SAHARON SHELAH

Institute of Mathematics The Hebrew University Jerusalem, Israel

Rutgers University Mathematics Department New Brunswick, NJ USA

ABSTRACT. If κ is strongly compact and $\lambda > \kappa$ and λ is regular (or alternatively $cf(\lambda) \ge \kappa$), then $(2^{<\lambda})^+ \to (\lambda + \zeta)^2_{\theta}$ holds for $\zeta, \theta < \kappa$.

2000 Mathematics Subject Classification. 2000 Math Subject Classification: 03E02.

I would like to thank Alice Leonhardt for the beautiful typing.

Research of the author was partially supported by the United States-Israel Binational Science Foundation. Publ.761.

Latest Revision - 02/Oct/21

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

 $\mathbf{2}$

SAHARON SHELAH

§0 INTRODUCTION

The aim of this paper is to prove the following theorem.

0.1 Theorem. If κ is a strongly compact cardinal, $\lambda > \kappa$ is regular and $\zeta, \theta < \kappa$ <u>then</u> the partition relation $(2^{<\lambda})^+ \to (\lambda + \zeta)^2_{\theta}$ holds.

0.2 Theorem. In Theorem 0.1. Instead λ regular, $cf(\lambda) > \kappa$ suffices.

We notice that our argument is valid in the case $\kappa = \omega$. As for the history of the problem we point out that Hajnal proved in an unpublished work, that $(2^{\omega})^+ \rightarrow (\omega_1 + n)_2^2$ holds for every $n < \omega$. Then it was showed in [Sh 26, §6] that for $\kappa > \omega$ regular and $2^{|\alpha|} < \kappa$, the relation $(2^{<\kappa})^+ \rightarrow (\kappa + \alpha)_2^2$ is true. More recently Baumgartner, Hajnal, and Todorčević in [BHT93] extended this to the case when the number of colors is arbitrary finite. Earlier by [Sh 424], we have $(2^{<\lambda})^{+n} \rightarrow$ $(\lambda \times m)_k^2$ for n large enough (this was complimentary to the main result there that $\aleph_0 < \lambda = \lambda^{<\lambda} + 2^{\lambda}$ arbitrarily large does not imply $2^{\lambda} \rightarrow (\lambda \times \omega)_2^2$). Subsequently [BHT93] improves n. We hope that the way the strong compactness was used will be useful elsewhere; see [Sh 666] for a discussion of a possible consistency of failure. I also thank Peter Komjath for improving the presentation.

Notation. If S is a set, κ a cardinal then $[S]^{\kappa} = \{a \subseteq S : |a| = \kappa\}, [S]^{<\kappa} = \{a \subseteq S : |a| < \kappa\}$. If D is some filter over a set S then $X \in D^+$ denotes that $S \setminus X \notin D$ and $X \subseteq S$. If $\kappa < \mu$ are regular cardinals then $S^{\mu}_{\kappa} = \{\alpha < \mu : cf(\alpha) = \kappa\}$, a stationary set. The notation $A = \{x_{\alpha} : \alpha < \gamma\}_{<}$, etc., means that A is enumerated increasingly.

§1 The case of λ regular

1.1 Lemma. Assume $\mu = \mu^{\theta}$. Assume that D is a normal filter on μ^{+} and $A^{*} \in D^{+}$ satisfies $\delta \in A^{*} \Rightarrow cf(\delta) > \theta$, and F' is a function with domain $[A^{*}]^{2}$ and range of cardinality θ . <u>Then</u> there are a normal filter D_{0} on μ^{+} extending $D, A_{0} \in D_{0}$ with $A_{0} \subseteq A^{*}$ and $C_{0} \subseteq Rang(F')$ satisfying $Rang(F' \upharpoonright [A_{0}]^{2}) = C_{0}$ such that: if $X \in D_{0}^{+}$ then $Rang(F' \upharpoonright [X]^{2}) \supseteq C_{0}$.

We first prove a claim

1.2 Claim. Assume $\mu = \mu^{\theta}$ and $F' : [S^*]^2 \to C_*, |C_*| \leq \theta, D$ is a normal filter on $\mu^+, S^* \subseteq \mu^+$ belongs to D^+ and $\delta \in S^* \Rightarrow cf(\delta) > \theta$. There is a set $A \in D^+$ such that $A \subseteq S^*$ and some $C \subseteq C_0$ satisfying $\operatorname{Rang}(F' \upharpoonright [A]^2) = C$ and: if $f : A \to \mu^+$ is a regressive function, then for some $\alpha < \mu^+$ we have $\operatorname{Rang}(F' \upharpoonright [f^{-1}(\alpha)]^2) = C$ and $f^{-1}(\alpha)$ is a subset of μ^+ from D^+ .

Proof. Toward contradiction assume that no such sets A, C exist. We build a tree T as follows. Every node t of the tree will be of the form

$$t = \langle \langle A_{\alpha} : \alpha \leq \varepsilon \rangle, \langle f_{\alpha} : \alpha < \varepsilon \rangle, \langle i_{\alpha} : \alpha < \varepsilon \rangle \rangle$$
$$= \langle \langle A_{\alpha}^{t} : \alpha \leq \varepsilon \rangle, \langle f_{\alpha}^{t} : \alpha < \varepsilon \rangle, \langle i_{\alpha}^{t} : \alpha < \varepsilon \rangle \rangle$$

for some ordinal $\varepsilon = \varepsilon(t)$ where $\langle A_{\alpha} : \alpha \leq \varepsilon \rangle$ is a decreasing, continuous sequence of subsets of μ^+ ; for every $\alpha < \varepsilon$, f_{α} is a regressive function on A_{α} ; and $\langle i_{\alpha} : \alpha < \varepsilon \rangle$ is a sequence of distinct elements of C_* . It will always be true that if $t <_T t'$, then each of the three sequences of t' extend the corresponding one of t.

To start, we make the node t with $\varepsilon(t) = 0, A_0 = S^*$ the root of the tree.

At limit levels we extend (the obvious way) all cofinal branches to a node.

If we are given an element $t = \langle \langle A_{\alpha} : \alpha \leq \varepsilon \rangle, \langle f_{\alpha} : \alpha < \varepsilon \rangle, \langle i_{\alpha} : \alpha < \varepsilon \rangle \rangle$ of the tree and the set A_{ε} is $= \emptyset \mod D$ then we leave t as a terminal node. Otherwise, let $C = C_t = \operatorname{Rang} \left(F' \upharpoonright [A_{\varepsilon}]^2 \right)$ and notice that by hypothesis, toward contradiction, the pair A_{ε}, C_t cannot be as required in the Claim. There is, therefore, a regressive function $f = f_t$ with domain A_{ε} , such that for every $x < \mu^+$ the set $\operatorname{Rang} \left(F' \upharpoonright [f^{-1}(x)]^2 \right)$ is a proper subset of C_t or $f^{-1}(x)$ is a $= \emptyset \mod D$ subset of μ^+ . We make the immediate extensions of t the sequences of the form a $t_x = \langle \langle A_{\alpha} : \alpha \leq \varepsilon + 1 \rangle, \langle f_{\alpha} : \alpha < \varepsilon + 1 \rangle, \langle i_{\alpha} : \alpha < \varepsilon + 1 \rangle$ where $A_{\varepsilon+1} = f^{-1}(x), f_{\alpha} = f_t$ and $i_{\varepsilon} \in C_t$ is some colour value such that: if $A_{\varepsilon+1} \neq \emptyset \mod D$ then i_{ε} is not in the range of $F' \upharpoonright [A_{\varepsilon}]^2$.

SAHARON SHELAH

Having constructed the tree observe that every element $x \in S^* \subseteq \mu^+$ belongs to a set $A_{\varepsilon(x)}^{t(x)}$ for some (unique) terminal node t(x) of T. Also, $\varepsilon(x) < \theta^+(<\mu^+)$ holds by the selection of the i_{β} 's as $\langle i_{\alpha}^{t(x)} : \alpha < \varepsilon(x) \rangle$ is a sequence of members of C_* with no repetitions while C_* , the set of colours, has $\leq \theta$ members. For some set $S \subseteq S^*$ of ordinals $x < \mu^+$ which belong to D^+ (by the normality of D) the value of $\varepsilon(x)$ is the same, say ε . For $x \in S$ we let $g_{\alpha}(x) = f_{\alpha}^{t(x)}(x)$ where $f_{\alpha}^{t(x)}$ is the α -th regressive function in the node $t(x) \in T$. Again, by $\mu^{\theta} = \mu$ & $(\forall \alpha \in$ $S)[cf(\alpha) > \theta]$ we have that $(\forall x \in S')(\forall \alpha < \varepsilon)g_{\alpha}(x) = \beta_{\alpha}$ holds for some sequence $\langle \beta_{\alpha} : \alpha < \varepsilon \rangle$ and subset $S' \subseteq S$ from D^+ . But then we get that the set S' satisfies $x, y \in S' \Rightarrow (A_{\alpha}^{t(x)}, f_{\alpha}^{t(x)}, i_{\alpha}^{t(x)}) = (A_{\alpha}^{t(y)}, f_{\alpha}^{t(y)}, i_{\alpha}^{t(y)})$ for every $\alpha < \varepsilon$; we can prove this by induction on α . We can then prove that $A_{\varepsilon}^{t(x)} = A_{\varepsilon}^{t(y)}$ for $x, y \in S'$. We can conclude that $x, y \in S' \Rightarrow t(x) = t(y)$, so $S' \subseteq A_{\varepsilon(t)}^{t(y)}$ for some terminal node t, but this latter set is in D^+ , a contradiction.

 $\square_{1.2}$

Proof of Lemma 1.1. Apply Claim 1.2 with $S^* = A^*$ to get corresponding (C, A). Define the ideal I as follows. For $X \subseteq \mu^+$ we let $X \in I$ iff there are a member E of D and a regressive function $f: X \cap A \to \mu^+$ such that every $\operatorname{Rang}(F' \upharpoonright [f^{-1}(\alpha)]^2)$ is a proper subset of C or $f^{-1}(\alpha)$ is a = $\emptyset \mod D$ subset of μ^+ .

Now:

1.3 Claim. I is a normal ideal on μ^+ (and $A^* = \mu^+ \mod I$).

Proof. Straightforward.

Set D_0 to be the dual filter of I, let $A_0 = A$ and let $C_0 = C$; by 1.2 we are done. $\Box_{1.1}$

1.4 Remark. 1) If Lemma 1.1 holds for some D_0, A_0, C_0 then it holds for D_1, A_1, C_0 when the normal filter D_1 extends D_0 , and $A_1 \in D_1$ satisfies $A_1 \subseteq A_0$. 2) If D_0, A_0, C_0 satisfy Lemma 1.5, and $X \in D_0^+$ then X contains a homogeneous set of order type $\lambda + 1$ of color ξ for every $\xi \in C_0$. 3) Lemma 1.1 is closely related to the proof in [Sh 26].

Proof of Theorem 0.1. Let $\mu = 2^{<\lambda}$, and $F : [\mu^+]^2 \to \theta$ be a colouring; we apply 1.1 for $A^* = S_{cf(\lambda)}^{\mu^+}$, $(F = F, \theta = \theta, \mu = \mu)$ and D the club filter. We shall write $F(\alpha, \beta)$ for $F(\{\alpha, \beta\})$ and 0 for $F(\alpha, \alpha)$. We fix A_0, D_0, C_0 which we get by 1.1.

1.5 Lemma. Almost every $\delta \in A_0$; (i.e. for all but a set $= \emptyset \mod D_0$) satisfies the following: if $s \in [A_0 \cap \delta]^{<\lambda}$ and $\{z_\alpha : \alpha < \gamma\}_{<} \subseteq A_0 \cap [\delta, \mu^+)$ with $\gamma < \kappa$ then there is $\{y_\alpha : \alpha < \gamma\}_{<} \subseteq A_0 \cap (\sup(s), \delta)$ such that:

- (a) $F(x, y_{\alpha}) = F(x, z_{\alpha})$ (for $x \in s, \alpha < \gamma$);
- (b) $F(y_{\alpha}, y_{\beta}) = F(z_{\alpha}, z_{\beta})$ (for $\alpha < \beta < \gamma$).

Proof. By simple reflection (using the regularity of λ).

1.6 Lemma. There¹ is $A'_0 \subseteq A_0, A'_0 \in D_0$ such that: if $\delta \in A'_0, s \in [\delta]^{<\lambda}$ and $\xi \in C_0$, then there exists a $\delta_1 \in A_0, \delta < \delta_1$ such that

- (a) $F(x,\delta) = F(x,\delta_1)$ (for $x \in s$);
- (b) $F(\delta, \delta_1) = \xi$.

Proof. Otherwise, there is some $X \subseteq A_0, X \in D_0^+$ such that for every $\delta \in X$ there are $s(\delta) \in [\delta]^{<\lambda}$ and $\xi(\delta) \in C_0$ such that there is no $\delta_1 > \delta$ satisfying (a) and (b). By normality and $\mu = \mu^{<\lambda}$ we can assume that $s(\delta) = s$ and $\xi(\delta) = \xi$ holds for $\delta \in X$. By Lemma 1.1, that is the choice of (A_0, D_0, C_0) , there must exist $\delta < \delta_1$ in X with $F(\delta, \delta_1) = \xi$ and this is a contradiction.

$$\sqcup_{1.6}$$

Continuation of the proof of Theorem 0.1. Let $A'_0 \subseteq A_0$ satisfy Lemmas 1.1 and 1.6 and pick some $\delta_1 \in A'_0$ and then let $T = A'_0 \setminus (\delta_1 + 1)$.

1.7 Lemma. There exists a function $G: T \times T \to C_0$ such that: if $s \in [\delta_1]^{<\lambda}$, $\gamma < \kappa$, and $Z = \{z_\alpha : \alpha < \gamma\}_{<} \subseteq T$ then there is $\{y_\alpha : \alpha < \gamma\}_{<} \subseteq (\sup(s), \delta_1)$ such that

- (a) $F(x, y_{\alpha}) = F(x, z_{\alpha})$ (for $x \in s, \alpha < \gamma$);
- (b) $F(y_{\alpha}, y_{\beta}) = F(z_{\alpha}, z_{\beta})$ (for $\alpha < \beta < \gamma$);
- (c) $F(y_{\alpha}, z_{\beta}) = G(z_{\alpha}, z_{\beta})$ (for $\alpha, \beta < \gamma$).

¹in fact, if $A_1^* \in D_0^+$ then for some $A_0' \subseteq A_1 \cap A_0, A_1 \setminus A_0' = \emptyset$ modulo D_0 and the conclusion holds for every $\delta \in A_0'$

SAHARON SHELAH

Proof. As κ is strongly compact, it suffices to show that for every $Z \in [T]^{<\kappa}$ there exists a function $G: Z \times Z \to \theta$ as required. Clauses (a) and (b) are obvious by Lemma 1.5, and it is clear that, if we fix Z, then for every $s \in [\delta_1]^{<\lambda}$ there is an appropriate $G: Z \times Z \to \theta$. We show that there is some $G: Z \times Z \to \theta$ that works for every s. Assume otherwise, that is, for every $G: Z \times Z \to \theta$ there is some $s_G \in [\delta_1]^{<\lambda}$ such that G is not appropriate for s_G . Notice that the number of these functions G is less than κ . Then no G could be right for $s = \cup \{s_G: G \text{ a function} \ \Gamma_{1.7}$

Continuation of the proof of Theorem 0.1. We now apply Lemma 1.1 to the colouring $\overline{G}\{x, y\} = \overline{G}(x, y) = \langle F(x, y), G(x, y) \rangle$ for x < y in T and 0 otherwise, and the filter D_0 and the set T and get the normal filter $D_1 \supseteq D_0$, the set $A_1 \subseteq T \subseteq A'_0$ such that $A_1 \in D_1$ and the colour set $C_1 \subseteq \theta \times \theta$. Notice that actually $C_1 \subseteq C_0 \times C_0$. We can also apply Lemmas 1.5 and 1.6 and get some set $A'_1 \subseteq A_1$.

1.8 Lemma. There is a set $a \in [A'_1]^{<\kappa}$ such that for every decomposition $a = \cup \{a_{\bar{\xi}} : \bar{\xi} \in C_1\}$ there is some $\bar{\xi} \in C_1$ such that

- (α) for every $\bar{\varepsilon} \in C_1$ there is an $\bar{\varepsilon}$ -homogeneous subset for the colouring \bar{G} of order type ζ in $a_{\bar{\varepsilon}}$,
- (β) similarly for every $\varepsilon \in C_0$ and F.

Proof. This follows from the strong compactness of κ as A'_1 itself has this partition property (or more details in 2.8). $\Box_{1.8}$

Continuation of the Proof of 0.1. Fix a set a as in 1.8.

We now describe the construction of the required homogeneous subset. Let $\delta_2 \in A'_1$ be some element with $\delta_2 > \sup(a)$. For $\overline{\xi} = (\xi_1, \xi_2) \in C_1 \subseteq \theta \times \theta$ let $a_{\overline{\xi}}$ be the following set:

$$a_{\bar{\xi}} = \{ x \in a : \bar{G}(x, \delta_2) = \bar{\xi} \}.$$

By Lemma 1.8, there is some $\bar{\xi} = (\xi_1, \xi_2) \in C_1$ for which the statement in 1.8 above is true and necessarily (as $a \cup \{\delta_2\} \subseteq A'_1 \subseteq A_0$ and $a_{\bar{\xi}} \neq \emptyset$) we have $\xi_1, \xi_2 \in C_0$. Select some $b \subseteq a_{\bar{\xi}}$, $\operatorname{otp}(b) = \zeta$ such that F is constantly ξ_2 on b; this is possible by clause (β) of 1.8. This set b will be the ζ part of our homogeneous set of ordinals of order type $\lambda + \zeta$, so we will have to construct a set of order type λ below b. By

induction on α we will choose x_{α} such that the set $\{x_{\alpha} : \alpha < \lambda\}_{\leq} \subseteq \delta_1$ satisfies the following conditions:

$$(*)_1 \ F(x_{\beta}, x_{\alpha}) = \xi_2 \ (\text{for } \beta < \alpha), \\ (*)_2 \ F(x_{\alpha}, b \cup \{\delta_2\}) = \xi_2, \text{ i.e. } F(x_{\alpha}, y) = \xi_2 \text{ when } y \in b \cup \{\delta_2\}.$$

Assume that we have reached step α , that is, we are given the set of ordinals with $\{x_{\beta} : \beta < \alpha\}_{<}$ and call this set s. Applying Lemma 1.6 for A_1, A'_1, δ_2 and $s \cup b$ and the colouring \overline{G} here standing for A_0, A'_0, δ, s and the colouring F there (that is the choice of A'_1) we get that there exists some $\delta_3 > \delta_2$ (standing for δ_1 there) such that

(i)
$$\delta_3 \in A_1$$

(ii) $\overline{G}(x, \delta_3) = \overline{G}(x, \delta_2)$ for $x \in s \cup b$
(iii) $\overline{G}(\delta_2, \delta_3) = (\xi_1, \xi_2),$

hence:

- (*)₃ $F(x_{\beta}, \delta_3) = \xi_2$ (for $\beta < \alpha$). [Why? As $F(x_{\beta}, \delta_3) = F(x_{\beta}, \delta_2)$ by (ii) and the choice of \overline{G} and $F(x_{\beta}, \delta_2) = \xi_2$ by (*)₂ from the induction hypothesis.]
- (*)₄ $G(b \cup \{\delta_2\}, \delta_3) = \xi_2$, i.e. $G(y, \delta_3) = \xi_2$ when $y \in b \cup \{\delta_2\}$. [Why? If $y \in b$ then by (ii) and the definition of \overline{G} we have $G(y, \delta_3) = G(y, \delta_2)$, but $b \subseteq a_{\overline{\xi}}$ so by the choice of $a_{\overline{\xi}}$ we have $G(y, \delta_2) = \xi_2$. For $y = \delta_2$ use clause (iii) that is $(\xi_1, \xi_2) = \overline{G}(\delta_2, \delta_3) = (F(\delta_2, \delta_3), G(\delta_2, \delta_3))$.]

By the choice of G this implies that there is some x_{α} as required; that is by the choice of \overline{G} (see Lemma 1.7), applied to $Z = \{z_i : i < \gamma\}$ enumerating the set $b \cup \{\delta_2, \delta_3\}$ and s as above, we get $\{y_i : i < \gamma\}$, now necessarily $\delta_3 = z_{\gamma-1}$, and we can choose $y_{\gamma-1}$ as x_{α} . $\Box_{1.1}$

 $\overline{7}$

SAHARON SHELAH

$\S2$ The case of λ singular

We prove version 0.2 of the main theorem.

Proof of Theorem 0.2. Let $\sigma = cf(\lambda)$. Let $\lambda = \sum_{\varepsilon < \sigma} \lambda_{\varepsilon}$ with $\lambda_{\varepsilon} > \sigma \ge \kappa > \theta$ strictly increasing. Let $\mu_{\varepsilon} = 2^{\lambda_{\varepsilon}}$ and $\mu = \Sigma\{\mu_{\varepsilon} : \varepsilon < \sigma\} = 2^{<\lambda}$. We also fix $F : [\mu^+]^2 \to \theta$.

2.1 Claim. For some $\overline{\mathscr{C}}$ we have:

- (a) $\bar{\mathscr{C}} = \langle \mathscr{C}_{\alpha} : \alpha \in S \rangle$
- (b) $S \subseteq \mu^+, \mathscr{C}_{\delta} \subseteq \delta$
- (c) $\operatorname{otp}(\mathscr{C}_{\delta}) \leq \sigma$
- (d) $S^* = \{\delta < \lambda : \operatorname{otp}(\mathscr{C}_{\delta}) = \sigma\}$ is stationary
- (e) \mathscr{C}_{δ} unbounded in δ if $\operatorname{otp}(\mathscr{C}_{\delta}) = \sigma$
- (f) $\alpha \in \mathscr{C}_{\delta} \Rightarrow \alpha \in S \& \mathscr{C}_{\alpha} = \mathscr{C}_{\delta} \cap \alpha.$

 $\square_{2.1}$

Proof. By [Sh 420, §1] as $\sigma^+ < \mu^+, \sigma = \operatorname{cf}(\sigma)$.

<u>Continuation of the proof of 0.2</u>: Let D_0, A_0, C_0 be as given by Lemma 1.1 with the club filter of μ^+, S^* (from clause (d) of 2.1 above) here standing for D, A^* there so $A_0 \subseteq S^*$.

<u>Notation</u>: $\varepsilon(\alpha) = \operatorname{otp}(C_{\alpha}).$

2.2 Claim. Let $\chi > 2^{\mu}, <_{\chi}^*$ a well ordering of $\mathscr{H}(\chi)$). For any $x \in \mathscr{H}(\chi)$ we can find $\overline{\mathfrak{B}} = \langle \mathfrak{B}_{\alpha} : \alpha < \lambda \rangle$ such that:

- (a) $\mathfrak{B}_{\alpha} \prec (\mathscr{H}(\chi), \in, <^*_{\gamma})$
- (b) $\bar{\lambda}, \mu, F, \langle \lambda_{\varepsilon} : \varepsilon < \sigma \rangle, \bar{\mathscr{C}}, A_0, C_0, D_0$ belong to \mathfrak{B}_{α}
- (c) $\langle \mathfrak{B}_{\beta} : \beta < \alpha \rangle \in \mathfrak{B}_{\alpha}$ if $\alpha \notin S^*$
- (d) $\|\mathfrak{B}_{\beta}\| = \mu_{\varepsilon(\beta)}$ and $[\mathfrak{B}_{\beta}]^{\leq \lambda_{\varepsilon(\beta)}} \subseteq \mathfrak{B}_{\beta}$ and $\mu_{\varepsilon(\beta)} + 1 \subseteq \mathfrak{B}_{\beta}$ (actually follows)
- (e) $\mathfrak{B}_{\alpha} = \bigcup \{\mathfrak{B}_{\beta} : \beta \in \mathscr{C}_{\alpha} \}$ if $\alpha \in S^*$.

Proof. Straightforward.

2.3 Observation. 1) We have $\varepsilon(\alpha) < \varepsilon(\beta)$ and $\mathfrak{B}_{\alpha} \in \mathfrak{B}_{\beta}$ and $\mathfrak{B}_{\alpha} \prec \mathfrak{B}_{\beta}$ if $\alpha \in \mathscr{C}_{\beta}$.

2.4 Claim. There is a set $A'_0 \subseteq A_0$ such that

- (α) $A'_0 \in D_0$ and $\alpha < \delta \in A'_0 \Rightarrow \sup(\mathfrak{B}_{\alpha} \cap \mu^+) < \delta$
- (β) if $\xi \in C_0$ and $\delta \in A'_0$ and $s \in \cup\{[\delta \cap \mathfrak{B}_{\alpha}]^{\leq \lambda_{\varepsilon(\alpha)}} : \alpha \in \mathscr{C}_{\delta}\}, \underline{then} \text{ there is } \delta_1 \in A_0 \text{ such that } \delta < \delta_1 \text{ and}$
 - (a) $F(x,\delta) = F(x,\delta_1)$ for $x \in s$
 - (b) $F(\delta, \delta_1) = \xi$.

Proof. Requirement (α) holds for all but a non stationary set of $\delta \in A_0$. Requirement (β) is proved as in 1.6.

Now fix $A'_0 \subseteq A_0$ as in 2.4, and fix $\delta_1 \in A'_1$ and let $T = A'_0 \setminus (\delta_1 + 1)$. Recall $\delta_1 \in A'_0 \subseteq S^* = \{\delta : \operatorname{otp}(\mathscr{C}_{\delta}) = \sigma, \delta = \sup(\mathscr{C}_{\delta})\} \subseteq \{\delta < \mu^+ : \operatorname{cf}(\delta) = \sigma\}.$

2.5 Claim. There is a function $G_{\varepsilon}: T \times T \to C_0$ such that:

$$\begin{array}{ll} \boxdot \ if s \in [\delta \cap \mathfrak{B}_{\alpha}]^{\leq \lambda_{\varepsilon}} \ and \ \varepsilon = \varepsilon(\alpha) \ and \ \alpha \in \mathscr{C}_{\delta_{1}} \ and \ \gamma < \kappa \ and \ Z = \{z_{\beta} : \beta < \gamma\}_{<} \subseteq T, \ \underline{then} \ there \ is \ \{y_{\beta} : \beta < \gamma\}_{<} \subseteq \delta \cap \mathfrak{B}_{\alpha} = \mu^{+} \cap \mathfrak{B}_{\alpha} \ such \ that: \\ (a) \ F(x, y_{\beta}) = F(x, z_{\beta}) \ for \ x \in s, \beta < \delta \\ (b) \ F(\delta, \delta_{1}) = \xi \\ F(z_{\beta_{1}}, y_{\beta_{2}}) = G(y_{\beta_{1}}, y_{\beta_{2}}) \ for \ \beta_{1}, \beta_{2} < \delta \\ (c) \ F(z_{\beta_{1}}, z_{\beta_{2}}) = F(y_{\beta_{1}}, y_{\beta_{2}}) \ for \ \beta_{1}, \beta_{2} < \gamma \\ (d) \ y_{0} > \sup(s). \end{array}$$

Proof. Like 1.7.

2.6 Claim. There exists a function $G: T \times T \to C_0$ such that if $s \in [T]^{<\kappa}$, then for arbitrarily large $\varepsilon < \sigma$ we have $G \upharpoonright (s \times s) = G_{\varepsilon} \upharpoonright (s \times s)$.

Proof. Let D^* be a uniform κ -complete ultrafilter on σ and define G by $G(\alpha, \beta)$ is the unique $\xi \in C_0$ such that $\{\varepsilon < \sigma : G_{\varepsilon}(\alpha, \beta) = \xi\} \in D^*$. $\Box_{2.6}$

Continuation of the Proof of 0.2. Now we apply Lemma 1.1 to the colouring \overline{G} where $\overline{G}\{x, y\} = \overline{G}(x, y) = (F(x, y), G(x, y))$ for x < y in T and zero otherwise and the filter D_0 and the set T. We get a normal filter D_1 and a set $A_1 \subseteq T \subseteq A'_0$ and a set of colours C_1 . As $A_1 \subseteq A_0$ necessarily $C_1 \subseteq C_0 \times C_0$.

SAHARON SHELAH

2.7 Claim. There is $A'_1 \subseteq A_1$ such that:

(α) A₁\A'₁ = Ø mod D₁
(β) if δ ∈ A'₁, α ∈ C_δ and s ∈ [δ ∩ 𝔅_α]^{≤λ_{ε(α)}} and ξ̄ ∈ C₁, then for some δ_{*} we have δ < δ_{*} ∈ A₁ and
(a) Ḡ(x, δ) = Ḡ(x, δ₁) for every x ∈ s
(b) Ḡ(δ, δ_{*}) = ξ̄.

Proof. Like the proof of 1.6

2.8 Claim. There is a set $a \in [A'_1]^{<\kappa}$ such that:

 \Box for every decomposition of a as $\cup \{a_{\bar{\xi}} : \bar{\xi} \in C_1\}$ there is $\bar{\xi} \in C_1$ such that

- (a) for every $\bar{\varepsilon} \in C_1$ there is $b \subseteq a_{\bar{\xi}}$ of order type ζ such that $\bar{G} \upharpoonright [b]^2$ is constantly $\bar{\varepsilon}$
- (β) for every $\varepsilon \in C_0$ there is $b \subseteq a_{\bar{\xi}}$ of order type ζ such that $F \upharpoonright [b]^2$ is constantly ε .

Proof. The claim holds since A'_1 has this property and κ is strongly compact. If $A'_1 = \bigcup \{a_{\bar{\xi}} : \bar{\xi} \in C_1\}$ for some $\bar{\xi}, a_{\bar{\xi}} \in D_1^+$ hence clause (α) holds by the choice of D_1, C_1 ; and clause (β) holds as $D_1^+ \subseteq D_0^+$ (as $D_0 \subseteq D_1$) and the choice of D_0, C_0 . $\Box_{2.8}$

Continuation of the proof of 0.2. Now choose $\delta_2 \in A'_1$ such that $\delta_2 > \sup(a)$ and for $\bar{\xi} = (\xi_1, \xi_2) \in C_1 \subseteq \theta \times \theta$ define $a_{\bar{\xi}}$ as

$$\bar{a}_{\bar{\xi}} = \{ x \in a : \bar{G}(x, \delta_2) = \bar{\xi} \}.$$

Clearly $\langle a_{\bar{\xi}} : \bar{\xi} \in C_1 \rangle$ is a decomposition of a and so there is $\bar{\xi} = (\xi_1, \xi_2) \in C_1$ as guaranteed by \boxdot of 2.8. In particular, there is $b \subseteq a_{\bar{\xi}}$ of order type ζ such that $F \upharpoonright [b]^2$ is constantly ξ_2 (note that $(\xi_1, \xi_2) \in C_1 \subseteq C_0 \times C_0$ so $\xi_2 \in C_0$). Now let $E = \{\varepsilon < \sigma : G_{\varepsilon}(\alpha, \delta_2) = G(\alpha, \delta_2) \text{ for every } \alpha \in b\}$. By the definition of G this is an unbounded subset of σ and clearly

(*) if $\varepsilon \in E$ and $\alpha \in b$ then $G_{\varepsilon}(\alpha, \delta_2) = G(\alpha, \delta_2) = (\xi_1, \xi_2)$.

10

 $\Box_{2.7}$

For $\alpha < \lambda$ let $\Upsilon(\alpha) = \text{Min}\{\varepsilon \in E : \alpha < \lambda_{\varepsilon}\}$ and let $C_{\delta_1} = \{\gamma(\Upsilon) : \Upsilon < \sigma\}_{<}$. Now we try to choose by induction on $\alpha < \lambda$ a element x_{α} satisfying

- $(*)_0 x_{\alpha} < \delta_1$ and moreover $x_{\alpha} \in \delta_1 \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$, and $\beta < \alpha \Rightarrow x_{\beta} < x_{\alpha}$
- $(*)_1 F(x_\beta, x_\alpha) = \xi_2 \text{ for } \beta < \alpha$
- $(*)_2 \ F(x_{\alpha},\beta) = \xi_2 \text{ for } \beta \in b \cup \{\delta_2\}.$

At step α , by 2.7, that is by the choice of A'_1 applying clause (β) there with $\{x_{\beta} : \beta < \alpha\} \cup b, \delta_2, \bar{\xi}$ here standing for $s, \delta, \bar{\xi}$ there, we can find δ_3 satisfying the requirement there on δ_1 , so

- (i) $\delta_2 < \delta_3 \in A_1$ (ii) $\overline{G}(x, \delta_3) = \overline{G}(x, \delta_2)$ for $x \in s \cup b$
- (*iii*) $\bar{G}(\delta_2, \delta_3) = (\xi_1, \xi_2).$

Now

- (*)₃ $F(x_{\beta}, \delta_3) = \xi_2$ for $\beta < \alpha$. [Why? By (ii) we have $\bar{G}(x_{\beta}, \delta_3) = \bar{G}(x_{\beta}, \delta_2)$ hence $F(x_{\beta}, \delta_3) = F(x_{\beta}, \delta_2)$ but the latter by (*)₂ is equal to ξ_2 .]
- $\begin{array}{ll} (\ast)_4 & G(\beta, \delta_3) = \xi_2 \text{ for } \beta \in b \\ & [\text{Why? By (ii) and as } \beta \in b \Rightarrow \bar{G}(\beta, \delta_2) = (\xi_1, \xi_2) \Rightarrow G(\beta, \delta_2) = \xi_2).] \end{array}$
- (*)₅ $G(\delta_2, \delta_3) = \xi_2$ [Why? By clause (iii).]
- (*)₆ { $x_{\beta} : \beta < \alpha$ } is a subset of $\delta_1 \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$.

Let $\langle y_i : i < \zeta + 2 \rangle$ list $b \cup \{\delta_2, \delta_3\}$ increasing order.

Now we use the choice of $G_{\Upsilon(\alpha)}$ to choose an increasing sequence $\langle z_i : i < \zeta + 2 \rangle$ in $\delta_1 \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}, z_0 > x_\beta$ for $\beta < \alpha$ such that $F(z_i, y_j) = G(y_i, y_j)$ for $i, j < \zeta + 2$ and $F(x_\beta, z_i) = F(x_\beta, y_i)$ for $i < \zeta + 2$. Let $x_\alpha = z_{\zeta+1}$ so $x_\alpha = \delta_1 \cap \mathfrak{B}_{\gamma(\Upsilon(\alpha))}$ is $> x_\beta$ for $\beta < \alpha$.

Also x_{α} satisfies $(*)_0$ of the recursive definition. Now $\beta < \alpha \Rightarrow F(x_{\beta}, x_{\alpha}) = F(x_{\beta}, z_{\zeta+1}) = F(x_{\beta}, y_{\zeta+1}) = F(x_{\beta}, \delta_3)$ which is ξ_2 by $(*)_3$ above, so for our choice of x_{α} , $(*)_1$ holds. Next if $\beta \in b \cup \{\delta_2\}$ then $F(x_{\alpha}, x_{\beta}) = F(x_{\beta}, z_{\zeta+1}) = G(x_{\beta}, \delta_3)$ which is ξ_2 by $(*)_4$ or $(*)_5$. So x_{α} is as required. $\Box_{0.2}$

SAHARON SHELAH

REFERENCES.

- [BHT93] James Baumgartner, Andras Hajnal, and Stevo Todorčević. Extensions of the Erdos–Rado Theorems. In *Finite and Infinite Combinatorics in Set Theory and Logic*, pages 1–18. Kluwer Academic Publishers, 1993. N.W. Sauer et. al. eds.
- [Sh 26] Saharon Shelah. Notes on combinatorial set theory. Israel Journal of Mathematics, 14:262–277, 1973.
- [Sh 420] Saharon Shelah. Advances in Cardinal Arithmetic. In Finite and Infinite Combinatorics in Sets and Logic, pages 355–383. Kluwer Academic Publishers, 1993. N.W. Sauer et al (eds.).
- [Sh 424] Saharon Shelah. On $CH+2^{\aleph_1} \rightarrow (\alpha)_2^2$ for $\alpha < \omega_2$. In Logic Colloquium'90. ASL Summer Meeting in Helsinki, volume 2 of Lecture Notes in Logic, pages 281–289. Springer Verlag, 1993. J. Oikkonen, J. Väänänen, eds.
- [Sh 666] Saharon Shelah. On what I do not understand (and have something to say:) Part I. *Fundamenta Mathematicae*, **166**:1–82, 2000.