# A PARTITION RELATION USING STRONGLY COMPACT CARDINALS 

 SH761Saharon Shelah<br>Institute of Mathematics<br>The Hebrew University<br>Jerusalem, Israel<br>Rutgers University<br>Mathematics Department<br>New Brunswick, NJ USA

Abstract. If $\kappa$ is strongly compact and $\lambda>\kappa$ and $\lambda$ is regular (or alternatively $\operatorname{cf}(\lambda) \geq \kappa)$, then $\left(2^{<\lambda}\right)^{+} \rightarrow(\lambda+\zeta)_{\theta}^{2}$ holds for $\zeta, \theta<\kappa$.

[^0]
## §0 Introduction

The aim of this paper is to prove the following theorem.
0.1 Theorem. If $\kappa$ is a strongly compact cardinal, $\lambda>\kappa$ is regular and $\zeta, \theta<\kappa$ then the partition relation $\left(2^{<\lambda}\right)^{+} \rightarrow(\lambda+\zeta)_{\theta}^{2}$ holds.
0.2 Theorem. In Theorem 0.1.

Instead $\lambda$ regular, $\operatorname{cf}(\lambda)>\kappa$ suffices.

We notice that our argument is valid in the case $\kappa=\omega$. As for the history of the problem we point out that Hajnal proved in an unpublished work, that $\left(2^{\omega}\right)^{+} \rightarrow\left(\omega_{1}+n\right)_{2}^{2}$ holds for every $n<\omega$. Then it was showed in [Sh 26, §6] that for $\kappa>\omega$ regular and $2^{|\alpha|}<\kappa$, the relation $\left(2^{<\kappa}\right)^{+} \rightarrow(\kappa+\alpha)_{2}^{2}$ is true. More recently Baumgartner, Hajnal, and Todorčević in [BHT93] extended this to the case when the number of colors is arbitrary finite. Earlier by [Sh 424], we have $\left(2^{<\lambda}\right)^{+n} \rightarrow$ $(\lambda \times m)_{k}^{2}$ for $n$ large enough (this was complimentary to the main result there that $\aleph_{0}<\lambda=\lambda^{<\lambda}+2^{\lambda}$ arbitrarily large does not imply $\left.2^{\lambda} \rightarrow(\lambda \times \omega)_{2}^{2}\right)$. Subsequently [BHT93] improves $n$. We hope that the way the strong compactness was used will be useful elsewhere; see [Sh 666] for a discussion of a possible consistency of failure. I also thank Peter Komjath for improving the presentation.

Notation. If $S$ is a set, $\kappa$ a cardinal then $[S]^{\kappa}=\{a \subseteq S:|a|=\kappa\},[S]^{<\kappa}=\{a \subseteq$ $S:|a|<\kappa\}$. If $D$ is some filter over a set $S$ then $X \in D^{+}$denotes that $S \backslash X \notin D$ and $X \subseteq S$. If $\kappa<\mu$ are regular cardinals then $S_{\kappa}^{\mu}=\{\alpha<\mu: \operatorname{cf}(\alpha)=\kappa\}$, a stationary set. The notation $A=\left\{x_{\alpha}: \alpha<\gamma\right\}_{<}$, etc., means that $A$ is enumerated increasingly.

## $\S 1$ The case of $\lambda$ REGULAR

1.1 Lemma. Assume $\mu=\mu^{\theta}$. Assume that $D$ is a normal filter on $\mu^{+}$and $A^{*} \in D^{+}$satisfies $\delta \in A^{*} \Rightarrow c f(\delta)>\theta$, and $F^{\prime}$ is a function with domain $\left[A^{*}\right]^{2}$ and range of cardinality $\theta$. Then there are a normal filter $D_{0}$ on $\mu^{+}$extending $D, A_{0} \in D_{0}$ with $A_{0} \subseteq A^{*}$ and $C_{0} \subseteq \operatorname{Rang}\left(F^{\prime}\right)$ satisfying $\operatorname{Rang}\left(F^{\prime} \upharpoonright\left[A_{0}\right]^{2}\right)=C_{0}$ such that: if $X \in D_{0}^{+}$then $\operatorname{Rang}\left(F^{\prime} \upharpoonright[X]^{2}\right) \supseteq C_{0}$.

We first prove a claim
1.2 Claim. Assume $\mu=\mu^{\theta}$ and $F^{\prime}:\left[S^{*}\right]^{2} \rightarrow C_{*},\left|C_{*}\right| \leq \theta, D$ is a normal filter on $\mu^{+}, S^{*} \subseteq \mu^{+}$belongs to $D^{+}$and $\delta \in S^{*} \Rightarrow c f(\delta)>\theta$. There is a set $A \in D^{+}$such that $A \subseteq S^{*}$ and some $C \subseteq C_{0}$ satisfying $\operatorname{Rang}\left(F^{\prime} \upharpoonright[A]^{2}\right)=C$ and: if $f: A \rightarrow \mu^{+}$ is a regressive function, then for some $\alpha<\mu^{+}$we have $\operatorname{Rang}\left(F^{\prime} \upharpoonright\left[f^{-1}(\alpha)\right]^{2}\right)=C$ and $f^{-1}(\alpha)$ is a subset of $\mu^{+}$from $D^{+}$.

Proof. Toward contradiction assume that no such sets $A, C$ exist. We build a tree $T$ as follows. Every node $t$ of the tree will be of the form

$$
\begin{aligned}
t & =\left\langle\left\langle A_{\alpha}: \alpha \leq \varepsilon\right\rangle,\left\langle f_{\alpha}: \alpha<\varepsilon\right\rangle,\left\langle i_{\alpha}: \alpha<\varepsilon\right\rangle\right\rangle \\
& =\left\langle\left\langle A_{\alpha}^{t}: \alpha \leq \varepsilon\right\rangle,\left\langle f_{\alpha}^{t}: \alpha<\varepsilon\right\rangle,\left\langle i_{\alpha}^{t}: \alpha<\varepsilon\right\rangle\right\rangle
\end{aligned}
$$

for some ordinal $\varepsilon=\varepsilon(t)$ where $\left\langle A_{\alpha}: \alpha \leq \varepsilon\right\rangle$ is a decreasing, continuous sequence of subsets of $\mu^{+}$; for every $\alpha<\varepsilon, f_{\alpha}$ is a regressive function on $A_{\alpha}$; and $\left\langle i_{\alpha}: \alpha<\varepsilon\right\rangle$ is a sequence of distinct elements of $C_{*}$. It will always be true that if $t<_{T} t^{\prime}$, then each of the three sequences of $t^{\prime}$ extend the corresponding one of $t$.

To start, we make the node $t$ with $\varepsilon(t)=0, A_{0}=S^{*}$ the root of the tree.
At limit levels we extend (the obvious way) all cofinal branches to a node.
If we are given an element $t=\left\langle\left\langle A_{\alpha}: \alpha \leq \varepsilon\right\rangle,\left\langle f_{\alpha}: \alpha<\varepsilon\right\rangle,\left\langle i_{\alpha}: \alpha<\varepsilon\right\rangle\right\rangle$ of the tree and the set $A_{\varepsilon}$ is $=\emptyset \bmod D$ then we leave $t$ as a terminal node. Otherwise, let $C=C_{t}=\operatorname{Rang}\left(F^{\prime} \upharpoonright\left[A_{\varepsilon}\right]^{2}\right)$ and notice that by hypothesis, toward contradiction, the pair $A_{\varepsilon}, C_{t}$ cannot be as required in the Claim. There is, therefore, a regressive function $f=f_{t}$ with domain $A_{\varepsilon}$, such that for every $x<\mu^{+}$the set $\operatorname{Rang}\left(F^{\prime} \upharpoonright\left[f^{-1}(x)\right]^{2}\right)$ is a proper subset of $C_{t}$ or $f^{-1}(x)$ is a $=\emptyset \bmod D$ subset of $\mu^{+}$. We make the immediate extensions of $t$ the sequences of the form a $t_{x}=$ $\left\langle\left\langle A_{\alpha}: \alpha \leq \varepsilon+1\right\rangle,\left\langle f_{\alpha}: \alpha<\varepsilon+1\right\rangle,\left\langle i_{\alpha}: \alpha<\varepsilon+1\right\rangle\right\rangle$ where $A_{\varepsilon+1}=f^{-1}(x), f_{\alpha}=f_{t}$ and $i_{\varepsilon} \in C_{t}$ is some colour value such that: if $A_{\varepsilon+1} \neq \emptyset \bmod D$ then $i_{\varepsilon}$ is not in the range of $F^{\prime} \upharpoonright\left[A_{\varepsilon}\right]^{2}$.

Having constructed the tree observe that every element $x \in S^{*} \subseteq \mu^{+}$belongs to a set $A_{\varepsilon(x)}^{t(x)}$ for some (unique) terminal node $t(x)$ of $T$. Also, $\varepsilon(x)<\theta^{+}\left(<\mu^{+}\right)$ holds by the selection of the $i_{\beta}$ 's as $\left\langle i_{\alpha}^{t(x)}: \alpha<\varepsilon(x)\right\rangle$ is a sequence of members of $C_{*}$ with no repetitions while $C_{*}$, the set of colours, has $\leq \theta$ members. For some set $S \subseteq S^{*}$ of ordinals $x<\mu^{+}$which belong to $D^{+}$(by the normality of $D$ ) the value of $\varepsilon(x)$ is the same, say $\varepsilon$. For $x \in S$ we let $g_{\alpha}(x)=f_{\alpha}^{t(x)}(x)$ where $f_{\alpha}^{t(x)}$ is the $\alpha$-th regressive function in the node $t(x) \in T$. Again, by $\mu^{\theta}=\mu \quad \& \quad(\forall \alpha \in$ $S)[\operatorname{cf}(\alpha)>\theta]$ we have that $\left(\forall x \in S^{\prime}\right)(\forall \alpha<\varepsilon) g_{\alpha}(x)=\beta_{\alpha}$ holds for some sequence $\left\langle\beta_{\alpha}: \alpha<\varepsilon\right\rangle$ and subset $S^{\prime} \subseteq S$ from $D^{+}$. But then we get that the set $S^{\prime}$ satisfies $x, y \in S^{\prime} \Rightarrow\left(A_{\alpha}^{t(x)}, f_{\alpha}^{t(x)}, i_{\alpha}^{t(x)}\right)=\left(A_{\alpha}^{t(y)}, f_{\alpha}^{t(y)}, i_{\alpha}^{t(y)}\right)$ for every $\alpha<\varepsilon$; we can prove this by induction on $\alpha$. We can then prove that $A_{\varepsilon}^{t(x)}=A_{\varepsilon}^{t(y)}$ for $x, y \in S^{\prime}$. We can conclude that $x, y \in S^{\prime} \Rightarrow t(x)=t(y)$, so $S^{\prime} \subseteq A_{\varepsilon(t)}^{t}$ for some terminal node $t$, but this latter set is in $D^{+}$, a contradiction.

Proof of Lemma 1.1. Apply Claim 1.2 with $S^{*}=A^{*}$ to get corresponding $(C, A)$. Define the ideal $I$ as follows. For $X \subseteq \mu^{+}$we let $X \in I$ iff there are a member $E$ of $D$ and a regressive function $f: X \cap A \rightarrow \mu^{+}$such that every $\operatorname{Rang}\left(F^{\prime} \upharpoonright\left[f^{-1}(\alpha)\right]^{2}\right)$ is a proper subset of $C$ or $f^{-1}(\alpha)$ is a $=\emptyset \bmod D$ subset of $\mu^{+}$.

Now:
1.3 Claim. $I$ is a normal ideal on $\mu^{+}\left(\right.$and $\left.A^{*}=\mu^{+} \bmod I\right)$.

Proof. Straightforward.
Set $D_{0}$ to be the dual filter of $I$, let $A_{0}=A$ and let $C_{0}=C$; by 1.2 we are done.
1.4 Remark. 1) If Lemma 1.1 holds for some $D_{0}, A_{0}, C_{0}$ then it holds for $D_{1}, A_{1}, C_{0}$ when the normal filter $D_{1}$ extends $D_{0}$, and $A_{1} \in D_{1}$ satisfies $A_{1} \subseteq A_{0}$.
2) If $D_{0}, A_{0}, C_{0}$ satisfy Lemma 1.5 , and $X \in D_{0}^{+}$then $X$ contains a homogeneous set of order type $\lambda+1$ of color $\xi$ for every $\xi \in C_{0}$.
3) Lemma 1.1 is closely related to the proof in [Sh 26].

Proof of Theorem 0.1. Let $\mu=2^{<\lambda}$, and $F:\left[\mu^{+}\right]^{2} \rightarrow \theta$ be a colouring; we apply 1.1 for $A^{*}=S_{\operatorname{cf}(\lambda)}^{\mu^{+}},(F=F, \theta=\theta, \mu=\mu)$ and $D$ the club filter. We shall write $F(\alpha, \beta)$ for $F(\{\alpha, \beta\})$ and 0 for $F(\alpha, \alpha)$.
We fix $A_{0}, D_{0}, C_{0}$ which we get by 1.1.
1.5 Lemma. Almost every $\delta \in A_{0}$; (i.e. for all but a set $=\emptyset \bmod D_{0}$ ) satisfies the following: if $s \in\left[A_{0} \cap \delta\right]^{<\lambda}$ and $\left\{z_{\alpha}: \alpha<\gamma\right\}<\subseteq A_{0} \cap\left[\delta, \mu^{+}\right)$with $\gamma<\kappa$ then there is $\left\{y_{\alpha}: \alpha<\gamma\right\}<\subseteq A_{0} \cap(\sup (s), \delta)$ such that:
(a) $F\left(x, y_{\alpha}\right)=F\left(x, z_{\alpha}\right) \quad($ for $x \in s, \alpha<\gamma)$;
(b) $F\left(y_{\alpha}, y_{\beta}\right)=F\left(z_{\alpha}, z_{\beta}\right) \quad($ for $\alpha<\beta<\gamma)$.

Proof. By simple reflection (using the regularity of $\lambda$ ).
1.6 Lemma. There ${ }^{1}$ is $A_{0}^{\prime} \subseteq A_{0}, A_{0}^{\prime} \in D_{0}$ such that: if $\delta \in A_{0}^{\prime}, s \in[\delta]^{<\lambda}$ and $\xi \in C_{0}$, then there exists a $\delta_{1} \in A_{0}, \delta<\delta_{1}$ such that
(a) $F(x, \delta)=F\left(x, \delta_{1}\right) \quad($ for $x \in s)$;
(b) $F\left(\delta, \delta_{1}\right)=\xi$.

Proof. Otherwise, there is some $X \subseteq A_{0}, X \in D_{0}^{+}$such that for every $\delta \in X$ there are $s(\delta) \in[\delta]^{<\lambda}$ and $\xi(\delta) \in C_{0}$ such that there is no $\delta_{1}>\delta$ satisfying (a) and (b). By normality and $\mu=\mu^{<\lambda}$ we can assume that $s(\delta)=s$ and $\xi(\delta)=\xi$ holds for $\delta \in X$. By Lemma 1.1, that is the choice of $\left(A_{0}, D_{0}, C_{0}\right)$, there must exist $\delta<\delta_{1}$ in $X$ with $F\left(\delta, \delta_{1}\right)=\xi$ and this is a contradiction.

Continuation of the proof of Theorem 0.1. Let $A_{0}^{\prime} \subseteq A_{0}$ satisfy Lemmas 1.1 and 1.6 and pick some $\delta_{1} \in A_{0}^{\prime}$ and then let $T=A_{0}^{\prime} \backslash\left(\delta_{1}+1\right)$.
1.7 Lemma. There exists a function $G: T \times T \rightarrow C_{0}$ such that: if $s \in\left[\delta_{1}\right]^{<\lambda}, \gamma<$ $\kappa$, and $Z=\left\{z_{\alpha}: \alpha<\gamma\right\}_{<} \subseteq T$ then there is $\left\{y_{\alpha}: \alpha<\gamma\right\}<\subseteq\left(\sup (s), \delta_{1}\right)$ such that
(a) $F\left(x, y_{\alpha}\right)=F\left(x, z_{\alpha}\right) \quad($ for $x \in s, \alpha<\gamma)$;
(b) $F\left(y_{\alpha}, y_{\beta}\right)=F\left(z_{\alpha}, z_{\beta}\right) \quad($ for $\alpha<\beta<\gamma)$;
(c) $F\left(y_{\alpha}, z_{\beta}\right)=G\left(z_{\alpha}, z_{\beta}\right) \quad($ for $\alpha, \beta<\gamma)$.

[^1]Proof. As $\kappa$ is strongly compact, it suffices to show that for every $Z \in[T]^{<\kappa}$ there exists a function $G: Z \times Z \rightarrow \theta$ as required. Clauses $(a)$ and $(b)$ are obvious by Lemma 1.5, and it is clear that, if we fix $Z$, then for every $s \in\left[\delta_{1}\right]^{<\lambda}$ there is an appropriate $G: Z \times Z \rightarrow \theta$. We show that there is some $G: Z \times Z \rightarrow \theta$ that works for every $s$. Assume otherwise, that is, for every $G: Z \times Z \rightarrow \theta$ there is some $s_{G} \in\left[\delta_{1}\right]^{<\lambda}$ such that $G$ is not appropriate for $s_{G}$. Notice that the number of these functions $G$ is less than $\kappa$. Then no $G$ could be right for $s=\cup\left\{s_{G}: G\right.$ a function from $Z \times Z$ to $\theta\} \in\left[\delta_{1}\right]^{<\lambda}$, a contradiction.

Continuation of the proof of Theorem 0.1. We now apply Lemma 1.1 to the colouring $\bar{G}\{x, y\}=\bar{G}(x, y)=\langle F(x, y), G(x, y)\rangle$ for $x<y$ in $T$ and 0 otherwise, and the filter $D_{0}$ and the set $T$ and get the normal filter $D_{1} \supseteq D_{0}$, the set $A_{1} \subseteq T \subseteq A_{0}^{\prime}$ such that $A_{1} \in D_{1}$ and the colour set $C_{1} \subseteq \theta \times \theta$. Notice that actually $C_{1} \subseteq C_{0} \times C_{0}$. We can also apply Lemmas 1.5 and 1.6 and get some set $A_{1}^{\prime} \subseteq A_{1}$.
1.8 Lemma. There is a set $a \in\left[A_{1}^{\prime}\right]^{<\kappa}$ such that for every decomposition $a=$ $\cup\left\{a_{\bar{\xi}}: \bar{\xi} \in C_{1}\right\}$ there is some $\bar{\xi} \in C_{1}$ such that
( $\alpha$ ) for every $\bar{\varepsilon} \in C_{1}$ there is an $\bar{\varepsilon}$-homogeneous subset for the colouring $\bar{G}$ of order type $\zeta$ in $a_{\bar{\xi}}$,
$(\beta)$ similarly for every $\varepsilon \in C_{0}$ and $F$.

Proof. This follows from the strong compactness of $\kappa$ as $A_{1}^{\prime}$ itself has this partition property (or more details in 2.8).

Continuation of the Proof of 0.1. Fix a set $a$ as in 1.8.
We now describe the construction of the required homogeneous subset. Let $\delta_{2} \in A_{1}^{\prime}$ be some element with $\delta_{2}>\sup (a)$. For $\bar{\xi}=\left(\xi_{1}, \xi_{2}\right) \in C_{1} \subseteq \theta \times \theta$ let $a_{\bar{\xi}}$ be the following set:

$$
a_{\bar{\xi}}=\left\{x \in a: \bar{G}\left(x, \delta_{2}\right)=\bar{\xi}\right\} .
$$

By Lemma 1.8, there is some $\bar{\xi}=\left(\xi_{1}, \xi_{2}\right) \in C_{1}$ for which the statement in 1.8 above is true and necessarily (as $a \cup\left\{\delta_{2}\right\} \subseteq A_{1}^{\prime} \subseteq A_{0}$ and $a_{\bar{\xi}} \neq \emptyset$ ) we have $\xi_{1}, \xi_{2} \in C_{0}$. Select some $b \subseteq a_{\bar{\xi}}$, otp $(b)=\zeta$ such that $F$ is constantly $\xi_{2}$ on $b$; this is possible by clause $(\beta)$ of 1.8. This set $b$ will be the $\zeta$ part of our homogeneous set of ordinals of order type $\lambda+\zeta$, so we will have to construct a set of order type $\lambda$ below $b$. By
induction on $\alpha$ we will choose $x_{\alpha}$ such that the set $\left\{x_{\alpha}: \alpha<\lambda\right\}_{<} \subseteq \delta_{1}$ satisfies the following conditions:
$(*)_{1} F\left(x_{\beta}, x_{\alpha}\right)=\xi_{2}($ for $\beta<\alpha)$,
$(*)_{2} F\left(x_{\alpha}, b \cup\left\{\delta_{2}\right\}\right)=\xi_{2}$, i.e. $F\left(x_{\alpha}, y\right)=\xi_{2}$ when $y \in b \cup\left\{\delta_{2}\right\}$.
Assume that we have reached step $\alpha$, that is, we are given the set of ordinals with $\left\{x_{\beta}: \beta<\alpha\right\}_{<}$and call this set $s$. Applying Lemma 1.6 for $A_{1}, A_{1}^{\prime}, \delta_{2}$ and $s \cup b$ and the colouring $\bar{G}$ here standing for $A_{0}, A_{0}^{\prime}, \delta, s$ and the colouring $F$ there (that is the choice of $A_{1}^{\prime}$ ) we get that there exists some $\delta_{3}>\delta_{2}$ (standing for $\delta_{1}$ there) such that
(i) $\delta_{3} \in A_{1}$
(ii) $\bar{G}\left(x, \delta_{3}\right)=\bar{G}\left(x, \delta_{2}\right)$ for $x \in s \cup b$
(iii) $\bar{G}\left(\delta_{2}, \delta_{3}\right)=\left(\xi_{1}, \xi_{2}\right)$,
hence:
$(*)_{3} F\left(x_{\beta}, \delta_{3}\right)=\xi_{2}($ for $\beta<\alpha)$.
[Why? As $F\left(x_{\beta}, \delta_{3}\right)=F\left(x_{\beta}, \delta_{2}\right)$ by (ii) and the choice of $\bar{G}$ and $F\left(x_{\beta}, \delta_{2}\right)=$ $\xi_{2}$ by $(*)_{2}$ from the induction hypothesis.]
$(*)_{4} G\left(b \cup\left\{\delta_{2}\right\}, \delta_{3}\right)=\xi_{2}$, i.e. $G\left(y, \delta_{3}\right)=\xi_{2}$ when $y \in b \cup\left\{\delta_{2}\right\}$.
[Why? If $y \in b$ then by (ii) and the definition of $\bar{G}$ we have $G\left(y, \delta_{3}\right)=$ $G\left(y, \delta_{2}\right)$, but $b \subseteq a_{\bar{\xi}}$ so by the choice of $a_{\bar{\xi}}$ we have $G\left(y, \delta_{2}\right)=\xi_{2}$. For $y=\delta_{2}$ use clause (iii) that is $\left(\xi_{1}, \xi_{2}\right)=\bar{G}\left(\delta_{2}, \delta_{3}\right)=\left(F\left(\delta_{2}, \delta_{3}\right), G\left(\delta_{2}, \delta_{3}\right)\right)$ ]

By the choice of $G$ this implies that there is some $x_{\alpha}$ as required; that is by the choice of $\bar{G}$ (see Lemma 1.7), applied to $Z=\left\{z_{i}: i<\gamma\right\}$ enumerating the set $b \cup\left\{\delta_{2}, \delta_{3}\right\}$ and $s$ as above, we get $\left\{y_{i}: i<\gamma\right\}$, now necessarily $\delta_{3}=z_{\gamma-1}$, and we can choose $y_{\gamma-1}$ as $x_{\alpha}$.

## §2 The case of $\lambda$ singular

We prove version 0.2 of the main theorem.
Proof of Theorem 0.2. Let $\sigma=\operatorname{cf}(\lambda)$. Let $\lambda=\sum_{\varepsilon<\sigma} \lambda_{\varepsilon}$ with $\lambda_{\varepsilon}>\sigma \geq \kappa>\theta$ strictly increasing. Let $\mu_{\varepsilon}=2^{\lambda_{\varepsilon}}$ and $\mu=\Sigma\left\{\mu_{\varepsilon}: \varepsilon<\sigma\right\}=2^{<\lambda}$. We also fix $F:\left[\mu^{+}\right]^{2} \rightarrow \theta$.
2.1 Claim. For some $\overline{\mathscr{C}}$ we have:
(a) $\overline{\mathscr{C}}=\left\langle\mathscr{C}_{\alpha}: \alpha \in S\right\rangle$
(b) $S \subseteq \mu^{+}, \mathscr{C}_{\delta} \subseteq \delta$
(c) $\operatorname{otp}\left(\mathscr{C}_{\delta}\right) \leq \sigma$
(d) $S^{*}=\left\{\delta<\lambda: \operatorname{otp}\left(\mathscr{C}_{\delta}\right)=\sigma\right\}$ is stationary
(e) $\mathscr{C}_{\delta}$ unbounded in $\delta$ if $\operatorname{otp}\left(\mathscr{C}_{\delta}\right)=\sigma$
(f) $\alpha \in \mathscr{C}_{\delta} \Rightarrow \alpha \in S \& \mathscr{C}_{\alpha}=\mathscr{C}_{\delta} \cap \alpha$.

Proof. By $\left[\right.$ Sh 420, §1] as $\sigma^{+}<\mu^{+}, \sigma=\operatorname{cf}(\sigma)$.
Continuation of the proof of 0.2 : Let $D_{0}, A_{0}, C_{0}$ be as given by Lemma 1.1 with the club filter of $\mu^{+}, S^{*}$ (from clause (d) of 2.1 above) here standing for $D, A^{*}$ there so $A_{0} \subseteq S^{*}$.

Notation: $\varepsilon(\alpha)=\operatorname{otp}\left(C_{\alpha}\right)$.
2.2 Claim. Let $\chi>2^{\mu},<_{\chi}^{*}$ a well ordering of $\left.\mathscr{H}(\chi)\right)$. For any $x \in \mathscr{H}(\chi)$ we can find $\overline{\mathfrak{B}}=\left\langle\mathfrak{B}_{\alpha}: \alpha<\lambda\right\rangle$ such that:
(a) $\mathfrak{B}_{\alpha} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$
(b) $\bar{\lambda}, \mu, F,\left\langle\lambda_{\varepsilon}: \varepsilon<\sigma\right\rangle, \overline{\mathscr{C}}, A_{0}, C_{0}, D_{0}$ belong to $\mathfrak{B}_{\alpha}$
(c) $\left\langle\mathfrak{B}_{\beta}: \beta<\alpha\right\rangle \in \mathfrak{B}_{\alpha}$ if $\alpha \notin S^{*}$
(d) $\left\|\mathfrak{B}_{\beta}\right\|=\mu_{\varepsilon(\beta)}$ and $\left[\mathfrak{B}_{\beta}\right]^{\leq \lambda_{\varepsilon(\beta)}} \subseteq \mathfrak{B}_{\beta}$ and $\mu_{\varepsilon(\beta)}+1 \subseteq \mathfrak{B}_{\beta}$ (actually follows)
(e) $\mathfrak{B}_{\alpha}=\cup\left\{\mathfrak{B}_{\beta}: \beta \in \mathscr{C}_{\alpha}\right\}$ if $\alpha \in S^{*}$.

Proof. Straightforward.
2.3 Observation. 1) We have $\varepsilon(\alpha)<\varepsilon(\beta)$ and $\mathfrak{B}_{\alpha} \in \mathfrak{B}_{\beta}$ and $\mathfrak{B}_{\alpha} \prec \mathfrak{B}_{\beta}$ if $\alpha \in \mathscr{C}_{\beta}$.
2.4 Claim. There is a set $A_{0}^{\prime} \subseteq A_{0}$ such that
( $\alpha$ ) $A_{0}^{\prime} \in D_{0}$ and $\alpha<\delta \in A_{0}^{\prime} \Rightarrow \sup \left(\mathfrak{B}_{\alpha} \cap \mu^{+}\right)<\delta$
( $\beta$ ) if $\xi \in C_{0}$ and $\delta \in A_{0}^{\prime}$ and $s \in \cup\left\{\left[\delta \cap \mathfrak{B}_{\alpha}\right]^{\leq \lambda_{\varepsilon(\alpha)}}: \alpha \in \mathscr{C}_{\delta}\right\}$, then there is $\delta_{1} \in A_{0}$ such that $\delta<\delta_{1}$ and
(a) $\quad F(x, \delta)=F\left(x, \delta_{1}\right)$ for $x \in s$
(b) $F\left(\delta, \delta_{1}\right)=\xi$.

Proof. Requirement ( $\alpha$ ) holds for all but a non stationary set of $\delta \in A_{0}$. Requirement $(\beta)$ is proved as in 1.6.

Now fix $A_{0}^{\prime} \subseteq A_{0}$ as in 2.4, and fix $\delta_{1} \in A_{1}^{\prime}$ and let $T=A_{0}^{\prime} \backslash\left(\delta_{1}+1\right)$. Recall $\delta_{1} \in A_{0}^{\prime} \subseteq S^{*}=\left\{\delta: \operatorname{otp}\left(\mathscr{C}_{\delta}\right)=\sigma, \delta=\sup \left(\mathscr{C}_{\delta}\right)\right\} \subseteq\left\{\delta<\mu^{+}: \operatorname{cf}(\delta)=\sigma\right\}$.
2.5 Claim. There is a function $G_{\varepsilon}: T \times T \rightarrow C_{0}$ such that:
$\square$ if $s \in\left[\delta \cap \mathfrak{B}_{\alpha}\right]^{\leq \lambda_{\varepsilon}}$ and $\varepsilon=\varepsilon(\alpha)$ and $\alpha \in \mathscr{C}_{\delta_{1}}$ and $\gamma<\kappa$ and $Z=\left\{z_{\beta}: \beta<\right.$ $\gamma\}<\subseteq T$, then there is $\left\{y_{\beta}: \beta<\gamma\right\}_{<} \subseteq \delta \cap \mathfrak{B}_{\alpha}=\mu^{+} \cap \mathfrak{B}_{\alpha}$ such that:
(a) $F\left(x, y_{\beta}\right)=F\left(x, z_{\beta}\right)$ for $x \in s, \beta<\delta$
(b) $F\left(\delta, \delta_{1}\right)=\xi$

$$
F\left(z_{\beta_{1}}, y_{\beta_{2}}\right)=G\left(y_{\beta_{1}}, y_{\beta_{2}}\right) \text { for } \beta_{1}, \beta_{2}<\delta
$$

(c) $F\left(z_{\beta_{1}}, z_{\beta_{2}}\right)=F\left(y_{\beta_{1}}, y_{\beta_{2}}\right)$ for $\beta_{1}, \beta_{2}<\gamma$
(d) $y_{0}>\sup (s)$.

Proof. Like 1.7.
2.6 Claim. There exists a function $G: T \times T \rightarrow C_{0}$ such that if $s \in[T]^{<\kappa}$, then for arbitrarily large $\varepsilon<\sigma$ we have $G \upharpoonright(s \times s)=G_{\varepsilon} \upharpoonright(s \times s)$.

Proof. Let $D^{*}$ be a uniform $\kappa$-complete ultrafilter on $\sigma$ and define $G$ by $G(\alpha, \beta)$ is the unique $\xi \in C_{0}$ such that $\left\{\varepsilon<\sigma: G_{\varepsilon}(\alpha, \beta)=\xi\right\} \in D^{*}$.

Continuation of the Proof of 0.2. Now we apply Lemma 1.1 to the colouring $\bar{G}$ where $\bar{G}\{x, y\}=\bar{G}(x, y)=(F(x, y), G(x, y))$ for $x<y$ in $T$ and zero otherwise and the filter $D_{0}$ and the set $T$. We get a normal filter $D_{1}$ and a set $A_{1} \subseteq T \subseteq A_{0}^{\prime}$ and a set of colours $C_{1}$. As $A_{1} \subseteq A_{0}$ necessarily $C_{1} \subseteq C_{0} \times C_{0}$.
2.7 Claim. There is $A_{1}^{\prime} \subseteq A_{1}$ such that:
( $\alpha$ ) $A_{1} \backslash A_{1}^{\prime}=\emptyset \bmod D_{1}$
( $\beta$ ) if $\delta \in A_{1}^{\prime}, \alpha \in \mathscr{C}_{\delta}$ and $s \in\left[\delta \cap \mathfrak{B}_{\alpha}\right]{ }^{\leq \lambda_{\varepsilon(\alpha)}}$ and $\bar{\xi} \in C_{1}$, then for some $\delta_{*}$ we have $\delta<\delta_{*} \in A_{1}$ and
(a) $\bar{G}(x, \delta)=\bar{G}\left(x, \delta_{1}\right)$ for every $x \in s$
(b) $\bar{G}\left(\delta, \delta_{*}\right)=\bar{\xi}$.

Proof. Like the proof of 1.6
2.8 Claim. There is a set $a \in\left[A_{1}^{\prime}\right]^{<\kappa}$ such that:
for every decomposition of a as $\cup\left\{a_{\bar{\xi}}: \bar{\xi} \in C_{1}\right\}$ there is $\bar{\xi} \in C_{1}$ such that
( $\alpha$ ) for every $\bar{\varepsilon} \in C_{1}$ there is $b \subseteq a_{\bar{\xi}}$ of order type $\zeta$ such that $\bar{G} \upharpoonright[b]^{2}$ is constantly $\bar{\varepsilon}$
( $\beta$ ) for every $\varepsilon \in C_{0}$ there is $b \subseteq a_{\bar{\xi}}$ of order type $\zeta$ such that $F \upharpoonright[b]^{2}$ is constantly $\varepsilon$.

Proof. The claim holds since $A_{1}^{\prime}$ has this property and $\kappa$ is strongly compact. If $A_{1}^{\prime}=\cup\left\{a_{\bar{\xi}}: \bar{\xi} \in C_{1}\right\}$ for some $\bar{\xi}, a_{\bar{\xi}} \in D_{1}^{+}$hence clause ( $\alpha$ ) holds by the choice of $D_{1}, C_{1}$; and clause $(\beta)$ holds as $D_{1}^{+} \subseteq D_{0}^{+}$(as $D_{0} \subseteq D_{1}$ ) and the choice of $D_{0}, C_{0}$.

Continuation of the proof of 0.2. Now choose $\delta_{2} \in A_{1}^{\prime}$ such that $\delta_{2}>\sup (a)$ and for $\bar{\xi}=\left(\xi_{1}, \xi_{2}\right) \in C_{1} \subseteq \theta \times \theta$ define $a_{\bar{\xi}}$ as

$$
\bar{a}_{\bar{\xi}}=\left\{x \in a: \bar{G}\left(x, \delta_{2}\right)=\bar{\xi}\right\} .
$$

Clearly $\left\langle a_{\bar{\xi}}: \bar{\xi} \in C_{1}\right\rangle$ is a decomposition of $a$ and so there is $\bar{\xi}=\left(\xi_{1}, \xi_{2}\right) \in C_{1}$ as guaranteed by $\square$ of 2.8. In particular, there is $b \subseteq a_{\bar{\xi}}$ of order type $\zeta$ such that $F \upharpoonright[b]^{2}$ is constantly $\xi_{2}$ (note that $\left(\xi_{1}, \xi_{2}\right) \in C_{1} \subseteq C_{0} \times C_{0}$ so $\xi_{2} \in C_{0}$ ). Now let $E=\left\{\varepsilon<\sigma: G_{\varepsilon}\left(\alpha, \delta_{2}\right)=G\left(\alpha, \delta_{2}\right)\right.$ for every $\left.\alpha \in b\right\}$. By the definition of $G$ this is an unbounded subset of $\sigma$ and clearly
$(*)$ if $\varepsilon \in E$ and $\alpha \in b$ then $G_{\varepsilon}\left(\alpha, \delta_{2}\right)=G\left(\alpha, \delta_{2}\right)=\left(\xi_{1}, \xi_{2}\right)$.

For $\alpha<\lambda$ let $\Upsilon(\alpha)=\operatorname{Min}\left\{\varepsilon \in E: \alpha<\lambda_{\varepsilon}\right\}$ and let $C_{\delta_{1}}=\{\gamma(\Upsilon): \Upsilon<\sigma\}_{<}$.
Now we try to choose by induction on $\alpha<\lambda$ a element $x_{\alpha}$ satisfying
$(*)_{0} x_{\alpha}<\delta_{1}$ and moreover $x_{\alpha} \in \delta_{1} \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$, and $\beta<\alpha \Rightarrow x_{\beta}<x_{\alpha}$
$(*)_{1} F\left(x_{\beta}, x_{\alpha}\right)=\xi_{2}$ for $\beta<\alpha$
$(*)_{2} F\left(x_{\alpha}, \beta\right)=\xi_{2}$ for $\beta \in b \cup\left\{\delta_{2}\right\}$.
At step $\alpha$, by 2.7 , that is by the choice of $A_{1}^{\prime}$ applying clause $(\beta)$ there with $\left\{x_{\beta}: \beta<\alpha\right\} \cup b, \delta_{2}, \bar{\xi}$ here standing for $s, \delta, \bar{\xi}$ there, we can find $\delta_{3}$ satisfying the requirement there on $\delta_{1}$, so
(i) $\delta_{2}<\delta_{3} \in A_{1}$
(ii) $\bar{G}\left(x, \delta_{3}\right)=\bar{G}\left(x, \delta_{2}\right)$ for $x \in s \cup b$
(iii) $\bar{G}\left(\delta_{2}, \delta_{3}\right)=\left(\xi_{1}, \xi_{2}\right)$.

Now
$(*)_{3} F\left(x_{\beta}, \delta_{3}\right)=\xi_{2}$ for $\beta<\alpha$.
[Why? By (ii) we have $\bar{G}\left(x_{\beta}, \delta_{3}\right)=\bar{G}\left(x_{\beta}, \delta_{2}\right)$ hence $F\left(x_{\beta}, \delta_{3}\right)=F\left(x_{\beta}, \delta_{2}\right)$ but the latter by $(*)_{2}$ is equal to $\xi_{2}$.]
$(*)_{4} G\left(\beta, \delta_{3}\right)=\xi_{2}$ for $\beta \in b$
[Why? By (ii) and as $\left.\beta \in b \Rightarrow \bar{G}\left(\beta, \delta_{2}\right)=\left(\xi_{1}, \xi_{2}\right) \Rightarrow G\left(\beta, \delta_{2}\right)=\xi_{2}\right)$.]
$(*)_{5} G\left(\delta_{2}, \delta_{3}\right)=\xi_{2}$
[Why? By clause (iii).]
$(*)_{6}\left\{x_{\beta}: \beta<\alpha\right\}$ is a subset of $\delta_{1} \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$.
Let $\left\langle y_{i}: i<\zeta+2\right\rangle$ list $b \cup\left\{\delta_{2}, \delta_{3}\right\}$ increasing order.
Now we use the choice of $G_{\Upsilon(\alpha)}$ to choose an increasing sequence $\left\langle z_{i}: i<\zeta+2\right\rangle$ in $\delta_{1} \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}, z_{0}>x_{\beta}$ for $\beta<\alpha$ such that $F\left(z_{i}, y_{j}\right)=G\left(y_{i}, y_{j}\right)$ for $i, j<\zeta+2$ and $F\left(x_{\beta}, z_{i}\right)=F\left(x_{\beta}, y_{i}\right)$ for $i<\zeta+2$. Let $x_{\alpha}=z_{\zeta+1}$ so $x_{\alpha}=\delta_{1} \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$ is $>x_{\beta}$ for $\beta<\alpha$.
Also $x_{\alpha}$ satisfies $(*)_{0}$ of the recursive definition. Now $\beta<\alpha \Rightarrow F\left(x_{\beta}, x_{\alpha}\right)=$ $F\left(x_{\beta}, z_{\zeta+1}\right)=F\left(x_{\beta}, y_{\zeta+1}\right)=F\left(x_{\beta}, \delta_{3}\right)$ which is $\xi_{2}$ by $(*)_{3}$ above, so for our choice of $x_{\alpha},(*)_{1}$ holds. Next if $\beta \in b \cup\left\{\delta_{2}\right\}$ then $F\left(x_{\alpha}, x_{\beta}\right)=F\left(x_{\beta}, z_{\zeta+1}\right)=G\left(x_{\beta}, \delta_{3}\right)$ which is $\xi_{2}$ by $(*)_{4}$ or $(*)_{5}$. So $x_{\alpha}$ is as required.

REFERENCES.
[BHT93] James Baumgartner, Andras Hajnal, and Stevo Todorčević. Extensions of the Erdos-Rado Theorems. In Finite and Infinite Combinatorics in Set Theory and Logic, pages 1-18. Kluwer Academic Publishers, 1993. N.W. Sauer et. al. eds.
[Sh 26] Saharon Shelah. Notes on combinatorial set theory. Israel Journal of Mathematics, 14:262-277, 1973.
[Sh 420] Saharon Shelah. Advances in Cardinal Arithmetic. In Finite and Infinite Combinatorics in Sets and Logic, pages 355-383. Kluwer Academic Publishers, 1993. N.W. Sauer et al (eds.).
[Sh 424] Saharon Shelah. On $C H+2^{\aleph_{1}} \rightarrow(\alpha)_{2}^{2}$ for $\alpha<\omega_{2}$. In Logic Colloquium'90. ASL Summer Meeting in Helsinki, volume 2 of Lecture Notes in Logic, pages 281-289. Springer Verlag, 1993. J. Oikkonen, J. Väänänen, eds.
[Sh 666] Saharon Shelah. On what I do not understand (and have something to say:) Part I. Fundamenta Mathematicae, 166:1-82, 2000.


[^0]:    2000 Mathematics Subject Classification. 2000 Math Subject Classification: 03E02.

    I would like to thank Alice Leonhardt for the beautiful typing.
    Research of the author was partially supported by the United States-Israel Binational Science Foundation.
    Publ. 761.
    Latest Revision - 02/Oct/21

[^1]:    ${ }^{1}$ in fact, if $A_{1}^{*} \in D_{0}^{+}$then for some $A_{0}^{\prime} \subseteq A_{1} \cap A_{0}, A_{1} \backslash A_{0}^{\prime}=\emptyset$ modulo $D_{0}$ and the conclusion holds for every $\delta \in A_{0}^{\prime}$

