NOWHERE PRECIPITOUSNESS OF THE NON-STATIONARY IDEAL OVER $\mathcal{P}_{\kappa}\lambda$

YO MATSUBARA¹ AND SAHARON SHELAH²

ABSTRACT. We prove that if λ is a strong limit singular cardinal and κ a regular uncountable cardinal $\langle \lambda \rangle$, then $NS_{\kappa\lambda}$, the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$, is nowhere precipitous. We also show that under the same hypothesis every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{\leq \kappa}$ disjoint stationary sets.

§1. INTRODUCTION

Throughout this paper we let κ denote an uncountable regular cardinal and λ a cardinal $\geq \kappa$. Let $NS_{\kappa\lambda}$ denote the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$. $NS_{\kappa\lambda}$ is the minimal κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$. If X is a stationary subset of $\mathcal{P}_{\kappa}\lambda$, then $NS_{\kappa\lambda}|X$ denotes the κ -complete normal ideal generated by the members of $NS_{\kappa\lambda}$ and $\mathcal{P}_{\kappa}\lambda-X$. We refer the reader to Kanamori [6, Section 25] for basic facts about the combinatorics of $\mathcal{P}_{\kappa}\lambda$.

Large cardinal properties of ideals have been investigated by various authors. One of the problems studied by these set theorists was to determine which large cardinal properties can $NS_{\kappa\lambda}$ or $NS_{\kappa\lambda}|X$ bear for various κ , λ and $X \subseteq \mathcal{P}_{\kappa}\lambda$. In the course of this investigation, special interest has been paid to two large cardinal properties, namely precipitousness and saturation.

If $NS_{\kappa\lambda}|X$ is not precipitous for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$, then we say that $NS_{\kappa\lambda}$ is nowhere precipitous. In [8] Matsubara and Shioya proved that if λ is a strong limit singular cardinal and cf $\lambda < \kappa$, then $NS_{\kappa\lambda}$ is nowhere precipitous. In §2 we extend this result by showing that $NS_{\kappa\lambda}$ is nowhere precipitous if λ is a strong limit singular cardinal.

In [10] Menas conjectured the following:

Menas' Conjecture. Every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{\leq \kappa}$ disjoint stationary sets.

This conjecture implies that $NS_{\kappa\lambda}|X$ cannot be $\lambda^{\leq \kappa}$ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa} \lambda$. By the work of several set theorists we know that Menas' Conjecture is independent of ZFC. One of the most striking results concerning this conjecture is the following theorem of Gitik [4].

Typeset by $\mathcal{A}\mathcal{M}$ S-TEX

¹The first author was partially supported by Grant-in-Aid for Scientific Research (No.11640112), Ministry of Education, Science and Culture of Japan. ²The second author was partially supported by The Israel Science Foundation funded by the Israel Academy of Sciences and Humanities. Publication 758

$2\,$ $\,$ YO MATSUBARA 1 AND SAHARON SHELAH 2

Gitik's Theorem. Suppose that κ is a supercompact cardinal and $\lambda > \kappa$. Then there is a p.o. $\mathbb P$ that preserves cardinals $\geq \kappa$ such that $\Vdash_{\mathbb P} \H \exists X \ (X \text{ is a stationary})$ subset of $\mathcal{P}_{\kappa} \lambda \wedge X$ cannot be partitioned into κ^+ disjoint stationary sets)".

In $\S2$ we also show that if λ is a strong limit singular cardinal, then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{\leq \kappa}$ disjoint stationary sets. Gitik [4] mentions that GCH fails in his model of a "non-splittable" stationary subset of $\mathcal{P}_{\kappa}\lambda$. Our result shows that GCH must fail in such a model of a non-splittable stationary subset of $\mathcal{P}_{\kappa}\lambda$ if λ is singular.

We often consider the poset \mathbb{P}_I of I-positive subsets of $\mathcal{P}_{\kappa}\lambda$ i.e. subsets of $\mathcal{P}_{\kappa}\lambda$ not belonging to I , ordered by

$$
X \leq_{\mathbb{P}_I} Y \Longleftrightarrow X \subseteq Y.
$$

We say that an ideal I is "proper" if \mathbb{P}_I is a proper poset. In [9] Matsubara proved the following result:

Proposition. Let δ be a cardinal $\geq 2^{2^{2^{\lambda}}}$. If there is a "proper" λ^{+} -complete normal ideal over $\mathcal{P}_{\lambda^+} \delta$ then $NS_{\aleph_1 \lambda}$ is precipitous.

It is not known whether $NS_{\kappa\lambda}$ can be precipitous for singular λ . In [1] it is conjectured that $NS_{\kappa\lambda}$ cannot be precipitous if λ is singular. Therefore it is interesting to ask the following question:

Question. Can $\mathcal{P}_{\kappa}\lambda$ bear a "proper" κ-complete normal ideal where κ is the successor cardinal of a singular cardinal?

In §3 we give a negative answer to this question.

§2. On $NS_{\kappa\lambda}$ for strong limit singular λ

We first state our main results.

Theorem 1. If λ is a strong limit singular cardinal, then $NS_{\kappa\lambda}$ is nowhere precipitous.

Theorem 2. If λ is a strong limit singular cardinal, then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{\leq \kappa}$ disjoint stationary sets.

One of the key ingredients of our proof of the main results is Lemma 3. Part (ii) of Lemma 3 was proved in Matsubara [7]. Part (i) appeared in Matsubara-Shioya [8]. For the proof of Part (ii) we refer the reader to Kanamori [6, page 345]. However we will present the proof of (i) because the idea of this proof will be used later.

Lemma 3. If $2^{<\kappa} < \lambda^{<\kappa} = 2^{\lambda}$, then

(i) $NS_{\kappa\lambda}$ is nowhere precipitous

(ii) every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{\leq \kappa}$ disjoint stationary sets.

Before we present the proof of part (i), we make some comments concerning this lemma. First note that the hypothesis of our lemma is satisfied if λ is a strong limit cardinal with cf $\lambda < \kappa$. Secondly under this hypothesis every unbounded subset of $\mathcal{P}_{\kappa}\lambda$ must have a size of 2^{λ} . We also note that Lemma 3 can be generalized in the following manner:

NOWHERE PRECIPITOUSNESS OF THE NON-STATIONARY IDEAL OVER $P_{\kappa} \lambda = 3$

For an ideal I over some set A, we let $\text{non}(I) = \min\{|X| \mid X \subseteq A, X \notin I\}$ and $\text{cof}(I) = \min\{|J| \mid J \subseteq I, \forall X \in I, \exists Y \in J(X \subseteq Y)\}\$. The proof of Lemma 3 actually shows that if $\text{non}(I) = \text{cof}(I)$ then I is nowhere precipitous (i.e. for every I-positive X, $I|X$ is not precipitous) and every I-positive subset X of A can be partitioned into $\text{non}(I)$ many disjoint I-positive sets.

Proof of Lemma 3 (i). For I an ideal over $\mathcal{P}_{\kappa}\lambda$, let $G(I)$ denote the following game between two players, Nonempty and Empty: Nonempty and Empty alternately choose I-positive sets $X_n, Y_n \subseteq \mathcal{P}_\kappa \lambda$ respectively so that $X_n \supseteq Y_n \supseteq X_{n+1}$ for $n = 1, 2, \ldots$. After ω moves, Empty wins $G(I)$ if $\bigcap_{n \in \omega - \{0\}} X_n = \emptyset$. See [3] for a proof of the following characterization.

Proposition. I is nowhere precipitous if and only if Empty has a winning strategy in $G(I)$.

Let $\langle f_\alpha | \alpha < 2^{\lambda} \rangle$ enumerate functions from $\lambda^{<\omega}$ into $\mathcal{P}_\kappa \lambda$. For a function $f: \lambda^{\leq \omega} \to \mathcal{P}_{\kappa} \lambda$, we let $C(f) = \{ s \in \mathcal{P}_{\kappa} \lambda \mid \bigcup f'' s^{< \omega} \subseteq s \}.$ For $X \subseteq \mathcal{P}_{\kappa} \lambda$, X is stationary if and only if $C(f_\alpha) \cap X \neq \emptyset$ for every $\alpha < 2^{\lambda}$.

We now describe Empty's strategy in $G(NS_{\kappa\lambda})$ using the hypothesis $2^{<\kappa}$ < $\lambda^{<\kappa} = 2^{\lambda}$. Suppose that X_1 is Nonempty's first move. Choose $\langle s_\alpha^1 | \alpha < 2^{\lambda} \rangle$, a sequence of elements of X_1 by induction on α in the following manner: Let s_0 ¹ be any element of $X_1 \cap C(f_0)$. Suppose we have $\langle s_\alpha^1 | \alpha \langle \beta \rangle$ for some $\beta < 2^{\lambda}$. Since $\{s^1_\alpha\mid \alpha<\beta\}$ is a non-stationary, in fact bounded, subset of $\mathcal{P}_\kappa\lambda$, $X_1-\{s^1_\alpha\mid \alpha<\beta\}$ is stationary. Pick an element from $(X_1 - \{s_\alpha^1 \mid \alpha < \beta\}) \cap C(f_\beta)$ and call it s_β^1 . Let Empty play $Y_1 = \{s_\alpha^1 \mid \alpha < 2^\lambda\}$. It is easy to see that Y_1 is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Inductively suppose Nonempty plays his $n+1$ -st move X_{n+1} immediately following Empty's *n*-th move $Y_n = \{s^n_\alpha \mid \alpha < 2^{\lambda}\}\$. Choose $\langle s^{n+1}_\alpha \mid \alpha < 2^{\lambda}\rangle$, a sequence from X_{n+1} in the following manner: Let s_0^{n+1} be any element of $(X_{n+1}$ – $\{s_0^n\}\}\cap C(f_0)$. Suppose we have $\langle s_\alpha^{n+1} | \alpha < \beta \rangle$, for some $\beta < 2^\lambda$. Pick an element of the stationary set $(X_{n+1} \cap C(f_{\beta})) - (\{s_{\alpha}^{n+1} \mid \alpha < \beta\} \cap \{s_{\alpha}^{n} \mid \alpha \leq \beta\})$ and call it s_{β}^{n+1} . Let Empty play $Y_{n+1} = \{s_{\alpha}^{n+1} \mid \alpha < 2^{\lambda}\}\$. This defines a strategy for Empty.

Claim. The strategy described above is a winning strategy for Empty.

Proof of Claim. Suppose $X_1, Y_1, X_2, Y_2, \ldots$ is a run of the game $G(NS_{\kappa\lambda})$ where Empty followed the above strategy. We want to show that $\bigcap_{n\in\omega-\{0\}}Y_n = \emptyset$. Suppose otherwise. Let t be an element of $\bigcap_{n\in\omega-\{0\}} Y_n$. Then for each $m\in\omega-\{0\}$, there is a unique ordinal $\alpha_m < 2^{\lambda}$ such that $s_{\alpha_m}^m = t$. But by the way the s_{α}^n s are chosen, $s_{\alpha_0}^0 = s_{\alpha_1}^1 = s_{\alpha_2}^2 = \cdots$ implies $\alpha_0 > \alpha_1 > \alpha_2 > \cdots$. This is impossible. Thus we must have $\bigcap_{n\in\omega-\{0\}} Y_n = \emptyset$. \Box

End of proof of Lemma 3 (i). \Box

We now prove Theorem 2 using Lemma 3 and Theorem 1.

Proof of Theorem 2. Let λ be a strong limit singular cardinal. If cf $\lambda < \kappa$ then by Lemma 3 (ii), we are done. So assume cf $\lambda \geq \kappa$. In this case we have $\lambda^{<\kappa} = \lambda$. Therefore it is enough to show that $NS_{\kappa\lambda}|X$ is not λ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$. But this is a consequence of $NS_{\kappa\lambda}$ being nowhere precipitous. In fact we know that $NS_{\kappa\lambda}|X$ cannot be λ^+ -saturated for every stationary $X \subseteq \mathcal{P}_\kappa \lambda$. \square

We need some preparation to present the proof of Theorem 1. Let λ be a strong limit singular cardinal and κ be a regular uncountable cardinal $\langle \lambda \rangle$. If cf $\lambda \langle \kappa \rangle$ then by Lemma 3 we conclude that $NS_{\kappa\lambda}$ is nowhere precipitous.

4 YO MATSUBARA¹ AND SAHARON SHELAH²

From now on let us assume that λ is a strong limit cardinal with $\kappa \leq cf \lambda < \lambda$. Let $\langle \lambda_\alpha | \alpha < \text{cf } \lambda \rangle$ be a continuous increasing sequence of strong limit singular cardinals converging to λ with $\lambda_0 > c f \lambda$. The following lemma is another key ingredient of our proof.

Lemma 4. For every $X \subseteq \mathcal{P}_{\kappa}\lambda$, if for each $\alpha < \kappa$ with $\kappa \alpha < \kappa$, $\{t \in X \mid \kappa \alpha \leq \kappa \}$ $|\sup(t) = \lambda_{\alpha} \}| < 2^{\lambda_{\alpha}}, \text{ then } X \text{ is non-stationary.}$

Proof of Lemma 4. Since $\{t \in X \mid \text{sup}(t) \notin t\}$ is a club subset of $\mathcal{P}_{\kappa}\lambda$, without loss of generality we may assume that $\sup(t) \notin t$ for every t in X. For each $\alpha < \text{cf } \lambda$ with cf $\alpha < \kappa$, we let $X_{\alpha} = \{t \in X \mid \sup(t) = \lambda_{\alpha}\}\.$ We need the following fact from pcf theory by S. Shelah.

Fact. There is a club subset $C \subseteq \text{cf } \lambda$ such that $pp(\lambda_{\alpha}) = 2^{\lambda_{\alpha}}$ for every $\alpha \in C$.

The proof of the above fact can be obtained from 5.15 of [12] or by combining Conclusion XI 5.13 [11, page 414], Corollary VIII $1.6(2)$ [11, page 321], and Conclusion II 5.7 [11, page 94]. [12] contains updates and corrections to [11]. The reader can look at Holz-Steffens-Weitz [5] for the pcf theory, particularly Theorem 9.1.3 [5, page 271].

For each $\alpha \in C$ with cf $\alpha < \kappa$, let a_{α} be a set of regular cardinals cofinal in λ_{α} such that

- (a) every member of a_{α} is above cf λ
- (b) $|a_{\alpha}| = \text{cf } \lambda_{\alpha}$, and
- (c) $\exists \delta_{\alpha} > |X_{\alpha}| [\delta_{\alpha} \in \text{pcf}(a_{\alpha})]$

Let $a = \bigcup \{a_{\alpha} \mid \alpha \in C \wedge cf \alpha < \kappa\}.$ Let $\langle f_{\beta} \mid \beta < \lambda \rangle$ enumerate all of the members of $\{f \mid f$ is a function, domain (f) is a bounded subset of λ , and f is regressive i.e. $f(\gamma) < \gamma$ for every $\gamma \in \text{domain}(f)$.

For each $t \in \mathcal{P}_{\kappa} \lambda$ we define $g_t \in \prod a$ by letting $g_t(\sigma) = \sup\{f_\beta(\sigma) + 1 \mid \beta \in \mathcal{P}_{\kappa} \lambda\}$ $t \wedge \sigma \in \text{dom}(f_\beta)$, if $\sigma \in \bigcup_{\beta \in t} \text{domain}(f_\beta)$, and $g_t(\sigma) = 0$ otherwise. Note that $|t| < \kappa \leq \text{cf } \lambda < \min(a)$ guarantees $g_t \in \prod a$. Now by (c) in the definition of a_{α} s and the fact that $\{g_t \mid a_\alpha \mid t \in X_\alpha\}$ is a subset of $\prod a_\alpha$ of cardinality $\leq |X_\alpha|$ $\delta_{\alpha} \in \text{pcf}(a_{\alpha})$, there is some $h_{\alpha} \in \prod a_{\alpha}$ such that $\forall t \in X_{\alpha}$ [$g_t \restriction a_{\alpha} <_{J < \delta_{\alpha}} (a_{\alpha})$ h_{α}]. (For the definition of $J_{\leq \delta_\alpha}(a_\alpha)$, we refer the reader to section 3.4 of [5].) Therefore

(1)
$$
\forall t \in X_{\alpha} \exists \sigma \in a_{\alpha} [g_t(\sigma) < h_{\alpha}(\sigma)]
$$

holds. As $\min(a) > cf \lambda$ and $a = \bigcup \{a_{\alpha} \mid \alpha \in C \wedge cf \alpha < \kappa\}$, there is $h \in \prod a$ such that $h_{\alpha} < h \restriction a_{\alpha}$ for every $\alpha \in C$ with cf $\alpha < \kappa$.

Let $W = \{t \in \mathcal{P}_{\kappa} \lambda \mid (i) \text{ for some } \alpha \in C \text{ sup}(t) = \lambda_{\alpha} \text{ with cf } \alpha < \kappa \text{, and (ii) if}$ $\delta \in t$ then for some $\beta \in t$, $h \restriction (a \cap \delta) = f_{\beta}$. Note that W is a club subset of $\mathcal{P}_{\kappa}\lambda$.

Claim. $X \cap W = \emptyset$.

Proof of Claim. Suppose otherwise, say $t \in X \cap W$. By (i) in the definition of W, $t \in X_\alpha$ for some $\alpha \in C$ with cf $\alpha < \kappa$. By (1) we have

(2)
$$
\exists \sigma \in a_{\alpha} \ [g_t(\sigma) < h_{\alpha}(\sigma)].
$$

Since $\sup(t) = \lambda_{\alpha}$, there must be some $\delta \in t$ such that $\delta > \sigma$. Now by (ii) in the definition of W, $h \restriction (a \cap \delta) = f_\beta$ for some $\beta \in t$. Since $\sigma \in a \cap \delta$, $h(\sigma) = f_\beta(\sigma)$. By the definition of g_t we have $f_\beta(\sigma) < g_t(\sigma)$. From $h_\alpha < h \restriction a_\alpha$, we know $h_{\alpha}(\sigma) < h(\sigma)$. Therefore we have $h_{\alpha}(\sigma) < g_t(\sigma)$ contradicting (2). \Box

NOWHERE PRECIPITOUSNESS OF THE NON-STATIONARY IDEAL OVER $P_{\kappa} \lambda = 5$

End of proof of Lemma 4. \square

For each $\alpha < \text{cf } \lambda$ with $\text{cf } \alpha < \kappa$, let us fix a sequence $\langle f_{\xi}^{\alpha} | \xi < 2^{\lambda_{\alpha}} \rangle$ that enumerates members of $\{f \mid f$ is a function such that $\text{domain}(f) \subseteq \lambda_{\alpha}^{<\omega}$ and range $(f) \subseteq \lambda_{\alpha}$. Furthermore for each function f with domain $(f) \subseteq \lambda_{\alpha}^{<\omega}$ and range $(f) \subseteq \lambda_{\alpha}$, we let $C_{\alpha}[f] = \{t \in \mathcal{P}_{\kappa} \lambda \mid t^{<\omega} \subseteq \text{domain}(f), \text{sup}(t) = \lambda_{\alpha}, \text{ and } t \text{ is }$ closed under f . We need the following lemma to present the proof of Theorem 1.

Lemma 5. Suppose X is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. For every $Y \subseteq \{s \in \mathcal{P}_{\kappa}\lambda \mid s \in \kappa \}$ $s \cap \kappa \in \kappa$, if for each $\alpha < \varepsilon$ λ with $\varepsilon \cap \alpha < \kappa$ the following condition $(*)$ holds, then Y is stationary.

(*)
$$
\forall \xi < 2^{\lambda_{\alpha}} \left(|C_{\alpha}[f_{\xi}^{\alpha}] \cap X| = 2^{\lambda_{\alpha}} \longrightarrow C_{\alpha}[f_{\xi}^{\alpha}] \cap Y \neq \emptyset \right)
$$

Proof of Lemma 5. Since $s \cap \kappa \in \kappa$ for every $s \in Y$, to show that Y is stationary it is enough to show that $Y \cap C[g] \neq \emptyset$ for every function $g : \lambda^{\leq \omega} \to \lambda$ where $C[g]$ denotes the set $\{t \in \mathcal{P}_{\kappa} \lambda \mid g''t^{<\omega} \subseteq t\}.$ For the proof of this fact, we refer the reader to Foreman-Magidor-Shelah [2, Lemma 0]. Let us fix a function $g : \lambda^{\leq \omega} \to \lambda$. Now we let $E = {\alpha < \text{cf }\lambda \mid \text{cf }\alpha < \kappa}$ and for each $\alpha \in E$ we let $W_{\alpha} = {\mathbf{s} \in \mathcal{P}_{\kappa} \lambda \mid \mathbf{s} \in \mathcal{P}_{\kappa}}$ $\sup(s) = \lambda_{\alpha} \wedge \lambda_{\alpha} \notin s$. Note that $\bigcup_{\alpha \in E} W_{\alpha}$ is a club subset of $\mathcal{P}_{\kappa} \lambda$. For each $\alpha \in E$, we let g_{α} denote $g \cap (\lambda_{\alpha}^{\leq \omega} \times \lambda_{\alpha})$. Now partition E into two sets E^+ and $E^$ where

$$
E^{+} = \{ \alpha \in E \mid |C_{\alpha}[g_{\alpha}] \cap X| = 2^{\lambda_{\alpha}} \} \text{ and}
$$

$$
E^{-} = \{ \alpha \in E \mid |C_{\alpha}[g_{\alpha}] \cap X| < 2^{\lambda_{\alpha}} \}.
$$

We need the following:

Claim. $X \cap \bigcup \{W_\alpha \mid \alpha \in E^-\}$ is non-stationary.

Proof. It is enough to show that $Z = C[g] \cap X \cap \bigcup \{W_\alpha \mid \alpha \in E^-\}$ is non-stationary. Note that for each $\alpha \in E^+$, $Z \cap W_\alpha = \emptyset$ and for each $\alpha \in E^-$, $Z \cap W_\alpha \subseteq C_\alpha[g_\alpha] \cap X$. Therefore $|Z \cap W_{\alpha}| < 2^{\lambda_{\alpha}}$ for every $\alpha \in E$. Hence, by Lemma 4, we conclude that Z is non-stationary. \square

From Claim we know that $X \cap \bigcup \{W_\alpha \mid \alpha \in E^+\}$ is stationary. Pick an element α^* from E^+ . Consider the partial function g_{α^*} (= $g \cap (\lambda_{\alpha^*}^{\leq \omega} \times \lambda_{\alpha^*}))$). Let ξ^* < $2^{\lambda_{\alpha^*}}$ be such that $f_{\xi^*}^{\alpha^*} = g_{\alpha^*}$. Since $\alpha^* \in E^+$, we have $|C_{\alpha^*}|g_{\alpha^*}| \cap X| = 2^{\lambda_{\alpha^*}}$. Since $f_{\xi^*}^{\alpha^*} = g_{\alpha^*}$ and Y satisfies condition (*), we know that $C_{\alpha^*}[g_{\alpha^*}] \cap Y \neq \emptyset$. Therefore $C[g] \cap Y \neq \emptyset$ showing that Y is stationary.

End of proof of Lemma 5. \Box

Finally we are ready to complete the proof of Theorem 1. To present a winning strategy for Empty in the game $G(NS_{\kappa\lambda})$, we introduce some new types of games. For each $\alpha \in E = {\alpha < \text{cf } \lambda \mid \text{cf } \alpha < \kappa},$ we define the game G_{α} between Nonempty and Empty as follows: Nonempty and Empty alternately choose sets $X_n, Y_n \subseteq$ $W_{\alpha} = \{s \in \mathcal{P}_{\kappa} \lambda \mid \text{sup}(s) = \lambda_{\alpha} \notin s\}$ respectively so that $X_n \supseteq Y_n \supseteq X_{n+1}$ and $\forall \xi < 2^{\lambda_{\alpha}} \left(|C_{\alpha}[f_{\xi}^{\alpha}] \cap X_{n} \right) = 2^{\lambda_{\alpha}} \longrightarrow C_{\alpha}[f_{\xi}^{\alpha}] \cap Y_{n} \neq \emptyset$ for $n = 1, 2, \dots$. Empty wins G_{α} iff $\bigcap_{n\in\omega-\{0\}} Y_n = \emptyset$.

By the same argument as the proof of Lemma 3 (i), we know that Empty has a winning strategy, say τ_{α} , in the game G_{α} for each $\alpha \in E$. Now we show how to

6 $\,$ YO MATSUBARA¹ AND SAHARON SHELAH²

combine the strategies τ_{α} s to produce a winning strategy for Empty in $G(NS_{\kappa})$. Suppose X_1 is Nonempty's first move in $G(NS_{\kappa\lambda})$. We let $X_1^* = X_1 \cap \{s \in \mathcal{P}_{\kappa}\lambda \mid s \in \kappa\}$ $s \cap \kappa \in \kappa$ } $\cap \bigcup \{W_\alpha \mid \alpha \in E\}$. Since $\{s \in \mathcal{P}_\kappa \lambda \mid s \cap \kappa \in \kappa\}$ $\cap \bigcup \{W_\alpha \mid \alpha \in E\}$ is a club subset of $\mathcal{P}_{\kappa}\lambda$, X_1^* is stationary in $\mathcal{P}_{\kappa}\lambda$. For each $\alpha \in E$, we simulate a run of the game G_{α} as follows: Let us pretend that Nonempty's first move in G_{α} is $X_1^* \cap W_{\alpha}$. Let Empty play her strategy τ_{α} , so Empty's first move is $\tau_{\alpha}(\langle X_1^* \cap W_{\alpha} \rangle)$. Now in the game $G(NS_{\kappa\lambda})$, let Empty play $Y_1 = \bigcup \{ \tau_\alpha(\langle X_1^* \cap W_\alpha \rangle) \mid \alpha \in E \}$. Lemma 5 guarantees that Y_1 is stationary in $\mathcal{P}_{\kappa}\lambda$. In general if $\langle X_1^*, Y_1, X_2, Y_2, \ldots, X_n \rangle$ is a run of $G(NS_{\kappa\lambda})$ up to Nonempty's *n*-th move, then we let Empty play Y_n = $\bigcup \{\tau_\alpha(\langle X_1^* \cap W_\alpha, X_2 \cap W_\alpha, \ldots, X_n \cap W_\alpha \rangle) \mid \alpha \in E\}$. Once again we know Y_n is a stationary subset of X_n . For each $\alpha \in E$, since τ_α is a winning strategy in G_α we have

$$
\bigcap_{n\in\omega-\{0\}}\tau_{\alpha}(\langle X_1^*\cap W_{\alpha}, X_2\cap W_{\alpha}, \ldots, X_n\cap W_{\alpha}\rangle)=\emptyset.
$$

Because the W_{α} s are pairwise disjoint, we conclude that $\bigcap_{n\in\omega-\{0\}}Y_n=\emptyset$. Therefore we have a winning strategy for Empty in the game $G(NS_{\kappa\lambda})$. This proves that $NS_{\kappa\lambda}$ is nowhere precipitous for every strong limit singular λ .

End of proof of Theorem 1. \Box

§3. ON "PROPER" IDEALS OVER $P_{\kappa} \lambda$

First we define that we mean by a "proper" ideal.

Definition. An ideal I over a set A is a "proper" ideal if the corresponding p.o. \mathbb{P}_I is proper (in the sense of proper forcing).

We refer the reader to Shelah [13] for the background of properness.

As we mentioned in §1, we are interested in the question of whether it is possible to have a κ -complete normal "proper" ideal over $\mathcal{P}_{\kappa}\lambda$ where κ is the successor of some singular cardinal. We give a negative answer to this question. Here we present a more general result.

Theorem 6. (i) Suppose I is a κ-complete normal ideal over κ. If $\{\alpha < \kappa \mid \text{cf } \alpha =$ δ \notin I for some cardinal δ satisfying $\delta^+ < \kappa$, then I is not "proper".

(ii) Suppose I is a κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$. If $\{s \in \mathcal{P}_{\kappa}\lambda \mid cf(s \cap \kappa) =$ δ \notin I for some cardinal δ satisfying $\delta^+ < \kappa$, then I is not "proper".

Note that if κ is the successor cardinal of a singular cardinal, then every κ complete normal ideal over $\mathcal{P}_{\kappa}\lambda$ satisfies the hypothesis of (ii).

Proof of Theorem 6. Since the proof of (ii) is identical to that of (i), we only present the proof of (i).

Let I and δ be as in the hypothesis of (i). First note that if $\delta = \aleph_0$ then the set $\{\alpha < \kappa \mid \text{cf } \alpha = \delta\}$ forces "cf $\kappa = \aleph_0$ " showing \mathbb{P}_I cannot be proper. Therefore we may assume that δ is uncountable.

We need the following claim:

Claim 1. There are a stationary subset E of $\{\alpha < \kappa \mid \text{cf } \alpha = \aleph_0\}$ and an I-positive subset X of $\{\alpha < \kappa \mid \text{cf } \alpha = \delta\}$ such that $E \cap \alpha$ is non-stationary for every α in X.

Proof. Let $\{E_\gamma \mid \gamma < \delta^+\}$ be a family of pairwise disjoint stationary subsets of $\{\alpha < \kappa \mid cf \alpha = \aleph_0\}$. For each $\alpha < \kappa$ with $cf \alpha = \delta$, there must be a club subset of

NOWHERE PRECIPITOUSNESS OF THE NON-STATIONARY IDEAL OVER $P_{\kappa} \lambda$ 7

α with cardinality δ. Therefore for such an ordinal α, there is some $\gamma_\alpha < \delta^+$ such that $E_{\gamma_{\alpha}} \cap \alpha$ is non-stationary. By the *κ*-completeness of *I*, there is some $\gamma^* < \delta^+$ such that $X = {\alpha < \kappa \mid \text{cf } \alpha = \delta \wedge \gamma_{\alpha} = \gamma^* } \notin I$. If we let $E = E_{\gamma^*}$, then $E \cap \alpha$ is non-stationary for every α in X. \square

For each α from X, let c_{α} be a club subset of α with $c_{\alpha} \cap E = \emptyset$. Let \overrightarrow{C} denote $\langle c_{\alpha} \mid \alpha \in X \rangle$. Let χ be a large enough regular cardinal. Assume that N is a countable elementary substructure of $\langle H(\chi), \epsilon \rangle$ satisfying $\{I, E, X, \vec{C}\} \subseteq N$ and $\sup(N \cap \kappa) \in E$.

We are ready to show that I is not "proper".

Claim 2. If Y is a subset of X such that $Y \notin I$ (therefore $Y \in \mathbb{P}_I$ and $Y \leq X$), then Y is not (N, \mathbb{P}_I) -generic.

Claim 2 implies that \mathbb{P}_I is not proper.

Proof of Claim 2. Suppose otherwise. Assume that there exists $Y \leq X$ such that Y is (N, \mathbb{P}_I) -generic.

For each $\alpha < \kappa$ we define a function $f_{\alpha}: X \to \kappa$ by $f_{\alpha}(\gamma) = \text{Min}(c_{\gamma} - \alpha)$ if $\gamma > \alpha$, and $f_{\alpha}(\gamma) = 0$ otherwise. It is clear that $f_{\alpha} \in N$ for each $\alpha \in N \cap \kappa$.

For each $\alpha \leq \beta < \kappa$, we let $T^{\alpha}_{\beta} = {\gamma \in X \mid f_{\alpha}(\gamma) = \beta}$. For each fixed $\alpha < \kappa$, using the normality of I, we see that $\{T_{\beta}^{\alpha} \mid \alpha \leq \beta < \kappa, T_{\beta}^{\alpha} \notin I\}$ is a maximal antichain below X in \mathbb{P}_I . Let $\vec{T}^{\alpha} = \langle T^{\alpha}_{\beta} \mid \alpha \leq \beta < \kappa, T^{\alpha}_{\beta} \notin I \rangle$. It is clear that $\vec{T}^{\alpha} \in N$ for $\alpha \in N \cap \kappa$.

Since Y is (N, \mathbb{P}_{I}) -generic, for $\alpha \in N \cap \kappa$ $\{T^{\alpha}_{\beta} \mid \alpha \leq \beta \wedge \beta \in N \cap \kappa \wedge T^{\alpha}_{\beta} \notin I\}$ is predense below Y in \mathbb{P}_I . So we must have $Y - \bigcup \{T^{\alpha}_{\beta} \mid \alpha \leq \beta \wedge \beta \in N \cap \kappa \wedge T^{\alpha}_{\beta} \notin$ $I\}\in I$ for each $\alpha\in N\cap \kappa$. Let $Y_{\alpha}=Y-\bigcup \{T_{\beta}^{\alpha}\mid \alpha\leq \beta\wedge \beta\in N\cap \kappa\wedge T_{\beta}^{\alpha}\notin I\}$. We have $\bigcup_{\alpha \in N \cap \kappa} Y_{\alpha} \in I$. This implies $Y - \bigcup_{\alpha \in N \cap \kappa} Y_{\alpha} \notin I$. Let γ^* be an element of $Y-\bigcup_{\alpha\in N\cap\kappa}Y_{\alpha}$ with γ^* > sup $(N\cap\kappa)$. Note that $\gamma^*\in Y-Y_{\alpha}$ for each $\alpha\in N\cap\kappa$. Hence if $\alpha \in N \cap \kappa$, then there exists $\beta_{\alpha} \in N \cap \kappa$ such that $\gamma^* \in T_{\beta_{\alpha}}^{\alpha}$. Thus $f_{\alpha}(\gamma^*) = \beta_{\alpha} \in N \cap \kappa$ for each $\alpha \in N \cap \kappa$. This means that $\text{Min}(c_{\gamma^*} - \alpha) \in N \cap \kappa$ for each $\alpha \in N \cap \kappa$, showing $c_{\gamma^*} \cap N$ is unbounded in sup $(N \cap \kappa)$.

Since $\sup(N \cap \kappa) < \gamma^*$, we must have $\sup(N \cap \kappa) \in c_{\gamma^*}$. But this implies $\sup(N \cap \kappa) \in c_{\gamma^*} \cap E$ which contradicts $c_{\alpha} \cap E = \emptyset$ for each $\alpha \in X$ and $\gamma^* \in Y \subseteq X$. This contradiction shows that Y cannot be (N, \mathbb{P}_I) -generic. \Box

End of proof of Theorem 6. \Box

REFERENCES

- 1. D. Burke and Y. Matsubara, The extent of strength of the club filters, Israel Journal of Mathematics 114 (1999), 253–263.
- 2. M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters. Part I, Annals of Mathematics 127 (1988), 1–47.
- 3. F. Galvin, T. Jech and M. Magidor, An ideal game, Journal of Symbolic Logic 43 (1978), 284–292.
- 4. M. Gitik, Nonsplitting subset of $\mathcal{P}_{\kappa}(\kappa^{+})$, Journal of Symbolic Logic 50 (1985), 881–894.
- 5. M. Holz, K. Steffens and E. Weitz, *Introduction to Cardinal Arithmetic*, Birkhäuser, 1999.
- 6. A. Kanamori, The Higner Infinite, Springer-Verlag, 1994.
- 7. Y. Matsubara, Consistency of Menas' conjecture, Journal of the Mathematical Society of Japan 42 (1990), 259–263.
- 8. Y. Matsubara and M. Shioya, Nowhere precipitousness of some ideals, Journal of Symbolic Logic 63 (1998), 1003–1006.

$8\hskip 1.6in$ YO MATSUBARA 1 AND SAHARON SHELAH 2

- 9. Y. Matsubara, Proper ideals over $\mathcal{P}_{\kappa}\lambda$.
- 10. T. Menas, On strong compactness and supercompactness, Annals of Mathematical Logic 7 (1974), 327–359.
- 11. S. Shelah, Cardinal Arithmetic, Oxford Science Publications, 1994.
- 12. S. Shelah, Analytical guide and updates for cardinal arithmetic E-12.
- 13. S. Shelah, Proper and Improper Forcing, Springer-Verlag, 1998.