈ QM be a
common upper bound by ≤MQ , it is a common upper bound in Q, contradiction.
Second, if M |= “q ∈ Q is incompatible with each r`”, let q1 ∈ Q be (M,Q)-generic
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such that q ≤ q1. But q1 is necessarily ≤Q-compatible with rn for some n so for
some q2 we have rn ≤Q q2 & q1 ≤Q q2, so q2 
 “{q, rn} ⊆ G

˜
Q ∩M”. However

q1 ≤Q q2 and q1 
Q “G
˜
Q ∩QN is ≤MQ -directed, a contradiction.]

Continuing (∗)1, for t = 1:

(∗)3 N |= “forcing with P preserves the property of (Q, f
˜

t), i.e., f
˜

t not domi-

nated”.

[Why? First being a Q-name of a member of ωω is preserved after forcing with
P by (∗)2+ assumption (d): consider a generic G ⊆ PN , G ∈ V over N and let3

M = N [G] - it belongs to KP and we can apply (∗)2. Second, assume toward
contradiction that (∗)3 fails. Let p∗ ∈ PN force the negation (in N) and choose, in
V, a set G ⊆ PN generic over N to which p∗ belongs so N ⊆ N [G] ∈ V, N [G] ∈ KP.
As the conclusion of (∗)3 fails we can find q1 ∈ QN [G] and h ∈ (ωω)N [G] such that
N [G] |= “q1 ∈ Q, q∗ ≤Q q1 and q1 forces (
Q) that f

˜

t ≤ h”. Let q2 be (N [G],Q)-

generic condition satisfying q1 ≤Q q2 hence q2 
Q “f
˜

t ≤ h ∈ ωω”, contradicting the

choice of q∗, f
˜
.]

(∗)4 Also in VP, f
˜

t is not dominated if t = 1.

[Why? As N ≺ (H (χ),∈).]
Without loss of generality

(∗)5 for every h : ω>ω → ω from V we have 
P (∀∞n)g
˜
(n) > h(g

˜
� n).

[Why? As, e.g., we can replace g
˜

by ν
˜
, where ν

˜
(0) = g

˜
(0) and ν

˜
(n+1) = g

˜
(ν

˜
(n)+1),

note that ν
˜

is strictly increasing as g
˜

is.]

Let the Q-name η
˜

1 ∈ ω2 be such that for every ` < ω we have η
˜

1(`) = 1 ⇔ ` ∈

Rang(f
˜

1) and let η
˜

2 = η
˜
.

(∗)6 N |= “ 
P
Q η
˜

t ∈ ω2 is new”.

[Why? For t = 1 by (∗)3, for t = 2 even easier immitating the proofs of (∗)3 and
(∗)4.]

For q ∈ Q let

3can use the ord collapse of M
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Tq[η
˜

t] = {ν ∈ ω>2 : q 1Q ν 6 η
˜
},

so

(∗)7 Tq[η
˜

t] is a non empty subtree of ω>2 with no maximal nodes and no isolated

ω-branches,

(∗)8 if t = 1, then in V and also in N [G] for each generic G ⊆ PN over N , for
every q ∈ Q
(a) for some n∗ < ω:

for every m ∈ (n∗, ω) we have

q 1Q (∃`)(n∗ ≤ ` < m & η
˜

t(`) = 1);

therefore

(b) for every m > n∗ there is an ν ∈ m2 ∩ Tq[η
˜

t] such that for every

` ∈ [n∗,m), we have ν(`) = 0,

(c) for some η ∈ lim(Tq[η
t]), the restriction η � [n∗, ω) is constantly zero.

[Why? By (∗)3.] Consequently,

(∗)9 t = 1: q1, q2 ∈ Q are incompatible if for no n∗ < ω and η ∈ lim(Tq1 [η
˜

t]) ∩

lim(Tq2 [η
˜

t]) do we have ` ∈ [n∗, ω) ⇒ η(`) = 0 and (∃∞`)(η � `_〈1〉 ∈

Tq1 [η
˜

t] ∩ Tq2 [η
˜

t])

t = 2: q1, q2 ∈ Q are incompatible if lim(Tq1 [η
˜

t]) ∩ lim(Tq2 [η
˜

t]) has finitely

many ω-branches.

We say that u ∈ [ω]ℵ0 is large for (q, η
˜

t) if for every r ∈ Q above q the following

holds:⊗
r,u Case t = 1: For some n∗ ∈ u, for every n,m ∈ u such that n∗ < n < m,

for some ν ∈ m2 ∩ Tr[η
˜

t] we have ` ∈ [n∗,m)⇒ ν(`) = 0 but (∃`)(n ≤ ` <

m & η � `_〈1〉 ∈ Tr[η
˜

1]).

Case t = 2: For some n∗ ∈ u if n,m ∈ u and n∗ ≤ n < m then for some
ν1, ν2 ∈ m2 ∩ Tr[η

˜

t] and ` ∈ (n,m) we have ν1 � ` = ν2 � `, ν1(`) 6= ν2(`).
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Let a P-name g
˜

∗ ∈ ωω be defined by g
˜

∗(0) = 0, g
˜

∗(n+ 1) = g
˜
(n+ 1 + g

˜

∗(n)).

Subclaim: Let q∗ ∈ QN . Then N |=
P “some u ∈ [ω]ℵ0 is large for (q∗, η
˜

t)”.

It will take us awhile. Let u
˜

= Rang(g
˜

∗), it is a P-name in N , and assume that

u
˜

is not as required, so for some p∗ ∈ PN and P-names q
˜
, n we have

N |= “p∗ 
P [q
˜
∈ Q is above q∗ and ¬⊗q

˜
,u
˜
]”.

Let G(∈ V) be a subset of PN generic over N and such that p∗ ∈ G.
Now, in N [G], we choose inductively a sequence 〈(ki, ni,mi) : i < ω〉 so that:

Case t = 1: ki, ni,mi ∈ u
˜
[G], ki < ni < mi < ki+1 and for each i < ω, there is no

η ∈ mi2 ∩ Tq
˜
[G][η

˜

t] satisfying

(∀` ∈ [ki,mi))(η(`) = 0) and (∃` ∈ [ni,mi))(η � `
_〈1〉 ∈ Tq

˜
[G][η

˜

t]);

Case t = 2: ki, ni,mi ∈ u
˜
[G], ki = ni < mi = Min(u

˜
[G] \ (ni + 1)) < ni+1 and for

each i < ω, there are no ν1 6= ν2 ∈ mi2 ∩ Tq
˜
[G][η

˜

t] satisfying ν1 � ni = ν2 � ni.

Note that, in both cases, the choice is possible by our assumption on p∗ (and by
p∗ ∈ G).

Let ni = n
˜
i[G],mi = m

˜
i[G], ki = ki[G] for some sequence 〈k

˜
i, n

˜
i,m

˜
i : i < ω〉 ∈ N

of P-names. Without loss of generality p∗ ∈ P is such that it forces all the above.
So

(∗)10 (a) if t = 1 then

N |= “p∗ 
P if i < ω, η ∈ Tq
˜

[η
˜

1] ∩ m˜ i2, ` ∈ [k
˜
i,m

˜
i)⇒ η(`) = 0

then for no ` ∈ [n
˜
i,m

˜
i) do we have η � `_〈1〉 ∈ Tq

˜

[η
˜

1]”

(b) if t = 2 then
N |= “p∗ 
P if i < ω,m ∈ [n

˜
i,m

˜
i) and η ∈ Tq

˜

[η
˜

2] ∩ m2 then

η has a unique successor in Tq
˜

[η
˜

2] ∩ m+12”.

Let 〈In : n < ω〉 list the dense open subsets of P which belong to N . Let 〈Jk, ρk :
k < ω〉 be such that: Jk is a finite front of ω>2, J0 = {<>}, ρk ∈ Jk, Jk+1 =
(Jn\{ρk}) ∪ {ρk_ < 0 >, ρk

_ < 1 >} and n < ω & ρ ∈ Jn ⇒ (∃m ≥ n)(ρm = ρ)
and k < n < ω ⇒ `g(ρk) ≤ `g(ρn). Moreover, we require that if ` < `g(ρk) =
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`g(ρn), ρk � ` = ρn � ` and ρk(`) = 0, ρn(`) = 1, then k < n. We choose p̄k =
〈pρ, kρ,mρ, nρ : ρ ∈ Jk〉 by induction on k such that (after we choose p̄k we have
already chosen p̄k+1 � (Jk+1\{ρk_ < 0 >, ρk

_ < 1 >})):

~0 (a) p∗ ≤P pρ ∈ PN

(b) mρ < nρ

(c) if m > nρ then for some q ∈ PN we have pρ ≤P q and
q 
P (∃i)(n

˜
i ≤ nρ ∧m

˜
i > m)

(d) pρk ≤P pρk_<`> ∈ I`g(ρk) for ` = 0, 1

(e) pρk_<`> 
P “(∃i)(n
˜
i ≤ nρk & m

˜
i > mρk_<`>)”

(f) mρk_<`> > sup{nν : ν ∈ Jk}.

Let us carry out the induction.
In step k = 0 let p<> = p∗, n<> is chosen as below, m<> is immaterial. If we

have defined p̄k, first choose mρk_<`> to satisfy clause (f), then choose p′ρk_<`> ≥
pρk to satisfy clause (e) (possible by clause (c)) and choose pρk_<`> ≥ p′ρk_<`> to

satisfy clause (d). Lastly, choose nρk_<`> to satisfy clause (c); this is possible by
the observation below.

For each ρ ∈ ω2 let Gρ = {p ∈ PN : p ≤P pρ�` for some ` < ω}, clearly Gρ(∈ V)
is a subset of PN generic over N (by clause (d)). Now qρ = q

˜
[Gρ] and Tρ = Tqρ [η

˜

t],

are well defined in N [Gρ] hence in V. It is easy to see the following.

~1 Assume that ν1 6= ν2 ∈ ω2 and ν1 � k 6= ν2 � k. Then

(α) if n > nν1�k, nν2�k then for some i ≥ k we have
n ∈ [nν1�i,mν1�(i+1)) or n ∈ [nν2�i,mν2�(i+1))

(β) if t = 2 and η ∈ Tν1 ∩Tν2 and `g(η) > nν1�k, nν2�k, then η has at most
one successor in Tν1 ∩ Tν2 .

[Why? Clause (α) follows from clauses (b) + (f) of ~0. Clause (β) follows
from clause (α) and (∗)10(b).]

Hence

~2 (α) if t = 1 and ν1 6= ν2 ∈ ω2 and η ∈ lim(Tν1) ∩ lim(Tν2) and η(`) = 0
for every ` < ω large enough then the set

{` < ω : η � `_〈1〉 ∈ lim(Tν1) ∩ lim(Tν2)}

is finite

(β) if t = 2 and ν1 6= ν2 ∈ ω2 then lim(Tν1) ∩ lim(Tν2) is finite.
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Now for each ν ∈ ω2, N [Gν ] ∈ KP and N [Gν ] |= “qν ∈ Q”, hence there is q+
ν ∈ Q

which is 〈N [Gν ],Q〉-generic and Q |= “qν ≤ q+
ν ”. Hence really q+

ν 
Q “η
˜

t ∈

lim(Tν)”, so by ~2 and (∗)9 we have

~3 if ν1 6= ν2 ∈ ω2 then q+
ν1 , q

+
ν2 are incompatible in Q.

But this contradicts assumption (a) of 2.2, i.e., the c.c.c. �Subclaim

Observation. Assume

(∗) p∗ 
P “n
˜
i < n

˜
i+1 < ω, n

˜
i < m

˜
i < ω for every i < ω and for every h ∈ ωω∩V

for infinitely many i we have h(n
˜
i) < m

˜
i”.

Then we can find n∗ < ω such that for every m ∈ [n∗, ω) there is q satisfying
p∗ ≤P q and q 
 (∃i)(n

˜
i ≤ n∗ & m

˜
i ≥ m).

Proof. We define a function h : ω → (ω + 1) by

h(n) = sup{m :n < m and for some q ∈ P we have

p ≤P q and q 
P “(∃i)(n
˜
i ≤ n ∧m ≤ m

˜
i)}.

If for some n, h(n) = ω we are done. Otherwise h ∈ ωω and hence p∗ 
P
(∃i)(h(n

˜
i) < m

˜
i). So there are n,m, q, i such that p∗ ≤P q and

q 
 “h(n
˜
i) < m

˜
i & n

˜
i = n & m

˜
i = m”.

But by the definition of q, q witnesses that h(n) ≥ m, a contradiction.
�observation

Continuation of the proof of 2.2:

The conclusion of the subclaim holds in V as N ≺ (H (χ),∈), and this gives the
conclusion of part (2) of 2.2 when t = 2, and the conclusion of part (1) of 2.2 when
t = 1 is similar to [Sh 480, 1.12,p.168] but we give details. By the subclaim, as
N ≺ (H (χ),∈), clearly in VP we have: for every q∗ ∈ Q some infinite u ⊆ w is
large for (q∗, η

˜

t). Fix such q∗, u. We concentrate on t = 1 as the case t = 2 is

obvious by this point.
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Let u\{0} = {ni : 1 ≤ i < ω} be such that n0 =: 0 < n1 < n2 < . . . , let
〈k(i, `) : ` < ω〉 be such that i = Σ`k(i, `)2` where k(i, `) ∈ {0, 1}, so k(i, `) = 0
when 2` > i. For m < ω let ρ∗m = 〈k(i, `) : ` ≤ [log2(i + 1)]〉 where i = iu(m)
is the unique i such that ni ≤ m < ni+1. We define a Q-name ρ

˜
(of a member

of (ω2)V
Q
): let {k

˜
i : i < ω} list in the increasing order the elements of the set

{k < ω : η
˜

t(k) = 1} and ρ
˜

be ρ∗k
˜
0

_ρ∗k
˜
1

_ρ∗k
˜
2

_ . . . .

Clearly for every p ∈ Q and n < ω we have p 1 “η
˜

t(k) = 0 for every k ≥ n”.

Hence 
Q “{k < ω : η
˜

t(k) = 1} is infinite”, hence 
Q “ρ
˜
∈ ω2”.

It is enough to prove that q∗ 
Q “ρ
˜

is a Cohen real over VP”. So let T ∈ VP be

a given subtree of ω>2 which is nowhere dense, i.e., (∀η ∈ T )(∃ν)[η / ν ∈ ω>2\T ],
and we should prove q∗ 
Q “ρ

˜
/∈ lim(T )”. So assume q∗ ≤ q ∈ Q and we shall find

q′, q ≤ q′ ∈ Q such that q′ 
Q “ρ
˜
/∈ lim(T )”, this suffices. We apply the choice

of u so for some n∗ ∈ u, if n,m ∈ u, n∗ < m < n then for some ν ∈ n2 ∩ Tq[η
˜

t]

we have ` ∈ (n∗,m) ⇒ ν(`) = 0 but (∃`)(m ≤ ` < n & η
˜

∗(`) = 1]. As

n∗ ∈ u for some i(∗) we have n∗ = ni(∗) and Ξ =: {ρm : m < n∗} is finite hence
Ξ′ =: {ρ∗k0

_ . . ._ρ∗k1 : k0 < . . . < k` < n∗} is finite. As T is nowhere dense we
can find a sequence ρ∗ ∈ ω>2 such that: ρ ∈ Ξ′ ⇒ ρ_ρ∗ /∈ T and choose i > i(∗)
such that ρ∗ / ρ∗ni . This is possible by the definition of ρ∗ni , i.e., it is enough that

i > 2`g(ρ
∗) and i = Σ{ρ∗(`)2` : ` < `g(ρ∗)} mod 2`g(ρ

∗).
As said above we can find q′ ≥ q such that q′ 
 “if n∗ ≤ ` < ni then η

˜

t(`) = 0

but for some ` ∈ [ni, ni+1) we have η
˜

t(`) = 1”. So q′ forces that ρni appears in the

choice of ρ
˜

and before it we have a concatenation of finite sequences which belong

to Ξ′, so we are done. �2.2
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