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2 SAHARON SHELAH

§0 Introduction

The aim of this paper is to prove the following theorem.

0.1 Theorem. If κ is a strongly compact cardinal, λ > κ is regular and ζ, θ < κ

then the partition relation
(
2<λ

)+ → (λ+ ζ)2
θ holds.

0.2 Theorem. In Theorem 0.1.
Instead λ regular, cf(λ) > κ suffices.

We notice that our argument is valid in the case κ = ω. As for the history
of the problem we point out that Hajnal proved in an unpublished work, that
(2ω)

+ → (ω1 + n)2
2 holds for every n < ω. Then it was showed in [Sh 26, §6] that

for κ > ω regular and 2|α| < κ, the relation (2<κ)
+ → (κ+α)2

2 is true. More recently
Baumgartner, Hajnal, and Todorc̆ević in [BHT93] extended this to the case when
the number of colors is arbitrary finite. Earlier by [Sh 424], we have (2<λ)+n →
(λ×m)2

k for n large enough (this was complimentary to the main result there that
ℵ0 < λ = λ<λ + 2λ arbitrarily large does not imply 2λ → (λ× ω)2

2). Subsequently
[BHT93] improves n. We hope that the way the strong compactness was used will
be useful elsewhere; see [Sh 666] for a discussion of a possible consistency of failure.
I also thank Peter Komjath for improving the presentation.

Notation. If S is a set, κ a cardinal then [S]κ = {a ⊆ S : |a| = κ}, [S]<κ = {a ⊆
S : |a| < κ}. If D is some filter over a set S then X ∈ D+ denotes that S \X /∈ D
and X ⊆ S. If κ < µ are regular cardinals then Sµκ = {α < µ : cf(α) = κ}, a
stationary set. The notation A = {xα : α < γ}<, etc., means that A is enumerated
increasingly.
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§1 The case of λ regular

1.1 Lemma. Assume µ = µθ. Assume that D is a normal filter on µ+ and
A∗ ∈ D+ satisfies δ ∈ A∗ ⇒ cf(δ) > θ, and F ′ is a function with domain [A∗]2

and range of cardinality θ. Then there are a normal filter D0 on µ+ extending
D,A0 ∈ D0 with A0 ⊆ A∗ and C0 ⊆ Rang(F ′) satisfying Rang(F ′ � [A0]2) = C0

such that: if X ∈ D+
0 then Rang(F ′ � [X]2) ⊇ C0.

We first prove a claim

1.2 Claim. Assume µ = µθ and F ′ : [S∗]2 → C∗, |C∗| ≤ θ,D is a normal filter on
µ+, S∗ ⊆ µ+ belongs to D+ and δ ∈ S∗ ⇒ cf(δ) > θ. There is a set A ∈ D+ such
that A ⊆ S∗ and some C ⊆ C0 satisfying Rang(F ′ � [A]2) = C and: if f : A→ µ+

is a regressive function, then for some α < µ+ we have Rang(F ′ � [f−1(α)]2) = C
and f−1(α) is a subset of µ+ from D+.

Proof. Toward contradiction assume that no such sets A,C exist. We build a tree
T as follows. Every node t of the tree will be of the form

t = 〈〈Aα : α ≤ ε〉, 〈fα : α < ε〉, 〈iα : α < ε〉〉
=
〈
〈Atα : α ≤ ε〉, 〈f tα : α < ε〉, 〈itα : α < ε〉

〉
for some ordinal ε = ε(t) where 〈Aα : α ≤ ε〉 is a decreasing, continuous sequence
of subsets of µ+; for every α < ε, fα is a regressive function on Aα; and 〈iα : α < ε〉
is a sequence of distinct elements of C∗. It will always be true that if t <T t

′, then
each of the three sequences of t′ extend the corresponding one of t.

To start, we make the node t with ε(t) = 0, A0 = S∗ the root of the tree.
At limit levels we extend (the obvious way) all cofinal branches to a node.
If we are given an element t = 〈〈Aα : α ≤ ε〉, 〈fα : α < ε〉, 〈iα : α < ε〉〉 of the

tree and the set Aε is = ∅ mod D then we leave t as a terminal node. Otherwise,
let C = Ct = Rang

(
F ′ � [Aε]

2
)

and notice that by hypothesis, toward contradic-
tion, the pair Aε, Ct cannot be as required in the Claim. There is, therefore, a
regressive function f = ft with domain Aε, such that for every x < µ+ the set
Rang

(
F ′ � [f−1(x)]2

)
is a proper subset of Ct or f−1(x) is a = ∅ mod D subset

of µ+. We make the immediate extensions of t the sequences of the form a tx =
〈〈Aα : α ≤ ε+ 1〉, 〈fα : α < ε+ 1〉, 〈iα : α < ε+ 1〉〉 where Aε+1 = f−1(x), fα = ft
and iε ∈ Ct is some colour value such that: if Aε+1 6= ∅ mod D then iε is not in
the range of F ′ � [Aε]

2.
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4 SAHARON SHELAH

Having constructed the tree observe that every element x ∈ S∗ ⊆ µ+ belongs

to a set A
t(x)
ε(x) for some (unique) terminal node t(x) of T . Also, ε(x) < θ+(< µ+)

holds by the selection of the iβ ’s as 〈it(x)
α : α < ε(x)〉 is a sequence of members of

C∗ with no repetitions while C∗, the set of colours, has ≤ θ members. For some
set S ⊆ S∗ of ordinals x < µ+ which belong to D+ (by the normality of D) the

value of ε(x) is the same, say ε. For x ∈ S we let gα(x) = f
t(x)
α (x) where f

t(x)
α is

the α-th regressive function in the node t(x) ∈ T . Again, by µθ = µ & (∀α ∈
S)[cf(α) > θ] we have that (∀x ∈ S′)(∀α < ε)gα(x) = βα holds for some sequence
〈βα : α < ε〉 and subset S′ ⊆ S from D+. But then we get that the set S′ satisfies

x, y ∈ S′ ⇒ (A
t(x)
α , f

t(x)
α , i

t(x)
α ) = (A

t(y)
α , f

t(y)
α , i

t(y)
α ) for every α < ε; we can prove

this by induction on α. We can then prove that A
t(x)
ε = A

t(y)
ε for x, y ∈ S′. We can

conclude that x, y ∈ S′ ⇒ t(x) = t(y), so S′ ⊆ Atε(t) for some terminal node t, but

this latter set is in D+, a contradiction.
�1.2

Proof of Lemma 1.1. Apply Claim 1.2 with S∗ = A∗ to get corresponding (C,A).
Define the ideal I as follows. For X ⊆ µ+ we let X ∈ I iff there are a member E of
D and a regressive function f : X ∩A→ µ+ such that every Rang

(
F ′ � [f−1(α)]2

)
is a proper subset of C or f−1(α) is a = ∅modD subset of µ+.

Now:

1.3 Claim. I is a normal ideal on µ+ (and A∗ = µ+ mod I).

Proof. Straightforward.
Set D0 to be the dual filter of I, let A0 = A and let C0 = C; by 1.2 we are

done. �1.1

1.4 Remark. 1) If Lemma 1.1 holds for some D0, A0, C0 then it holds for D1, A1, C0

when the normal filter D1 extends D0, and A1 ∈ D1 satisfies A1 ⊆ A0.
2) If D0, A0, C0 satisfy Lemma 1.5, and X ∈ D+

0 then X contains a homogeneous
set of order type λ+ 1 of color ξ for every ξ ∈ C0.
3) Lemma 1.1 is closely related to the proof in [Sh 26].

Proof of Theorem 0.1. Let µ = 2<λ, and F : [µ+]2 → θ be a colouring; we apply

1.1 for A∗ = Sµ
+

cf(λ), (F = F, θ = θ, µ = µ) and D the club filter. We shall write

F (α, β) for F ({α, β}) and 0 for F (α, α).
We fix A0, D0, C0 which we get by 1.1.
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1.5 Lemma. Almost every δ ∈ A0; (i.e. for all but a set = ∅ mod D0) satisfies
the following: if s ∈ [A0 ∩ δ]<λ and {zα : α < γ}< ⊆ A0 ∩ [δ, µ+) with γ < κ then
there is {yα : α < γ}< ⊆ A0 ∩ (sup(s), δ) such that:

(a) F (x, yα) = F (x, zα) (for x ∈ s, α < γ);

(b) F (yα, yβ) = F (zα, zβ) (for α < β < γ).

Proof. By simple reflection (using the regularity of λ).

1.6 Lemma. There1 is A′0 ⊆ A0, A
′
0 ∈ D0 such that: if δ ∈ A′0, s ∈ [δ]<λ and

ξ ∈ C0, then there exists a δ1 ∈ A0, δ < δ1 such that

(a) F (x, δ) = F (x, δ1) (for x ∈ s);

(b) F (δ, δ1) = ξ.

Proof. Otherwise, there is some X ⊆ A0, X ∈ D+
0 such that for every δ ∈ X there

are s(δ) ∈ [δ]<λ and ξ(δ) ∈ C0 such that there is no δ1 > δ satisfying (a) and (b).
By normality and µ = µ<λ we can assume that s(δ) = s and ξ(δ) = ξ holds for
δ ∈ X. By Lemma 1.1, that is the choice of (A0, D0, C0), there must exist δ < δ1
in X with F (δ, δ1) = ξ and this is a contradiction.

�1.6

Continuation of the proof of Theorem 0.1. Let A′0 ⊆ A0 satisfy Lemmas 1.1 and
1.6 and pick some δ1 ∈ A′0 and then let T = A′0\(δ1 + 1).

1.7 Lemma. There exists a function G : T ×T → C0 such that: if s ∈ [δ1]<λ, γ <
κ, and Z = {zα : α < γ}< ⊆ T then there is {yα : α < γ}< ⊆ (sup(s), δ1) such that

(a) F (x, yα) = F (x, zα) (for x ∈ s, α < γ);

(b) F (yα, yβ) = F (zα, zβ) (for α < β < γ);

(c) F (yα, zβ) = G(zα, zβ) (for α, β < γ).

1in fact, if A∗1 ∈ D
+
0 then for some A′0 ⊆ A1 ∩ A0, A1\A′0 = ∅ modulo D0 and the conclusion

holds for every δ ∈ A′0
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6 SAHARON SHELAH

Proof. As κ is strongly compact, it suffices to show that for every Z ∈ [T ]<κ there
exists a function G : Z × Z → θ as required. Clauses (a) and (b) are obvious by
Lemma 1.5, and it is clear that, if we fix Z, then for every s ∈ [δ1]<λ there is an
appropriate G : Z ×Z → θ. We show that there is some G : Z ×Z → θ that works
for every s. Assume otherwise, that is, for every G : Z × Z → θ there is some
sG ∈ [δ1]<λ such that G is not appropriate for sG. Notice that the number of these
functions G is less than κ. Then no G could be right for s = ∪{sG : G a function
from Z × Z to θ} ∈ [δ1]<λ, a contradiction. �1.7

Continuation of the proof of Theorem 0.1. We now apply Lemma 1.1 to the colour-
ing Ḡ{x, y} = Ḡ(x, y) = 〈F (x, y), G(x, y)〉 for x < y in T and 0 otherwise, and the
filter D0 and the set T and get the normal filter D1 ⊇ D0, the set A1 ⊆ T ⊆ A′0 such
that A1 ∈ D1 and the colour set C1 ⊆ θ × θ. Notice that actually C1 ⊆ C0 × C0.
We can also apply Lemmas 1.5 and 1.6 and get some set A′1 ⊆ A1.

1.8 Lemma. There is a set a ∈ [A′1]<κ such that for every decomposition a =
∪{aξ̄ : ξ̄ ∈ C1} there is some ξ̄ ∈ C1 such that

(α) for every ε̄ ∈ C1 there is an ε̄-homogeneous subset for the colouring Ḡ of
order type ζ in aξ̄,

(β) similarly for every ε ∈ C0 and F .

Proof. This follows from the strong compactness of κ as A′1 itself has this partition
property (or more details in 2.8). �1.8

Continuation of the Proof of 0.1. Fix a set a as in 1.8.
We now describe the construction of the required homogeneous subset. Let

δ2 ∈ A′1 be some element with δ2 > sup(a). For ξ̄ = (ξ1, ξ2) ∈ C1 ⊆ θ × θ let aξ̄ be
the following set:

aξ̄ = {x ∈ a : Ḡ(x, δ2) = ξ̄}.

By Lemma 1.8, there is some ξ̄ = (ξ1, ξ2) ∈ C1 for which the statement in 1.8 above
is true and necessarily (as a ∪ {δ2} ⊆ A′1 ⊆ A0 and aξ̄ 6= ∅) we have ξ1, ξ2 ∈ C0.
Select some b ⊆ aξ̄, otp(b) = ζ such that F is constantly ξ2 on b; this is possible by
clause (β) of 1.8. This set b will be the ζ part of our homogeneous set of ordinals
of order type λ+ ζ, so we will have to construct a set of order type λ below b. By
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induction on α we will choose xα such that the set {xα : α < λ}< ⊆ δ1 satisfies the
following conditions:

(∗)1 F (xβ , xα) = ξ2 (for β < α),

(∗)2 F (xα, b ∪ {δ2}) = ξ2, i.e. F (xα, y) = ξ2 when y ∈ b ∪ {δ2}.

Assume that we have reached step α, that is, we are given the set of ordinals with
{xβ : β < α}< and call this set s. Applying Lemma 1.6 for A1, A

′
1, δ2 and s ∪ b

and the colouring Ḡ here standing for A0, A
′
0, δ, s and the colouring F there (that

is the choice of A′1) we get that there exists some δ3 > δ2 (standing for δ1 there)
such that

(i) δ3 ∈ A1

(ii) Ḡ(x, δ3) = Ḡ(x, δ2) for x ∈ s ∪ b
(iii) Ḡ(δ2, δ3) = (ξ1, ξ2),

hence:

(∗)3 F (xβ , δ3) = ξ2 (for β < α).
[Why? As F (xβ , δ3) = F (xβ , δ2) by (ii) and the choice of Ḡ and F (xβ , δ2) =
ξ2 by (∗)2 from the induction hypothesis.]

(∗)4 G(b ∪ {δ2}, δ3) = ξ2, i.e. G(y, δ3) = ξ2 when y ∈ b ∪ {δ2}.
[Why? If y ∈ b then by (ii) and the definition of Ḡ we have G(y, δ3) =
G(y, δ2), but b ⊆ aξ̄ so by the choice of aξ̄ we have G(y, δ2) = ξ2. For

y = δ2 use clause (iii) that is (ξ1, ξ2) = Ḡ(δ2, δ3) = (F (δ2, δ3), G(δ2, δ3)).]

By the choice of G this implies that there is some xα as required; that is by the
choice of Ḡ (see Lemma 1.7), applied to Z = {zi : i < γ} enumerating the set
b ∪ {δ2, δ3} and s as above, we get {yi : i < γ}, now necessarily δ3 = zγ−1, and we
can choose yγ−1 as xα. �1.1
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8 SAHARON SHELAH

§2 The case of λ singular

We prove version 0.2 of the main theorem.

Proof of Theorem 0.2. Let σ = cf(λ). Let λ =
∑
ε<σ

λε with λε > σ ≥ κ > θ strictly

increasing. Let µε = 2λε and µ = Σ{µε : ε < σ} = 2<λ. We also fix F : [µ+]2 → θ.

2.1 Claim. For some C̄ we have:

(a) C̄ = 〈Cα : α ∈ S〉
(b) S ⊆ µ+,Cδ ⊆ δ
(c) otp(Cδ) ≤ σ
(d) S∗ = {δ < λ : otp(Cδ) = σ} is stationary

(e) Cδ unbounded in δ if otp(Cδ) = σ

(f) α ∈ Cδ ⇒ α ∈ S & Cα = Cδ ∩ α.
�2.1

Proof. By [Sh 420, §1] as σ+ < µ+, σ = cf(σ).

Continuation of the proof of 0.2: Let D0, A0, C0 be as given by Lemma 1.1 with
the club filter of µ+, S∗ (from clause (d) of 2.1 above) here standing for D,A∗ there
so A0 ⊆ S∗.

Notation: ε(α) = otp(Cα).

2.2 Claim. Let χ > 2µ, <∗χ a well ordering of H (χ)). For any x ∈H (χ) we can

find B̄ = 〈Bα : α < λ〉 such that:

(a) Bα ≺ (H (χ),∈, <∗χ)

(b) λ̄, µ, F, 〈λε : ε < σ〉, C̄ , A0, C0, D0 belong to Bα

(c) 〈Bβ : β < α〉 ∈ Bα if α /∈ S∗

(d) ‖Bβ‖ = µε(β) and [Bβ ]≤λε(β) ⊆ Bβ and µε(β) + 1 ⊆ Bβ (actually follows)

(e) Bα = ∪{Bβ : β ∈ Cα} if α ∈ S∗.

Proof. Straightforward.

2.3 Observation. 1) We have ε(α) < ε(β) and Bα ∈ Bβ and Bα ≺ Bβ if α ∈ Cβ .
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2.4 Claim. There is a set A′0 ⊆ A0 such that

(α) A′0 ∈ D0 and α < δ ∈ A′0 ⇒ sup(Bα ∩ µ+) < δ

(β) if ξ ∈ C0 and δ ∈ A′0 and s ∈ ∪{[δ ∩ Bα]≤λε(α) : α ∈ Cδ}, then there is
δ1 ∈ A0 such that δ < δ1 and

(a) F (x, δ) = F (x, δ1) for x ∈ s
(b) F (δ, δ1) = ξ.

Proof. Requirement (α) holds for all but a non stationary set of δ ∈ A0. Require-
ment (β) is proved as in 1.6. �2.4

Now fix A′0 ⊆ A0 as in 2.4, and fix δ1 ∈ A′1 and let T = A′0\(δ1 + 1). Recall
δ1 ∈ A′0 ⊆ S∗ = {δ : otp(Cδ) = σ, δ = sup(Cδ)} ⊆ {δ < µ+ : cf(δ) = σ}.
2.5 Claim. There is a function Gε : T × T → C0 such that:

� if s ∈ [δ ∩Bα]≤λε and ε = ε(α) and α ∈ Cδ1 and γ < κ and Z = {zβ : β <
γ}< ⊆ T , then there is {yβ : β < γ}< ⊆ δ ∩Bα = µ+ ∩Bα such that:

(a) F (x, yβ) = F (x, zβ) for x ∈ s, β < δ

(b) F (δ, δ1) = ξ
F (zβ1 , yβ2) = G(yβ1 , yβ2) for β1, β2 < δ

(c) F (zβ1 , zβ2) = F (yβ1 , yβ2) for β1, β2 < γ

(d) y0 > sup(s).

Proof. Like 1.7.

2.6 Claim. There exists a function G : T × T → C0 such that if s ∈ [T ]<κ, then
for arbitrarily large ε < σ we have G � (s× s) = Gε � (s× s).

Proof. Let D∗ be a uniform κ-complete ultrafilter on σ and define G by G(α, β) is
the unique ξ ∈ C0 such that {ε < σ : Gε(α, β) = ξ} ∈ D∗. �2.6

Continuation of the Proof of 0.2. Now we apply Lemma 1.1 to the colouring Ḡ
where Ḡ{x, y} = Ḡ(x, y) = (F (x, y), G(x, y)) for x < y in T and zero otherwise and
the filter D0 and the set T . We get a normal filter D1 and a set A1 ⊆ T ⊆ A′0 and
a set of colours C1. As A1 ⊆ A0 necessarily C1 ⊆ C0 × C0.
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10 SAHARON SHELAH

2.7 Claim. There is A′1 ⊆ A1 such that:

(α) A1\A′1 = ∅ mod D1

(β) if δ ∈ A′1, α ∈ Cδ and s ∈ [δ ∩Bα]≤λε(α) and ξ̄ ∈ C1, then for some δ∗ we
have δ < δ∗ ∈ A1 and

(a) Ḡ(x, δ) = Ḡ(x, δ1) for every x ∈ s
(b) Ḡ(δ, δ∗) = ξ̄.

Proof. Like the proof of 1.6 �2.7

2.8 Claim. There is a set a ∈ [A′1]<κ such that:

� for every decomposition of a as ∪{aξ̄ : ξ̄ ∈ C1} there is ξ̄ ∈ C1 such that

(α) for every ε̄ ∈ C1 there is b ⊆ aξ̄ of order type ζ such that Ḡ � [b]2 is
constantly ε̄

(β) for every ε ∈ C0 there is b ⊆ aξ̄ of order type ζ such that F � [b]2 is
constantly ε.

Proof. The claim holds since A′1 has this property and κ is strongly compact. If
A′1 = ∪{aξ̄ : ξ̄ ∈ C1} for some ξ̄, aξ̄ ∈ D+

1 hence clause (α) holds by the choice of

D1, C1; and clause (β) holds as D+
1 ⊆ D

+
0 (as D0 ⊆ D1) and the choice of D0, C0.

�2.8

Continuation of the proof of 0.2. Now choose δ2 ∈ A′1 such that δ2 > sup(a) and
for ξ̄ = (ξ1, ξ2) ∈ C1 ⊆ θ × θ define aξ̄ as

āξ̄ = {x ∈ a : Ḡ(x, δ2) = ξ̄}.

Clearly 〈aξ̄ : ξ̄ ∈ C1〉 is a decomposition of a and so there is ξ̄ = (ξ1, ξ2) ∈ C1 as
guaranteed by � of 2.8. In particular, there is b ⊆ aξ̄ of order type ζ such that

F � [b]2 is constantly ξ2 (note that (ξ1, ξ2) ∈ C1 ⊆ C0 × C0 so ξ2 ∈ C0). Now let
E = {ε < σ : Gε(α, δ2) = G(α, δ2) for every α ∈ b}. By the definition of G this is
an unbounded subset of σ and clearly

(∗) if ε ∈ E and α ∈ b then Gε(α, δ2) = G(α, δ2) = (ξ1, ξ2).
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For α < λ let Υ(α) = Min{ε ∈ E : α < λε} and let Cδ1 = {γ(Υ) : Υ < σ}<.
Now we try to choose by induction on α < λ a element xα satisfying

(∗)0 xα < δ1 and moreover xα ∈ δ1 ∩Bγ(Υ(α)), and β < α⇒ xβ < xα

(∗)1 F (xβ , xα) = ξ2 for β < α

(∗)2 F (xα, β) = ξ2 for β ∈ b ∪ {δ2}.

At step α, by 2.7, that is by the choice of A′1 applying clause (β) there with
{xβ : β < α} ∪ b, δ2, ξ̄ here standing for s, δ, ξ̄ there, we can find δ3 satisfying the
requirement there on δ1, so

(i) δ2 < δ3 ∈ A1

(ii) Ḡ(x, δ3) = Ḡ(x, δ2) for x ∈ s ∪ b
(iii) Ḡ(δ2, δ3) = (ξ1, ξ2).

Now

(∗)3 F (xβ , δ3) = ξ2 for β < α.
[Why? By (ii) we have Ḡ(xβ , δ3) = Ḡ(xβ , δ2) hence F (xβ , δ3) = F (xβ , δ2)
but the latter by (∗)2 is equal to ξ2.]

(∗)4 G(β, δ3) = ξ2 for β ∈ b
[Why? By (ii) and as β ∈ b⇒ Ḡ(β, δ2) = (ξ1, ξ2)⇒ G(β, δ2) = ξ2).]

(∗)5 G(δ2, δ3) = ξ2
[Why? By clause (iii).]

(∗)6 {xβ : β < α} is a subset of δ1 ∩Bγ(Υ(α)).

Let 〈yi : i < ζ + 2〉 list b ∪ {δ2, δ3} increasing order.
Now we use the choice of GΥ(α) to choose an increasing sequence 〈zi : i < ζ + 2〉

in δ1 ∩Bγ(Υ(α)), z0 > xβ for β < α such that F (zi, yj) = G(yi, yj) for i, j < ζ + 2
and F (xβ , zi) = F (xβ , yi) for i < ζ + 2. Let xα = zζ+1 so xα = δ1 ∩Bγ(Υ(α)) is
> xβ for β < α.
Also xα satisfies (∗)0 of the recursive definition. Now β < α ⇒ F (xβ , xα) =
F (xβ , zζ+1) = F (xβ , yζ+1) = F (xβ , δ3) which is ξ2 by (∗)3 above, so for our choice
of xα, (∗)1 holds. Next if β ∈ b ∪ {δ2} then F (xα, xβ) = F (xβ , zζ+1) = G(xβ , δ3)
which is ξ2 by (∗)4 or (∗)5. So xα is as required. �0.2
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