NOWHERE PRECIPITOUSNESS OF THE NON-STATIONARY IDEAL OVER $\mathcal{P}_{\kappa}\lambda$

YO MATSUBARA¹ AND SAHARON SHELAH²

ABSTRACT. We prove that if λ is a strong limit singular cardinal and κ a regular uncountable cardinal $<\lambda$, then $NS_{\kappa\lambda}$, the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$, is nowhere precipitous. We also show that under the same hypothesis every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

§1. Introduction

Throughout this paper we let κ denote an uncountable regular cardinal and λ a cardinal $\geq \kappa$. Let $NS_{\kappa\lambda}$ denote the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$. $NS_{\kappa\lambda}$ is the minimal κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$. If X is a stationary subset of $\mathcal{P}_{\kappa}\lambda$, then $NS_{\kappa\lambda}|X$ denotes the κ -complete normal ideal generated by the members of $NS_{\kappa\lambda}$ and $\mathcal{P}_{\kappa}\lambda - X$. We refer the reader to Kanamori [6, Section 25] for basic facts about the combinatorics of $\mathcal{P}_{\kappa}\lambda$.

Large cardinal properties of ideals have been investigated by various authors. One of the problems studied by these set theorists was to determine which large cardinal properties can $NS_{\kappa\lambda}$ or $NS_{\kappa\lambda}|X$ bear for various κ , λ and $X \subseteq \mathcal{P}_{\kappa}\lambda$. In the course of this investigation, special interest has been paid to two large cardinal properties, namely precipitousness and saturation.

If $NS_{\kappa\lambda}|X$ is not precipitous for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$, then we say that $NS_{\kappa\lambda}$ is nowhere precipitous. In [8] Matsubara and Shioya proved that if λ is a strong limit singular cardinal and cf $\lambda < \kappa$, then $NS_{\kappa\lambda}$ is nowhere precipitous. In §2 we extend this result by showing that $NS_{\kappa\lambda}$ is nowhere precipitous if λ is a strong limit singular cardinal.

In [10] Menas conjectured the following:

Menas' Conjecture. Every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

This conjecture implies that $NS_{\kappa\lambda}|X$ cannot be $\lambda^{<\kappa}$ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$. By the work of several set theorists we know that Menas' Conjecture is independent of ZFC. One of the most striking results concerning this conjecture is the following theorem of Gitik [4].

 $^{^1}$ The first author was partially supported by Grant-in-Aid for Scientific Research (No.11640112), Ministry of Education, Science and Culture of Japan. 2 The second author was partially supported by The Israel Science Foundation funded by the Israel Academy of Sciences and Humanities. Publication 758

2

Gitik's Theorem. Suppose that κ is a supercompact cardinal and $\lambda > \kappa$. Then there is a p.o. \mathbb{P} that preserves cardinals $\geq \kappa$ such that $\Vdash_{\mathbb{P}}$ " $\exists X \ (X \text{ is a stationary subset of } \mathcal{P}_{\kappa}\lambda \wedge X \text{ cannot be partitioned into } \kappa^+ \text{ disjoint stationary sets})".$

In §2 we also show that if λ is a strong limit singular cardinal, then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets. Gitik [4] mentions that GCH fails in his model of a "non-splittable" stationary subset of $\mathcal{P}_{\kappa}\lambda$. Our result shows that GCH must fail in such a model of a non-splittable stationary subset of $\mathcal{P}_{\kappa}\lambda$ if λ is singular.

We often consider the poset \mathbb{P}_I of I-positive subsets of $\mathcal{P}_{\kappa}\lambda$ i.e. subsets of $\mathcal{P}_{\kappa}\lambda$ not belonging to I, ordered by

$$X \leq_{\mathbb{P}_I} Y \iff X \subseteq Y.$$

We say that an ideal I is "proper" if \mathbb{P}_I is a proper poset. In [9] Matsubara proved the following result:

Proposition. Let δ be a cardinal $\geq 2^{2^{2^{\lambda}}}$. If there is a "proper" λ^+ -complete normal ideal over $\mathcal{P}_{\lambda^+}\delta$ then $NS_{\aleph_1\lambda}$ is precipitous.

It is not known whether $NS_{\kappa\lambda}$ can be precipitous for singular λ . In [1] it is conjectured that $NS_{\kappa\lambda}$ cannot be precipitous if λ is singular. Therefore it is interesting to ask the following question:

Question. Can $\mathcal{P}_{\kappa}\lambda$ bear a "proper" κ -complete normal ideal where κ is the successor cardinal of a singular cardinal?

In §3 we give a negative answer to this question.

§2. On
$$NS_{\kappa\lambda}$$
 for strong limit singular λ

We first state our main results.

Theorem 1. If λ is a strong limit singular cardinal, then $NS_{\kappa\lambda}$ is nowhere precipitous.

Theorem 2. If λ is a strong limit singular cardinal, then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

One of the key ingredients of our proof of the main results is Lemma 3. Part (ii) of Lemma 3 was proved in Matsubara [7]. Part (i) appeared in Matsubara-Shioya [8]. For the proof of Part (ii) we refer the reader to Kanamori [6, page 345]. However we will present the proof of (i) because the idea of this proof will be used later.

Lemma 3. If $2^{<\kappa} < \lambda^{<\kappa} = 2^{\lambda}$, then

- (i) $NS_{\kappa\lambda}$ is nowhere precipitous
- (ii) every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

Before we present the proof of part (i), we make some comments concerning this lemma. First note that the hypothesis of our lemma is satisfied if λ is a strong limit cardinal with cf $\lambda < \kappa$. Secondly under this hypothesis every unbounded subset of $\mathcal{P}_{\kappa}\lambda$ must have a size of 2^{λ} . We also note that Lemma 3 can be generalized in the following manner:

For an ideal I over some set A, we let $\operatorname{non}(I) = \min\{|X| \mid X \subseteq A, X \notin I\}$ and $\operatorname{cof}(I) = \min\{|J| \mid J \subseteq I, \forall X \in I, \exists Y \in J(X \subseteq Y)\}$. The proof of Lemma 3 actually shows that if $\operatorname{non}(I) = \operatorname{cof}(I)$ then I is nowhere precipitous (i.e. for every I-positive X, I|X is not precipitous) and every I-positive subset X of A can be partitioned into $\operatorname{non}(I)$ many disjoint I-positive sets.

Proof of Lemma 3 (i). For I an ideal over $\mathcal{P}_{\kappa}\lambda$, let G(I) denote the following game between two players, Nonempty and Empty: Nonempty and Empty alternately choose I-positive sets $X_n, Y_n \subseteq \mathcal{P}_{\kappa}\lambda$ respectively so that $X_n \supseteq Y_n \supseteq X_{n+1}$ for $n=1,2,\ldots$ After ω moves, Empty wins G(I) if $\bigcap_{n\in\omega-\{0\}}X_n=\emptyset$. See [3] for a proof of the following characterization.

Proposition. I is nowhere precipitous if and only if Empty has a winning strategy in G(I).

Let $\langle f_{\alpha} \mid \alpha < 2^{\lambda} \rangle$ enumerate functions from $\lambda^{<\omega}$ into $\mathcal{P}_{\kappa}\lambda$. For a function $f: \lambda^{<\omega} \to \mathcal{P}_{\kappa}\lambda$, we let $C(f) = \{s \in \mathcal{P}_{\kappa}\lambda \mid \bigcup f''s^{<\omega} \subseteq s\}$. For $X \subseteq \mathcal{P}_{\kappa}\lambda$, X is stationary if and only if $C(f_{\alpha}) \cap X \neq \emptyset$ for every $\alpha < 2^{\lambda}$.

We now describe Empty's strategy in $G(NS_{\kappa\lambda})$ using the hypothesis $2^{<\kappa} < \lambda^{<\kappa} = 2^{\lambda}$. Suppose that X_1 is Nonempty's first move. Choose $\langle s_{\alpha}^1 \mid \alpha < 2^{\lambda} \rangle$, a sequence of elements of X_1 by induction on α in the following manner: Let s_0^1 be any element of $X_1 \cap C(f_0)$. Suppose we have $\langle s_{\alpha}^1 \mid \alpha < \beta \rangle$ for some $\beta < 2^{\lambda}$. Since $\{s_{\alpha}^1 \mid \alpha < \beta\}$ is a non-stationary, in fact bounded, subset of $\mathcal{P}_{\kappa}\lambda$, $X_1 - \{s_{\alpha}^1 \mid \alpha < \beta\}$ is stationary. Pick an element from $(X_1 - \{s_{\alpha}^1 \mid \alpha < \beta\}) \cap C(f_{\beta})$ and call it s_{β}^1 . Let Empty play $Y_1 = \{s_{\alpha}^1 \mid \alpha < 2^{\lambda}\}$. It is easy to see that Y_1 is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Inductively suppose Nonempty plays his n+1-st move X_{n+1} immediately following Empty's n-th move $Y_n = \{s_{\alpha}^n \mid \alpha < 2^{\lambda}\}$. Choose $\langle s_{\alpha}^{n+1} \mid \alpha < 2^{\lambda} \rangle$, a sequence from X_{n+1} in the following manner: Let s_0^{n+1} be any element of $(X_{n+1} - \{s_0^n\}) \cap C(f_0)$. Suppose we have $\langle s_{\alpha}^{n+1} \mid \alpha < \beta \rangle$, for some $\beta < 2^{\lambda}$. Pick an element of the stationary set $(X_{n+1} \cap C(f_{\beta})) - (\{s_{\alpha}^{n+1} \mid \alpha < \beta\} \cap \{s_{\alpha}^n \mid \alpha \leq \beta\})$ and call it s_{β}^{n+1} . Let Empty play $Y_{n+1} = \{s_{\alpha}^{n+1} \mid \alpha < 2^{\lambda}\}$. This defines a strategy for Empty.

Claim. The strategy described above is a winning strategy for Empty.

Proof of Claim. Suppose X_1,Y_1,X_2,Y_2,\ldots is a run of the game $G(NS_{\kappa\lambda})$ where Empty followed the above strategy. We want to show that $\bigcap_{n\in\omega-\{0\}}Y_n=\emptyset$. Suppose otherwise. Let t be an element of $\bigcap_{n\in\omega-\{0\}}Y_n$. Then for each $m\in\omega-\{0\}$, there is a unique ordinal $\alpha_m<2^\lambda$ such that $s^m_{\alpha_m}=t$. But by the way the s^n_α s are chosen, $s^0_{\alpha_0}=s^1_{\alpha_1}=s^2_{\alpha_2}=\cdots$ implies $\alpha_0>\alpha_1>\alpha_2>\cdots$. This is impossible. Thus we must have $\bigcap_{n\in\omega-\{0\}}Y_n=\emptyset$. \square

End of proof of Lemma 3 (i). \Box

We now prove Theorem 2 using Lemma 3 and Theorem 1.

Proof of Theorem 2. Let λ be a strong limit singular cardinal. If cf $\lambda < \kappa$ then by Lemma 3 (ii), we are done. So assume cf $\lambda \geq \kappa$. In this case we have $\lambda^{<\kappa} = \lambda$. Therefore it is enough to show that $NS_{\kappa\lambda}|X$ is not λ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$. But this is a consequence of $NS_{\kappa\lambda}$ being nowhere precipitous. In fact we know that $NS_{\kappa\lambda}|X$ cannot be λ^+ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$. \square

We need some preparation to present the proof of Theorem 1. Let λ be a strong limit singular cardinal and κ be a regular uncountable cardinal $< \lambda$. If cf $\lambda < \kappa$ then by Lemma 3 we conclude that $NS_{\kappa\lambda}$ is nowhere precipitous.

YO MATSUBARA¹ AND SAHARON SHELAH²

From now on let us assume that λ is a strong limit cardinal with $\kappa \leq \operatorname{cf} \lambda < \lambda$. Let $\langle \lambda_{\alpha} \mid \alpha < \operatorname{cf} \lambda \rangle$ be a continuous increasing sequence of strong limit singular cardinals converging to λ with $\lambda_0 > \operatorname{cf} \lambda$. The following lemma is another key ingredient of our proof.

Lemma 4. For every $X \subseteq \mathcal{P}_{\kappa}\lambda$, if for each $\alpha < \operatorname{cf} \lambda$ with $\operatorname{cf} \alpha < \kappa$, $|\{t \in X \mid \sup(t) = \lambda_{\alpha}\}| < 2^{\lambda_{\alpha}}$, then X is non-stationary.

Proof of Lemma 4. Since $\{t \in X \mid \sup(t) \notin t\}$ is a club subset of $\mathcal{P}_{\kappa}\lambda$, without loss of generality we may assume that $\sup(t) \notin t$ for every t in X. For each $\alpha < \operatorname{cf} \lambda$ with $\operatorname{cf} \alpha < \kappa$, we let $X_{\alpha} = \{t \in X \mid \sup(t) = \lambda_{\alpha}\}$. We need the following fact from pcf theory by S. Shelah.

Fact. There is a club subset $C \subseteq \operatorname{cf} \lambda$ such that $\operatorname{pp}(\lambda_{\alpha}) = 2^{\lambda_{\alpha}}$ for every $\alpha \in C$.

The proof of the above fact can be obtained from 5.15 of [12] or by combining Conclusion XI 5.13 [11, page 414], Corollary VIII 1.6(2) [11, page 321], and Conclusion II 5.7 [11, page 94]. [12] contains updates and corrections to [11]. The reader can look at Holz-Steffens-Weitz [5] for the pcf theory, particularly Theorem 9.1.3 [5, page 271].

For each $\alpha \in C$ with cf $\alpha < \kappa$, let a_{α} be a set of regular cardinals cofinal in λ_{α} such that

- (a) every member of a_{α} is above cf λ
- (b) $|a_{\alpha}| = \operatorname{cf} \lambda_{\alpha}$, and

4

(c) $\exists \delta_{\alpha} > |X_{\alpha}| \ [\delta_{\alpha} \in \operatorname{pcf}(a_{\alpha})]$

Let $a = \bigcup \{a_{\alpha} \mid \alpha \in C \land \operatorname{cf} \alpha < \kappa\}$. Let $\langle f_{\beta} \mid \beta < \lambda \rangle$ enumerate all of the members of $\{f \mid f \text{ is a function, domain}(f) \text{ is a bounded subset of } \lambda, \text{ and } f \text{ is regressive i.e. } f(\gamma) < \gamma \text{ for every } \gamma \in \operatorname{domain}(f)\}.$

For each $t \in \mathcal{P}_{\kappa}\lambda$ we define $g_t \in \prod a$ by letting $g_t(\sigma) = \sup\{f_{\beta}(\sigma) + 1 \mid \beta \in t \land \sigma \in \text{dom}(f_{\beta})\}$, if $\sigma \in \bigcup_{\beta \in t} \text{domain}(f_{\beta})$, and $g_t(\sigma) = 0$ otherwise. Note that $|t| < \kappa \le \text{cf }\lambda < \min(a)$ guarantees $g_t \in \prod a$. Now by (c) in the definition of $a_{\alpha}s$ and the fact that $\{g_t \upharpoonright a_{\alpha} \mid t \in X_{\alpha}\}$ is a subset of $\prod a_{\alpha}$ of cardinality $\le |X_{\alpha}| < \delta_{\alpha} \in \text{pcf}(a_{\alpha})$, there is some $h_{\alpha} \in \prod a_{\alpha}$ such that $\forall t \in X_{\alpha} [g_t \upharpoonright a_{\alpha} <_{J < \delta_{\alpha}(a_{\alpha})} h_{\alpha}]$. (For the definition of $J_{<\delta_{\alpha}}(a_{\alpha})$, we refer the reader to section 3.4 of [5].) Therefore

(1)
$$\forall t \in X_{\alpha} \ \exists \sigma \in a_{\alpha} \ [g_t(\sigma) < h_{\alpha}(\sigma)]$$

holds. As $\min(a) > \operatorname{cf} \lambda$ and $a = \bigcup \{a_{\alpha} \mid \alpha \in C \wedge \operatorname{cf} \alpha < \kappa\}$, there is $h \in \prod a$ such that $h_{\alpha} < h \upharpoonright a_{\alpha}$ for every $\alpha \in C$ with $\operatorname{cf} \alpha < \kappa$.

Let $W = \{t \in \mathcal{P}_{\kappa}\lambda \mid (i) \text{ for some } \alpha \in C \text{ sup}(t) = \lambda_{\alpha} \text{ with cf } \alpha < \kappa, \text{ and (ii) if } \delta \in t \text{ then for some } \beta \in t, h \upharpoonright (a \cap \delta) = f_{\beta} \}.$ Note that W is a club subset of $\mathcal{P}_{\kappa}\lambda$.

Claim. $X \cap W = \emptyset$.

Proof of Claim. Suppose otherwise, say $t \in X \cap W$. By (i) in the definition of W, $t \in X_{\alpha}$ for some $\alpha \in C$ with cf $\alpha < \kappa$. By (1) we have

(2)
$$\exists \sigma \in a_{\alpha} [g_t(\sigma) < h_{\alpha}(\sigma)].$$

Since $\sup(t) = \lambda_{\alpha}$, there must be some $\delta \in t$ such that $\delta > \sigma$. Now by (ii) in the definition of W, $h \upharpoonright (a \cap \delta) = f_{\beta}$ for some $\beta \in t$. Since $\sigma \in a \cap \delta$, $h(\sigma) = f_{\beta}(\sigma)$. By the definition of g_t we have $f_{\beta}(\sigma) < g_t(\sigma)$. From $h_{\alpha} < h \upharpoonright a_{\alpha}$, we know $h_{\alpha}(\sigma) < h(\sigma)$. Therefore we have $h_{\alpha}(\sigma) < g_t(\sigma)$ contradicting (2). \square

End of proof of Lemma 4. \Box

For each $\alpha < \operatorname{cf} \lambda$ with $\operatorname{cf} \alpha < \kappa$, let us fix a sequence $\langle f_{\xi}^{\alpha} \mid \xi < 2^{\lambda_{\alpha}} \rangle$ that enumerates members of $\{f \mid f \text{ is a function such that } \operatorname{domain}(f) \subseteq \lambda_{\alpha}^{<\omega} \text{ and } \operatorname{range}(f) \subseteq \lambda_{\alpha} \}$. Furthermore for each function f with $\operatorname{domain}(f) \subseteq \lambda_{\alpha}^{<\omega}$ and $\operatorname{range}(f) \subseteq \lambda_{\alpha}$, we let $C_{\alpha}[f] = \{t \in \mathcal{P}_{\kappa} \lambda \mid t^{<\omega} \subseteq \operatorname{domain}(f), \sup(t) = \lambda_{\alpha}, \text{ and } t \text{ is closed under } f\}$. We need the following lemma to present the proof of Theorem 1.

Lemma 5. Suppose X is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. For every $Y \subseteq \{s \in \mathcal{P}_{\kappa}\lambda \mid s \cap \kappa \in \kappa\}$, if for each $\alpha < \operatorname{cf} \lambda$ with $\operatorname{cf} \alpha < \kappa$ the following condition (*) holds, then Y is stationary.

$$(*) \qquad \forall \xi < 2^{\lambda_{\alpha}} \ (|C_{\alpha}[f_{\xi}^{\alpha}] \cap X| = 2^{\lambda_{\alpha}} \longrightarrow C_{\alpha}[f_{\xi}^{\alpha}] \cap Y \neq \emptyset)$$

Proof of Lemma 5. Since $s \cap \kappa \in \kappa$ for every $s \in Y$, to show that Y is stationary it is enough to show that $Y \cap C[g] \neq \emptyset$ for every function $g: \lambda^{<\omega} \to \lambda$ where C[g] denotes the set $\{t \in \mathcal{P}_{\kappa}\lambda \mid g''t^{<\omega} \subseteq t\}$. For the proof of this fact, we refer the reader to Foreman-Magidor-Shelah [2, Lemma 0]. Let us fix a function $g: \lambda^{<\omega} \to \lambda$. Now we let $E = \{\alpha < \text{cf }\lambda \mid \text{cf }\alpha < \kappa\}$ and for each $\alpha \in E$ we let $W_{\alpha} = \{s \in \mathcal{P}_{\kappa}\lambda \mid \sup(s) = \lambda_{\alpha} \wedge \lambda_{\alpha} \notin s\}$. Note that $\bigcup_{\alpha \in E} W_{\alpha}$ is a club subset of $\mathcal{P}_{\kappa}\lambda$. For each $\alpha \in E$, we let g_{α} denote $g \cap (\lambda_{\alpha}^{<\omega} \times \lambda_{\alpha})$. Now partition E into two sets E^+ and E^- where

$$E^{+} = \{ \alpha \in E \mid |C_{\alpha}[g_{\alpha}] \cap X| = 2^{\lambda_{\alpha}} \} \quad \text{and}$$

$$E^{-} = \{ \alpha \in E \mid |C_{\alpha}[g_{\alpha}] \cap X| < 2^{\lambda_{\alpha}} \}.$$

We need the following:

Claim. $X \cap \bigcup \{W_{\alpha} \mid \alpha \in E^{-}\}\ is\ non-stationary.$

Proof. It is enough to show that $Z = C[g] \cap X \cap \bigcup \{W_{\alpha} \mid \alpha \in E^{-}\}\$ is non-stationary. Note that for each $\alpha \in E^{+}$, $Z \cap W_{\alpha} = \emptyset$ and for each $\alpha \in E^{-}$, $Z \cap W_{\alpha} \subseteq C_{\alpha}[g_{\alpha}] \cap X$. Therefore $|Z \cap W_{\alpha}| < 2^{\lambda_{\alpha}}$ for every $\alpha \in E$. Hence, by Lemma 4, we conclude that Z is non-stationary. \square

From Claim we know that $X \cap \bigcup \{W_{\alpha} \mid \alpha \in E^+\}$ is stationary. Pick an element α^* from E^+ . Consider the partial function $g_{\alpha^*} \ (=g \cap (\lambda_{\alpha^*}^{<\omega} \times \lambda_{\alpha^*}))$. Let $\xi^* < 2^{\lambda_{\alpha^*}}$ be such that $f_{\xi^*}^{\alpha^*} = g_{\alpha^*}$. Since $\alpha^* \in E^+$, we have $|C_{\alpha^*}[g_{\alpha^*}] \cap X| = 2^{\lambda_{\alpha^*}}$. Since $f_{\xi^*}^{\alpha^*} = g_{\alpha^*}$ and Y satisfies condition (*), we know that $C_{\alpha^*}[g_{\alpha^*}] \cap Y \neq \emptyset$. Therefore $C[g] \cap Y \neq \emptyset$ showing that Y is stationary.

End of proof of Lemma 5. \square

Finally we are ready to complete the proof of Theorem 1. To present a winning strategy for Empty in the game $G(NS_{\kappa\lambda})$, we introduce some new types of games. For each $\alpha \in E = \{\alpha < \operatorname{cf} \lambda \mid \operatorname{cf} \alpha < \kappa\}$, we define the game G_{α} between Nonempty and Empty as follows: Nonempty and Empty alternately choose sets $X_n, Y_n \subseteq W_{\alpha} = \{s \in \mathcal{P}_{\kappa\lambda} \mid \sup(s) = \lambda_{\alpha} \notin s\}$ respectively so that $X_n \supseteq Y_n \supseteq X_{n+1}$ and $\forall \xi < 2^{\lambda_{\alpha}} \left(|C_{\alpha}[f_{\xi}^{\alpha}] \cap X_n| = 2^{\lambda_{\alpha}} \longrightarrow C_{\alpha}[f_{\xi}^{\alpha}] \cap Y_n \neq \emptyset\right)$ for $n = 1, 2, \ldots$ Empty wins G_{α} iff $\bigcap_{n \in \omega - \{0\}} Y_n = \emptyset$.

By the same argument as the proof of Lemma 3 (i), we know that Empty has a winning strategy, say τ_{α} , in the game G_{α} for each $\alpha \in E$. Now we show how to

combine the strategies τ_{α} s to produce a winning strategy for Empty in $G(NS_{\kappa\lambda})$. Suppose X_1 is Nonempty's first move in $G(NS_{\kappa\lambda})$. We let $X_1^* = X_1 \cap \{s \in \mathcal{P}_{\kappa\lambda} \mid s \cap \kappa \in \kappa\} \cap \bigcup \{W_{\alpha} \mid \alpha \in E\}$ is a club subset of $\mathcal{P}_{\kappa\lambda}$, X_1^* is stationary in $\mathcal{P}_{\kappa\lambda}$. For each $\alpha \in E$, we simulate a run of the game G_{α} as follows: Let us pretend that Nonempty's first move in G_{α} is $X_1^* \cap W_{\alpha}$. Let Empty play her strategy τ_{α} , so Empty's first move is $\tau_{\alpha}(\langle X_1^* \cap W_{\alpha} \rangle)$. Now in the game $G(NS_{\kappa\lambda})$, let Empty play $Y_1 = \bigcup \{\tau_{\alpha}(\langle X_1^* \cap W_{\alpha} \rangle) \mid \alpha \in E\}$. Lemma 5 guarantees that Y_1 is stationary in $\mathcal{P}_{\kappa\lambda}$. In general if $\langle X_1^*, Y_1, X_2, Y_2, \dots, X_n \rangle$ is a run of $G(NS_{\kappa\lambda})$ up to Nonempty's n-th move, then we let Empty play $Y_n = \bigcup \{\tau_{\alpha}(\langle X_1^* \cap W_{\alpha}, X_2 \cap W_{\alpha}, \dots, X_n \cap W_{\alpha} \rangle) \mid \alpha \in E\}$. Once again we know Y_n is a stationary subset of X_n . For each $\alpha \in E$, since τ_{α} is a winning strategy in G_{α} we have

$$\bigcap_{n\in\omega-\{0\}} \tau_{\alpha}(\langle X_1^*\cap W_{\alpha}, X_2\cap W_{\alpha}, \dots, X_n\cap W_{\alpha}\rangle) = \emptyset.$$

Because the W_{α} s are pairwise disjoint, we conclude that $\bigcap_{n\in\omega-\{0\}}Y_n=\emptyset$. Therefore we have a winning strategy for Empty in the game $G(NS_{\kappa\lambda})$. This proves that $NS_{\kappa\lambda}$ is nowhere precipitous for every strong limit singular λ .

End of proof of Theorem 1. \square

§3. On "Proper" ideals over $\mathcal{P}_{\kappa}\lambda$

First we define that we mean by a "proper" ideal.

Definition. An ideal I over a set A is a "proper" ideal if the corresponding p.o. \mathbb{P}_I is proper (in the sense of proper forcing).

We refer the reader to Shelah [13] for the background of properness.

As we mentioned in §1, we are interested in the question of whether it is possible to have a κ -complete normal "proper" ideal over $\mathcal{P}_{\kappa}\lambda$ where κ is the successor of some singular cardinal. We give a negative answer to this question. Here we present a more general result.

Theorem 6. (i) Suppose I is a κ -complete normal ideal over κ . If $\{\alpha < \kappa \mid \text{cf } \alpha = \delta\} \notin I$ for some cardinal δ satisfying $\delta^+ < \kappa$, then I is not "proper".

(ii) Suppose I is a κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$. If $\{s \in \mathcal{P}_{\kappa}\lambda \mid \operatorname{cf}(s \cap \kappa) = \delta\} \notin I$ for some cardinal δ satisfying $\delta^+ < \kappa$, then I is not "proper".

Note that if κ is the successor cardinal of a singular cardinal, then every κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$ satisfies the hypothesis of (ii).

Proof of Theorem 6. Since the proof of (ii) is identical to that of (i), we only present the proof of (i).

Let I and δ be as in the hypothesis of (i). First note that if $\delta = \aleph_0$ then the set $\{\alpha < \kappa \mid \text{cf } \alpha = \delta\}$ forces "cf $\kappa = \aleph_0$ " showing \mathbb{P}_I cannot be proper. Therefore we may assume that δ is uncountable.

We need the following claim:

Claim 1. There are a stationary subset E of $\{\alpha < \kappa \mid \text{cf } \alpha = \aleph_0\}$ and an I-positive subset X of $\{\alpha < \kappa \mid \text{cf } \alpha = \delta\}$ such that $E \cap \alpha$ is non-stationary for every α in X.

Proof. Let $\{E_{\gamma} \mid \gamma < \delta^{+}\}$ be a family of pairwise disjoint stationary subsets of $\{\alpha < \kappa \mid \text{cf } \alpha = \aleph_{0}\}$. For each $\alpha < \kappa$ with cf $\alpha = \delta$, there must be a club subset of

 α with cardinality δ . Therefore for such an ordinal α , there is some $\gamma_{\alpha} < \delta^{+}$ such that $E_{\gamma_{\alpha}} \cap \alpha$ is non-stationary. By the κ -completeness of I, there is some $\gamma^{*} < \delta^{+}$ such that $X = \{\alpha < \kappa \mid \text{cf } \alpha = \delta \wedge \gamma_{\alpha} = \gamma^{*}\} \notin I$. If we let $E = E_{\gamma^{*}}$, then $E \cap \alpha$ is non-stationary for every α in X. \square

For each α from X, let c_{α} be a club subset of α with $c_{\alpha} \cap E = \emptyset$. Let \vec{C} denote $\langle c_{\alpha} \mid \alpha \in X \rangle$. Let χ be a large enough regular cardinal. Assume that N is a countable elementary substructure of $\langle H(\chi), \epsilon \rangle$ satisfying $\{I, E, X, \vec{C}\} \subseteq N$ and $\sup(N \cap \kappa) \in E$.

We are ready to show that I is not "proper".

Claim 2. If Y is a subset of X such that $Y \notin I$ (therefore $Y \in \mathbb{P}_I$ and $Y \leq X$), then Y is not (N, \mathbb{P}_I) -generic.

Claim 2 implies that \mathbb{P}_I is not proper.

Proof of Claim 2. Suppose otherwise. Assume that there exists $Y \leq X$ such that Y is (N, \mathbb{P}_I) -generic.

For each $\alpha < \kappa$ we define a function $f_{\alpha} : X \to \kappa$ by $f_{\alpha}(\gamma) = \text{Min}(c_{\gamma} - \alpha)$ if $\gamma > \alpha$, and $f_{\alpha}(\gamma) = 0$ otherwise. It is clear that $f_{\alpha} \in N$ for each $\alpha \in N \cap \kappa$.

For each $\alpha \leq \beta < \kappa$, we let $T_{\beta}^{\alpha} = \{ \gamma \in X \mid f_{\alpha}(\gamma) = \beta \}$. For each fixed $\alpha < \kappa$, using the normality of I, we see that $\{ T_{\beta}^{\alpha} \mid \alpha \leq \beta < \kappa, T_{\beta}^{\alpha} \notin I \}$ is a maximal antichain below X in \mathbb{P}_{I} . Let $\vec{T}^{\alpha} = \langle T_{\beta}^{\alpha} \mid \alpha \leq \beta < \kappa, T_{\beta}^{\alpha} \notin I \rangle$. It is clear that $\vec{T}^{\alpha} \in N$ for $\alpha \in N \cap \kappa$.

Since Y is (N, \mathbb{P}_I) -generic, for $\alpha \in N \cap \kappa$ $\{T_{\beta}^{\alpha} \mid \alpha \leq \beta \wedge \beta \in N \cap \kappa \wedge T_{\beta}^{\alpha} \notin I\}$ is predense below Y in \mathbb{P}_I . So we must have $Y - \bigcup \{T_{\beta}^{\alpha} \mid \alpha \leq \beta \wedge \beta \in N \cap \kappa \wedge T_{\beta}^{\alpha} \notin I\}$ of for each $\alpha \in N \cap \kappa$. Let $Y_{\alpha} = Y - \bigcup \{T_{\beta}^{\alpha} \mid \alpha \leq \beta \wedge \beta \in N \cap \kappa \wedge T_{\beta}^{\alpha} \notin I\}$. We have $\bigcup_{\alpha \in N \cap \kappa} Y_{\alpha} \in I$. This implies $Y - \bigcup_{\alpha \in N \cap \kappa} Y_{\alpha} \notin I$. Let γ^* be an element of $Y - \bigcup_{\alpha \in N \cap \kappa} Y_{\alpha}$ with $\gamma^* > \sup(N \cap \kappa)$. Note that $\gamma^* \in Y - Y_{\alpha}$ for each $\alpha \in N \cap \kappa$. Hence if $\alpha \in N \cap \kappa$, then there exists $\beta_{\alpha} \in N \cap \kappa$ such that $\gamma^* \in T_{\beta_{\alpha}}^{\alpha}$. Thus $f_{\alpha}(\gamma^*) = \beta_{\alpha} \in N \cap \kappa$ for each $\alpha \in N \cap \kappa$. This means that $\min(c_{\gamma^*} - \alpha) \in N \cap \kappa$ for each $\alpha \in N \cap \kappa$, showing $c_{\gamma^*} \cap N$ is unbounded in $\sup(N \cap \kappa)$.

Since $\sup(N \cap \kappa) < \gamma^*$, we must have $\sup(N \cap \kappa) \in c_{\gamma^*}$. But this implies $\sup(N \cap \kappa) \in c_{\gamma^*} \cap E$ which contradicts $c_{\alpha} \cap E = \emptyset$ for each $\alpha \in X$ and $\gamma^* \in Y \subseteq X$. This contradiction shows that Y cannot be (N, \mathbb{P}_I) -generic. \square

End of proof of Theorem 6. \square

References

- 1. D. Burke and Y. Matsubara, *The extent of strength of the club filters*, Israel Journal of Mathematics **114** (1999), 253–263.
- M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters. Part I, Annals of Mathematics 127 (1988), 1–47.
- F. Galvin, T. Jech and M. Magidor, An ideal game, Journal of Symbolic Logic 43 (1978), 284–292.
- 4. M. Gitik, Nonsplitting subset of $\mathcal{P}_{\kappa}(\kappa^{+})$, Journal of Symbolic Logic **50** (1985), 881–894.
- 5. M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser, 1999.
- 6. A. Kanamori, The Higner Infinite, Springer-Verlag, 1994.
- Y. Matsubara, Consistency of Menas' conjecture, Journal of the Mathematical Society of Japan 42 (1990), 259–263.
- Y. Matsubara and M. Shioya, Nowhere precipitousness of some ideals, Journal of Symbolic Logic 63 (1998), 1003–1006.

YO MATSUBARA 1 AND SAHARON SHELAH 2

9. Y. Matsubara, Proper ideals over $\mathcal{P}_{\kappa}\lambda$.

8

- T. Menas, On strong compactness and supercompactness, Annals of Mathematical Logic 7 (1974), 327–359.
- 11. S. Shelah, Cardinal Arithmetic, Oxford Science Publications, 1994.
- 12. S. Shelah, Analytical guide and updates for cardinal arithmetic $E ext{-}12$.
- 13. S. Shelah, Proper and Improper Forcing, Springer-Verlag, 1998.