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2 SAHARON SHELAH

Annotated Content

§1 Indiscernible sequences and averages, p.4-23

[We consider indiscernible sequences b̄ = 〈b̄t : t ∈ I〉 wondering whether
they have an average type as in the stable case. We investigate for any
such b̄ the set stfor(b̄) of formulas ϕ(x̄, ȳ) such that every instance ϕ(x̄, c̄)
divide b̄ to a finite/co-finite sets. We also consider the set dpfor(b̄) of
formulas ϕ(x̄, ȳ) which can divide b̄ only to finitely many intervals; this is
always the case if T has the dependence property, i.e., dpfor(b̄) = Lτ(T ). If
T has the dependence property, indiscernible sequences behave reasonably
while indiscernible sets behave nicely. Similar behavior occurs for p ∈ S(M)
connected with indiscernible set b̄ which we call stable types. We then note
the connection between unstable types, unstable ϕ(x, y; c̄), and formulas
ϕ(x, y; c̄) with the independence property, i.e. on singletons.]

§2 Characteristics of types, p.24-28

[Each indiscernible sequence b̄ = 〈b̄t : t ∈ I〉, has for each ϕ = ϕ(x̄, ȳ) a
characteristic number n = nb̄,ϕ, the maximal number of intervals to which

an instance ϕ(x̄, c̄) can divide b̄. We wonder what we can say about it.]

§3 Shrinking indiscernbles, p.29-34

[For an indiscernible sequence 〈b̄t : t ∈ I〉 over a set A, if we increase the set
a little, i.e. if A′ = A ∪ B then not much indiscernability is lost. An easy
case is: if I has cofinality > |B|+ |T | then for some end segment J of I the
sequence 〈b̄t : t ∈ J〉 is an indiscernible sequence over A′.]

§4 Perpendicular endless indiscernible sequences, p.35-52

[We define perpendicularity and investigate its basic properties; any two
mutually indiscernible sequences are perpendicular. E.g., (for theories with
the dependence property) one indiscernible sequence can be perpendicular
to at most ≥ |T |+ pairwise perpendicular indiscernible sequences. We then
deal with Fsp

|T |+ -constructions.]

§5 Indiscernible sequences perpendicular to cuts, p.53-61

[Using constructions as above we show that we can build models controlling
quite tightly the dual cofinality of such sequences where dual-cf(b̄,M) =

Paper Sh:715, version 2006-09-16 10. See https://shelah.logic.at/papers/715/ for possible updates.



DEPENDENT THEORIES 3

Min{|B| : B ⊆M and the average of b̄ over B ∪ b̄ is not realized in M}.
That is, for any pairwise perpendicular 〈b̄ζ : ζ < ζ∗〉 we can find a model
M including them with dual-cf(b̄ζ ,M) being any (somewhat large) pregiven
regular cardinal).

§6 Concluding Remarks, p.62-65

[We speculate on a parallel to DOP and to deepness. Also on the existence
of indiscernibles (starting with any set).]

Notation: 1) T is a first order theory in a vocabulary τT ,C a monster model of T ,
L is first order logic so Lτ(T ) the first order language with vocabulary τ , i.e., the
set of the first order formulas in that vocabulary. Let L(τ(T )) = Lτ(T ). We may

write ā ∈ A(⊆ C) for ā ∈ (`g(ā))A.
2) Let ϕ,ψ, ϑ be first order formulas, ϕ = ϕ(x̄) mean that x̄ is a sequence of variables
with no repetitions including all free variables of ϕ (usually x̄ = 〈x` : ` < `g(x̄)〉).
Let ϕ(x̄, ȳ) mean that we have a sequence of variables x̄ and parameters ȳ where
x̄ˆȳ is with no repetitions; so ϕ = ϕ(x̄, ȳ) is not exactly equality.
3) I, J denote linear orders (used to index indiscernible sequences or sets). We shall
use b̄ = 〈b̄t : t ∈ I〉 with I (or J) a linear order, and {b̄t : t ∈ I} ⊆ mC for some
m < ω. We use I,J as subsets of mC for some m (not constant).
4) t denotes truth values, ϕt is ϕ if t = truth or one and is ¬ϕ if t = false or 0. So
ϕif(statement) is ϕ,¬ϕ if the statement is true, false resp., and ϕif(i) means ϕif(i=1).
5) dcl(A) is the definable closure of A, acl(A) is the algebraic closure of A (inside
C or, here more interesting, Ceq).

∗ ∗ ∗

Our main interest here is in (first order complete) theories with the dependence
property, but in the beginning we do not always assume this.
This work is continued in [Sh 783].
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4 SAHARON SHELAH

§1 Indiscernible sequences and averages

We try to continue [Sh:c, Ch.II,4.13], but we do not rely on it so there is some
repetition. In [Sh:c], the notion stable (complete first order) theories, the notions
of indiscernible set and its average (and local versions of them) play an important
role. In an unstable theory, indiscernible sequences are not necessarily indiscernible
sets. Still for an indiscernible set I if T has the dependence property, the basic claim
guaranteeing the existence of averages (any formula ϕ(x̄, ā) divide I into a finite
and a co-finite set) holds. Moreover, any ϕ(x̄, ā) divides any indiscernible sequence
into the union of < nϕ convex sets. For any T , we can still look at the first
order formulas ϕ(x̄, ȳ) which behaves well, i.e. any ϕ(x̄, b̄) divide any indiscernible
sequence b̄ to a finite/cofinite set.

In 1.3 - 1.9 + 1.9(c) + (d) we define the relevant notions: average type for an
ultrafilter, Av(J, D) or Avϕ(J, D) or any average type for an indiscernible sequence
Av(J, 〈b̄t : t ∈ I〉) and majority (maj) for finite sequences (saying how the majority
behave). We define the set of stable formulas for an indiscernible b̄ (stfor(b̄); also
dpfor(b̄) which is Lτ(T ) for T with the dependence property), and state some basic
properties.

We define a notion of distance (< ω) between indiscernible sequences (as in
[Sh:93]). Being of finite distance is an equivalence relation and this is related to
canonical bases (of types, of indiscernible sets) which play important role for stable
theories, hence we try to define parallels in 1.9, see 1.13(2).

Then we note a dichotomy for the types p ∈ Sm(M). Such a type p may be
stable (see Definition 1.19, Claim 1.16 - 1.31); not only is then the type definable,
but for every ultrafilter D on mM with Av(M,D) = p, any indiscernible sequence
constructed from D is an indiscernible set, and the definition of p comes from an
appropriate finite large enough (∆, k)-indiscernible set. If p ∈ Sm(M) is non-stable,
that is not stable, then there is a partial order with infinite chains closely related to
it. We note that if T is unstable with the dependence property, then some ϕ(x, y, c̄)
define a quasi order with infinite chains and also that if T is unstable some ϕ(x, y; c̄)
has the order property (though not necessarily the property (E) of Eherenfeucht,
see [Eh57], some ϕ(x1, . . . , xn) is an irreflexive relation on some infinite set in some
model of T ). It may be hard now to see how he could have not defined stable, but
without Ceq, and no dichotomical theorem, looking for a reasonable property for
which the proof works, it had been quite natural.

On the subject see [Sh:c, II].
By [Sh 10] the possible function fT,ϕ(x̄,ȳ)(λ) = Sup{|Smϕ (A)| : |A| ≤ λ} are charac-
terizing (if ϕ(x̄; ȳ) stable is: ≤ λ, if ϕ unstable without independence then Ded(λ)
and if with the independence property 2λ). Also ϕ(x̄, ȳ) is unstable in T iff it has the
order property iff ϕ(x̄; ȳ) has the strict order property or the independence prop-
erty. Hence T is unstable iff it has the order property or the strict order property
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DEPENDENT THEORIES 5

even by a formula ϕ′(x, ȳ). But it follows there that even if T has both the inde-
pendence property and the strict order property, if ϕ(x̄, ȳ) has the independence
property some ϕ′(x, ȳ) has the independence property. Then Lachlan proves that
if ϕ(x̄, ȳ) has the strict order property some ϕ′(x, ȳ) has the strict order property.

More on “ϕ(x̄, ȳ) with the independence property”, see Laskowski [Lw92].
The above settles fT,ϕ, now for fT (λ) = sup{|S(A)| : |A| ≤ λ} this gives only

(fT,ϕ(λ))|T |, Keisler [Ke76] show that if a countable T is unstable without the

independence property but if Ded(λ) does not bound for some λ ≥ 2|T | then
fT (λ) = Ded(λ)ℵ0 for λ ≥ 2|T |. In [Sh:c, III] it is proved (for T not nec-
essarily countable, unstable without the independence property) that for some
κ = κord(T ) ≤ |T |+, fT (λ) = Ded(λ)<κOrd(T ) for λ ≥ 2|T |.

In [Sh 10], [Sh:a, II,§4], contains some claims on averages when T (or ϕ) has
the dependence property continued here. On other possible dividing lines among
unstable theories see [Sh 500, §2], (SOPn, n ≥ 3), [DjSh 692], (NOPn, n = 1, 2),
[DjSh 710] (the oak property), [Sh 702].

We may look at Th(M,P1, . . . , Pn) with P` a unary relation, this is connected
to investigating a model of T in logics with extra quantifiers; see Baldwin Shelah
[BlSh 156], Shelah [Sh 205], [Sh 284b], [Sh 284c].

Baldwin Benedikt [BlBn00] deal with the following. Let N be a model of T, T
with the dependence property, we expand N by adding a unary predicate P inter-
preted as an indiscernible sequence, I. We extend (N, I) to an |I|+-saturated model
and ask is (M,P ) benign (see, e.g., [BBSh 815]).

Grossberg Lessman [GrLe00, §4] deals with the context: let T be complete first
order theory, C its monster model, p say a 1-type, now we deal with the order
property, independence property and strict order property when we restrict the
parameters and variables, i.e., satisfaction, to p(C), mainly generalizing parallels of
results in [Sh:c], in particular the average ϕ(x, ȳ) has the order property iff it has
the strict order property or the independence property1. Compare with [Sh:c, II].

We thank John Baldwin and an anonymous reader for some comments and Eyal
Firstenberg for a very careful reading, corrections and comments.

1.1 Context. T a complete first order theory, its monster model being C = CT as
usual in [Sh:c] the monster, Ceq is when we add elements to designate equivalence
classes.

1.2 Definition. 1) T has the dependence property or is dependent means it does
not have the independence property whose definition is repeated below.

1so though the names are similar this is not specially related to §1, e.g., the notion of stable

types are not related
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6 SAHARON SHELAH

2) T has the independence property if some formula ϕ(x̄, ȳ) has the independence
property (in T ), which means that for every n

�nϕ C |= (∃ȳ0, . . . , ȳn−1)
∧
η∈n2

(∃x̄)(
∧
`<n

ϕ(x̄, ȳ`)
if(η(`))).

3) The formula ϕ(x̄; ȳ) has the dependence property (in T ) if it does not have the
independence property.

We can use below just J just of the form ω>B.

1.3 Definition. Consider a set of I of finite sequences of lengthm from the monster
model C where m < ω, and an ultrafilter D over I.
1) Let Dom(D) = I.
2) For J a set of finite sequences from C we let Av(J, D) be {ϕ(x̄, ā) : x̄ = 〈x` : ` <
m〉, ā ∈ J and {b̄ ∈ I :|= ϕ(b̄, ā)} ∈ D}}. It will be called the D-average over J or
the average type over J by D. If J = ω>B abusing our notation we may write B
instead of J (or M if B = |M |). (Av stands for average).
3) Avϕ(A,D) where ϕ = ϕ(x̄, ȳ) is the set of formulas of the form ϕ(x̄, ā) or the
form ¬ϕ(x̄, ā) belonging to Av(A,D) and Av∆(A,D) is the union of Avϕ(A,D) for
ϕ ∈ ∆. Similarly Avϕ(J, D), Av∆(J, D).
4) Let D be an ultrafilter on nB and B ⊆ A and I is an infinite linear order.

We say b̄ = 〈b̄t : t ∈ I〉 is based on D over A or b̄ is an (A,D)-indiscernible
sequence or is a D-indiscernible sequence over A if for each t ∈ I the type tp(b̄t, A∪
{b̄s : s <I t}) is the average by D over A∪{b̄s : s <I t}. If A = ∪{c̄ : c̄ ∈ Dom(D)},
i.e. A is the domain of D we may write “b̄ is a D-indiscernible sequence” or b̄ is
based on D. This makes sense for I finite but we shall mention it in such a case.
5) Let p ∈ Sm(B) and B ⊆ A. We say b̄ = 〈b̄t : t ∈ I〉 is based on p over A if for
some ultrafilter D on mB the sequence b̄ is based on D over A and p = Av(B,D).

1.4 Comment: 1) If D is a principal ultrafilter on J, say {b̄∗} ∈ D then Av(B,D) =
tp(b̄∗, B).

2) If b̄ = 〈b̄t : t ∈ I〉 is based on D over A then D is a principal ultrafilter iff
(∀s, t ∈ I)(b̄s = b̄t).

1.5 Claim. 1) For D an ultrafilter on I ⊆ mC and A ⊆ C the set Av(A,D) is a
complete m-type over A, i.e., ∈ Sm(A) (and it does not split over ∪I, see Definition
4.23).
2) Let p ∈ Sm(A). Then p is finitely satisfiable in B iff p = Av(A,D) for some
ultrafilter D on mA.
3) If p ∈ Sm(M) then p is finitely satisfiable in M .
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DEPENDENT THEORIES 7

Proof. Easy.

1.6 Claim. Let D be an ultrafilter on mB and B ⊆ A.
0) Assume that b̄1 = 〈b̄1t : t ∈ I1〉 is based on D over A and b̄2 = 〈b̄2t : t ∈ I2〉 and
for any n < ω, t1 <I1 . . . <I1 tn and s1 <I2 . . . <I2 sn we have tp(b̄1t1ˆ . . . ˆb̄1tn , A) =

tp(b̄2s1ˆ . . . ˆb̄2sn , A). Then b̄2 is based on D over A, (see part (5)); (if I1 is finite
we should add |I2| ≤ |I1|).
1) For any linear order I there is b̄ = 〈b̄t : t ∈ I〉 based on D over A.
2) If I is a linear order and b̄ = 〈b̄t : t ∈ I〉 is based on D over A, then b̄ is an
indiscernible sequence over A.
3) If b̄ = 〈b̄t : t ∈ I〉 is based on D over A and J ⊆ I, then b̄ � J = 〈b̄t : t ∈ J〉 is
based on D over A; here we allow that J is finite.
4) If b̄` = 〈b̄`t : t ∈ I〉 is based on D over A for ` = 1, 2 then b̄1, b̄2 realizes the
same type over A (in C); again we allow I to be finite.
5) If b̄` = 〈b̄`t : t ∈ I`〉 is based on D over A and n < ω and I` |= t`1 < . . . < t`n for
` = 1, 2, then the sequences b̄1

t11
ˆ . . . ˆb1t1n

and b̄2
t21

ˆ . . . ˆb̄2t2n
realize the same type over

A.
6) p = Av(A,D) does not split over B, which means that: if b̄, c̄ ∈ mA,M < ω and
tp(b̄, B) = tp(c̄, B) and ϕ = ϕ(x̄, ȳ) a formula, then ϕ(x̄, b̄) ∈ p⇒ ϕ(x̄, c̄) ∈ p.

Proof. Easy, E.g.
1) If I is well ordered, choose b̄t by induction on t. By compactness this holds for
any I. �1.6

1.7 Definition. 1) For an infinite linear order I such that for some2 infinite linear
orders I1, I2 we have I = J1 + I2 and an indiscernible sequence b̄ = 〈b̄t : t ∈ I〉,
having `g(b̄t) = m for t ∈ I, we define:

(a) stforpa(b̄) = {ϕ(x̄, ȳ, c̄) : `g(x̄) = m, and for every ā ∈ `g(ȳ)C, the set
{t ∈ I : C |= ϕ(b̄t; ā, c̄)} is finite or the set {t ∈ I : C |= ¬ϕ(b̄t; ā, c̄)} is
finite}
(stfor stands for stable formulas, pa stands for parameters)

(b) stfor(b̄) = {ϕ(x̄; ȳ) : ϕ(x̄, ȳ) ∈ stforpa(b̄), i.e., no parameters}
(c) dpfor(b̄) = {ϕ(x̄, ȳ) : `g(ȳ) = m and for every ā ∈ `g(ȳ)C the set
{t ∈ I : C |= ϕ[ā, b̄t]} is a finite union of convex subsets of I}.
Let dpforpa(b̄) be defined similarly allowing parameters, obviously dpfor
stands for “formula with the (relevant) dependence property”

2or demand in each of the definitions below that if J is a linear order extending I and b̄t for

t ∈ J\I such that 〈b̄t : t ∈ J〉 is an indiscernible sequence the condition on ϕ(x̄, ȳ) holds
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8 SAHARON SHELAH

(d) dpforn(b̄) is defined similarly when the union is of ≤ n convex sets; similarly
is the other cases

(e) writing stforpa(b̄) = L(τ) we mean the set of “relevant” formulas.

2) For a sequence b̄ = 〈b̄t : t < k〉 with b̄t ∈ mC, and formula ϕ = ϕ(ȳ, z̄), `g(ȳ) = m,
we define

majϕ(A, 〈b̄` : ` < k)〉) = {ϕ(ȳ, c̄)t :t ∈ {true,false},

c̄ ∈ `g(z̄)A, and |{` :|= ϕ(b̄`, c̄)
t}| > k/2}.

Clearly “ϕ(ȳ, c̄) ∈ majϕ(C, 〈b̄` : ` < k〉)” is a first order property of c̄ (with the
parameters b̄0ˆ . . . ˆb̄k−1).
If not said otherwise we use k odd so that we have “completeness”.
(Note that maj stands for majority; this is not necessarily a type, just a set of
formulas).
3) E = Ekϕ(ȳ,z̄), where ϕ(ȳ, z̄) is a formula in Lτ(T ), written z̄1Ez̄2 with `g(z̄1) =

`g(z̄2) = (`g(x̄))× k (written (x̄1, . . . , x̄n) instead of x̄1ˆ . . . ˆx̄n, abusing notation;
normally k is odd) is defined as follows: (x̄0, . . . , x̄k−1)E(x̄′0, . . . , x̄

′
k−1) =:

(∀z̄)(
∨

u⊆k,|u|>k/2

∧
`∈u

ϕ(x̄`, z̄) ≡
∨

u⊆k,|u|>k/2

∧
`∈u

ϕ(x̄′`, z̄)).

Of course, it is an equivalence relation.

1.8 Claim. 1) If b̄ = 〈b̄t : t ∈ I〉 is an infinite indiscernible sequence, `g(b̄t) = m
and ϕ(ȳ; z̄) ∈ stfor(b̄) so `g(ȳ) = m, then for every k large enough we have:

(a) for any c̄ of length `g(z̄), for some truth value t the set {t ∈ I :|= ϕ(b̄t, c̄)
t}

has < k/2 members

(b) if t0, . . . , tk−1 are distinct members of I then majϕ(A, 〈b̄t` : ` < k〉) ∈ Smϕ (A)

for every A ⊆ C, in fact for every nonprincipal ultrafilter D over {b̄t : t ∈ I}
and set A we have majϕ(A, 〈b̄t` : ` < k〉) is a subset of Av(A,D), in fact is
equal to Avϕ(A,D)

(c) if t0, . . . , tk−1 ∈ I with no repetitions and s0, . . . , sk−1 ∈ I with no repetition
then (b̄t0 , . . . , b̄tk−1

)Ekϕ(x̄,ȳ)(b̄s0 , . . . , b̄sk1 )

(d) for some finite ∆ we have: if I ′, I ⊆ J where J is a linear order, b̄′ = 〈b̄′t :
t ∈ J〉, b̄′ � I = b̄ and b̄′ is ∆-indiscernible sequence, |I ′| ≥ k, then

(α) (b),(c) holds for b̄′ � I ′ and

(β) ϕ(ȳ, z̄) ∈ stfor(b̄′ � I ′).
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DEPENDENT THEORIES 9

2) Let b̄ = 〈b̄t : t ∈ I〉 be an indiscernible sequence ϕ(ȳ; z̄) ∈ dpfor(b̄) so `g(ȳ) = m
then for some k = kϕ,b̄:

(a) for any c̄ of length `g(z̄) and t the set {t ∈ I : ϕ[b̄t, c̄]
t} is the union of ≤ k

intervals.

3) The k above depends only on 〈pn : n < ω〉 where pn is tp(b̄t1ˆ . . . ˆb̄tn , ∅) for any
t1 <I . . . <I tn.

Proof. 1)

(a) By compactness

(b) just think of the definitions

(c) follows from clause (b)

(d) by compactness.

2), 3) Similarly. �1.8

1.9 Definition. Let b̄ = 〈b̄t : t ∈ I〉 be an infinite indiscernible sequence.
1) We define (Cb stands for canonical bases, working in Ceq):

(a) for ϕ(ȳ; z̄) ∈ stfor(b̄) let Cbϕ(ȳ;z̄)(b̄) be (b̄t0 , . . . , b̄tk−1
)/Ekϕ(ȳ,z̄) ∈ Ceq,

with k = kϕ(ȳ,z̄)(b̄) minimal as in 1.8(1)(a) and any pairwise distinct
t0, . . . , tk−1 ∈ I

(b) Cb(b̄) = dcl{Cbϕ(ȳ,z̄)(b̄) : ϕ(ȳ, z̄) ∈ stfor(b̄)} ⊆ Ceq.

2) If I has no last element then

Avϕ(A, b̄) = {ϕ(x̄, ā)t : for every large enough t ∈ I we have

C |= ϕ(b̄t, ā)t where t is a truth value}

Av∆(A, b̄) = ∪{Avϕ(A, b̄) : ϕ ∈ ∆}

Av(A, b̄) = {ϕ(x̄, ā) :ϕ(x̄, ȳ) ∈ Lτ(T ), ā ∈ ω>A

and |= ϕ(b̄t, ā) for every large enough t ∈ I}.
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10 SAHARON SHELAH

3) Let Avstfor(A, b̄) be Av∆(b̄, A) for ∆ = stfor(b̄), similarly for replacements to
stfor.
4) If the order on I = Dom(b̄) does not matter then we can replace b̄ by {b̄t : t ∈ I}.

1.10 Claim. [T is dependent]
Assume I is a linear order with no last element and b̄ = 〈b̄t : t ∈ I〉 an indis-

cernible sequence, `g(b̄t) = m.
1) dpfor(b̄) = {ϕ(x̄, ȳ): any ϕ and ȳ but x̄ = 〈x` : ` < m〉}.
2) Avϕ(A, b̄) ∈ Smϕ (A), see Definition 1.9(2), i.e., for every ϕ(x̄, c̄), for some t for

every large enough t we have |= ϕ(b̄t, c̄)
t.

3) Av(A, b̄) ∈ Sm(A), see Definition 1.9(2).
4) Avstfor(A, b̄) does not depend on the order of I (so by 1.7 we can use I a set or
infinite linear order which is not necessarily endless).
5) If b̄ is an (infinite) indiscernible set, then stfor(b̄) = dpfor(b̄) = Lτ(T ) (and

stforpa(b̄) = dpforpa(b̄) = {ϕ(x̄, ȳ, c̄) : c̄ ⊆ C, (and of course `g(x̄) = m)}.

Proof. Left to the reader or see [Sh:c, II.4.13] (for part (5) see (A)⇒ (B) in 1.28).

To formalize clause (d) of 1.8(1) let

1.11 Definition. 1) For a set ∆ of formulas and k ≤ ω we say that 〈b̄1t : t ∈
I1〉, 〈b̄2t : t ∈ I2〉 are immediate (∆, k)-nb-s (or the first is an immediate (∆, k)-nb
of the second over A) if:

(a) both are (∆, k)-indiscernible sequences of length ≥ k
(b) for some (∆, k)-indiscernible sequence 〈b̄t : t ∈ I〉 and order preserving

functions h1, h2 from I1, I2 into I respectively we have t ∈ I` ⇒ b̄`h`(t) = b̄t
for ` = 1, 2

(nb stands for neighbors).
2) The relation “being (∆, k)-nb-s” is the closure of being an “immediate (∆, k)-nb”
to an equivalence relation. We say “of distance ≤ n” if there is a chain of immediate
(∆, k)-nb-s of length ≤ n starting with one ending in the other. We may write ∆
instead of (∆, ω) and if ∆ = Lτ(T ) we may omit ∆.
3) We can replace k by < k (and even < ω).
4) We write (A,∆, k) if the indiscernibility is over A (also in part (2)).
5) If b̄1, b̄2 are infinite indiscernible sequences, we say they are “essentially nb-s
(over A)” if for every finite ∆ ⊆ Lτ(T ) and k < ω they are (∆, k)-nb-s (they are
(A,∆, k)-nb-s).
6) If b̄ is an infinite indiscernible sequence over A we let CA(b̄) = {b̄: for some b̄′
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an essentially nb of b̄ over A, b̄ appears in b̄′}.
7) If b̄ is an infinite indisernible sequence over A we let C ′A(b̄) = {b̄ : b̄ appears in
some b̄′, an infinite indiscernible sequence over A which is an A-nb of b̄}.

1.12 Remark. C ′A(b̄) was defined in [Sh:93, Def.5.1](4).

1.13 Claim. 1) If 〈b̄t : t ∈ I〉 is an infinite indiscernible sequence and ϕ(ȳ, z̄) ∈
dpforn(〈b̄t : t ∈ I〉), then for some finite ∆ and k, for any (∆, k)-nb sequence
〈b̄′t : t ∈ I ′〉 of 〈b̄t : t ∈ I〉 we have ϕ(ȳ, z̄) ∈ dpforn(〈b̄′t : t ∈ I ′〉).
2) The result in (1) holds also for stforn(〈b̄t : t ∈ I〉). If b̄ = 〈b̄t : t ∈ I〉 is an
infinite indiscernible sequence and ϕ(ȳ, z̄) ∈ stfor(b̄), then for some finite ∆ and k
for any (∆, k)-nb b̄′ of b̄ we have Cbϕ(ȳ,z̄)(b̄

′) = Cbϕ(y,z̄)(b̄) and Avϕ(ȳ,z̄)(C, b̄
′) =

Avϕ(ȳ,z̄)(C, b̄).

3) If b̄1, b̄2 are (∆, k)-nb-s of distance ≤ n for every finite ∆ and k < ω, then they
are Lτ(T )-nb-s of distance ≤ n.

4) Like part (3) with a fixed k, i.e., if b̄1, b̄2 are (∆, k)-nb-s of distance ≤ n for
every finite ∆, then they are (Lτ(T ); k)-nb-s of distance ≤ n.

5) If b̄ is an infinite indiscernible sequence, then stfor(b̄) = ∪{stforn(b̄) : n < ω}.

Proof. Easy. (Use compactness for (3) and (4).)

∗ ∗ ∗

1.14 Definition. Let p ∈ Sm(B).
1) We say p � ϕ is definable where ϕ = ϕ(x̄, ȳ) and `g(x̄) = m, if some ψ(ȳ, c̄) define
it with c̄ ⊆ B, where
2) We say ψ(ȳ, c̄) defined p � ϕ where ϕ = ϕ(x̄, ȳ) if:

(∗) for every ā ∈ `g(ȳ)B we have
ϕ(x̄, ā) ∈ p⇔ C |= ψ[ā, c̄].

3) We say p � ϕ is ∆-definable if it is definable by some ψ(ȳ, c̄) with ψ(ȳ, z̄) ∈ ∆.
4) We say p ∈ Sm(B) is definable if every p � ϕ is definable.

1.15 Claim. The number of definable p ∈ Sm(B) is at most ≤ (|B|+ 2)|T |.

Proof. For every definable p ∈ Sm(B) choose a sequence 〈ψϕ,p(ȳ, c̄ϕ,p) : ϕ =
ϕ(x0, . . . , xm−1; ȳ) ∈ Lτ(T )〉 such that ψϕ,p(ȳ, c̄ϕ,p) define p � ϕ and c̄ϕ,p ⊆ B. Now
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12 SAHARON SHELAH

(a) the number of such sequences is ≤ (|B|+ 2)|T |

(b) if p1, p2 ∈ Sm(B) and 〈ψϕ,p1(ȳ, c̄ϕ,p1) : ϕ(x0, . . . , xm−1; ȳ) ∈ Lτ(T )〉 is equal
to 〈ψϕ,p2(ȳ, c̄ϕ,p2) : ϕ(x0, . . . , xm−1; ȳ) ∈ Lτ(T )〉, then p1 = p2.

Together we are done. �1.15

1.16 Claim. 1) Assume that B ⊆ C, p ∈ Sm(B) and D is an ultrafilter on mB
and b̄ = 〈b̄t : t ∈ I〉 is an infinite D-indiscernible sequence over B (see ?(4)) such

—> scite{np.1} undefined
that Av(B,D) = p. Then there is a function F from {(A,∆) : A ⊆ B is finite and
∆ ⊆ Lτ(T ) is finite} into D, but we may write F∆(A) instead of F ((A,∆)) and

F∆(b̄0, . . . , b̄`−1, A) instead of F∆(b̄0 ∪ . . . ∪ b̄`−1 ∪A), such that:

(∗) if α ≤ ω and for each ` < α we have b̄` ∈ mB, b̄` ∈ F∆(b̄0, . . . , b̄`−1, A)(∈ D)
then the sequence 〈b̄t : t ∈ I〉ˆ〈b̄` : ` ∈ α∗〉 (where the superscript ∗ in α∗

means invert the order) is a ∆-indiscernible sequence over A.

2) Let p ∈ Sm(B), D, b̄ = 〈b̄t : t ∈ I〉, A = ∅ be as in part (1). For any ϕ(ȳ, z̄)
there are a finite ∆ϕ ⊆ Lτ(T ) and kϕ < ω [also large enough as in 1.8] such that:

if b̄` ∈ mB for ` < k where k ≥ kϕ are as in part (1) for ∆ = ∆ϕ, then we have:

~ if ϕ(ȳ, z̄) ∈ stfor(b̄) then

(i) Avϕ(C, b̄) = majϕ(C, 〈b̄` : ` < k〉) = Avϕ(C, D)

(ii) p � ϕ(ȳ, z̄) and even p+ = Avϕ(C, D) is definable by a first order
formula with parameters from B (see Definition 1.7(2)).

3) Assume that B`, p`, D`, b̄
` = 〈b`t : t ∈ I`〉 are as in part (1) for ` = 1, 2 and

B1 = B = B2, p1 = p = p2, I1 = I = I2. Then Avϕ(ȳ,z̄)(C, D`) does not depend

on ` provided that ϕ(ȳ, z̄) ∈ stfor(b̄1) ∩ stfor(b̄2) and B = M ≺ C; recall that
Avϕ(ȳ,z̄)(C, b̄

`) = Avϕ(ȳ,z̄)(C, D).

Proof of 1.16. 1) There is no harm with increasing I, so without loss of generality,
(as we can supply appropriate b̄t’s) I has no last element. For simplicity without
loss of generality ∆ is closed under permuting and identifying the variables. Next
we shall choose F∆(A).

Let n < ω be above the number of free variables in any formula in ∆ and let
t0 < . . . < tn−1 < t be in I. Now tp∆(b̄t, A ∪ {b̄t` : ` < n},C) is a finite set
of formulas and let ψ(x̄, c̄) be its conjunction. So ψ(x̄, c̄) ∈ tp(b̄t, B ∪ {b̄s : s <
t},C) = Av(B ∪ {b̄s : s < t}, D) hence J = {b̄ ∈ mB : C |= ψ(b̄, c̄)} ∈ D.
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Choose F∆(A) as any such J; why is F as required? So suppose that A ⊆ B is
finite and let b̄` ∈ F∆(b̄0 ∪ . . . ∪ b̄`−1 ∪A) for ` < `(∗) or for ` < ω. Clearly

(∗)1 b̄′ ∈ F∆(b̄0 ∪ . . . ∪ b̄`−1 ∪ A) implies that [tn−1 < t ∈ I ⇒ b̄t, b̄
′ realizes the

same ∆-type over A ∪ {b̄t0 , . . . , b̄tn−1
} ∪ {b`−1, . . . , b̄0}].

But as 〈b̄s : s ∈ I〉 is an indiscernible sequence over B, and b̄′, b̄`−1, . . . , b̄0 ∈ B, we
can replace t0 < . . . < tn−1 < t, by any t′0 < . . . < t′n−1 < t′ from I, so

(∗)2 if b̄′ ∈ F∆(b̄0 ∪ . . . ∪ b̄`−1 ∪ A) and t′0 < . . . < t′n−1 < t′ in I then b̄′, b̄t′

realizes the same ∆-type over A ∪ {b̄t′0 , . . . , b̄t′n−1
} ∪ {b̄0, . . . , b̄`−1}.

But by the choice of n,

(∗)3 for any b̄ ∈ F∆(b̄0 ∪ . . . ∪ b̄`−1 ∪ A) we have tp∆(b̄, A ∪ {b̄s : s ∈ I} ∪
{b̄`−1, . . . , b̄0}) = ∪{tp∆(b̄, A∪{b̄s0 , . . . , b̄sn−1

}∪{b̄`−1, . . . , b̄0}) : s0 < . . . <
sn−1 are in I}.

By induction on ` < ω we prove that

(∗)4 for k < ω for any mi
0 < . . . < mi

`−1 < ` and ti0 <I . . . <I t
i
k−1 for i = 1, 2 the

∆-type which b̄m1
0
ˆ . . . ˆb̄m1

`−1
ˆb̄t1k−1

ˆ . . . ˆb̄t10 and b̄m2
0
ˆ . . . ˆb̄m2

`−1
ˆb̄t2k−1

ˆ . . . ˆb̄t20
realizes over A are equal.

So together we are done.
2) In Clause (i) the first equality holds by Claim 1.8, Clause (a); that is such ∆
exists by it. For the second equality, if ϕ(x̄, c̄)t ∈ Av(C, D), then we can find
b̄′ = 〈b̄′t : t ∈ I〉 based on (B ∪ c̄, D), by Claim 1.6(1). Apply the first equality with
b′ standing for b̄. Note that tp(b̄′, B) = tp(b̄, B) hence there is an automorphism
of C over B mapping b̄ to b̄′ hence we can in clause (i) replace b̄ by b̄′ (not changing
〈b̄` : ` < 2k〉.
Clause (ii) follows from clause (i) as

� for c̄ ∈ (`g(z̄))C we have: ϕ(x, c̄) ∈ p+ iff ϕ(x̄, c̄) ∈ Av(B ∪ c̄, b̄) iff
ϕ(ȳ, c̄) ∈ Avϕ(C, 〈b̄` : ` < k〉) iff C |= ϑ[c̄, b0, . . . , bk−1] where

ϑ(y, b0, . . . , b̄k−1) =
∨

u⊆k,|u|≥k/r

∨
`∈u

ϕ(y, b̄`).

[Why? The second “iff” holds as Avϕ(C, b̄) restricted to B ∪ c̄ is p+ � ϕ, by
an assumption of our claim and similarly the first. The third iff holds by
clause (i) which we have proved, the fourth iff holds by Definition 1.7(2).]

3) Obvious from clause (i) of part (2). �1.16
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14 SAHARON SHELAH

The notions “p ∈ Sm(B) is finitely satisfiable inB”, “is definable”, “has uniqueness”
and “is stable” are closely related and important here; we shall define now the two
later ones and investigate their relationships.

1.17 Definition. We say p ∈ Sm(B) has unique indiscernibles (or has uniqueness)
when it is finitely satisfiable in B and

� if (∗)(a) D` is an ultrafilter on mB for ` = 1, 2

(b) p = Av(B,D`) ∈ Sm(B) for ` = 1, 2

(c) b̄` = 〈b̄`t : t ∈ I〉 is a (B,D`)-indiscernible sequence,
see Definition 1.3(4), i.e., b̄`t realizes
Av(B ∪ {b̄`s : s <I t,D}) for t ∈ I where of course
I is an infinite linear order

then b̄1, b̄2 realizes the same type over B.

1.18 Claim. If p ∈ Sm(B) is definable and finitely satisfiable in B (the second
follows from the first if B = M), then p has unique indiscernibles.

Proof. For each formula ϕ = ϕ(x̄, ȳ), `g(ȳ) = m let ψϕ(ȳ, c̄ϕ) be such that:

(α) c̄ϕ ⊆ B
(β) for every ā ∈ `g(ȳ)B we have

ϕ(x̄, ā) ∈ p⇔ C |= ψϕ(ā, c̄ϕ).

Let D1, D2 be ultrafilters on mB such that Av(B,D1) = p = Av(B,D2) and let
〈b`t : t ∈ I〉 be as in Definition 1.17.

Now we prove that

(∗)n if tn <I . . . <I t1 and ϕ = ϕ(x̄n, . . . , x̄1, z̄), `g(x̄`) = m, d̄ ∈ `g(z̄)B then
C |= ϕ[b̄1tn , . . . , b̄

1
t1 , d̄] ≡ ϕ[b̄2tn , . . . , b̄

2
t1 , d̄].

Let ϕ(x̄n, . . . , x̄1, ȳ) and d̄ ∈ `g(ȳ)B be given.
We define the formula ϕk(x̄k, x̄k−1, . . . , x̄1, z̄k) and d̄k ∈ `g(z̄k)B by downward in-
duction on k ≤ n.

Case 1: k = n.
ϕn(x̄n, . . . , x̄1, d̄0) = ϕ(x̄n, . . . , x̄1, d̄) so d̄0 = d̄.

Case 2: k < n.
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We have ϕk+1(x̄k+1, . . . , x̄1, d̄k+1), now as p is definable (and fixing some of the
parameters causes no harm) there is ϕk(x̄k, . . . , x̄1, d̄k) with d̄k ⊆ B of course, such
that:

�` for every ā′k, . . . , ā
′
1 ∈ mB we have:

ϕk+1(x̄, ā′k, . . . , ā
′
1, d̄k+1) ∈ p⇔ C |= ϕk(ā′k, . . . , ā

′
1, d̄k).

So we have carried the induction.
Now let ` ∈ {1, 2} and let A = ∪{d̄k : k ≤ n}, it is a finite subset of B, and let
∆ be any finite subset of Lτ(T ) which includes {ϕk : k ≤ n} and let F `

∆ be as in

1.16 with D`, B,A,∆ here standing for D,M,A,∆ there and let ā`i ∈ F `
∆(〈ā`j : j <

i〉 ∪A) ⊆ nB for i < ω and ` ∈ {1, 2}.
So 〈ā`i : i < ω〉 is ∆-indiscernible over A, and clearly by 1.16(1)

�1 if i1 < . . . < in < ω, tn <I . . . <I t1 then
tp∆(ā`i1ˆ . . . ˆā`in , A) = tp∆(b̄`t1ˆ . . . ˆb̄`tn , A).

Easily

�2 for ` ∈ {1, 2}, k ≤ n and i1 < . . . < ik+1 we have

|= ϕk+1[ā`ik+1
, . . . , ā`i1 , d̄k+1] ≡ ϕk[ā`ik , . . . , ā

`
i1 , d̄k]

[Why? It suffices to note that |= ϕk+1[ā`ik+1
, ā`ik , . . . , ā

`
i1
, d̄k+1], iff {ā ∈

mB : ϕk+1[ā, a`ik+1
, . . . , ā`1, d̄k+1]} ∈ D, iff ϕk+1(x̄, ā`ik , . . . , ā

`
i1
, d̄k+1) ∈ p, iff

|= ϕk(a`ik+1
, . . . , a`i1 , d̄k).

Why? The first iff holds by the choice of F `
∆(〈ā`0, . . . , ā`ik+1−1〉), the second

iff as p = Av(B,D`) and the last iff by the choice of ϕk, d̄k.]

hence by the transitivity of ≡

�3 |= ϕn[ā`in , . . . , ā
`
i1
, d̄n] ≡ ϕ0[d̄0]

but ϕn = ϕ and d̄n = c̄ so

�4 |= ϕ[ā`in , . . . , ā
`
i1
, c̄] ≡ ϕ0[d̄0].

So the truth value of ϕ[ā`in , . . . , ā
`
i1
, c̄] does not depend on ` ∈ {1, 2} so together

with 1.16(1) we get (∗)n so we are done. �1.17
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1.19 Definition. 1) We call p ∈ Sm(B) a stable type if:

(a) p is finitely satisfiable in B

(b) for some ultrafilter D on mB satisfying p = Av(B,D) and sequence b̄ =
〈b̄t : t ∈ I〉 based on D (see Definition 1.3(4) so I is infinite) b̄ is an
indiscernible set over B.

2) We call p ∈ S(B) a non-stable type if it satisfies (a) above but not (b).
3) An infinite indiscernible sequence b̄ is stable/nonstable if it is an indiscernible
set/it is not an indiscernible set over the empty set (see 1.28).

1.20 Claim. Assume T is dependent.
1) If p ∈ Sm(B) is stable then p is definable and has uniqueness.
2) If p ∈ Sm(B) is stable, then every infinite b̄ based on p is an indiscernible set,
that is for every D, b̄ = 〈b̄t : t ∈ I〉 as in Definition 1.19 the sequence b̄ is an
indiscernible set over B.
3) The number of stable p ∈ Sm(B) is ≤ (|B|+ 2)|T |.

Proof. 1) The type p is definable by 1.16(2)(ii), 1.10(5) and so has uniqueness by
1.18.
2) Let b̄ be based on D over B and let D1 = D and b̄1t = b̄t. As p is a stable
type there are D′, 〈b̄′t : t ∈ I ′〉 as in Definition 1.19. Let D2 = D′ and we can find
〈b̄2t : t ∈ I〉 such that: b̄2t realizes Av(B∪{b̄′s : s <I t}, D′) (by 1.6). Now clearly I |=
t1 < . . . < tn, I

′ |= s1 < . . . < sn implies tp(b̄′tnˆ . . . ˆb̄′t1 , B) = tp(b̄2snˆ . . . ˆb̄2s1 , B)

for every n (by 1.6(5)) hence also 〈b̄2t : t ∈ I〉 is an indiscernible set over B. By
part (1) the sequences 〈b̄1t : t ∈ I〉, 〈b̄2t : t ∈ I〉 realizes the same type over B hence
also 〈b̄1t : t ∈ I〉 is an indiscernible set over B.
3) By part (1) and 1.15. �1.20

1.21 Claim. 1) Assume p ∈ Sm(B) has uniqueness. If for ` = 1, 2, D` is an
ultrafilter on mB satisfying p = Av(B,D`) and b̄` = 〈b̄`t : t ∈ I〉 is based on D`,
then b̄1, b̄2 has distance ≤ 2.
2) In part (1), instead uniqueness it suffices to assume that n < ω, t0 <I . . . <I tn−1

the sequences b̄1t0ˆ . . . ˆb̄1tn−1
and b̄2t0ˆ . . . ˆb̄2tn−1

realizes the same type.

Proof. Should be easy.
1) By the definition of uniqueness (see Definition 1.17) this follows by part (2).
2) By 1.13 it is enough to prove, for any finite ∆ ⊆ Lτ(T ) and k < ω that b̄1, b̄2

are (∆, k)-nb-s of distance ≤ 2. This in turn follows by 1.16. �1.21
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The definability of p � ϕ proved in 1.16(2) for ϕ ∈ stfor(b̄) say more than stated.
The defining formulas are canonical (i.e., the formula depends on ϕ and T , the
parameters depend also on p).

1.22 Definition. Let ϕ(x̄, ȳ) be a formula ∈ Lτ(T ) which has the dependence
property (holds if T has it).
1) Let k1[ϕ(x̄, ȳ)] = kT [ϕ(x̄, ȳ)] be the minimal k < ω such that there is no sequence
〈ā` : ` < k〉 with ā` ∈ `g(ȳ)C for ` < k such that

C |= ∧η∈n2(∃x̄) ∧`<k ϕ(x̄, ā`)
η(`).

2) We say (k,∆) is suitable to b̄, ϕ if:

(a) b̄ is a ∆-indiscernible sequence

(b) the formulas in ∆ have arity < `g(b̄)

(c) if b̄′ is a ∆-indiscernible sequence of the same ∆-type as b̄, `g(b̄′) > 2k
then for any ā ∈ `g(ȳ)C for some truth value t the set {t ∈ Dom(b̄′) : C |=
ϕ[b̄′t, ā]t} has < k members.

3) We say (k,∆, n̄) is strongly suitable to b̄, ϕ if n̄ = 〈n` : ` ≤ k〉, (a), (b), (c) as
above hold and

(d) if b̄′, 〈b̄′t : t ∈ I〉 is a ∆-indiscernible sequence of the same ∆-type as b̄ and

|I| >
∑
i<k

ni then for no ā ∈ `g(ȳ)C are there t`,m ∈ I (for ` ≤ k,m < n`) with

no repetitions satisfying [t`1,m1
< t`2,m2

≡ (`1 < `2 ∨ (`1 = `2 ∧m1 < m2))]
such that for any m1,m2 < n` we have ϕ[b̄′t`1,m1

, ā] ≡ ϕ[b̄′t`2,m2
, ā] iff `1− `2

is even.

4) ψ(ȳ, z̄) = ψk,ϕ(x̄,ȳ)(ȳ, z̄) is the canonical definition if it is as in the proof of
1.16(2).
5) Similarly for ϕ(x̄, ȳ, c̄).

Trivially

1.23 Claim. In 1.16(2), if ϕ(x̄, ȳ) ∈ stfor(b̄), then p � ϕ is defined by ψk,ϕ(x̄,ȳ)(ȳ, c̄)
for some c̄ ⊆ B (of length `g(z̄ϕ(x̄,ȳ))).

∗ ∗ ∗

Now it should be clear that
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1.24 Claim. If p ∈ Sm(B) is stable and b̄ is an infinite indiscernible set based
on p, then for any automorphism F of Ceq which is the identity over Cb(p), the
sequences b̄, f(b̄) are nb-s of distance ≤ 2. [See Definition 1.11.]

We shall show

1.25 Claim. [T is dependent] If b̄ = 〈b̄t : t ∈ I〉 is an infinite indiscernible set
over ∅ and an indiscernible sequence over A, then b̄ is an indiscernible set over A.

Proof. By 1.28 below.
But we first prove some “local” claim.

1.26 Claim. Assume

(∗)ϕ ϕ = ϕ(x̄1, . . . , x̄n, ȳ), `g(x̄`) = m and for any permutation π of {1, . . . , n}
we let ϕπ = ϕπ(x̄1, . . . , x̄m, ȳ) = ϕ(x̄π(1), . . . , x̄π(n), ȳ).

1) If b̄ = 〈b̄t : t ∈ I〉 is a {ϕ(x̄1, . . . , x̄n, c̄)}-indiscernible sequence but not set and
I = I0 +I1 +I2, |I0| ≥ n−2, |I2| ≥ n−2, then for some permutation π of {1, . . . , n}
and t3, t4, . . . , tn ∈ I0∪I2, we have: ϕπ(x̄1, x̄2, d̄) =: ϕ(x̄1, x̄2, b̄t3 , . . . , b̄t1 , c̄) linearly
ordered 〈b̄t : t ∈ I1〉 that is, for t 6= s ∈ I we have |= ϕ[āt, ās, d̄]⇔ t <I s.
2) In part (1), with I is infinite of course, ϕπ(x̄1; x̄2ˆ . . . ˆx̄n, z̄) /∈ stfor(b̄ � I);
moreover ϕπ(x̄1, x̄2, d̄) /∈ stfor(b̄ � I1).

Proof. See e.g. [Sh:c, II] and history there; the point being that the permuations
exchanging k, k + 1 for k = 1, . . . , n − 1 generate the group of permutations of
{1, . . . , n}. �1.26

More information concerning 1.26 is

1.27 Claim. [T is dependent.]
1) Assume

(a) b̄ = 〈b̄t : t ∈ I〉 is an indiscernible sequence of m-tuples over d̄ and I =
J0 + J1 + J2

(b) ϕ(x̄, ȳ, d̄) /∈ stfor(b̄) and let ϕ′(ȳ, x̄, d̄) = ϕ(x̄, ȳ, d̄)

(c) |J0|, |J2| are finite large enough, in fact just ≥ kϕ(x̄;ȳ,z̄) from 1.8(2).
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Then we can find ψ(x̄, ē) and truth value t such that

(α) for t ∈ J1, |= (∃ȳ)(ψ(ȳ, ē) ∧ ϕ′(ȳ, āt, d̄)t)

(β) for t 6= s ∈ J1 we have
t <J1 s iff
ψ(ȳ, ē), ϕ′(ȳ, āt, d̄)t ` ϕ′(ȳ, ās, d̄)t

(γ) for some n ≤ kϕ(x̄1,x̄2,z̄) and t0 <J . . . <J tn−1 from J0 ∪ J2 and η ∈ n2 we

have ψ(ȳ, ē) = ∧`<nϕ′(ȳ, b̄t` , d̄)η(`).

2) In part (1) we can deduce that

(δ) ϑ(x̄1, x̄2, ē) is a partial order and b̄ � J1 is ϑ(x̄1, x̄2, ē)-increasing where
ϑ(x̄1, x̄2, ē) = (∀ȳ)[ψ(ȳ, ē) ∧ ϕ′(ȳ, x1, d̄)→ ϕ′(ȳ, x̄2, d̄)].

3) Assume in part (1) that J2 = ∅ and |J0| large enough. Then still we can find
ψ(x̄, ē), t and n(∗) such that:

(α) if t1 <J1 . . . <J1 tn(∗) then

(∃ȳ)[ψ(ȳ, ē) & ∧n(∗)
i=1 ϕ

′(ȳ, āti , d̄)t

(β) if s <J1 t1 <J1 . . . <J1 tn(∗) <Jn s then

ϕ′(ȳ, ās, d̄)t, ψ(ȳ, ē) ` ϕ′(ȳ, āt1 , d̄)t ∨ . . . ∨ ϕ′(ȳ, ātn(∗) , d̄)t

(γ) as in part (1).

Proof. 1) Without loss of generality I is dense without first and without last
element. As ϕ(x̄, ȳ, d̄) /∈ stforpa(b̄) for some sequence ā, for both truth value
t the set {t ∈ I : C |= ϕ(b̄t, ā, d̄)t} is infinite. As we can replace ϕ by ¬ϕ
without loss of generality {t ∈ I : C |= ϕ(b̄t, ā, d̄)} is unbounded from above (in
I). As b̄ is an indiscernible sequence over d̄ easily

(∗) for every s ∈ I the type {ϕ(b̄t, ȳ, d̄)if(s<t) : t ∈ I} is consistent.

Let n < ω be minimal such that for some η ∈ n2 and t0 <I . . . <I tn−1 the type
pη<t0,...,tn−1> = {ϕ(b̄t` , ȳ, d̄)η(`) : ` < n} ∪ {¬ϕ(b̄t, ȳ, d̄) : t <I t0} ∪ {ϕ(b̄t, ȳ, d̄) :

tn−1 <I t} is inconsistent. We let η ∈ n2 be as above such that for this n, η is
minimal under the lexicographic order. Such n, η exists as ϕ(x̄, ȳ; d̄) ∈ dpforpa(b̄).

By (∗) above clearly n ≥ 1. Also by the minimality on n clearly η(0) 6= false,
η(n− 1) 6= true, so n ≥ 2, η(0) = true and η(n− 1) = false; so for some k < n− 1
we have η(0) = η(1) = . . . = η(k) 6= η(k + 1).
As pη<t0,...,tn−1> is inconsistent we can find finite sets J− ⊆ {s : s <I t0}, J+ ⊆
{s : tn−1 <I s} such that the set {¬ϕ(b̄s, ȳ, d̄) : s ∈ J−} ∪ {ϕ(b̄t` , ȳ, d̄)η(`) : ` <
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n} ∪ {ϕ(b̄s, ȳ, d̄) : s ∈ J+} is inconsistent.
Let ψ(x̄, d∗) be the conjunction of {¬ϕ(b̄s, ȳ, d̄) : s ∈ J−} ∪ {ϕ(b̄t` , ȳ, d̄)η(`) : ` <
n, ` /∈ {k, k + 1}} ∪ {ϕ(b̄s, ȳ, d̄) : s ∈ J+}. So {ψ(ȳ, d̄∗), ϕ(b̄tk , ȳ, d̄),¬ϕ(b̄tk+1

, ȳ, d̄)}
is inconsistent, so

C |= (∀ȳ)[ψ(ȳ, d̄∗) ∧ ϕ(b̄tk , ȳ, d̄)→ ϕ(b̄tk+1
, ȳ, d̄)].

However {ψ(ȳ, d̄∗),¬ϕ(b̄tk , ȳ, d̄), ϕ(b̄tk−1
, ȳ, d̄)} is consistent (otherwise η′ ∈ n2 such

that (η′(`) = η(`)) ≡ ` /∈ {k, k + 1} and 〈t` : ` < n〉 contradict the minimality of η
by the lexicographic order). So by the indiscernibility

� for s1, s2 ∈ [tk, tk+1]I we have ψ(y, d̄∗), ϕ(b̄s1 , ȳ, d̄) ` ϕ(b̄s2 , ȳ, d̄) iff s1 < s2.

By indiscernibility this clearly finishes the proof of part (1), except the bounds on
|J0|+ |J2|, which we can get by redefining kϕ(x̄,ȳ,z̄) or repeating the proof.
(2), (3) Follows. �1.27

1.28 Claim. [T is the dependent.]
For an infinite indiscernible sequence b̄ = 〈b̄t : t ∈ I〉 (over ∅) the following condi-
tions are equivalent:

(A) b̄ is an (infinite) indiscernible set

(B) stfor(b̄) = Lτ(T )

(C) for every set A, if b̄ is an indiscernible sequence over A, then b̄ is an
indiscernible set over A.

Proof. We shall prove three implications completing a “circle”.

(C)⇒ (A):
Holds as (A) is a special case of (C), i.e. choosing A = ∅.

(A)⇒ (B):
Assume ϕ(x̄, ȳ) /∈ stfor(b̄) then for every n for some c̄n ∈ `g(ȳ)C the sets Itrue

n =:
{t ∈ I :|= ϕ[b̄t, c̄n]} and I false

n = {t ∈ I :|= ¬ϕ[b̄t, c̄n]} has ≥ n members. Let
h : I → {true,false}, and define ph = {ϕ(b̄t, ȳ)h(t) : t ∈ I}, and we shall show below
that ph is consistent, so T has the independence property, contradiction, so there
is no ϕ(x̄, ȳ) /∈ stfor(b̄), hence stfor(b̄) = Lτ(T ), i.e., condition (B) holds.

So let q be a finite subset of ph, so for some finite J ⊆ I we have q = {ϕ(b̄t, ȳ)h(t) :
t ∈ J}. Let n = |J | and so there is a permutation π of the set I such that

t ∈ J ⇒ π(t) ∈ I
h(t)
n , possible as |It

n| ≥ n. As b̄ is an indiscernible set there
is an automorphism F of C such that t ∈ I ⇒ F (b̄t) = b̄π(t). Clearly F (q) =
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{ϕ(b̄π(t), ȳ)h(t) : t ∈ J} ⊆ tp(c̄n,∪{bt : t ∈ I}), hence F−1(c̄n) realizes q, as
promised.

(B)⇒ (C):
So assume that b̄ is an indiscernible sequence over A. Let I+ = I0 + I + I2 with

I0, I2 any infinite linear orders. Clearly there are b̄∗t ∈ mC for t ∈ I0 ∪ I2 such that
b̄+ = 〈b̄t : t ∈ I+〉 is an indiscernible sequence over A.

If b̄+ is not an indiscernible set overA, then for some c̄ ⊆ A and ϕ = ϕ(x̄1, . . . , x̄n, c̄)
the sequence b̄+ is {ϕ}-indiscernible sequence but not a {ϕ}-indiscernible set, so by
1.26 some ϕ′ = ϕ′(x̄1, x̄2, d̄) = ϕπ(x̄1, x̄2, d̄) linearly ordered {b̄t : t ∈ I} where π is
a permutation of {1, . . . , n}, t3, . . . , tn ∈ I0∪I2 and d̄ = b̄t3ˆb̄t4ˆ . . . ˆb̄tnˆc̄ ⊆ c̄∪{b̄s :
s ∈ I0 ∪ I2}; hence ϕ′(x̄1, x̄2, z̄) is not a stable formula for b̄. So stfor(b̄) 6= Lτ(T ),

contradiction. So b̄+ hence b̄ is an indiscernible set over A as required. �1.28

∗ ∗ ∗

We now may think on ϕ(x̄, ȳ, c̄) which are stable for b̄ which we get in the ap-
proximation of order in 1.25(4). We may wonder can we not by expanding p (with
more variables, over the same B preserving finite satisfiability in B) get clearer
picture. This may help in getting indiscernible sequences. (See more in concluding
remarks).

1.29 Definition. If p ∈ Sm(B) is finitely satisfiable in B let

(a) stfor(p) = ∩{stfor(b̄): for some ultrafilterD on mB satisfying p = Av(B,D),
the sequence b̄ = 〈b̄α : α < ω〉 an indiscernible sequence obeying D} (this
does not matter if we take one or all such b̄ by 1.6(4),(5))

(b) Cb(p) = ∩{Cb(b): for some ultrafilter D on mB satisfying Av(B,D) = p
the sequence b is a (D,B)-indiscernible sequence (in Ceq, of course)}.

Of course

1.30 Observation. For any M ≺ C and p ∈ Sm(M), or just p ∈ Sm(B) is finitely
satisfiable in mB we have stfor(p),Cb(p) are well defined as there are ultrafilters D
on mM such that Av(M,D) = p.

1.31 Observation [T is dependent.]
If b̄ is a {ϕ(x̄`, . . . , x̄1; c̄)}-indiscernible sequence over A but is a ∆ϕ-indiscernible
set over ∅ and has > kϕ members, then b̄ is a {ϕ(x̄0, . . . , x̄k−1; c̄)}-indiscernible

set over A where ∆ϕ = {∃x̄
∧
`<n

ϕπ(x̄, ȳ`)
if(η(`)) : η ∈ n2 and π is a permutation of

{1, . . . , `}} and n = nϕ is such that �nϕ(x̄,ȳ) from 1.2 fail.
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Proof. By the proof of (B) ⇒ (C) inside the proof of 1.28 it is enough to prove
for every permutation π of {1, . . . , `} that ϕ′π(x̄1, ȳ, d̄) = ϕπ(x̄1; x̄2, . . . , x̄`, d̄) ∈
stforpa(b̄).

By the proof of (A) ⇒ (B) inside the proof of 1.28 this follows from “b̄ is ∆ϕ-
indiscernible over ∅. �1.31

1.32 Remark. Note that p ∈ S(M) may be definable but not stable, e.g. M ≺ N are
models of the theory of (R, <), and a ∈ N\M is above all b ∈ N , then tp(a,M,N)
is definable but not stable.

1.33 Conclusion: [T is dependent and is unstable.]
1) There are M ≺ C and non-stable p ∈ S1(M) [in C, not just Ceq!].
2) There is an indiscernible sequence of elements which is not an indiscernible set
of elements (over ∅!)

Proof. 1) As T is unstable, for some M ≺ C we have |S1(M)| > ‖M‖|T | hence by
1.20(3) some type p ∈ S1(M) is non-stable.
2) By part 1) and Definition 1.19. �1.33

Now 1.27(3) applies to 1.33(2) (where x̄i is xi) gives

1.34 Conclusion. If T has the dependence property but is unstable, then some
formula ϕ(x, y; c̄) define on C a quasi order and even partial order with infinite
chains, (so x, y singletons).

Proof. By 1.33(2) and 1.27. �1.34

1.35 Remark. So if T satisfies some version of ∗-stable (see [Sh 300, Ch.II] or [Sh
702]) then T is stable or T has the independence property.

So we may wonder
1.36 Question: 1) Does the “has the dependence property” case in 1.35 is needed?
2) If T has the independence property does some ϕ(x, y, c̄) have the independence
property?
3) Let p ∈ Sm(B) be non-stable, letting D ∈ {D′ : D′ an ultrafilter on mB satisfying
Av(B,D′) = p}, how many b̄D can we find in 1.20 which are pairwise not nb-s,
(for T with the dependence property)?
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Note that

1.37 Observation. If T is unstable, then some formula ϕ(x, y, c̄) has the order
property (equivalently is unstable, hence some ϕ(x, y, c̄)) define a partial order
with infinite chains or has the independence property.

Proof. We know that some ϕ(x, ȳ) is unstable so choose a formula ϕ(x, ȳ, c̄) with
the order property, such that `g(ȳ) is minimal. So there is an indiscernible sequence
〈āiˆ < bi >: i < ω4〉 such that C |= ϕ[bi, āj , c̄] iff j < i. Clearly 〈bi : i < ω4〉 is
an indiscernible sequence over c̄, if it is not an indiscernible set, say not (ϑ, k)-
indiscernible set, ϑ = ϑ(x0, . . . , xk−1, c̄), then possibly permuting the variables of ϑ
the formula ϑ(x, y, b̄0, . . . , bm−1, bn−2, b2ω+1, . . . , b2ω+k,m−3, c̄) linear orders 〈aω+i :
i < ω〉, hence has the order property. So assume 〈bi : i < ω〉 is an indiscernible set
over c̄, and let a′i be the first element of the sequence āi. If 〈b2i+1 : i < ω4〉 is not
an indiscernible sequence over c̄∪{a′2ω} then, by the indiscernibility of 〈āiˆ < bi >:
i < ω〉 over c̄, we can find a formula ϑ(x, y, c̄′), c̄′ ⊆ c̄ ∪ {ai : i < ω or ω3 ≤ i} such
that |= ϑ[b2ω, aω+2i+1, c̄

′] for i < ω but |= ¬ϑ[b2ω, aω2+2i+1, c̄
′] for i < ω and we are

done. So assume 〈b2i+1 : i < ω4〉 is an indiscernible sequence over c̄∪ {a′2ω}, hence
all {a′2j : j < ω4} realizes the same type over {b2i+1 : i < ω4} ∪ c̄ hence for j < 2ω
we can find ā∗2j realizing tp(ā2j , {b2i+1 : i < ω4} ∪ c̄,C) and the first element of ā∗2j
is a′0. This contradicts the choice of ϕ(x, ȳ, c̄) as having the order property with
`g(ȳ) minimal as we can “move” a′0 to c̄. �1.37

∗ ∗ ∗

1.38 Remark. Note that for indiscernible sets, the theorems on dimension in [Sh:c,
III] holds for theories T with the dependence property, see §3.
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§2 Characteristics of types

We continue to speak on canonical bases and we deal with the characteristics of
types and of indiscernible sets. More elaborately, for any indiscernible sequence b̄ =
〈b̄t : t ∈ I〉, I an infinite linear order, we have a measure Ch(b̄) = 〈Chϕ(x̄,ȳϕ)(b̄) :

ϕ(x̄, ȳϕ) ∈ Lτ(T )〉 with x̄ = 〈xi : i < m〉,m = `g(b̄t) for t ∈ J , where Chϕ(x̄,ȳϕ)(b̄)

measure how badly ϕ(x̄, ȳϕ) fail to be in stfor(b̄) (see Definition 2.5), we can find
such b̄’s with maximal such Ch(b̄) and wonder what can we say about them. The
case of an indiscernible set is covered by §1.

2.1 Hypothesis. T has the dependence property.

2.2 Definition/Claim. Let b̄ = 〈b̄t : t ∈ I〉 be an infinite indiscernible sequence,
k < ω. Then

(a) (Claim) if ti ∈ I and i < j ⇒ ti <I tj for i < j < ω and
b̄k = 〈b̄tkiˆb̄tki+1

ˆ . . . ˆb̄tki+k−1
: i < ω〉 then

(α) Cb(b̄) = Cb(b̄1) ⊆ Cb(b̄k),

(β) if ϕ′(x̄1, . . . , x̄k; ȳ) = ϕ(x̄`, ȳ) then:
ϕ′(x̄1, . . . , x̄k; ȳ) ∈ stfor(bk) iff ϕ(x̄`; ȳ) ∈ stfor(b̄)

(γ) if b̄k,1, b̄k,2 are related like b̄k above to our b̄ then Cb(b̄k,1) = Cb(b̄k,2)
(even for the “local” version this is true)

(δ) if ϕ(x̄, ȳ) ∈ dpfor(b̄), ϕ′ = ϕ′(x̄1, . . . , x̄k, ȳ) = ϕ(x̄`, ȳ) & ¬ϕ(x̄m, ȳ)
or ϕ′ = ϕ′(x̄1, . . . , x̄k; ȳ) = (ϕ(x̄`, ȳ) ≡ ¬ϕ(x̄m, ȳ)) then ϕ′ ∈ stfor(bk)

(b) (Definition) let Cbk(b̄) = Cb(b̄k) and Avk(b̄,C) = Avstfor(b̄
k,C)

for any b̄k as above

(c) (Definition) Cbω(b̄) = ∪{Cbk(b̄) : k < ω}
(d) (Fact) if I1, I2 are infinite subsets of J and b̄ = 〈b̄t : t ∈ J〉 is an

indiscernible sequence (recall J linear order) then
Cbω(b̄ � I1) = Cbω(b̄ � I2)

(e) (Fact) if the infinite indiscernible sequences b̄1, b̄2 are nb-s, then
Cbα(b̄1) = Cbα(b̄2) for α ≤ ω

(f) (Definition) if p ∈ Sm(B) is finitely satisfiable in mB and α ≤ ω
then let Cbα(p) = ∩{Cbα(b̄): for some ultrafilter D on mB
satisfying Av(B,D) = p, the sequence b̄ is a

(D,B)-indiscernible sequence}.
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Proof. Easy.

Recall: non-forking is quite worthwhile for stable theory; and have several equiv-
alent definitions. There is worthwhile generalization for simple theories; but of
course, not all definitions for stable theories give it for simple T . We may look for a
generalization of non-forking for dependent theories (see alternatives in [Sh 783]).

2.3 Definition. For α ≤ ω. We say p ∈ Sm(A) does not α-fork over B ⊆ A, if for
every model M ⊇ A for some q ∈ Sm(M) extending p we have Cbα(q) ⊆ aclCeq(B).
Similarly we say that C/B does not α-fork over A ⊆ B if c̄ ⊆ C ⇒ tp(C,B) does
not α-fork over it.

2.4 Remark. Assume that T is a simple theory, b̄ = 〈b̄t : t ∈ I〉 is an infinite
indiscernible sequence. Then we cannot find 〈ān : n < ω〉 indiscernible sequence,
〈ϕ(x̄, ān) : n < ω〉 pairwise contradictory (or just m-contradiction for some m) and∧

n<ω

(∃∞t ∈ I)(ϕ(b̄t, ān)).

Proof. Assume toward contradiction that ϕ, 〈ān : n < ω〉 form a counterexample.
By thinning and compactness without loss of generality the set In = {t ∈ I : C |=
ϕ[bt, ān]} are pairwise disjoint, and each is a convex subset of I.
Now we can repeat and get the tree property. More fully, for any cardinals µ > κ
we consider J = κµ as a linearly ordered set, ordered lexicographically and for
ρ ∈ κ>µ let Jρ = {ν ∈ J : ρ / ν}; without loss of generality let I0 ⊆ I has order
type ω and let h : I → J be order preserving. We can find c̄η ∈ C for η ∈ J such
that 〈c̄η : η ∈ J〉 is an indiscernible sequence satisfying t ∈ I ⇒ c̄h(t) = b̄t. By
compactness, for each α < κ we can find 〈aρ : ρ ∈ αµ〉 such that:

(α) 〈ϕ(x̄, āρ) : ρ ∈ αµ〉 are pairwise contradictory (or just any m of them)

(β) η ∈ Jρ, ρ ∈ αµ⇒ C |= ϕ[c̄η, āρ].

Now 〈ϕ(x̄, āρ) : ρ ∈ κ>µ〉 exemplified the tree property. �2.4

We have looked at indiscernible sequences which are stable. We now look after
indiscernible sequences which are in the other extreme.
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2.5 Definition. 1) For b̄ = 〈b̄t : t ∈ I〉 an indiscernible sequence, we define its
character

Ch(b̄) = 〈Chϕ(ȳ,z̄)(b̄) : ϕ(ȳ, z̄) ∈ Lτ(T )〉

where

Chϕ(ȳ,z̄)(b̄) = Max{n :for some c̄ the sequence 〈TV(ϕ(b̄t, c̄)) : t ∈ I〉
change sign n times (i.e. I is divided to n+ 1 intervals)}

(so it is ≤ 2kϕ(ȳ,z̄)).
2) For p ∈ Sm(A), let

(a) CH(p) = {Ch(b̄) : b̄ is an infinite indiscernible sequence such that every b̄t realizes p}
(b) for a formula ϕ = ϕ(x̄0, . . . , x̄k−1) let CH(p, ϕ(x̄0, . . . , xk)) = {Ch(b̄) : b̄ =
〈b̄t : t ∈ I〉 is an infinite indiscernible sequence such that t0 <I t1 <I . . . <I
tk−1 ⇒ C |= ϕ[b̄t0 , . . . , b̄tk−1

] and each b̄t realizes p}
(c) CHmax(p) = {n̄ ∈ CH(p) : there is no bigger such n̄′ ∈ CH(p)}, when “n̄′

is bigger than n̄” mean (∀ϕ)(nϕ ≤ n′ϕ) & (∃ϕ)(nϕ < n′ϕ)

(d) CHmin(p, ϕ(x̄0, . . . , xk−1)) = {n̄ ∈ CH(p, ϕ(x̄0, . . . , x̄k−1)): there is no
smaller n̄′ ∈ CH(p, ϕ(x̄0, . . . , x̄k−1))}.

Note: for the trivial ϕ, CH(p, ϕ) = CH(p) hence CHmax(p, ϕ) = CHmax(p).

2.6 Remark. 1) Instead of counting the number of interchanges of signs we can look
at

(a) chϕ(ȳ,z̄)(b̄) = Max{n: for some sequence c̄, if J is a cofinite subset of I

then the sequence 〈 TV(ϕ(b̄t, c̄)) : t ∈ J〉 change signs ≥ n times} and then
define cH(p), cHmax(p), etc.

2) Alternatively use

(b) Γϕ(ȳ,z̄)(b̄) = {η ∈ ω>2 : C |= (∃ȳ)
∧

`<`g(η)

ϕ(b̄t` , ȳ)η(`) for t0 < . . . < t`g(η)−1}

and/or other variants.
2) Clearly 2.5(2) is a try to get “maximal”, “most general” extensions of p (as
non-forking is for stable T )
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2.7 Claim. Let p ∈ Sm(A) be non-algebraic, x̄ = 〈x` : ` < m〉.
1) If n̄ = 〈nϕ : ϕ = ϕ(x̄, ȳ)〉 ∈ CH(p), then there is n̄′ ∈ CH max(p) such that
n̄ ≤ n̄′.
2) CHmax(p) is non-empty.

3) If CH(p, ϕ) 6= ∅ then CHmin(p, ϕ) 6= ∅ and CHmax(p, ϕ) 6= ∅.

Proof. Let R,< be an n-place and 2n-place respectively predicate not in τT and let

Γp = Th(CT , c)c∈A ∪ {(∀x̄)[R(x̄)→ ϑ(x̄, c̄)] : ϑ(x̄, c̄) ∈ p}

∪ {(∃x̄0, . . . , x̄k−1)(
∧
`<k

R(x̄`) &
∧
`1<`2

x̄`1 6= x̄`2) : k < ω}

∪ {x̄ < ȳ → R(x̄) ∧R(ȳ)}
∪ {“ ≤ linearly ordered {x̄ : R(x̄)}”}
∪ {(∀x̄1), . . . , (∀x̄k)(∀ȳ1) . . . (∀ȳk)(x̄1 < x̄2 < . . . < x̄k

& ȳ1 < . . . < ȳk → ψ(x̄1, . . . , x̄k, c̄) ≡ ψ(ȳ1, . . . , ȳk, c̄) :

c̄ ⊆ A and ψ ∈ Lτ(T ) and k < ω}

(with x̄i = 〈xi,` : ` < m〉). For n̄ = 〈nϕ(x̄,ȳ) : ϕ(x̄, ȳ) ∈ L(τT )〉 and ϕ̄ = 〈ϕi(x̄, ȳi) :
i < |T |〉 listing the formulas for Lτ(T ) let

Γn̄,ϕ̄ ={ϑni,ϕi : i < |T |} where

ϑn,ϕ(x̄,ȳ) = (∃ȳ)(∃x̄0, . . . ,∃x̄n)[x̄0 < x̄1 < . . . < x̄n &∧
`<n

(ϕ(x̄`, ȳ)) ≡ ¬ϕ(x̄`+1, ȳ)].

Now easily

(a) Γp is a consistent type (using p being non algebraic and Ramsey theorem)

(b) if n̄ ≤ n̄′ then Γn̄,ϕ̄ ⊆ Γn̄′,ϕ̄

(c) Γp ∪ Γn̄,ϕ̄ is consistent iff (∃n̄′)[n̄ ≤ n̄′ ∈ CH(p)]

(d) if J is a directed (partial) order, n̄t = 〈nt,ϕ(x̄,ȳϕ) : ϕ(x̄, ȳϕ) ∈ Lτ(T )〉 ∈
CH(p, ϕ) increases with t ∈ J and n̄∗ = 〈n∗ϕ(x̄,ȳϕ) : ϕ(x, ȳϕ)〉 and3 n∗ϕ(x̄,ȳϕ) =

max{nt,ϕ(x̄,ȳϕ) : t ∈ J}, then n̄∗ ∈ CH(p̄, ϕ)

(e) like (d) inverting the order.

3well defined as T is dependent
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Together we can deduce the desired conclusions. �2.7

2.8 Question: For p ∈ S(A) (or just p ∈ S(M)), does indiscernible sequences b̄ of
elements realizing p such that Ch(b̄) ∈ CHmax(p), CH(b̄) ∈ CHmin(p, ϕ) play a
special role?
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§3 Shrinking indiscernibles

For stable theories we know that if 〈b̄t : t ∈ I〉 is an indiscernible set over A and
c̄ ∈ ω>C then for some J ⊆ I we have |J | ≤ |T | and 〈b̄t : t ∈ I\J〉 is an indiscernible
set over A∪ c̄∪{b̄t : t ∈ J}. We look more closely at the generalization for theories
with the dependence property (continuing [Sh:c, II]).
The case of indiscernible sets is easier so we delay it.

3.1 Notation. For a linear order I, let comp(I) be its completion.

3.2 Claim. If b̄ = 〈b̄t : t ∈ I〉 is an indiscernible sequence over A and c̄ ∈ ω>C
(so finite), then

(a) there is J∗ ⊆ comp(I), |J∗| ≤ |T | such that

(∗) if n < ω and s̄, t̄ ∈ nI, s̄ ∼J∗ t̄ (i.e., s̄, t̄ realize the same quantifier
free type over J∗ in the linear order comp(I)) then ās̄ = 〈ās` : ` <
n〉, āt̄ = 〈at` : ` < n〉 realize in C the same type over A ∪ c̄

(b) if we fix n and deal with ϕ-types we can demand |J∗| < kϕ,n < ω

(c) if in addition b̄ is an indiscernible set, then in (∗) of clause (a) we can
weaken s̄ ∼J∗ t̄ to (∀`, k)[(s` = sk ≡ t` = tk) & s` ∈ J∗ ≡ t` ∈ J∗ → s` =
t`]

(d) if we replace c̄ by C ⊆ C in (a) we just use |J∗| ≤ |C|+ |T |.

Proof.

(a) by (b)

(b) follows by Claim 3.4 below

(c) similarly

(d) follows.

�3.2

∗ ∗ ∗

The reader may restrict himself in 3.3, 3.4 to the case n = 2 so ā is just an
indiscernible sequence; this suffices for 3.2.
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3.3 Definition. 1) For ∆ ⊆ Lτ(T ), a linear order I,m∗ ≤ ω, n ≤ ω, α` an ordinal
for ` < n, a model M and a set A ⊆ M , we say that ā = 〈au,α,` : ` < n, u ∈
[I]`, α < α` = α|u|〉 is (∆,m∗)-indiscernible over A of the 〈α` : ` < n〉-kind if the
following holds:

(∗) if m < 1 + m∗, I |= t0 < · · · < tm−1, I |= s0 < . . . < sm−1 and for every
v ⊆ m we let uv = {t` : ` ∈ v}, wv = {s` : ` ∈ v} then 〈auv,α,` : ` <
n, v ∈ [m]`, α < α`〉 and 〈awv,α,` : ` ≤ n, v ∈ [m]`, α < α`〉 realizes the same
∆-type over A in M .

2) If we omit ∆ we mean all first order formulas, if we omit m∗ we mean ω. Also
in au,α,` we may omit ` (because it is |u|). Of course nothing changed if we allow
au,α,` to be a finite sequence (with length depending on (α, `) only) but we can
instead increase α`.
3) We add “above J” where J ⊆ I (or J is included in the completion of I) if in (∗)
we demand (∀r ∈ J)

∧
`

(r < t` ≡ r < s` & r = t` ≡ r = s` & t` < r ≡ s` < r).

We say “almost above J” if we add J ∩ {t` : ` < n} = ∅.

3.4 Claim. 1) Assume

(a) ∆ is a finite set of formulas

(b) M a model of T and A ⊆M
(c) ā = 〈au,k,` : ` < n, k < k`, u ∈ [I]`〉 is indiscernible over A

(d) c̄ ∈ ω>M .

Then there is a finite subset J of I or of the completion comp(I) of I such that
〈au,k,` : ` < n, k < k`, u ∈ [I]`〉 is ∆-indiscernible over A ∪ d̄ above J .
2) Moreover, there is a bound on |J | which depend just on ∆, 〈k` : ` < n〉 (and T ),
and so it is enough that ā is ∆1-indiscernible for appropriate finite ∆1.
3) So for every C ⊆ C there is J ⊆ comp(I) of cardinality ≤ |C|+ |T | such that ā
is indiscernible above J over A ∪ C.

Proof. 1) Toward contradiction assume that the conclusion fails. Let m∗ be the
maximal number of free variables in members of ∆ times n. Without loss of gen-
erality I is a complete linear order with a first and a last element. For every finite
J ⊆ I we choose 〈tJ` : ` < mJ〉, 〈sJ` : ` < mJ〉 such that:

(i) mJ ≤ m∗

(ii) tJ0 < tJ1 < . . . < tJmJ−1 and sJ0 < sJ1 < . . . < sJmJ−1
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(iii) for at least one m < mJ we have tJm, s
J
m /∈ J (actually follows from the rest)

(iv) 〈tJ` : ` < mJ〉, 〈sJ` : ` < mJ〉 exemplify that J is not as required

(v) mJ is minimal.

Let b̄0J = 〈aJu,k,` : ` < n, k < k`, u ∈ [{tJ0 , . . . , tJmJ−1}]`〉 and b̄1J = 〈aJu,k,` : ` < n, k <

k`, u ∈ [{sJ0 , . . . , sJmJ−1}]`〉.
So clearly

(∗)1 the ∆-types of c̄ˆb̄0J , c̄ˆb̄
1
J over A are different

[why? by their choice].

For J ∈ [I]<ℵ0 let tJ` = sJ`−mJ for ` = mJ ,mJ + 1, . . . , 2mJ − 1. Let D∗ be an

ultrafilter on [I]<ℵ0 such that t ∈ I ⇒ {J : t ∈ J ∈ [I]<ℵ0} ∈ D∗.
As mJ ≤ m∗ < ℵ0, and D∗ is an ultrafilter, clearly for some m(∗) ≤ m∗ we have

Y0 = {J ∈ [I]<ℵ0 : mJ = m(∗)} ∈ D∗. For ` < 2m(∗), let

I1
` = {t ∈ I : {J ∈ Y0 : tJ` <I t} ∈ D∗}

I0
` = {t ∈ I : {J ∈ Y0 : tJ` = t} ∈ D∗}

I−1
` = {t ∈ I : {J ∈ Y0 : t <I t

J
` } ∈ D∗}.

Clearly 〈I−1
` , I0

` , I
1
` 〉 is a partition of I, I0

` is a singleton or empty, I−1
` is an initial

segment of I and I1
` is an end segment of I. As I is complete there is t∗` ∈ I such

that I0
` 6= ∅ ⇒ I0

` = {t∗`} and {t ∈ I : t ≤I t∗`} ⊇ I
−1
` and {t ∈ I : t∗` ≤I t} ⊇ I1

` . So
there are functions g, h : {0, . . . , 2m(∗)− 1}× {0, . . . , 2m(∗)− 1} → {−1, 0, 1} such
that for each `, k < 2m(∗) we have

{J ∈ Y0 : tJ` ∈ I
h(`,k)
k } ∈ D∗

and

g(`, k) = 1⇔ {J ∈ Y0 : tJ` <I t
J
k} ∈ D∗

g(`, k) = 0⇔ {J ∈ Y0 : tJ` = tJk} ∈ D∗

g(`, k) = −1⇔ g(k, `) = 1.

For any `, k < 2(m(∗)) if there is t satisfying t∗` <I t <I t
∗
k then choose such t∗`,k.

Now let
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Y ∗ = {J ∈ Y0 :for every `, k < 2m(∗) we have tJ` ∈ I
h(`,k)
k ,

and tJ` <I t
J
k ⇔ g(`, k) = 1 and tJ` = tJk ⇔ g(`, k) = 0

and if t∗`,k is well defined then

tJ` < t∗`,k < tJk}.

Clearly Y ∗ ∈ D∗.
For ` < 2m(∗), let I∗` be the convex hull of {tJ` : J ∈ Y ∗}. We let <` be <I if

I∗` ⊆ I−1
` and be >I if I∗` ⊆ I1

` . If none of them hold, then I∗` = {t∗`}, <`= ∅ and
clearly

�0 if <`= ∅ then in (I
h(`,i)
` , <`) there is no last element and t ∈ Ih(`,i)

` ⇒ {J :

t <` t
J
` ∈ I

h(`,i)
` } ∈ D∗

�1 e = {(`, k) : `, k < 2m(∗), I∗` ∩ I∗k 6= ∅} is an equivalence relation and
`ek ⇒<`=<k & t∗` = t∗k

�2 let w = {` : I∗` = {t∗`}} then `ek ∧ ` ∈ w ⇒ k ∈ w & t∗` = t∗k

�3 for each J0 ∈ Y ∗, the set {J ∈ Y ∗: if `ek, ` /∈ w then tJ0k <` t
J
` } belongs to

D∗.

We now choose Jn ∈ Y ∗ by induction on n such that `ek & ` /∈ w ⇒ tJnk <` t
Jn+1

` .
Now

(∗)2 if i(∗) < ω, η ∈ i(∗)2 then the types of b̄0J0ˆb̄0J1ˆ . . . ˆb̄0Ji(∗)−1
and of

b̄
η(0)
J0

ˆb̄
η(2)
J1

ˆ . . . ˆb̄
η(i(∗)−1)
Ji(∗)−1)

over A are equal.

[Why? By the indiscernibility, see Definition 3.3.]

Now by clauses (iv) + (v) in the choice of tJ` , s
J
` (for ` < mJ` = m(∗)) for each i

there is ϕi ∈ ∆ and d̄i ⊆ A such that C |= ϕi[c̄, b̄
0
Ji
, d̄i] ∧ ¬ϕi[c̄, b̄1Ji , d̄i].

Now

(∗)3 the sequence 〈ϕi(ȳ, b̄0Ji , d̄i) : i < ω〉 of formulas is independent.

[Why? For each i(∗) < ω and η ∈ i(∗)2 we need to prove that C |=
(∃ȳ)[

∧
i<i(∗)

ϕi(ȳ, b̄
0
Ji , d̄i)

η(i)]. Now by (∗)2 it is enough to prove that C |=

(∃ȳ)[
∧

i<i(∗)

ϕi(ȳ, b̄
η(i)
Ji

, d̄1
i )].

But c̄ exemplifies the satisfaction of this formula so (∗)3 holds.]
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As ∆ is finite, one ϕ appears as ϕn for infinitely many n’s (though not necessarily
with the same d̄n as we allow A to be infinite), so we get contradiction to “T has
the dependence property”.
2) Similar.
3) Follows. �3.4

3.5 Claim. Assume ā` = 〈ā`t : t ∈ I`〉 is an indiscernible sequence (with the
linear order) I` of cofinality κ > |T | for ` = 1, 2. Then we can find s`α ∈ I` for
` = 1, 2, α < κ such that 〈ā1

s1α
ˆā2
s2α

: α < κ〉 is an indiscernible sequence with

〈s`α : α < κ〉 being <I`-increasing unbounded in I` for ` = 1, 2.

Proof. Easy by 3.3, just choose s1
i , s

2
i by induction on i. �3.5

See more in 4.11.
As 3.5 deal with ∆ = Lτ(T ), we can derive the parallel result for finite ∆ ⊆ Lτ(T ).
3.6 Conclusion 1) Assume

(∗) 〈b̄t : t ∈ I〉 is an indiscernible sequence over A, comp(I) the completion of
I.

For every C ⊆ C there are 〈nϕ(x̄,ȳ) : ϕ(x̄, ȳ) ∈ Lτ(T )〉, a sequence of finite numbers,
J ⊆ comp(I) of cardinality ≤ |C|+ |T | and 〈Jϕ(x̄,ȳ,c̄) : ϕ ∈ Lτ(T )〉, Jϕ(x̄,ȳ,c̄) a finite
subset of J such that:

(∗)0 if J∗ is an initial segment of J including ∪{Jϕ(x̄,ȳ,c̄) : ϕ ∈ Lτ(T ), c̄ ⊆ C}
then b̄ � (J\J∗) is an indiscernible sequence over A ∪ C ∪ {b̄t : t ∈ J∗}

(∗)1 for every ā ∈ `g(ȳ)A and ϕ = ϕ(x̄, ȳ, c̄), c̄ ⊆ C there are n ≤ nϕ(x̄,ȳ) and
t1 < . . . < tn from Jϕ such that if r, s ∈ I\{t1, . . . , tn} and m ∈ [1, n] ⇒
(s <I tm) ≡ (r <I tm) then |= ϕ[b̄s, ā] ≡ ϕ[b̄r, ā]

(∗)2 for every k < ω, ā ∈ `g(ȳ)A, c̄ ∈ `g(z̄)A and ϕ = ϕ(x̄1, . . . , x̄k, z̄, ȳ) there
are n ≤ nϕ and t1 < . . . < tn from Jϕ such that if s1 <I . . . <I sk
and r1 <I . . . <I rk are from J and m ∈ [1, n] & ` ∈ [1, k] ⇒ (s` <I
tm ≡ r` <I tm) & (tm <I s` ≡ tm <I r`) then |= ϕ[b̄s1 , . . . , b̄sk , c̄, ā] ≡
ϕ[b̄r1 , . . . , b̄rk , c̄, ā].

2) Assume

(∗)3 〈b̄u,α,` : ` < n, u ∈ [I]`, α < α`〉 is indiscernible over A and α` < ω for ` < n
(and n < ω).
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For every c̄ there are J ⊆ I, |J | ≤ |T | and finite Jϕ ⊆ J for ϕ ∈ Lτ(T ) such that the
parallel of (∗)1, (∗)2 hold.

Proof. 1) This restates 3.2, 3.4.
2) Similar.

3.7 Question: If < (= ϕ(x, y, c̄)) is a partial order with infinite increasing sequences,
we may consider κ-directed subsets, κ = cf(κ) > |T |, they define a Dedekind cut.

What about orthogonality of those?

3.8 Conclusion. 1) Assume 〈b̄t : t ∈ I〉 is an indiscernible set over A. For every B
there is J ⊆ I such that |J | ≤ |T | + |B| and 〈b̄t : t ∈ I\J〉 is an indiscernible set
over A ∪B.

Proof. Easy.

3.9 Claim/Definition. Assume p ∈ Sm(B) is a stable type and B ⊆ M . Then
dim(p,M) = |I|+ |T | for any I a maximal indiscernible set ⊆ mM base on p is well
defined.
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§4 Perpendicular endless indiscernible sequences

Dimension and orthogonality play important role in [Sh:c], see in particular
Ch.V. Now, as our prototype is the theory Th(Q, <), it is natural to look at co-
finality, this is dual-cf(b̄, A) defined below (4.5(3)), measuring the cofinality of
approaching b̄ from above (here b̄ is always indiscernible sequences with no last
member). So a relative of orthogonality which we call perpencidularity suggest
itself as relevant. It is defined in 4.5, as well as equivalence and dual-cf. Now
perpendicularity is closely related to mutual indiscernibility (see 4.7(1), 4.11(2)),
hence if T is unstable, then there are lots of pairwise perpendicular indiscernible
sequences: if 〈āα : α < λ〉 is an indiscernible sequence, not an indiscernible set and
b̄α = 〈āωα+n : n < ω〉 for α < λ then {b̄α : α < λ} are pairwise perpendicular.
In this section we present basic properties of perpendicularity. In particular, it
is preserved by equivalence (4.11(5)). For perpendicular sequences, we can more
easily restrict them to get mutually indiscernible sets than in §3. In particular we
show that if cf(Dom(b̄1)) 6= cf(Dom(b̄2)) then b̄1, b̄2 are perpendicular.

But for indiscernible sets perpendicularity does not become orthogonality, in fact
it is trivial (see 4.15).

The case of looking at more than two indiscernible sequences reduced to looking
at all pairs (4.14(2), 4.17(2)). Also, as in [Sh:c, V], if b̄ is not perpendicular to āζ

for ζ < ζ∗ and the āζ-s are pairwise perpendicular then ζ∗ < |T |+ (see 4.19).
Lastly, we recall (from [Sh:c]) the density of “types not splitting over small sets”

(for theories with the non independence property), hence the existence of a “quite
constructible” model over any A.

We think
4.1 Thesis: First order T with the dependence property is somewhat like the theory
of the rational order (or real closed fields).

If M is a model of (Q, <) and 〈(I−α , I+
α ) : α < α∗〉 is a sequence of pairwise

distinct Dedekind cuts of M , and Nα is a dense linear order for α < α∗ and N is
M when in the cut (I−α , I

+
α ) we insert Nα, then M ≺ N ; so we have total freedom

of what we put in the cuts.
In the next section we shall prove that if 〈āα : α < α∗〉 is a sequence of pairwise

perpendicluar endless indiscernible sequences that we have quite a total freedom
in choosing 〈dual-cf(āα,M) : α < α∗〉, this is a parallel for the above property of
Th(Q, <).

4.2 Thesis: If b̄1, b̄2 are endless indiscernible sequences, which are not perpendicu-
lar, then there is in a sense an inside definable function showing that I` = {c̄ ∈M : c̄
realizes Av(b̄`, b̄`)} has the same cofinality.
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4.3 Hypothesis. T has the dependence property.

4.4 Definition. 1) We say the infinite sequences b̄1, b̄2 are mutually indiscernible

over A if b̄` is an indiscernible sequence over ∪{b̄3−`t : t ∈ Dom(b̄3−`)} ∪ A for
` = 1, 2. If we omit “over A” we mean A = ∅.
2) We say that the family {b̄ζ : ζ < ζ∗} of sequences is mutually indiscernible over
A, if for ζ < ζ∗ the sequence b̄ζ is an indiscernible sequence over ∪{b̄εt : ε 6= ζ, ε <
ζ∗, t ∈ Dom(b̄ε)} ∪A.
3) We say “b1, b̄2 are mutually ∆-indiscernible over A” if b` is a ∆-indiscernible

sequence over ∪{b̄3−`t : t ∈ Dom(b̄3−`)} ∪A for ` = 1, 2. Similarly in part (2).

4.5 Definition. Let ā` = 〈ā`t : t ∈ I`〉 be an indiscernible sequence which is endless
(i.e., I` having no last element) for ` = 1, 2.
1) We say that ā1, ā2 are perpendicular when:

(∗) if b̄`n realizes Av({b̄km: we have m < n & k ∈ {1, 2} or we have m = n &
k < `} ∪ ā1 ∪ ā2, ā`) for ` = 1, 2 then b̄1, b̄2 are mutually indiscernible (see
4.4 above) where b̄` = 〈b̄`n : n < ω〉 for ` = 1, 2.

We define “∆-perpendicular” in the obvious way.
2) We say ā1, ā2 are equivalent and write ≈ if for every A ⊆ C we have Av(A, ā1) =
Av(A, ā2).
3) If ā1 ⊆ A we let dual-cf(ā1, A) = Min{|B| : B ⊆ A and no c̄ ∈ ω>A realizes
Av(B, ā1)}; we usually apply this when A = M .

4.6 Example: M a model of Th(Q, <).
b̄` = 〈b`n : n < δ`〉 is an increasing sequence in M .
Then b̄1, b̄2 are not perpendicular iff they define the same cut of M .

4.7 Claim. 1) If ā1, ā2 are endless mutually indiscernible sequences, then they are
perpendicular.
2) “Mutually indiscernible” and “perpendicular” are symmetric relations.
3) On the family of endless indiscernible sequences, being equivalent is an equiva-
lence relation.
4) In Definition 4.5(1) in (∗) there, to say “for every such 〈b̄`n : n < ω, ` = 1, 2〉”
and to say “for some 〈b̄`n : n < ω, ` = 1, 2〉” are equivalent.
5) If ā1, ā2 are endless indiscernible sequences and ∆-mutually indiscernible se-
quence then they are ∆-perpendicular.
6) If ā1, ā2 are endless indiscernible sequence, ā2 is indiscernible over ā1 then ā1, ā2

are perpendicular.
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4.8 Remark. By 4.12 below, in (∗) of Definition 4.5(1), for any set A we can
add: b̄1, b̄2 are mutually indiscernible over A; that is for any A, if b̄`n realizes
Av({b̄km : m < n & k ∈ {1, 2} or m = n & k < `} ∪ ā1 ∪ ā2 ∪ A, ā`) then b̄1, b̄2

are mutually indiscernible over A where b̄` = 〈b̄`n : n < ω〉 for ` = 1, 2.

Proof. 1) Let b̄`n for ` ∈ {1, 2}, n < ω be as in Definition 4.5(1).
Now we prove by induction on k < ω that

(∗)k the sequences ā1,k = ā1ˆ〈b̄1k−1, . . . , b̄
1
0〉, ā2,k = ā2ˆ〈b̄2k−1, . . . , b̄

2
0〉 are mutu-

ally indiscernible.

For k = 0 this is assumed. For k = m + 1, by the choise of b̄1k as realizing
Av(ā1,kˆā2,k, ā1) clearly ā1,k+1, ā2,k are mutually indiscernible. Similarly by the
choice of b̄2k, clearly ā1,k+1, ā2,k+1 are mutually indiscernible.

Now the statement “〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible” is a
local condition, i.e., it is enough to check it for 〈b̄1n : n < k〉, 〈b̄2n : n < k〉 for each
k < ω, but this holds by (∗)k above.
2) Read the definition and rename.
3) Let ā1, ā2, ā3 be endless indiscernible sequences. Clearly Av(A, ā1) = Av(A, ā1)
so ā1 ≈ ā1 by Definition 4.5, so ≈ is reflexive. Also Av(A, ā1) = Av(A, ā2) ⇔
Av(A, ā2) = Av(A, ā1) so ≈ is symmetric. Lastly, if ā1 ≈ ā2 and ā2 ≈ ā3 then for
any A we have Av(A, ā1) = Av(A, ā2)∧ Av(A, ā2) = Av(A, ā3) hence Av(A, ā1) =
Av(A, ā3), as this holds for any A we can deduce that ā1 ≈ ā3, i.e. ≈ is transitive.
So ≈ is really an equivalence relation.
4) Suppose that for i ∈ {1, 2} we have 〈b̄i,`n : n < ω, ` ∈ {1, 2}〉 such that b̄i,`n
realizes Av({b̄i,km : m < n & k ∈ {1, 2} or m = n & k < `} ∪ ā1 ∪ ā2, ā`). We can
choose an increasing sequence of elementary mapping f `n (n < ω, ` < 2) such that
n1 < n2∨(n1 = n1∧`1 < `2)⇒ f `1n1

⊆ f `2n2
, f0

0 is the identity on ā1∪ ā2, Dom(f1
n) =

Dom(f0
n)∪ b̄1,1n , Dom(f0

n+1) = Dom(f1
n)∪ b̄1,2n , f1

n(b̄1,1n ) = b̄2,1n , f0
n+1(b̄1,2n ) = b̄2,2n . No

problem to carry the induction and f∗ = ∪{f0
n : n < ω} can be extended to an

automorphism of C thus proving the claim.
5) Similar to (1).
6) Left to the reader (see 4.16). �4.7

4.9 Claim. Assume that for ` = 1, 2 we have:

(∗)`(a) I`, J` are endless linear orders

(b) b̄` = 〈b̄`t : t ∈ I`〉 is an indiscernible sequence

(c) ā` = 〈ā`t : t ∈ J`〉 is an indiscernible sequence

(d) for s ∈ J` we have ā`s = b̄`t(`,s,1)ˆ . . . ˆb̄
`
t(`,s,n`)
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(e) t(`, s, 1) <I` t(`, s, 2) <I` . . . <I` t(`, s, n`)

(f) if s1 <J` s2 then t(`, s1, n`) <I` t(`, s2, 1).

0) If b̄` is an indiscernible sequence, then so is ā`.
1) If b̄1, b̄2 are mutually indiscernible, then ā1, ā2 are mutually indiscernible.
2) Assume that {t(`, s, 1) : s ∈ J`} is an unbounded subset of I` for ` = 1, 2. If
b̄1, b̄2 are perpendicular, then ā1, ā2 are perpendicular.
3) Like part (2) for “equivalent”.

Proof. Just think.
(Concerning (2) see 4.11(4) below). �4.9

4.10 Claim. Assume that b̄` = 〈b̄`t : t ∈ I`〉 is an endless indiscernible sequence
of m`-tuples, so b̄`t = 〈b`t,m : m < m`〉. Assume that u` ⊆ {0, . . . ,m` − 1} and

ā`t = b̄`t � u` for t ∈ I`, ` = 1, 2.
1) If 〈b̄1t : t ∈ I1〉, 〈b̄2t : t ∈ I2〉 are mutually indiscernible, then 〈ā1

t : t ∈ I1〉, 〈ā2
t :

t ∈ I2〉 are mutually indiscernible.
2) If 〈b̄1t : t ∈ I1〉, 〈b̄2t : t ∈ I2〉 are perpendicular, then 〈ā1

t : t ∈ I1〉, 〈ā2
t : t ∈ I2〉 are

perpendicular.
3) Of course, permuting, duplicating or renaming the indiscernible in 〈b`t,m : m <
m`〉, etc., also is O.K.

Proof. Easy.

4.11 Claim. 1) If ā` = 〈a`t : t ∈ I`〉 is an indiscernible sequence for ` = 1, 2 and
|T | < cf(I1), |I1| < cf(I2), then for some end segments J1, J2 of I1, I2 respectively,
ā1 � J1, ā

2 � J2 are mutually indiscernible; similarly with over A.
1A) If ∆ is finite to deduce just ∆-mutually indiscernible, we can omit |T | < cf(I1).
2) If ā` = 〈a`t : t ∈ I`〉 is an indiscernible sequence for ` = 1, 2 and cf(I1), cf(I2)
are infinite and distinct then ā1, ā2 are perpendicular.
3) Assume that ā` = 〈ā`t : t ∈ I`〉 is an endless indiscernible sequence for ` = 1, 2,
δ is limit ordinal and b̄`α realizes Av({b̄kβ : β < α & k ∈ {1, 2} or β = α &

k < `} ∪ ā1 ∪ ā2, ā`) and b̄` = 〈b̄`α : α < δ〉 for ` = 1, 2. Then the following are
equivalent:

(α) ā1, ā2 are perpendicular

(β) b̄1, b̄2 are perpendicular.
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4) If ā` = 〈a`t : t ∈ I`〉 is an endless indiscernible sequence and J` ⊆ I` is unbounded
for ` = 1, 2, then ā1, ā2 are perpendicular iff ā1 � J1, ā

2 � J2 are perpendicular.
5) If ā` = 〈at : t ∈ I`〉 are an endless indiscernible sequence for ` = 1, 2, 3, 4
and ā1, ā3 are equivalent and ā2, ā4 are equivalent, then ā1, ā2 are perpendicular iff
ā3, ā4 are perpendicular; so perpendicularity of ā1, ā2 depend just on ā1/ ≈, ā2/ ≈.

Proof. 1) By 3.6(1) applied to A = ∪{ā1
t : t ∈ I1} and ā2, there is an end segment

J2 of I2 such that ā2 � J2 is an indiscernible sequence over A. Let J ′2 be a countable
subset of J2 and apply 3.6(1) to A′ = ∪{ā2

t : t ∈ J ′2} and ā1, so there is an end
segment J1 of I1 such that ā1 � J1 is an indiscernible sequence over A′. Reflecting
on the meaning clearly ā1 � J1, ā

2 � J2 are mutually indiscernible.
1A) Similar to (A); without loss of generality ∆ is closed under permuting and iden-
tifying the variables, and we use the relevant variant of 3.6(1) or just 3.4.
2) Without loss of generality cf(I1) < cf(I2). It is enough for every formula
ϕ = ϕ(x̄1, . . . , x̄m, ȳ1, . . . , ȳk) with `g(x̄`) = `g(ā1

t ) and `g(ȳ`) = `g(ā2
t ) to show

that for some t1 ∈ I1, t2 ∈ I2:

� for some truth value t, for all t1 <I1 t
1
1 <I1 . . . <I1 t

1
m, t2 <I2 t

2
1 <I2 . . . <I2

t2k we have |= ϕ[b̄1
t11
, . . . , b̄1t1m

, b̄2
t21
, . . . , b̄2

t2k
]t.

By (1A) and 4.7(5) this is easy (as for each finite ∆ we can use suitable end
segments).
3) If ā1, ā2 are perpendicular then by definition 4.5(1) we have b̄1, b̄2 are mutually
indiscernible and by 4.7(1) this implies that b̄1, b̄2 are perpendicular. The other
direction is even easier, though we have to use 4.7(4).
4) Let b̄1n, b̄

2
n (let n < ω be as in (∗) of Definition 4.5(1)) for ā1, ā2. Now for every set

A, the types Av(A, ā`), Av(A, ā` � J`) are equal (see 1.10(2)). As (ā1 � J1) ∪ (ā2 �
J2) is included in (ā1 ∪ ā2) clearly 〈b̄1n : n < ω〉, 〈b̄2 : n < ω〉 are as required in (∗)
for ā1 � J1, ā

2 � J2.
By 4.7(4) we have ā1, ā2 are perpendicular iff 〈b̄1n : n < ω〉, 〈b2n : n < ω〉 are mutually
indiscernible iff ā1 � J1, ā

2 � J2 are perpendicular; so we are done.
5) We choose b̄`n by induction on 2n+` for n < ω, ` ∈ {1, 2} as any sequence realizing
p`n = Av(ā1 ∪ ā2 ∪ ā3 ∪ ā4 ∪ {b̄km : m < n & k ∈ {1, 2} or m = n & k < `}, ā`).
So ā1, ā2 are perpendicular iff 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible
(by 4.7(4)).

Now by the assumption (on the equivalence) the type p`n is also equal to Av(ā1∪
ā2 ∪ ā3 ∪ ā4 ∪ {b̄km : m < n or m = n & k < `}, ā2+`).

Using again 4.7(4) we have: ā3, ā4 are perpendicular iff 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉
are mutually indiscernible.
Together we get the desired conclusion. �4.11
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4.12 Claim. Let ā1, ā2 be endless indiscernible sequences. The following are equiv-
alent:

(A) ā1, ā2 are perpendicular

(B) there are A, b̄1n, b̄
2
n (for n < ω) such that

(a) ā1∪ ā2 ⊆ A and b̄`n realizes Av(A∪ ā1∪ ā2∪{b̄km : n < n & k ∈ {1, 2}
or m = n & k < `}, ā`) and

(b) the sequences b̄1 = 〈b̄1n : n < ω〉, b̄2 = 〈b̄2n : n < ω〉 are mutually
indiscernible

(C) for every A ⊇ ā1, ā2 and b̄1 realizing Av(A, ā1) and b̄2 realizing Av(A, ā2)
the sequence b̄1 realizes Av(A ∪ b̄2, ā1)

(D) if A ⊇ ā1, ā2 and b̄1n, b̄
2
n are as in clause (B)(a) then 〈b̄1n : n < ω〉, 〈b̄2n : n <

ω〉 are mutually indiscernible over A.

Proof.

(D)⇒ (B):
We can find A, b̄`n for n < ω, ` ∈ {1, 2} which are as in clause (B) except possibly

the mutual indiscernibility in the end, i.e., as in (∗) of Definition 4.5(1) but with
A ⊇ ā1 ∪ ā2. By clause (D) this suffices.

(C)⇒ (D):
Now we can prove by induction on i < ω that:

� ifm1 < m2 < n1 < . . . < ni < ω and `1, . . . , `i ∈ {1, 2} then b̄1m1
ˆb̄2m2

ˆb̄`1n1
ˆ . . . ˆb`ini

and b̄1m2
ˆb̄2m1

ˆb̄`1n1
ˆ . . . ˆb̄`ini realized the same type over A∪{b̄`n : n < m1, ` ∈

{1, 2}}.
[How? For i = 0 as we are assuming clause (C), for i+ 1, because the type

tp(b̄
`i+1
ni+1 , A ∪ {b`n : n < ni+1, ` ∈ {1, 2}}) does not split over ā`i+1 by the

definition of Av.]

By transitivity of equality of type from � we can prove that 〈b̄12n+1 : n < ω〉, 〈b̄22n+2 :
n < ω〉 are mutually indiscernible over A; as in 4.7(4) this suffices.

(B)⇒ (A):
If A, b̄`n for n < ω, ` ∈ {1, 2} are as in clause (B), then as [B1 ⊆ B2 ⇒

Av(B1, ā
`) ⊆ Av(B2, ā

`)] they are as in (∗) of Definition 4.5. So by 4.7(4) the
sequences ā1, ā1 are perpendicular, i.e., clause (A) holds.

(A)⇒ (C):
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Assume that ā1, ā2 are perpendicular but clause (C) fails for the4 set A. So
ā1, ā2 ⊆ A, let λ ≥ ℵ0.
Choose b̄`α for α < λ+, ` ∈ {1, 2} by induction on α such that b̄`α realizes Av(A ∪
∪{b̄kβ : β < α ∨ (β = α & k < `}, ā`). Easily by the choice of A for some c̄ ⊆ A

and ϕ(x̄, ȳ, c̄) we have C |= ϕ[b̄1α, b̄
2
β , c̄] iff α ≤ β. By the mutual indiscernibility

of 〈b̄1α : α < λ〉, 〈b̄2α : α < λ〉 (which holds as ā1, ā2 are perpendicular) the set
{ϕ(b̄1α, b̄

2
α, z̄) : α < λ} of formulas is independent, contradiction. �4.12

4.13 Claim. Assume ā` = 〈ā`t : t ∈ I`〉 are endless indiscernible sequences for
` = 1, 2.
1) If ā1 is an indiscernible sequence over A, then: ā1 is an indiscernible set over
A iff ā1 is an indiscernible set over ∅.
2) Assume that ā1 is an infinite indiscernible sequence over A, then: ā1 is non-
stable in C iff ā1 is non-stable in (C, c)c∈A.
3) If ā1, ā2 are equivalent, then ā1 is non-stable iff ā2 is non-stable.
4) Assume that for ` = 1, 2, J` ⊆ I` is convex and infinite and ā1, ā2 are mutually

indiscernible then ā1 � J1, ā
2 � J2 are mutually indiscernible over

2⋃
`=1

(ā` � (I`\J`)).

5) Let k ∈ {1, 2}. In part (4) we can omit “Jk a convex (subset of Ik)” if āk is an
indiscernible set.

Proof. 1) By 1.28.
2) Follows.
3), 4), 5) Check directly. �4.13

4.14 Claim. 1) Assume ā1, ā2 are endless indiscernible sequences. If ā1, ā2 has
cofinality > |T | and are mutually indiscernible and b̄ ∈ ω>C, then for some end-
segments J1, J2 of Dom(ā1),Dom(ā2) respectively ā1 � J1, ā

2 � J2 are mutually
indiscernible over b̄.
1A) Like (1) for mutual ∆-indiscernibility, when ∆2 is finite, ∆1 finite large enough,
ā1, ā2 just endless.
2) Assume b̄1, b̄2, b̄3 are endless indiscernible sequences ⊆ A and I is an infinite
linear order and ā`t realizes Av({āks : s <I t & k ∈ {1, 2, 3} or s = t & k <
`} ∪A, b̄`) for ` ∈ {1, 2, 3} and t ∈ I and let ā` = 〈ā`t : t ∈ I〉, then:

(a) 〈ā1
tˆā

2
tˆā

3
t : t ∈ I〉 is an indiscernible sequence over A;

4the choice of b̄1, b̄2 of course is immaterial as: if b̄′, b̄′′ realizes Av(A, ā1) and b̄2 realizes

Av(A+ b̄′ + b̄′′, ā2) then b̄2ˆb̄′, b̄2ˆb̄′′ realizes the same type over A
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(b) if ā1 is an indiscernible set then ā1, ā2 are mutually indiscernible over A

(c) if any two of ā1, ā2, ā3 are mutually indiscernible and I1, I2, I3 are disjoint5

unbounded subsets of I, then ā1 � I1, ā3 � I3 are mutually indiscernible over
A ∪ (ā2 � I2)

(d) if ā1, ā2 are mutually indiscernible then they are mutually indiscernible over
A.

Proof. 1) No new point so left to the reader.
2) Without loss of generality I is dense with no first, no last elements, and I is not
a complete even restricted to an interval and every interval has cardinality > |T |.
Now

Clause (a):
Easy as in 1.6(2).

Clause (b):
For any s1 <I< . . . <I sn−1, stipulating s0 = −∞, sn = +∞ and letting I` =

{t ∈ I : s` <I t ≤I s`+1}, by the construction we know that: the sequences
ā1 � I0, . . . , ā1 � In−1 are mutually indiscernible over ā2

s0ˆ . . . ˆā2
sn−1

. Recalling that

every interval has cardinality > |T |, by 3.8 this implies that ā1 is an indiscernible set
(see 4.13(1)) over ā2

s1ˆ . . . ˆā2
sm−1

; as this holds for any n < ω and s1 <I . . . <I sn−1,

we get that ā1 is an indiscernible set over ā2. But for any t ∈ I the sequence
〈a2
s : s ∈ I & t ≤I s〉 is an indiscernible sequence over ∪{ā1

sˆā
2
s : s <I t}. So clearly

if {s : s <I t} is infinite then by the last two sentences, ā2 � {s ∈ I : t ≤I s}, ā1

are mutually indiscernible (even over {ā2
s : s <I t}). By the assumption on I in the

beginning of the proof we are done.

Clause (c):
Note that by the assumption on ā`t, it is enough for any pairwise disjoint I` ⊆ I

for ` = 1, 2, 3, each as we assume in the beginning of the proof of part (2), to prove
that ā1 � I1, ā2 � I2, ā3 � I3 are mutually indiscernible.

By transitivity of equality it is enough to prove:

(∗) if `(1) 6= `(2) ∈ {1, 2, 3}, t1 < t2 in I, then the sequences ā
`(1)
t1 ˆā

`(2)
t2 and

ā
`(1)
t2 ˆā

`(2)
t1 realizes the same type over A ∪ {ā`t : ` ∈ {1, 2, 3} and ¬(t1 ≤I

t ≤I t2)}.

To prove (∗) it suffices for any n and s1 <I . . . <I sn with t1 <I t2 <I s1 and

k ∈ {0, 1, 2, 3} to prove that ā
`(1)
t1 ˆā

`(2)
t2 and ā

`(1)
t2 ˆā

`(2)
t1 realize the same type over

5the disjointness can be omitted
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A ∪ ∪{ā`sm : m ∈ {1, . . . , n − 1} & ` ∈ {1, 2, 3} or m = n & ` ≤ k} ∪ {ā`s : s <
t1, ` ∈ {1, 2, 3}}. We do it by induction on 4n+ k.

For n = 0: The sequences ā`(1), ā`(2) are perpendicular by 4.7(1) hence the required
conclusion holds by (A)⇒ (C) of 4.12.

For n+ 1: If k = 0 this is known (being equivalent to the case (n′, k′) = (n, 3)),
otherwise this follows by the definition of average more exactly as tp(āksn+1

, A ∪
{ā`sm : m ∈ {1, . . . , n} & ` ∈ {1, 2, 3} or m = n + 1 & ` ∈ k} ∪ {ā`s : s < t1, ` ∈
{1, 2, 3}}) does not split over āk by 1.6(6).

Clause (d):
By 4.12. �4.14

4.15 Conclusion. If b̄1, b̄2 are endless indiscernible sequences and b̄1 is an indis-
cernible set, then b̄1, b̄2 are perpendicular.

Proof. By 4.14(2), clause (b).

4.16 Claim. 1) Assume ā, b̄ are endless indiscernible sequences. Then ā, b̄ are
perpendicular sequences, iff for any ϕ(x̄, ȳ, c̄) for some truth values t we have:

(a) for every large enough s ∈ Dom(ā), for every large enough t ∈ Dom(b̄) we
have C |= ϕ[ās, b̄t, c̄]

t

(b) for every large enough t ∈ Dom(b̄) for every large enough s ∈ Dom(ā) we
have C |= ϕ[ās, b̄t, c̄]

t.

2) For any ϕ = ϕ(x̄, ȳ, c̄), there is a truth value t = tϕ(x̄,ȳ,c̄) for which clause (a)
holds and there is a truth value t = tϕ(x̄,ȳ,c̄) such that clause (b) holds.

Proof. By 4.12(C) (and 1.10(2)).
Part (2) is easy too. �4.16

4.17 Claim. 1) The parallel of the relevant earlier claims holds for several indis-

cernible sequences, that is, assuming āζ = 〈āζt : t ∈ Iζ〉 is an endless indiscernible
sequence for ζ < ζ∗

(A) If the intervals [cf(Iζ), |Iζ |] are pairwise disjoint, cf(Iζ) > |T | + ζ∗, then
for some end segment Jζ of Iζ for ζ < ζ∗, we have 〈āζ � Jζ : ζ < ζ∗〉
is mutually indiscernible, which means: each āζ � Jζ is indiscernible over
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∪{āε � Jε : ε < ζ∗ & ε 6= ζ} (in fact we can get indiscernibility over
∪{āε : ε < ζ∗ & |Iε| < cf(Iζ)} ∪ ∪{āε � Jε : ε ∈ (ζ, ζ∗)})

(B) Assume 〈āζ : ζ < ζ∗〉 are mutually indiscernible, b̄ ∈ ω>C and Iζ = Dom(āζ)
and cf(Dom(āζ)) > |T |+ζ∗. Then there are end segments Jζ of Iζ for ζ < ζ∗

such that 〈āζ � Iζ : ζ < ζ∗〉 is mutually indiscernible over b̄.

(C) If A is a set, Jζ is an infinite linear order disjoint to ∪{Iζ : ζ < ζ∗} and āζt
realizes pζt = Av(A ∪ {āεs : ε < ζ∗ & s ∈ Iε or ε = ζ & s ∈ Jε & s <Jε t
or s ∈ Jε & ε < ζ} ∪A, āζ) for any ζ < ζ∗, t ∈ Jζ then {〈āζs : s ∈ Jζ〉 : ζ <
ζ∗} are mutually indiscernible over ∪{āεs : ε < ζ∗, s ∈ Iε} ∪A.

(D) If 〈āζ : ζ < ζ∗〉 are pairwise perpendicular and Jζ = J for ζ < ζ∗ then in

clause (C), āζt realizes qεt = Av({āεs : ε < ζ∗ & s ∈ I or ε < ζ∗ & s ∈
J & s <J t or s = t & ε < ζ} ∪A, āζ).

(E) if Jζ = J is an infinite linear order (disjoint to ∪{Dom(āε) : ε < ζ∗})
and āζt for ζ < ζ∗, t ∈ Jζ realizes the type qεt from part (D), and for any
ε < ζ < ζ∗, 〈āεs : s ∈ Jε〉, 〈aζs : s ∈ Jζ〉 are mutually indiscernible or just
perpendicular, then 〈〈aζs : s ∈ Jζ〉 : ζ < ζ∗〉 are mutually indiscernible,
moreover even over A.

2) If we weaken in the conclusion of clause (A) of part (1) the mutually indiscernible
by mutually ∆-indiscernible, then we can weaken cf(Iζ) > |T |+ |ζ∗| to cf(Iζ) > |ζ∗|.

Proof. Similar to earlier proofs (4.11). �4.17

4.18 Claim. 1) If ā = 〈āt : t ∈ I〉 is an indiscernible sequence, b̄ ∈ ω>C then
we can divide I to ≤ 2|T | convex subsets 〈Iζ : ζ < ζ∗〉 such that 〈ā � Iζ : ζ <
ζ∗, Iζ infinite〉 is mutually indiscernible over b̄.
2) Similarly in 4.17: if āζ is an endless indiscernible sequence over A for ζ < ζ∗,
and they are mutually indiscernible and b̄ ∈ ω>C then we can find w ⊆ ζ∗, |w| ≤ |T |
and for ζ ∈ w a partition of Iζ to ≤ 2|T | convex sets 〈Iζ,ε : ε < εζ〉 such that the
family {āζ : ζ ∈ ζ∗\w} ∪ {āζ � Iζ,ε : ζ ∈ w, ε < εζ} is mutually indiscernible over
A ∪ b̄ (the partition of Iζ is induced by some subset I ′ζ of comp(Iζ) of cardinality

≤ |T |).

Proof. 1) By 3.6.
2) Similarly. �4.18

Generalizing another claim for stable theories:
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4.19 Claim. Assume that

(a) b̄, āζ are endless indiscernible sequences for ζ < ζ∗

(b) āζ , āε are perpendicular for ζ 6= ε

(c) b̄, āζ are not perpendicular.

Then ζ∗ < |T |+.

Proof. Assume toward contradiction that ζ∗ ≥ |T |+. We let A = b̄ ∪
⋃
ζ

āζ and by

induction on n < ω, we choose 〈āζ,∗n : ζ < ζ∗〉 and b̄∗n and for a fix n < ω we choose
āζ,∗n by induction on ζ < ζ∗ and then we choose b̄∗n such that:

(a) āζ,∗n realized the average of āζ over A ∪ {b̄∗m : m < n} ∪ {āε,∗m : m < n &
ε < ζ∗ or m = n & ε < ζ}

(b) b̄∗n realizes the average of b̄ over A∪ {b̄∗m : m < n} ∪ {āε,∗m : m ≤ n, ε < ζ∗}.

For each ζ, as b̄, āζ are not perpendicular, we can find nζ < ω, u`ζ ∈ [ω]nζ for

` = 0, 1, 2 such that 〈b̄∗n : n ∈ u0
ζ〉ˆ〈āζ,∗n : n ∈ u1

ζ〉 and 〈b̄∗n : n ∈ u0
ζ〉ˆ〈āζ,∗n : n ∈ u2

ζ〉
does not realize the same type; say one satisfies ϕζ(x̄, ȳ) the second not. As we can
replace 〈āζ : ζ < |T |+〉 by any subsequence of length |T |+, without loss of generality
ζ < |T |+ ⇒ nζ = n∗, u

`
ζ = u`, ϕζ = ϕ. Now for every U ⊆ |T |+ let fU be the

elementary mapping with domain ∪{āζ,∗n : n ∈ u1, ζ < |T |+}, mapping āζ,∗n1
to āζ,∗n2

iff ζ ∈ U , n1 = n2 or ζ ∈ |T |+\U , n1 ∈ u1, n2 ∈ u2, |n1∩u1| = |n2∩u2|. Let gU be
an automorphism of C extending f−1

U . We have gotten the independence property

for ϕ(x̄, ȳ) as gU (〈b̄∗n : n ∈ u0
0〉) realizes {ϕ(〈x̄n : n ∈ u0〉, 〈āζ,∗n : n ∈ u1〉)if(ζ∈U ) :

ζ < |T |+}, contradiction. �4.19

∗ ∗ ∗

We can deal with perpenducularity of ultrafilters instead of indiscernible sequences.

4.20 Definition. Let D` be an ultrafilter on m(`)(B`) for ` = 1, 2.
We say that D1, D1 are perpendicular if:

(∗) if b̄`n realizes Av({b̄`m : m < n or m = n ∧ k < `} ∪ B1 ∪ B2, D`) for
n < ω, ` ∈ {1, 2}, then 〈b̄1n : n < ω〉, 〈b̄2n : n < ω〉 are mutually indiscernible.

Parallel claims hold, e.g.
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4.21 Claim. Let D`, B`,m` (` = 1, 2) be as in the definition 4.20 above.
1) D1, D1 are perpendicular iff

(∗∗) if A ⊇ B1 ∪ B2, b̄
1 realizes Av(A,D1), and b̄2 realizes Av(A ∪ b̄1, D2) then

b̄1 realizes Av(A ∪ b̄2, D1).

2) Let b̄` = 〈b̄`t : t ∈ I`〉 be endless indiscernible sequences, and let D` be an
ultrafilter on {b̄`t : t ∈ I`} containing {b̄`t : t ∈ J} for all the co-bounded subsets J
of I`, for ` = 1, 2. Then D1, D2 are perpendicular iff b̄1, b̄2 are perpendicular.
3) In Definition 4.20 we can replace “mutually indiscernible” by “perpendicular”.

Proof. No new point.

We can translate:

4.22 Claim. 1) Assume we are given set B(⊆ C) and D is an ultrafilter on mB
and I is an endless linear order. Then for some ultrafilter D∗ on the cardinal
λ = |T | + |B|, in Cλ/D∗ we can find an indiscernible sequence b̄ = 〈bt : t ∈ I〉 in
Bλ/D such that:

(∗) if A1 ⊆ C, ā ∈ mC then:⊙
ā realizes Av(A1, D) iff ā realizes Av(A1, b̄) (in Cλ/D∗) iff every b̄t
realizes Av(A1, D) = Av(A1, b̄) = tp(ā, A,C).

2) If b̄ = 〈b̄t : t ∈ I〉 is indiscernible, I endless, b̄t ∈ mB for m < ω and B ⊆ A,
then there is an ultrafilter D on mB such that (∗) of part (1) holds.

Proof. Straightforward.

∗ ∗ ∗

As background for the following note that for T a totally transcendental (= ℵ0-
stable), for every A ⊆ C the set of isolated types in S (A) is dense (i.e. if C |=
(∃x)ϕ(x, ā), ā ⊆ A then ϕ(x, ā) belongs to some q ∈ S(A) which is isolated, i.e.
such that for some ψ(x̄, ā′) ∈ q we have ψ(x, ā) ` q). This gives that we can extend
A to a model such that “few” types over A′ are realized in it, so in some sense
M is understood over A ([Mo65] or see [Sh:c]). This enables us to preserve much
(e.g. “respecting”, see the next section), this is fine but the assumption makes it
irrelevant here.
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For stable T we can replace isolated by |T |+-isolated (see [Sh:c, IV]). Also we can
replace isolated by “does not fork over some finite subset of A”; this looks like an
opposite to being isolated (as a non-forking is an “opposite” to an isolated one) but

is still managable (and helpful, called Ffℵ0-isolated). But all these seem under too
strong assumptions so irrelevant here. We use a substitute: does not split over a
small set, a precursor of non-forking (from [Sh 3]), still of interest when non-forking
is not available.

Recall ([Sh:c, Ch.III,§7,IV])

4.23 Definition. 1) p ∈ Fsp
κ (B) if for some set A we have p ∈ S<ω(A), B ⊆

A, |B| < κ and p does not split over B, see part (4) below. Let p ∈ Fsp
κ mean that

for some set B we have p ∈ Fsp
κ (B).

2) A = (A, 〈b̄i, Bi : i < i∗〉) is an Fsp
κ -construction (or 〈b̄i, Bi : i < i∗〉 is an Fsp

κ -
construction over A) if tp(b̄i, A ∪ {b̄j : j < i}) ∈ Fsp

κ (Bi), so Bi ⊆ AA
i =: A ∪ {b̄j :

j < i}) for every i < i∗.
3) Omitting Bi means for some Bi; let i∗ = `g(A ).
4) Recall that p ∈ Sm(A) splits over B ⊆ A if for some formula ϕ(x̄, ȳ) and
sequences b̄, c̄ from `g(ȳ)A realizing the same type over B we have ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈
p.

We give a proof of 4.24 for self-containment.

4.24 Claim. 1) If B ⊆ A and p is an m-type over B, then there are q ∈ Sm(A)
extending p and B1 ⊆ A, |B1| ≤ |T | such that q does not split over B ∪B1.
2) For any A and κ > |T | there is a model M and Fsp

κ -construction A = (A, 〈b̄i, Bi :
i < i∗〉) such that:

(a) M = AA
i∗ and ‖M‖ = |A|<κ +

∑
θ<κ

2|T |+θ

(b) M is κ-saturated,

(c) cf(i∗) = κ or κ singular, cf(i∗) = κ+.

3) If A is an Fsp
κ -construction, κ = cf(κ), b̄ ⊆ AA

`g(A ) has length < κ, then tp(b̄, A)

does not split over some B ⊆ A, |B| < κ.
4) In part (2) we can add (d) if we replace (a) by (a)∗ where

(d) if p ∈ Sm(M) does not split over B ⊆M, |B| < κ then i∗ = sup{i : B ⊆ AA
i

and b̄i realizes the type p � AA
i }

(a)∗ M = AA
i∗ and ‖M‖ = |A|<κ + 22θ+|T | .
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Proof. 1) For any set C ⊆ A let us define

pC = p(x̄) ∪ {ϕ(x̄, b̄) ≡ ϕ(x̄, c̄) :ϕ(x̄, ȳ) ∈ Lτ(T )

and b̄, c̄ ∈ `g(ȳ)A realizes the same type over B ∪ C}.

Now if there is C ⊆ A of cardinality ≤ |T | such that pC is finitely satisfiable (in C),
then choosing B1 = C and q ∈ Sm(A) any extension of pC we are done. So assume
toward contradiction

(∗) if C ⊆ A has cardinality ≤ |T |, then pC is not finitely satisfiable.

Now we choose by induction on ζ < |T |+ a set Cζ and then a sequence 〈ϕζ,n, b̄ζ,n, c̄ζ,n :
n < nζ〉 such that

(∗)1 ϕζ,n = ϕζ,n(x̄, ȳζ,n) ∈ Lτ(T ) and b̄ζ,n, c̄ζ,n are sequences from A of length
`g(ȳζ,n)

as follows. In stage ζ we let Cζ = ∪{b̄ε,nˆc̄ε,n : ε < ζ and n < nε}.
So Cζ ⊆ A and |Cζ | < ℵ0+|ζ|+ < |T |+; of course, C0 = ∅. Now by (∗) we know that
pCζ is not finitely satisfiable, hence we can find nζ < ω and ϕζ,n(x̄, ȳζ,n), b̄ζ,n, c̄ζ,n
as in (∗)1 such that

(∗)2
ζ b̄ζ,n, c̄ζ,n realizes the same type over B ∪ Cζ for n < nζ

(∗)3
ζ p ∪ {ϕζ,n(x̄, b̄ζ,n) ≡ ϕζ,n(x̄, c̄ζ,n) : n < nζ} is not finitely satisfiable, that is

p(x̄) `
∨
n<nζ

(ϕζ,n(x̄, b̄ζ,n) ≡ ¬ϕζ,n(x̄, c̄ζ,n)).

Having carried the definition note that the number of possible sequences 〈ϕζ,n(x̄, ȳζ,n) :
n < nζ〉 is ≤ |T | hence for some unbounded U ⊆ |T |+ we have ζ ∈ U ⇒ nζ =

n∗ &
∧
n<n∗

ϕζ,n(x̄, ȳζ,n) = ϕn(x̄, ȳn).

Now note

(∗)4 if p ⊆ q ∈ Sm(Cζ) then for some n < nζ there are q0, q1 ∈ Sm(Cζ+1)
extending q such that ϕζ,n(x̄, b̄ζ,n) ∈ q0,¬ϕζ,n(x̄, b̄ζ,n) ∈ q1.

[Why? Let q ⊆ q′ ∈ Sm(Cζ+1), now by (∗)3
ζ , as p ⊆ q ⊆ q′ clearly for some n < nζ

we have [ϕζ,n(x̄, b̄ζ,n) ≡ ¬ϕζ,n(x̄, c̄ζ,n)] ∈ q′, and as b̄ζ,n, c̄ζ,n ⊆ Cζ+1 for some truth
value t we have ϕζ,n(x̄, b̄ζ,n)t ∈ q′ hence ¬ϕζ,n(x̄, c̄ζ,n)t ∈ q′.

So q ∪{¬ϕζ,n(x̄, c̄ζ,n)t} is finitely satisfiable, but by (∗)2
ζ the sequences b̄ζ,n, c̄ζ,n

realizes the same type over Cζ hence also q ∪ {¬ϕζ,n(x̄, b̄ζ,n)t} is finitely satisfiable

Paper Sh:715, version 2006-09-16 10. See https://shelah.logic.at/papers/715/ for possible updates.



DEPENDENT THEORIES 49

hence can be extended to some q′′ ∈ Sm(Cζ+1). So {q′, q′′} can serve as q0, q1 (in
some order); so (∗)4 holds.]
Hence

(∗)5 for any finite set u ⊆ |T |+, the following set has at least 2|u| members

{η :η is a function from {(ζ, n) : ζ ∈ u, n < nζ}
to the truth values such that

pη = p ∪ {ϕζ,n(x̄, b̄ζ,n)η(ζ,n) : ζ ∈ u, n < nζ}
is finitely satisfiable}.

[Why? By induction on |u| (or on sup(u)) using (∗)4.]

Now let ∆ = {ϕn(x̄; ȳn) : n < n∗}, so for every finite u ⊆ U by (∗)5 we have

Sm∆(∪{b̄ζ,n : ζ ∈ u, n < n∗}) has at least 2|u| members

whereas

∪{b̄ζ,n : ζ ∈ u, n < n∗}

has at most u×m∗ members where we let m∗ =
∑
n<n∗

`g(ȳn).

By [Sh:c, II,§4], T has the independence property.
2) Let κ′ be κ if κ is regular and κ+ if κ is singular. We shall choose by induction

on ζ ≤ κ′ the tuple A ζ = (A, 〈(b̄ζi , B
ζ
i ) : i < iζ〉) such that:

(a) A ζ is an Fsp
κ -construction

(b) i0 = 0

(c) if ε < ζ then iε < iζ and (b̄ζi , B
ζ
i ) = (b̄εi , B

ε
i ) for every i < iε, so we call

them (bi, Bi)

(d) if ζ is a limit ordinal then iζ = ∪{iε : ε < ζ} and so A ζ is determined by
clause (c)

(e) |iζ | ≤ λ =: |A|<κ +
∑
θ<κ

2θ+|T |.

If A ζ is chosen, let Aζ = A ∪ ∪{b̄i : i < iζ} and let Pζ = {p: for some m < ω, p is
an m-type over some set B ⊆ Aζ of cardinality < κ hence of cardinality < κ}. We
know that |Pζ | ≤ λ and let iζ+1 = iζ + λ let 〈pi : i ∈ [iζ , iζ+1)〉 list Pζ (possibly
with repetition). We choose (Ai, Bi, q

+
i , b̄i) by induction on i ∈ [iζ , iζ+1) as follows.
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Let Ai = Aζ ∪∪{b̄j : j ∈ [iζ , i)}; and let Bi, q
+
i be such that q+

i ∈ Smi(Ai) be an
extension of pi which does not split over Bi, where Dom(pi) ⊆ Bi ⊆ Ai & |Bi| < κ
where pi is an mi-type. Why can we find such Bi, q

+
i ? by part (1) applied to Ai, pi,

Dom(pi). Lastly, let b̄i ∈ miC be any sequence realizing q+
i .

So we have carried the induction on i ∈ [iζ , iζ+1) hence A ζ+1 is defined. As the
case of limit ζ and ζ = 0 were done we have finished the induction on ζ, so A ζ is
defined also for ζ = κ′ and A κ′ is as required.
3) Let A = (A, 〈b̄i, Bi : i < i∗〉) and let B∗ = AA

`g(A) = A ∪ ∪{b̄i : i < i∗}, and let

b̄ ∈ κ>(B∗). For each i < i∗ let ui ∈ [i]<κ be such that Bi ⊆ A ∪ ∪{b̄j : j ∈ ui}.
We can find u∗0 ⊆ i∗ of cardinality < κ be such that b̄ ∈ κ>(A∪∪{b̄i : i ∈ u∗0}), and
defined u∗n ⊆ i∗ of cardinality < κ for n < ω by (u∗0 as above and) u∗n+1 = u∗n∪∪{ui :

i ∈ u∗n}. Let u∗ = ∪{u∗n : n < ω} and B = A ∩ [∪{Bi : i ∈ u∗} ∪ b̄], so B ∈ [A]<κ.
Now we can prove by induction on i ∈ u∗∪{i∗} that tp∗(∪{b̄j : j ∈ u∗∩ i}, A) does
not split over B. From the case i = i∗ we can deduce the desired conclusion.
4) Like the proof of part (2) let P ′

ζ = {(p,B) : p ∈ S<ω(Aζ), p does not split over

some set B ⊆ Aζ of cardinality < κ} and6 let 〈(p′i, B′i) : i ∈ [iζ , iζ+1)〉 listing P ′
ij

.

But choosing b̄i, Bi for i ∈ [iζ , iζ + λ) we now have two cases.

Case 1: i = iζ + 2j.

As in the proof of part (2) using piζ+j where piζ+j is as in the proof of part (2).

Case 2: i = iζ + 2j + 1.

If there is q ∈ S<ω(Aiζ ∪ {b̄ε : ε ∈ [iζ , i)} extending p′iζ+j not splitting over the

set B′iζ+j which has cardinality < κ, choose q+
i as some such q. If not, act as in

case 1. �4.24

Similarly, but if we like not to assume κ > |T |, we need to assume more on T .

4.25 Definition. 1) p ∈ Fesp
κ (B) if for some A,m we have p ∈ Sm(A), B ⊆ A, and

for every ϕ = ϕ(x̄, ȳ) for some ∆ ⊆ Lτ(T ) and B′ ⊆ B both of cardinality < κ the
type p does not (ϕ,∆)-split over B′, see part (4) below.
1A) Let Fesp(B) = Fesp

ℵ0 (B).

2) A = 〈A, 〈(b̄i, Bi) : i < i∗〉〉 is an Fesp
κ -construction or 〈(bi, Bi) : i < i∗)〉 is an

Fesp
κ -construction over A if tp(b̄i, A ∪ {b̄j : j < i}) ∈ Fesp

κ (Bi) so Bi ⊆ A i =:
A ∪ {b̄j : j < i} for every i < i∗.
3) Omitting Bi means for some Bi; let `g(A ) = i∗.
4) Recall that p ∈ Sm(B) does (∆1,∆2)-split over A if for some ϕ(x̄, ȳ) ∈ ∆1 with

6recall ([Sh 3] or [Sh:c]) that for κ > |T |, {p ∈ Sm(A) : p does not split over some subset of A

of cardinality < κ} is ≤ |A|<κ +
∑
θ<κ

22
κ

; similarly for strong splitting
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`g(x̄) = m and b̄, c̄ ∈ `g(ȳ)B we have tp∆2
(b̄, A) = tp∆2

(c̄, A) but ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈
p.

4.26 Claim. 1) Assume κ ≥ |T |+ ℵ1.
If B ⊆ A, p is an m-type over B of cardinality < κ and |B| < κ, then there are

B′ ∈ [A]<κ extending B and q ∈ Sm(A) from Fesp
κ (B′) extending p.

2) For any A and κ = cf(κ) ≥ |T | + ℵ1 and is a model M and Fesp
κ -construction

A = (A, 〈(b̄i, Ai) : i < i∗〉) such that:

(a) |M | = AA
i∗

(b) M is κ-compact

(c) cf(i∗) ≥ κ.

3) If A is a Fesp
κ -construction, κ = cf(κ), then for any b̄ ⊆ ω>(AA

`g(A )) and

ϕ(x̄, ȳ) ∈ Lτ(T ) for some B ⊆ A and ∆ ⊆ Lτ(T ) of cardinality < κ the type

tp(b̄, A) does not (ϕ,∆)-split over A.
4) The parallel of 4.24(4) holds.

The proof of 4.26 is similar to the proof of 4.24.

Proof. 1) Fix m and a m-type p over B such that B ⊆ A, |B| < κ. Without loss of
generality κ = |T |.

Let x̄ = 〈x` : ` < m〉 and let {ϕi(x̄, ȳi) : i < |T |} be a list of all such formulas.
For any set C ⊆ A and ∆ ⊆ Lτ(T ) we define

qi∆,C = {ϕi(x̄, b̄) ≡ ϕi(x̄, c̄) :b̄, c̄ ∈ `g(ȳi)A

and tp∆(b̄, C) = tp∆(c̄, C)}.

We now define by induction on ζ < |T |, a pair (Cζ ,∆ζ) such that:

�1(a) Cζ ⊆ A is increasing continuous

(b) ∆ζ ⊆ Lτ(T ) is increasing continuous

(c) ∆ζ , Cζ are of cardinality ≤ ℵ0 + |B|+ |ζ|
(d) C0 = B,∆0 = ∅
(e) p ∪ ∪{qε∆ε+1,Cε+1

: ε < ζ} is finitely satisfiable.

If we succeed, clearly we are done, and there is no problem for ζ = 0 and ζ limit.
So assume ζ = ε+ 1. We now try to choose ∆ζ ⊇ ∆ε∪{ϕε} of the right cardinality
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close enough, e.g. of the form ∆ζ = Lτζ for some vocabulary τζ ⊆ τT . We now try

to choose by induction on i < ω1, Cε,i, ni, b̄ε,i,`, c̄ε,i,` for ` < ni such that:

�2(α) Cε,i is increasing continuous

(β) Cε,0 = Cε

(γ) ni < ω

(δ) b̄ε,i,`, c̄ε,i′,` ∈ `g(ȳi)A realizes the same type over Cε,i

(ε) b̄ε,i,`, c̄ε,i,` ⊆ cε,i and Cε,i+1\Cε,i is finite

(ζ) p ∪ ∪{pξ∆ξ,cξ
� cε,i+1 : ξ < ε} ∪ {ϕε,i,`(x̄, b̄ε,i,`) ≡ ϕε,i,`(x̄, c̄ε,i,`) : ` < ni} is

inconsistent.

For i = 0, i limit no problem. For i successor, if the choice Cε+1 = Cε,i (and ∆ε+1

chosen above) is as required in �1 we are done choosing (Cζ ,∆ζ) thus finishing

the proof. Otherwise p ∪ ∪{qξ∆ξ+1,Cξ+1
: ξ ≤ ε} ∪ qε∆ε+1,Cε,i

is inconsistent hence

has a finite inconsistent subset p′ε,i and let Cε,i+1 = Cε,i ∪ Dom(p′ε,i), let nε,i =

|p′ε,i ∩ qε∆ε+1,Cε,i
| and {ϕε(x̄, b̄ε,i,`) ≡ ϕε(x̄, c̄ε,i,`) : i < nε} list p′ε,i ∩ qε∆ε+1,Cε,i

.

So for some n(∗) the set U = {i < ω1 : nε,i ≤ n(∗)} is infinite. Now we prove

~ for every i(∗) < ω1 and u ⊆ ω1\i(∗), the following set has at least 2|u|

members {η : η is a function from {(j, n) : j ∈ u and n < nζ} to the truth

values such that p∪∪{qξ∆ξ+1,cξ+1
� Cε,i(∗) : ξ < ε}∪{ϕε(x̄, b̄ε,j,n)η(j,n) : j ∈ u

is finitely satisfiable}.

We do this by induction on |u|; this gives that T has the independence property,
contradiction.

We would have liked to look at all κ = ℵ0, but we would get by the proof above
less; say for a pregiven k0 < ω, say for ε = 0, we get every subset of p ∪ p∆0,C0 of
cardinality < k0 is satisfiable.
2) Similar to the proof of 4.24(2).
3) Like 4.24(3), only we have to take care of the ∆, too.
4) Like 4.24(4). �4.26

4.27 Claim. If ā1, ā2 are perpendicular indiscernible sequences each of cofinality
> |T |, then we can find J1 ⊆ Dom(ā1), J2 ⊆ Dom(ā2) unbounded such that ā1 �
J1, ā

2 � J2 are mutually indiscernible.

Proof. If Dom(ā1), Dom(ā2) has different confinalities we can apply 4.11 to ā1 �
I1, ā

2 � I2 where I` ⊆ Dom(ā`) is unbounded and cofinal in Dom(ā`) and has
cardinality cf(Dom(ā`)).
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Otherwise, let κ be the common cofinality, choose {t`α : α < κ} ⊆ Dom(ā`)
increasing unbounded. As in 3.5 we can chooose α(i, `) < κ by induction on 2α+ `,
increasing such that α = α(i, `) implies that ā`t`α

realizes Av({āk
tkβ

: β < α & k ∈
{1, 2} or β = α ∧ k = 1 < ` = 2}, ā`). So 〈ā1

t1α
ˆā2
t2α

: α < κ〉 is an indiscernible

sequence. By the perpendicularity easily J` = {t`α : α < κ} for ` = 1, 2 are as
required. �4.27
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§5 Indiscernible sequence perpendicular to cuts

Our aim is to show that for a set of {b̄ζ : ζ < ζ∗} of pairwise perpendicu-
lar endless indiscernible sets, we can find a model M ⊇ ∪{b̄ζ : ζ < ζ∗} with
〈dual-cf(b̄ζ ,M) : ζ < ζ∗〉 essentially as we like, and other b̄′ in M has such dual
cofinality iff this essentially follows. In fact we can demand M ⊇M0 for any given
M0. Toward this we define and investigate when an endless indiscernible sequence
c̄ is perpendicular to a (Dedekind) cut (I1, I2) in an indiscernible sequence ā.

We use

� the Downward L.S. (on M ≺ N) can replace |T | < |PN | < |QN | by |PM | =
|QM | but in general cannot invert the inequality, however for cofinality it
can.

For our purpose “respecting” defined in 5.2 is a central notion.

5.1 Discussion: 1) We can reformalize the aim as:

� given D̄ = 〈Dζ : ζ < ζ∗〉, Dζ an ultrafilter and ∪{Dom(Dζ) : ζ < ζ∗} ⊆ M
and given a sequence 〈λζ : ζ < ζ∗〉 of regular cardinals (≥ κ = cf(κ) > |T |)
and, for simplicity, Dom(Dζ) in C an indiscernible sequence over ∪{Dom(Dε) :
ε 6= ζ}, then there is a κ-saturated model M ⊇ A such that ζ < ζ∗ ⇒
λζ = dual-cf(Dζ ,M) defined naturally. This property is meaningful also
for (complete first order theories) T with the independence property (and
sequence D̄). However, at least for some of them, e.g., for number theory

(a) assume ζ1 6= ζ2 < ζ∗ and F is a one to one function from Dom(Dζ1)
onto Dom(Dζ2) maping Dζ1 to Dζ2 and is included in a function de-
finable in C with parameters from A.
Then A ⊆M ≺ C⇒ dual-cf(Dζ1 ,M) = dual-cf(Dζ2 ,M).
In other words if Dζ1 , Dζ2 are isomorphic as ultrafilters then Dζ1 , Dζ2

are not perpendicular in C for T = Th(N) because for every such F
there is a definable function extending it.
For dependent theory this gives just that definably isomorphic ⇒ not
perpendicular

(b) we can weaken the demands on Dζ1 , Dζ2 .

5.2 Definition. 1) We say Ī = (I1, I2) is a Dedekind cut (or just a cut) of the
linear order I, if I is the disjoint union of I1, I2 and s ∈ I1 & t ∈ I2 ⇒ s <I t
and we write I = I1 + I2, and the cofinality of Ī is (cf(I1), cf(I∗2 )) where I∗2 is I2
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inverted. If I1 + I2 is a convex subset of J and I1 6= ∅ 6= I2 we may abuse our
notation saying “(I1, I2) is a Dedekind cut of J”. We say (I1, I2) is a Dedekind cut
of ā if it is a Dedekind cut of Dom(ā). If not say otherwise, I1 6= ∅ 6= I2, and the
cut is non-trivial if both its cofinalities are infinite.
2) (J1, J2) ≤ (I1, I2) if J1 is an end segment of I1 and J2 is an initial segment of I2.
3) We say that the set A respects the Dedekind cut (I1, I2) of ā if (I1, I2) is a
Dedekind cut of ā and for every b̄ ∈ ω>A for some (J1, J2) ≤ (I1, I2) the sequence
ā � (J1 + J2) is indiscernible over b̄.
4) For indiscernible sequences ā, b̄ such that b̄ is endless and a Dedekind cut (I1, I2)
of ā we say that b̄ is perpendicular to the cut over A0 when:

(a) the set A0 ⊇ b̄ ∪ ā respects the cut (I1, I2) of ā

(b) for any set A ⊇ A0 respecting the Dedekind cut (I1, I2) of ā and c̄ realizing
Av(A, b̄) also the set A ∪ c̄ respects the Dedekind cut (I1, I2) of ā.

We also say “b̄ is perpendicular to (ā � I1, ā � I2) over A0”. If we omit A0 we mean
A0 = b̄ ∪ ā.
4A) For indiscernible sequences ā, b̄ such that b̄ is endless and a Dedekind cut
(I1, I2) of ā we say that b̄ is truely perpendicular to the cut (I1, I2) of ā when for
any set A, if A ∪ ā respects the cut (I1, I2) of ā and c̄ realizes Av(A ∪ ā, b̄) then
A ∪ ā ∪ c̄ respects the cut (I1, I2) of ā.
5) For endless indiscernible sequence ā and A ⊇ ā we say an endless indiscernible
sequence b̄ = 〈b̄t : t ∈ I〉 over A is based on ā or b̄ is based on (A, ā) if each b̄t
realizes Av(A ∪ {b̄s : s <I t}, ā).
6) We say that the set A weakly respects the Dedekind cut (I1, I2) of ā if (I1, I2) is
a Dedekind cut of ā and for every formula ϕ(x̄, b̄) with b̄ ⊆ A for some (J1, J2) ≤
(I1, I2) and truth value t we have s ∈ J1 + J2 ⇒ C |= ϕ[ās, b̄]

t.

5.3 Claim. 1) If (I1, I2) is a nontrivial cut of the indiscernible sequence ā and
A = ∪{āt : t ∈ I1 ∪ I2} then A respects the cut (I1, I2) of ā.
2) For every A and indiscernible ā ⊆ A and endless I there is 〈b̄t : t ∈ I〉 based on
(A, ā).
3) Assume that (I1, I2) is a nontrivial cut of the indiscernible sequence ā and c̄ is
an endless indiscernible sequence. Then (a) ⇔ (b) ⇒ (c) and if the cofinalities of
the cut are > ℵ0 then (a)⇔ (b)⇔ (c) where

(a) c̄ is perpendicular to the cut (I1, I2) of ā

(b) if b̄ is an indiscernible sequence based on (c̄ ∪ ā, c̄) then the set b̄ ∪ c̄ ∪ ā
respects the cut (I1, I2) of ā

(c) there is b̄ an indiscernible sequence based on (c̄ ∪ ā, c̄) such that the set
b̄ ∪ c̄ ∪ ā respects the cut (I1, I2) of ā.
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4) If Ai (i < δ) is increasing, A0 ⊇ A and each Ai [truely, weakly] respects the cut

(I1, I2) of ā then also
⋃
i<δ

Ai does.

5) If b̄ ⊆ A0 ⊆ A1 and the cofinalities (of I1, I2 and Dom(b̄)) are > |T | then: b̄ is
perpendicular to the cut (I1, I2) of ā over A0 then this holds over A1.

Proof. 1) Let b̄ ∈ ω>A; hence for some n < ω and t0, . . . , tn−1 ∈ I1 ∪ I2 we have
b̄ ⊆ ∪{āt` : ` < n} and define J1 = {t ∈ I1 : (∀` < n & t` ∈ I1 ⇒ t` < t}, J2 =
{t ∈ I2 : ` < n & t` ∈ I2 ⇒ t < t`}. Clearly (J1, J2) ≤ (I1, I2) and ā � (J1 + J2)
is indiscernible over ∪{āt : t ∈ (I1 ∪ I2)\(J1 ∪ J2)} hence over ∪{at` : ` < n} hence
over b̄.
2) Also trivial.
3) (a)⇒ (c):

Let 〈b̄n : n < ω〉 be an indiscernible sequence over ∪ā ∪
⋃

c̄ based on c̄ and for
α ≤ ω let Aα = ∪{āt : t ∈ I1 ∪ I2} ∪ c̄∪

⋃
{b̄n : n < α}. We can prove by induction

on α that Aα respects the cut (I1, I2) of ā; for α = 0 by part (1), for α = n + 1
by clause (a), see Definition 5.2(4) for α limit by part (4) and is straightforward.
Hence by the first phrase of part (2), 〈b̄n : n < ω〉 exemplifies (a), as required.

(b)⇒ (c): Trivial.

(c)⇒ (b): Easy.

(b)⇒ (a): So we are assuming that the cofinalities are > |T |.
Let a set A ⊇ c̄∪ ā respecting the cut (I1, I2) be given and let b̄n realize Av(∪c̄∪

A ∪ {b̄m : m < n}, c̄) for n < ω. By clause (b) we know that the set B = ∪{b̄n :
n < ω} ∪

⋃
ā respect the cut (I1, I2) of ā. Let d̄ be a finite sequence from A, then

we shall prove

(∗)d̄ for some (J1, J2) ≤ (I1, I2) the sequence ā � (J1 ∪ J2) is indiscernible over
∪{b̄n : n < ω} ∪ d̄.

Clearly this sufices. Note that 〈bn : n < ω〉 is indiscernible over A ⊇ ∪ā ∪ d̄.
As the set ∪b̄ ∪ ∪ā respects the cut (I1, I2) of ā, for each n there is (Jn1 , J

n
2 ) ≤

(I1, I2) such that ā � (Jn1 ∪Jn2 ) is indiscernible over b̄0ˆ . . . ˆb̄n. As the cofinalities of

(I1, I2) are > ℵ0, also (J1, J2) ≤ (I1, I2) where J` =:
⋂
n<ω

Jn` , and clearly ā � (J1∪J2)

is indiscernible over b̄. By the last two sentences ā � (J1 ∪ J2), 〈b̄n : n < ω〉 are
mutually indiscernible. Also possibly replacing (J1, J2) by some (J ′1, J

′
2) ≤ (J1, J2),

the sequence ā � (J1 ∪ J2) is indiscernible over d̄ and similarly (as the cofinalities

are large), ā � J` is indiscernible over
⋃
n

b̄n ∪ d̄ ∪ ā � J3−` for ` = 1, 2. Together if
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(∗)d fails, we get a contradiction to the assumption on the b̄n’s.
4),5) Check. �5.3

5.4 Claim. Assume

(a) (I1, I2) is a non-trivial Dedekind cut of the indiscernible sequence ā

(b) J1 is an unbounded subset of I1

(c) J2 is a subset of I2 unbounded from below7

1) If A ⊇ ā then: A respects the Dedekind cut (I1, I2) of ā iff A respects the
Dedekind cut (J1, J2) of ā � (J1 ∪ J2).
2) If b̄ is an endless indiscernible sequence and b̄∪ ā ⊆ A0, then b̄ is perpendicular
to the Dedekind cut (I1, I2) of ā over A0 iff b̄ is perpendicular to the Dedekind cut
(J1, J2) of ā � (J1 ∪ J2) over A0.
3) If J is an unbounded subset of Dom(b̄), in (2) we can replace the last b̄ by b̄ � J .

Proof. 1), 2), 3) As T has the dependence property. �5.4

5.5 Claim. 1) Assume ā = ā1ˆā2 is an indiscernible sequence and A ⊇ ā1ˆā2

respects the non-trivial cut (ā1, ā2) both cofinalities of which are > |T | and c̄ ⊆ A
is an endless indiscernible sequence perpendicular to ā1 and to the inverse of ā2.
Then c̄ is perpendicular to (ā1, ā2) over A.
2) Let (I1, I2) be a Dedekind cut of the indiscernible sequence ā with cofinalities
> |T | and ā ⊆ A. The set A respects the cut (I1, I2) of ā iff the set A weakly
respected the cut (I1, I2) of ā.
3) Let (I1, I2) be a Dedekind cut of the infinite indiscernible sequence ā with in-
finite cofinalities, b̄ an endless indiscernible sequence such that ā, b̄ are mutually
indiscernible. Then b̄ is perpendicular to the cut (I1, I2) of ā.

Proof. 1) It is enough to show that if c̄ realizes Av(A, c̄) then A ∪ c̄ respects the
cut (I1, I2) of ā. By the second part (proved below) it is enough to show that
A ∪ c̄ weakly respects (ā1, ā2). Let d̄ ⊆ A ∪ c̄, and consider ϕ(x̄, d̄). Without
loss of generality for some d̄′ ⊆ A, d̄ = c̄ˆd̄′. By the choice of c̄ and as c̄, ā1 are
perpendicular for some truth value t we have:

(a) for every large enough t ∈ Dom(ā1) we have |= ϕ[ā1
t , c̄, d̄

′]t

7we can omit this here (and many other places) if in Definition 5.2(3),(4), we say “for every
finite ∆”. But this does not help much because of “κ > |T |” in 4.23. We could replace |T |+ by a

kind of κrind(T ).
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(b) for every large enough t ∈ Dom(ā1) for every large enough s ∈ Dom(c̄) we
have |= ϕ[ā1

t , c̄s, d̄
′]t

(c) for every large enough s ∈ Dom(c̄) for every large enough t ∈ Dom(ā1) we
have |= ϕ[ā1

t , c̄s, d̄
′]t.

As d̄′, c̄s ⊆ A and A respects (ā1, ā2) by clause (c) clearly

(d) for every large enough s ∈ Dom(c̄) for every small enough t ∈ Dom(ā2)
we have |= ϕ[ā2

t , c̄s, d̄
′]t.

As c̄ and the inverse of ā2 are perpendicular by clause (d) we have

(e) for every small enough t ∈ Dom(ā2) for every large enough s ∈ Dom(c̄)
we have |= ϕ[ā2

t , c̄s, d̄
′]t.

By the choice of c̄ and clause (e)

(f) for every small enough t ∈ Dom(ā2) we have |= ϕ[ā2
t , c̄, d̄

′]t.

Together we are done.
2) Trivially respect implies weakly respect. So assume b̄ ⊆ A. By 4.14(1) we can
find (J1, J2) ≤ (I1, I2) such that ā � J1, ā � J2 are mutually indiscernible over
b̄. Toward contradiction assume that ā � (J1 ∪ J2) is not indiscernible over b̄, so
there is ϕ(x̄1, . . . , x̄n, b̄) witnessing it. We prove by induction on m ≤ n the natural
statement: for some truth value t if t1 < . . . < tn are in J1∪J2 and tm+1, . . . , tn ∈ J2

then C |= ϕ[āt1 , . . . , ātn , b̄]
t.

For m = 0 this holds as ā � J2 is an indiscernible sequence over b̄ so we can choose
the appropriate t.
For m+1, if tm ∈ J2 uses the induction hypothesis, so assume tm ∈ J1, let t′` be t` if
` 6= m and any member t′ of J2 satisfying tm < t′ < tm+1 if ` = m & m+1 ≤ n and
t′ any member of J2 if ` = m = n. Let c̄ = 〈āt` : ` 6= m〉 and ψ(x̄, 〈ȳ` : ` = 1, . . . , n
and ` 6= m〉, z̄) = ϕ(ȳ1, . . . , ȳm−1, x̄, ȳm+1, . . . , ȳn, z̄). So |= ψ[āt′m , c̄, b̄]

t by the

induction hypothesis and |= ¬ψ[āt′n , c̄, b̄]
t by the assumption toward contradiction.

So by mutual indiscernibility ψ(āt′s , c̄, b̄)
t holds for every large enough s ∈ J1 and

fails for every small enough s ∈ J2. But c̄, b̄ ⊆ A and this shows that “weakly
respect” fails.
3) Easy, e.g., by part (1) and 4.7(1), clause (b) of Definition 5.2(4) holds and
similarly to the proof of 5.3, clause (a) of Definition 5.2(4) holds.

�5.5
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5.6 Definition. We say an endless indiscernible sequence ā ⊆ A has true dual
cofinality κ inside A, tr-d-cf(ā, A) = κ if there is b̄ ⊆ A such that āˆb̄ is an
indiscernible sequence with the cut (ā, b̄) being respected by A and Dom(b̄) has
downward cofinality κ.

5.7 Observation. 1) tr-d-cf(ā, A) is well defined, i.e., has at most one value.
2) If tr-d-cf(ā, A) is well defined then it is equal to dual-cf(ā, A), see Definition
4.5(3).

Proof. Easy, as κ is unique.

5.8 Claim. 1) If δ is a limit ordinal, 〈Ai : i < δ〉 is increasing, ā ⊆ A0 is an
endless indiscernible sequence, ā′i ⊆ Ai+1 realizes Av(Ai, ā), ā′ = 〈ā′i : i < δ〉 and
ā′′ is the inverse of ā′ then

(a) āˆā′′ is an indiscernible sequence

(b) the set
⋃
i<δ

Ai respects the cut (Dom(ā),Dom(ā′′)) of āˆā′′.

2) If ā is a non-stable indiscernible sequence, ā ⊆ A, the set A respects the non-
trivial cut (I1, I2) of ā and the cofinalities of the cut are > |T | then dual-cf(ā �
I1,M) = cf(I∗2 ) = tr-d-cf(ā � I1,M).
3) [Not used] If ā is an indiscernible sequence with Dedekind cut (I1, I2) of cofinality
(κ1, κ2),ℵ0 < κ1, κ2 and c̄ an endless indiscernible sequence perpendicular to the
cut (I1, I2) of ā, then: for every formula ϕ(x̄, ȳ, z̄) and sequence b̄ such that ā∪ b̄∪ c̄
respects the cut (I1, I2) of ā for some truth value t we have:

(∗) for some (J1, J2) ≤ (I1, I2) and for every t ∈ J1∪J2, for every large enough
s ∈ Dom(c̄) we have C |= ϕ[āt, b̄, c̄s]

t.

4) If in part (3), |T | < κ1, κ2, then for some (J1, J2) ≤ (I1, I2) and end segment J
of Dom(c̄) we have: ā � (J1 + J2), c̄ � J are mutually indiscernible.

Proof. 1), 2) Straightforward.
3) Let δ = |T |+ and let d̄γ realize Av(ā ∪ b̄ ∪ c̄ ∪ {d̄β : β < γ}, ā), for γ < δ
so by the definition of “respect the Dedekind cut” and as κ1, κ2 > ℵ0 there is
(J1, J2) ≤ (I1, I2) such that ā � (J1∪J2) is indiscernible over ∪{d̄n : n < ω}∪b̄ hence
ā � (J1 +J2) and d̄ = 〈d̄γ : γ < δ〉 are {ϕ}-mutually indiscernible over b̄. So we have
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truth value t such that t ∈ J` & γ < δ ⇒ C |= ϕ[āt, b̄, d̄γ ]t. Recall that (I1, I2) have
cofinality (κ1, κ2) and for our purpose without loss of generalityκ1, κ2 > |T |. Now
clearly the three indiscernible sequences ā � J1, the inverse of ā � J2 and 〈d̄γ : γ < δ〉
are mutually indiscernible, hence by 4.17, clause (B) without loss of generality they
are mutually indiscernible over b̄ (i.e., omitting an initial segment of each and
renaming). By the choice of the d̄γ ’s, for every t ∈ J1 + J2 for every large enough
s ∈ Dom(c̄) we have |= ϕ[āt, b̄, c̄s]

t.
4) Should be clear (compare with 1.30, 5.5, 5.8).

5.9 Claim. Assume

(a) I = I1 + I2 and the Dedekind cut (I1, I2) has cofinality (κ1, κ2)

(b) ā = 〈āt : t ∈ I〉 is an indiscernible sequence

(c) ā ⊆ A
(d) the set A respects the cut (I1, I2) of ā

(e) |T | < κ1, κ2 (not used in part (1)).

1) If tp(d̄, A) ∈ Fsp
κ and κ ≤ κ1, κ2, then the set A∪ d̄ respects the cut (I1, I2) of ā.

2) If A+ = A ∪ {ai : i < i∗} and for each i, tp(ai, A ∪ {aj : j < i}) belongs to
Fsp

min{κ1,κ2} or is Av(A ∪ {aj : j < i}, b̄) where b̄ ⊆ A ∪ {aj : j < i} is an endless

indiscernible sequence perpendicular to the cut (I1, I2) of ā over A ∪ {aj : j < i},
then A+ respects the cut (I1, I2) of ā.

Proof. 1) As p = tp(d̄, A) belongs to Fsp
κ , there is a subset B of A of cardinality

< κ such that p does not split over B.
Let d̄′ ∈ ω>(A ∪ d̄) and we should find (J1, J2) ≤ (I1, I2) such that ā � (J1 + J2)

is indiscernible over d̄′. As we can increase d̄′ (this just makes our task harder)
without loss of generality d̄′ = d̄ˆē with ē ⊆ A. Now for every ē′ ⊆ B ∪ ē there is
(J1
ē′ , J

2
ē′) ≤ (I1, I2) such that ā � (J1

ē′ +J2
ē′) is an indiscernible sequence over ē′. Let

J` be ∩{J`ē′ : ē′ ⊆ B ∪ ē} for ` = 1, 2 if κ > ℵ0 and let J` = J`ē∗ , ē
∗ listing B ∪ ē

if κ = ℵ0. As κ ≤ κ1, κ2 and cf(I1, I2) = (κ1, κ2) clearly (J1, J2) ≤ (I1, I2) and
ā � (J1 + J2) is indiscernible over B ∪ ē.

Now for any formula ϕ and b̄ ∈ ω>B and s ∈ J1, t ∈ J2 we have

(∗)1 tp(ā1
sˆē, B) = tp(ā2

tˆē, B).
[Why? By “ā � (J1 + J2) indiscernible over B ∪ ē”.]

(∗)2 C |= ϕ[d̄, ā1
s, ē, b̄] iff ϕ(x, ā1

s, ē, b̄) ∈ p.
[Why? By the assumption on p as tp(d̄, A).]

(∗)3 ϕ(x̄, ā1
s, ē, b̄) ∈ p iff ϕ(x̄, ā2

t , ē, b̄) ∈ p.
[Why? By (∗)1 as p does not split over B.]
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(∗)4 ϕ(x̄, ā2
t , ē, b̄) ∈ p iff C |= ϕ(d̄, ā2

t , ē, b̄).
[Why? By the definition of p as tp(d̄, A).]

So by (∗)2 + (∗)3 + (∗)4 as they hold for every ϕ and b̄ ∈ ω>B

(∗)5 d̄ˆā1
sˆē and d̄ˆā2

tˆē realize the same type over B

hence

(∗)6 ā1
s, ā

2
t realized the same type over ēˆd̄.

By 5.5(2) this suffices as κ1, κ2 > |T | (or we could have repeated the proof for any
increasing sequence 〈s1, . . . , sn〉, 〈t1, . . . , tn〉 from J1 +J2 so κ1, κ1 > |T | will not be
used).
2) Let Ai = A∪{aj : j < i}, and we prove by induction on i that the cut (I1, I2) of
ā is respected by the set Ai. For i = 0 we use assumption (d). For i limit, we use
5.3(4). For i = j + 1 we use part (1) if tp(b̄j , Aj) ∈ Fsp

κ and we use the definition
5.2(4) if not. For i = i∗ we have gotten the desired conclusion.

�5.9

5.10 Claim. Assume

(a) (I1, I2) is a non-trivial cut of the indiscernible sequence ā

(b) b̄ is an endless indiscernible sequence

(c) ā � I1, b̄ are perpendicular

(d) for each t ∈ I2 the sequence ā1
t realizes Av({ā1

s : s ∈ I1∨t <I s ∈ I2}∪b̄, ā1 �
I1)

(e) both cofinalities of (I1, I2) and the cofinality of b̄ are > |T |.

Then b̄ is perpendicular to the cut (I1, I2) of ā.

Proof. Now by assumption (c) here and 4.27, for some unbounded I ′1 ⊆ I1 and I ′ ⊆
Dom(b̄), the sequences ā � I ′1, b̄ � I

′ are mutually indiscernible. By 5.4(1)+(2) +
5.3(5), without loss of generality I ′1 = I1, I

′ = Dom(b̄), so without loss of generality ā �
I1, b̄ are mutually indiscernible. Easily also b̄ and ā are mutually indiscernible (by
clauses (c) and (d)). Hence by 5.5(3) clearly ā, b̄ are perpendicular. �5.10
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5.11 Theorem. Assume

(a) λ = λ<κ2 + 22<κ1

(b) |T | < κ1 = cf(κ1) ≤ κ2 ≤ θ2 = cf(θ2), κ1 ≤ θ1
ζ = cf(θ1

ζ) ≤ λ for ζ < ζ∗

(c) |A| ≤ λ
(d) āζ ⊆ A is endless, non-stable indiscernible for ζ < ζ∗ and ζ∗ ≤ λ
(e) the āζ for ζ < ζ∗ are pairwise perpendicular

(f) cf(Dom(āζ)) is ≥ κ1.

Then we can find a model M such that

(α) A ⊆M
(β) dual-cf(āζ ,M) = θ1

ζ+cf(Dom(āζ)) for every ζ < ζ∗, moreover tr-d-cf(āζ ,M) =

θ1
ζ

(γ) if ā ⊆M is a non-stable endless indiscernible sequence of cardinality (hence
cofinality) < κ2 perpendicular to every āζ then dual-cf(ā,M) = θ2

(δ) M is κ1-saturated.

Proof. Let θ0
ζ = cf(Dom(āζ)). Note that without loss of generality

(∗) there is b̄ζ such that āζˆb̄ζ is an indiscernible sequence, with the cut
(Dom(āζ),Dom(b̄ζ)) having cofinality (θ0

ζ , θ
1
ζ) and this Dedekind cut be-

ing respected over the set A.
[Why? By using 5.10 and 5.3(4), of course.]

We can find āi for i < δ∗ =: λ× θ2 such that letting Ai = A ∪ {āj : j < i} we have

(i) for each i < δ∗ we have tp(āi, Ai) ∈ Fsp
κ1

or tp(āi, Ai) = Av(Ai, ā) for
some non-stable endless indiscernible sequence ā ⊆ Ai of cardinality < κ2

perpendicular to āζ for every ζ < ζ∗

(ii) if p ∈ S<ω(Aλ×(ε+1)), p ∈ Fsp
κ1

then for λ ordinals j < λ, p is realized by

b̄λ×ε+j

(iii) if ā is as in (i), ā ⊆ Aλ×ε then for λ ordinal j < λ, b̄λ×ε+j realizes
Av(Aλ×ε+j , ā).

By bookkeeping, as in 5.9 this is straightforward and clauses (α) and (δ) obviously
hold and in particular there is M with universe Aδ∗ . By 5.9, M respects (āζ , b̄ζ)
for each ζ < ζ∗ hence by 5.8(2), clause (β) holds.
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As for clause (γ), let ā = 〈at : t ∈ I〉 ⊆ M be a non-stable endless indiscernible
sequence |I| < κ2, ā perpendicular to every āζ ; it is also perpendicular to the inverse
of b̄ζ as their cofinalities are different. Hence it is also perpendicular to the cut
(āζ ,bζ) by 5.5(1).

As κ2 ≤ θ2 = cf(θ2) = cf(δ∗) it follows that for some α < δ∗, ā ⊆ Aα and
so u = {i : i ∈ (α, δ∗) and āi realizes Av(Ai, ā)} is unbounded in δ∗, let J be
(u,>) and so āˆ〈at : t ∈ J〉 is an indiscernible sequence. By 5.8(1) the set Aδ∗
respect the Dedekind cut (I, J) of āˆ〈at : t ∈ J〉 that is M respects it hence
dual-cf(ā,M) = cf(J∗) = cf(δ∗) = θ2 as required. �5.11
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§6 Concluding Remarks

We continue to deal with dependent T .
6.1 Conjecture: If p ∈ S(M) then there are at most 2|T | infinite sequences of
indiscernible, pairwise non nb-s based on some ultrafilter D on M with Av(M,D) =
p.

A major lack of this work is the absence of test questions.
A candidate is the problem of classifying first order theories by the existence of

indiscernibles (raised by Grossberg and the author, see [Sh 702, §2]), e.g.:

6.2 Question: If A ⊆ CT , κ = |A| + |T | (or e.g. κ = i7(|A| + |T |) and λ = i(2κ)+

(or larger, but no large cardinals) and ai ∈ CT for i < λ then for some w ∈ [λ]κ
+

,
the sequence 〈ai : i ∈ w〉 is an indiscernible sequence over A(in CT ).

Now though this property cannot characterize the dependence property, it is quite
natural in this context. Consider Tn, the model completion of the empty theory in
the vocabulary {Rn}, Rn an n-place relation. So if λ = in(κ)+, we get a positive
answer, but for n ≥ 2, Tn is independent. We may consider replacing indiscernible
sequences ā by ā = 〈āt : t ∈ I〉 as an index structure with n(I) = ∪{n(R) + 1 : R
an atomic relation of I} < ω, ā is I-indiscernible, i.e., k < ω, s̄, t ∈ kI, s̄ ∼I⇒ āt̄, ās̄
realizes the same type. See also later.

Another direction is generalizing DOP, which in spite of its name is a non first
order independence property.

On classification by Karp complexity see Laskowski and Shelah [LwSh 560], [LwSh
687] (let the κ-Karp complexity γκ(M) of M be the least γ such that every
L∞,κ(τM )-formula is equivalent in M to such a formula of quantifier depth < γ,
and the (λ, κ)-Karp complexity of T is ∪{γκ(M)+1 : M a model of T of cardinality
λ}.
For elementary classes which are unstable but dependent the following parallel to
DOT may help.

6.3 Definition. T has the dual-cf-κ̄-dimensional independence property when:
κ̄ = (κ0, κ1, κ2), κ1 6= κ0 < κ1, κ0 < κ2 and for every λ and symmetric relation
R ⊆ λ× λ we can find MR, b̄α, c̄α ∈ κ0(MR) and an indiscernible sequences Iα,β =
〈āα,β,i : i < κ0〉 ⊆MR for (α, β) ∈ R,α < β such that:

(a) the type of b̄αˆc̄βˆIα,β is the same for all pairs (α, β) ∈ R
(b) dual-cf(Iα,β ,MR) = κ1 for (α, β) ∈ R
(c) if α < β and ¬αRβ and the sequence I′α,β = 〈ā′α,β,i : i < κ0〉 ⊆ MR is such

that for every (α1, β1) ∈ R there is an automorphism h of C taking b̄α1
to

b̄α, c̄β1
to c̄β and āα1,β1,i to āα,β,i then dual-cf(I′α,β ,M) = κ2
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(d) MR is κ+
0 -saturated.

Note that a sufficient condition for this is

(c)+ if I′α,β = 〈ā′α,β,i : i < κ0〉 realizes the relevant type over āαˆb̄β and

(α, β) /∈ R,α < β < λ and α1 < β1 < λ, (α1, β1) ∈ R then I′α,β , Iα1,β1

are perpendicular.

Recall

6.4 Definition. M is κ-resplended when: if c̄ ∈ κ>M,M ≺ N,N the τM -reduct
of N+, |τN+\τN | < κ, then (M, c̄) can be expanded to a model of Th(N+, c̄).

6.5 Problem: Characterize the λ-Karp complexities for µ-resplended models of a
complete first order theory T of cardinality > |T | say for λ > µ > |T | regular?

For T stable it is 0 (see [Sh:e, Ch.V]), as all such models are saturated. For T
with the independence property we should consider combining [LwSh 687] (which
constructs models of T1 ⊇ T with large λ-Karp complexity of the τT -reduct) and
[Sh:e, Ch.V]. But here our concern is for unstable T with the dependence property.

If we look at an indiscernible sequence 〈b̄t : t ∈ I〉 inside a model M , we know
that distinct Dedekind cuts with at least one side having large cofinality are quite
unconnected. We shall show in subsequent work [Sh 783] that the large cofinality
demand is not incidental.

6.6 Question: Investigate the graph ({b̄t : b̄t an endless indiscernible sequence},
perpendicularly).

As in §5 we can show that many variants are equivalent (using +∞,−∞ to
absorb). We can similarly discuss a parallel to deepness (see [Sh:f, X], recall that
deepness is related to orthogonality).

6.7 Discussion: 1) It is known that e.g. (first theory of) the p-adics has the depen-
dence property (and are unstable). Does this work tell us anything on them? Well,
the construction in §5 gives somewhat more than what unstability gives: compli-
cated models with more specific freedom. Note that instead dual-cf(I,M) we can
use more complicated invariants (see [Sh:e, Ch.III,§3] or earlier works).

We can, of course, (for the p-adic) characterize directly when indiscernible se-
quences are perpendicular.

2) We may like to define super dependence properties (and κnip(T )) (parallel
of superstable, i.e., κ(T ) = ℵ0 or super-simple κcdt(T ) = ℵ0). There are some
possibilities, one defined in [Sh:c, III], another in [Sh 783]. We may try the definition
“w(I) < ℵ0”, i.e., weight for every endless indiscernible sequence where
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6.8 Definition. For an endless indiscernible sequence I let w(I) = sup{α : there
is a sequence of length α of pairwise perpendicular endless indiscernible sequences
each non perpendicular to I}.
But w(I) is not weight for superstable theory just of a variant of it hence exactly
like dimension in the sense of algebraic manifolds.

6.9 Question: Assume I` = 〈a`t : t ∈ I`〉 for ` = 1, 2 are endless indiscernible
sequences and they are non perpendicular.

(a) Find a definable equivalence relation E such that 〈a2
t/E : t ∈ I2〉 is non-

trivial and a2
t/E ∈ acl(I1 ∪ {a2

s : s <I2 t}) for any large enough t (i.e.,
non-perpendicularty implies non-orthogonality for trivial reasons).

(b) If (I1, I2) is (1, < ω)-mutual indiscernible (parallel to Hrushovski’s theorem),
can we define a derived group? More generally, it seems persuasive that
groups appear naturally, particularly ordered groups.

(c) Does the fact that putting elements together, make strong splitting implies
dividing helps?
[recall:

(i) p strongly splits over A if there is a sequence 〈āt : i < λ〉 indiscernible
over A such that ϕ(x̄, ā0) & ¬ϕ(x, ā1)

(ii) p divides over A if there is an indiscernible sequence 〈b̄i : i < λ〉 over
A and ψ(x, b̄0) ∈ p such that {ψ(x̄, b̄i) : i < λ} is contradictory.

So having (i), letting b̄i = ā2iˆā2i+1, ψ(x, b̄i) = ϕ(x, ā2i) & ¬ϕ(x, ā2i+1)
we have (ii).]

(d) Can the canonical bases of §1 help?

(e) What can we say on “ā perpendicular to a set (or model) A?”

6.10 Discussion Cherlin wonders on the place of parallel algebraic geometric dimen-
sion and the place of 0-minimal theory. In my perception probably if we succeed in
6.9(a), we may have a minimality notion which may then be characterized as some
cases, but maybe it does not fit.

6.11 Question: If B ⊆ C ⊆ C, p ∈ Sm(B), then p has an extension q in Sm(C)
which does not split strongly over B (and if p does not fork over A, then q does not
fork over A).

6.12 Question: Given two non perpendicular types in S(A) (or ultrafilter on A)
which are weakly perpendicular can we find naturally defined groups?
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6.13 Concluding Remark. We can define when an endless indiscernible sequence is
orthogonal to a set and the dimensional independence property and prove natural
properties, we hope to pursue this.

6.14 Question: For an infinite indiscernible sequence 〈b̄t : t ∈ I〉, b̄t ∈ αC can we
find A ⊆ C, |A| ≤ |γ|+ |T | and b̄+t = b̄tˆāt, `g(āt) = (|γ|+ |T |) for t ∈ J such that
〈b̄+t : t ∈ J〉 is an indiscernible sequence and letting p(x̄, ȳ) = tp(b̄+s ˆb̄+t , A) for
s <J t we have p(x̄, ȳ) ∪ p(ȳ, z̄) ` p(x̄, z̄)?

6.15 Question: 1) If M ≺ N, a ∈ N, (M,N, a) is λ-saturated λ > 2|T |. Can we find
for every A ⊆M, |A| < λ a set B ⊆M, |B| ≤ 2|T | such that p � B ` p � A?
2) Fix finite set Γ = {ϕ(x, ā) : ā ∈ mC}. Look at S(Γ), is it true that every p ∈ S(Γ)
is determined uniquely by q ⊆ p, |q| ≤ n1

ϕ and a rank < n2
ϕ?

Or another way to use having few types.

6.16 Problem: Let M be λ-saturated, p ∈ S(M) and for ϕ = ϕ(x; ȳ) let Iϕ(x;ȳ)(p) =

{ψ(ȳ, c̄) : c̄ ⊆M and {b̄ ⊆M :|= ψ(b̄, c̄), ϕ(x, b̄) ∈ p} is definable}. Investigate this;
we can prove that it is not too small.
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