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2 SAHARON SHELAH

§0 INTRODUCTION

The aim of this paper is to prove the following theorem.

0.1 Theorem. If k is a strongly compact cardinal, X\ > K is reqular and (,0 < K
then the partition relation (2<>‘)+ — (A +¢)3 holds.

0.2 Theorem. In Theorem 0.1.
Instead X reqular, cf(\) > k suffices.

We notice that our argument is valid in the case Kk = w. As for the history
of the problem we point out that Hajnal proved in an unpublished work, that
(2¢)" = (w; + n)2 holds for every n < w. Then it was showed in [Sh 26, §6] that
for £ > w regular and 2/l < k. the relation (2<%)" — (k+a)2 is true. More recently
Baumgartner, Hajnal, and Todorcevi¢ in [BHT93] extended this to the case when
the number of colors is arbitrary finite. Earlier by [Sh 424], we have (2<*)*" —
(A xm)2 for n large enough (this was complimentary to the main result there that
Ng < A = A<* 4 2* arbitrarily large does not imply 2* — (A x w)2). Subsequently
[BHT93] improves n. We hope that the way the strong compactness was used will
be useful elsewhere; see [Sh 666] for a discussion of a possible consistency of failure.
I also thank Peter Komjath for improving the presentation.

Notation. If S is a set, k a cardinal then [S]® = {a C S : |a| = k},[S]<" = {a C
S :|a| < k}. If D is some filter over a set S then X € DT denotes that S\ X ¢ D
and X C S. If kK < p are regular cardinals then S¥ = {a < u : cf(a) = K}, a
stationary set. The notation A = {z,, : @ < 7}, etc., means that A is enumerated
increasingly.
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§1 THE CASE OF A REGULAR

1.1 Lemma. Assume p = p?. Assume that D is a normal filter on put and

A* € D7 satisfies 6 € A* = c¢f(§) > 0, and F' is a function with domain [A*]?
and range of cardinality 0. Then there are a normal filter Dy on u™ extending
D, Ay € Dy with Ag € A* and Cy C Rang(F’) satisfying Rang(F' | [Ag]?) = Co
such that: if X € D& then Rang(F' | [X]?) 2 Cp.

We first prove a claim

1.2 Claim. Assume p = p® and F' : [S*]?> — C.,|C.| < 0, D is a normal filter on
ut, S* C ut belongs to DT and § € S* = ¢f(6) > 0. There is a set A € DV such
that A C S* and some C C Cy satisfying Rang(F' | [A]?) = C and: if f : A — u™
is a regressive function, then for some o < pu* we have Rang(F' | [f~Y(a)]?) = C
and f~1(a) is a subset of u* from DT.

Proof. Toward contradiction assume that no such sets A, C' exist. We build a tree
T as follows. Every node t of the tree will be of the form

=
R
S
IN

( e), (fa: Oé<€>a<a a <e))
=({(AL ra<e),(flra<e), (i, a<e))

for some ordinal € = £(t) where (4, : a < €) is a decreasing, continuous sequence
of subsets of u™; for every a < €, f, is a regressive function on A,; and (iy : @ < €)
is a sequence of distinct elements of C,. It will always be true that if t <7 t’, then
each of the three sequences of ¢’ extend the corresponding one of ¢.

To start, we make the node t with (t) = 0, A9 = S* the root of the tree.

At limit levels we extend (the obvious way) all cofinal branches to a node.

If we are given an element ¢t = ((Ay :a <ée), (fo:a <e),(iq:a <e)) of the
tree and the set A, is = ) mod D then we leave t as a terminal node. Otherwise,
let C' = C; = Rang (F’ I [AE]Q) and notice that by hypothesis, toward contradic-
tion, the pair A.,C; cannot be as required in the Claim. There is, therefore, a
regressive function f = f; with domain A., such that for every z < u™ the set
Rang(F’ | [f~*(x)]?) is a proper subset of Cy or f~*(z) is a = () mod D subset
of u*. We make the immediate extensions of ¢ the sequences of the form a t, =
((Ag ra<e+1),{(fa:a<e+1),(iy:a<e+1)) where A,y = f71(2), fo = fi
and i. € C; is some colour value such that: if A.y1 # () mod D then i. is not in
the range of F’ | [A.]2.



Paper Sh:761, version 2002-10-21_10. See https://shelah.logic.at/papers/761/ for possible updates.

4 SAHARON SHELAH

Having constructed the tree observe that every element x € S* C u™ belongs
to a set Ai((i)) for some (unique) terminal node t(z) of T. Also, e(z) < 07 (< u™)

holds by the selection of the ig’s as (zé(x) ta < g(x)) is a sequence of members of

C, with no repetitions while C,, the set of colours, has < # members. For some
set S C S* of ordinals # < p* which belong to DT (by the normality of D) the
value of () is the same, say e. For z € S we let go(z) = fi)(x) where i) is
the a-th regressive function in the node t(x) € T. Again, by u’ = u & (Va €
S)[cf(a) > 6] we have that (Vo € S")(Va < €)ga(x) = B, holds for some sequence
(Ba : a < €) and subset S’ C S from D*. But then we get that the set S’ satisfies
x,y € S = (A’;("”), 3(’”)71"259”)) = (Af)é(y)7 é(y),ig(y)) for every a < €; we can prove
this by induction on . We can then prove that AZ(”T) = Aé(y) for x,y € S’. We can
conclude that z,y € S" = t(x) = t(y), so S’ C Ai(t) for some terminal node ¢, but

this latter set is in DT, a contradiction.
Uh2

Proof of Lemma 1.1. Apply Claim 1.2 with S* = A* to get corresponding (C, A).
Define the ideal I as follows. For X C u™ we let X € I iff there are a member E of
D and a regressive function f: X N A — pT such that every Rang(F’ | [f~!(a)]?)
is a proper subset of C or f~!(«) is a = P mod D subset of u™.

Now:

1.3 Claim. [ is a normal ideal on pt (and A* = p+ mod I).

Proof. Straightforward.
Set Dy to be the dual filter of I, let Ag = A and let Cy = C'; by 1.2 we are
done. U1

1.4 Remark. 1) If Lemma 1.1 holds for some Dy, Ag, Cy then it holds for Dy, Ay, Cy
when the normal filter D; extends Dy, and Ay € D satisfies A1 C Ap.

2) If Dy, Ag, Cp satisfy Lemma 1.5, and X € Dar then X contains a homogeneous
set of order type A + 1 of color £ for every & € ().

3) Lemma 1.1 is closely related to the proof in [Sh 26].

Proof of Theorem 0.1. Let u = 2<*, and F : [u*]?> — 6 be a colouring; we apply
1.1 for A* = ngz\)’ (F=F,0 =60,u=p) and D the club filter. We shall write

F(a,p) for F({a,8}) and 0 for F(a, ).
We fix Ay, Do, Cy which we get by 1.1.
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1.5 Lemma. Almost every § € Ag; (i.e. for all but a set = ) mod Dy) satisfies
the following: if s € [Ag N O]<* and {24 : @ < Y}« C Ag N[0, u) with v < k then
there is {yo : @ < v}« C Ag N (sup(s),d) such that:

(a) F(xvya) :F(l',za) (fOT’QZGS,a/<’)/);

(0) F(Yaryp) = F(2a,28) (fora<pB <7).

Proof. By simple reflection (using the regularity of \).

1.6 Lemma. There! is A) C Ao, Ay € Do such that: if § € A, s € [§]<* and
& € Cy, then there exists a 61 € Ag,d < 61 such that

(a) F(x,0) = F(z,01) (forx€s);

Proof. Otherwise, there is some X C Ag, X € D such that for every § € X there
are 5(9) € [0]<* and £(8) € Cy such that there is no §; > § satisfying (a) and (b).
By normality and u = p<* we can assume that s(§) = s and £(d) = ¢ holds for
d € X. By Lemma 1.1, that is the choice of (Ag, Dy, Cp), there must exist § < d;
in X with F'(0,01) = £ and this is a contradiction.

Lhe

Continuation of the proof of Theorem 0.1. Let Aj, C Ay satisfy Lemmas 1.1 and
1.6 and pick some 0; € Af, and then let T = A{\ (61 + 1).

1.7 Lemma. There exists a function G : T x T — Cy such that: if s € [61]<*, v <
K, and Z ={zq : a < v} C T then there is {yo : @ < v}< C (sup(s), 1) such that
(a) F(x,y0) = F(x,204) (forz € s,a<v);
(0) F(ya,ys) = F(2a,28)  (for a <8 <7);
(€) F(ya;28) = G(za,28)  (for o, f <)

Lin fact, if AT € DS’ then for some A, C A1 N Ag, A1\Aj = 0 modulo Dy and the conclusion
holds for every 6 € Aj
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Proof. As k is strongly compact, it suffices to show that for every Z € [T]<" there
exists a function G : Z x Z — 0 as required. Clauses (a) and (b) are obvious by
Lemma 1.5, and it is clear that, if we fix Z, then for every s € [§;]<? there is an
appropriate G : Z x Z — 6. We show that there is some G : Z x Z — 6 that works
for every s. Assume otherwise, that is, for every G : Z x Z — 6 there is some
s € [61]<* such that G is not appropriate for sg. Notice that the number of these
functions G is less than x. Then no G could be right for s = U{sq : G a function
from Z x Z to 0} € [61]<*, a contradiction. 017

Continuation of the proof of Theorem 0.1. We now apply Lemma 1.1 to the colour-
ing G{z,y} = G(x,y) = (F(x,y),G(z,y)) for z < y in T and 0 otherwise, and the
filter Dy and the set T' and get the normal filter D1 O Dy, the set A; C T C Aj such
that A; € D; and the colour set C; C 6 x 6. Notice that actually C; C Cy x Cj.
We can also apply Lemmas 1.5 and 1.6 and get some set A} C A;.

1.8 Lemma. There is a set a € [A1]<" such that for every decomposition a =
U{ag : € € C1} there is some € € Cy such that

(a) for every & € Cy there is an Z-homogeneous subset for the colouring G of
order type C in ag,

(B) similarly for every e € Cy and F.

Proof. This follows from the strong compactness of k as A} itself has this partition
property (or more details in 2.8). 0O g

Continuation of the Proof of 0.1. Fix a set a as in 1.8.

We now describe the construction of the required homogeneous subset. Let
d2 € A} be some element with d; > sup(a). For £ = (£1,&2) € C1 C 0 x 0 let ag be
the following set:

ag ={r €a:G(z,0) = E}.

By Lemma 1.8, there is some & = (&1, &) € C; for which the statement in 1.8 above
is true and necessarily (as a U {d2} € A7 € Ag and ag # ) we have &;,&, € Co.
Select some b C ag, otp(b) = ¢ such that F' is constantly & on b; this is possible by
clause (/) of 1.8. This set b will be the ¢ part of our homogeneous set of ordinals
of order type A + (, so we will have to construct a set of order type A below b. By



Paper Sh:761, version 2002-10-21_10. See https://shelah.logic.at/papers/761/ for possible updates.

A PARTITION RELATION USING STRONGLY COMPACT CARDINALS SH761 7

induction on o we will choose z,, such that the set {z, : @« < A}~ C §; satisfies the
following conditions:

() F(zg, a) = & (for § < a),
(%)2 F(zq,bU{02}) = &2, ie. F(zq,y) =& when y € bU {d2}.

Assume that we have reached step «, that is, we are given the set of ordinals with
{zg : B < a}< and call this set s. Applying Lemma 1.6 for Ay, A],02 and sUb
and the colouring G here standing for Ay, Af, 6, s and the colouring F there (that
is the choice of A]) we get that there exists some d3 > 0o (standing for d; there)
such that

(ii) G(x,03) = G(z,0) for x € sUb
(”Z) 0(52753) = (51752)7

(¥)3 F(zg,603) =& (for f < a). B
[Why? As F(xg,03) = F(xg,02) by (ii) and the choice of G and F(zg, d2) =
&2 by (%)2 from the induction hypothesis.]

(#)a G(bU{d2},03) = &2, i.e. G(y,03) = & when y € bU {2}
[Why? If y € b then by (ii) and the definition of G we have G(y,d3) =
G(y,02), but b C ag so by the choice of ag we have G(y,d2) = . For

Yy = 52 use clause (111) that is (51,52) = G(52, 53) = (F((;Q, 53), G(527 53))]

By the choice of G this implies that there is some x, as required; that is by the
choice of G (see Lemma 1.7), applied to Z = {z; : i < v} enumerating the set
bU {d2,03} and s as above, we get {y; : i < v}, now necessarily d3 = zy_1, and we
can choose y,_1 as z,. O 1
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§2 THE CASE OF )\ SINGULAR

We prove version 0.2 of the main theorem.

Proof of Theorem 0.2. Let o = cf(\). Let A = Z Ae with A\c > 0 > k > 6 strictly
e<o

increasing. Let p. = 2% and u = X{u. : ¢ < o} = 2<*. We also fix F : [ut]? — 0.

2.1 Claim. For some € we have:

(a) €= (6s:acS)
(b) S Cput,65Co
(c) otp(65) <o
(d) S* ={6 < A:otp(%s) = o} is stationary
(e) €5 unbounded in § if otp(€s) = o
(f) a€EbCs=>a€cS & C,=%sNa.
U2

Proof. By [Sh 420, §1] as 0 < u*,0 = cf(0).

Continuation of the proof of 0.2: Let Dg, Ag,Cy be as given by Lemma 1.1 with
the club filter of u™, S* (from clause (d) of 2.1 above) here standing for D, A* there
so Ag C S*.

Notation: e(a) = otp(Cl).

2.2 Claim. Let x > 2", <} a well ordering of H(x)). For any x € H(x) we can
find B = (B, : a < \) such that:

(@) Ba < (H(x), & <)
(b )\ s Fy (e 1 e < 0),6, Ay, Co, Doy belong to B,
(c) Bg:B<a)eByifaog S

)
)
(d) [Bs]l = peesy and [Bp]=r® C By and pg) + 1 C Bp (actually follows)
(e) By =U{Bpg: €%} ifacS".

Proof. Straightforward.

2.8 Observation. 1) We have ¢(a) < ¢(8) and B, € B and B, < Bg if a € 5.
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2.4 Claim. There is a set A C Ag such that

(@) Aj € Dy and a < § € A = sup(B, Npt) <6

(B) if € € Cy and 6 € A} and s € U{[§ N B, < : a € €5}, then there is
01 € Ao such that 6 < 01 and
(a) F(x,0) = F(x,61) forxz € s
(b) F(6,01) =¢&.

Proof. Requirement (a) holds for all but a non stationary set of 6 € Ag. Require-
ment (3) is proved as in 1.6. Os 4

Now fix Aj C Ap as in 2.4, and fix §; € A} and let T = A{\(61 + 1). Recall
6 € Ay C S* = {0 : otp(€5) = 0,6 =sup(€s)} C {6 < ut : cf(d) = o}
2.5 Claim. There is a function G. : T x T — Cy such that:
O ifs€[6NB,]S* and e =c(a) and a € €5, and vy <k and Z = {z5: B <

Y}« CT, then there is {ypg : B < v}< COoNB,y = pt NB, such that:

(a) F(x,ypg) = F(x,28) forx s, <4

(b) F(6,61)=¢

F(z517y52) = G(yﬁlayﬂz) fO’l" 61562 < 5
(c) Fl(z,,28,) = F(yp,,yp,) for B1, B2 <~
(d) yo > sup(s).

Proof. Like 1.7.

2.6 Claim. There exists a function G : T x T — Cy such that if s € [T|<", then
for arbitrarily large ¢ < o we have G | (s x s) = G [ (s X s).

Proof. Let D* be a uniform s-complete ultrafilter on o and define G by G(«, ) is
the unique & € Cy such that {e < 0 : G.(o, B) = &} € D*. Oy 6

Continuation of the Proof of 0.2. Now we apply Lemma 1.1 to the colouring G
where G{x,y} = G(z,y) = (F(x,y),G(z,y)) for < y in T and zero otherwise and
the filter Dy and the set T. We get a normal filter D; and a set 41 C T C A}, and
a set of colours C7. As Ay C A necessarily C; C Cy x Cy.
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2.7 Claim. There is A} C Ay such that:

(Oé) Al\All = Q) mod D1
(B) if 6 € Al o € €5 and s € [ NBL])S = and € € Cy, then for some 6, we
have § < 0, € A; and

(a) G(z,0) = G(z,01) for every x € s

(b) G(5,6.) = E.

Proof. Like the proof of 1.6 Uo7

2.8 Claim. There is a set a € [A}]<" such that:

LI for every decomposition of a as U{ag : £ € Oy} there is € € Cy such that
() for every &€ € Cy there is b C ag of order type ¢ such that G | [b)? is
constantly &

or every € € Cg there 15 b C ag of order type ¢ such that 18
B Cy th s b é d h that F | [b]? i
constantly €.

Proof. The claim holds since A} has this property and x is strongly compact. If
Al = U{ag : £ € C1} for some &, ag € DY hence clause () holds by the choice of
D1, Ch; and clause (8) holds as D € D (as Do C D;) and the choice of Dy, Cp.

Las

Continuation of the proof of 0.2. Now choose 2 € A} such that d; > sup(a) and
for £ = (§1,€2) € C1 C 0 x 0 define ag as

ag ={r €a:G(x,0)=E}.

Clearly (ag : ¢ € () is a decomposition of a and so there is £ = (£1,&) € C as
guaranteed by [J of 2.8. In particular, there is b C ag of order type ¢ such that
F | [b)? is constantly & (note that (£1,&) € C1 € Cy x Cp so & € Cp). Now let
E ={e <o0:G:(,62) = G(a,62) for every a € b}. By the definition of G this is
an unbounded subset of ¢ and clearly

(%) if e € E' and a € b then G.(a, 02) = G(av, 62) = (&1, &2).
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For a < Alet T(a) = Min{e € E:a < A} and let Cs, = {7(T): T < o}_.
Now we try to choose by induction on v < A\ a element z,, satisfying

(x)o To < 91 and moreover z, € 61 N By(v(a)), and < a = x5 < x4
(#)1 F(zp,70) =& for B < a
(*)2 F(ajouﬁ) - 52 for B ebu {52}

At step «, by 2.7, that is by the choice of A] applying clause (3) there with

xg : B < alUb,ds, & here standing for s, 0, £ there, we can find d3 satisfying the
B

requirement there on d1, so

(’L) 0y < (53 € A

(ii) G(x,03) = G(x,02) for x € sUDb
(111) G(02,03) = (€1,&2).

(*)3 F(zp,03) = & for B < a. )
[Why? By (ii) we have G(zg3,d3) = G(xg,02) hence F(xg,03) = F(zg,2)
but the latter by (x)2 is equal to &;.]

(#)a G(B,03) =& for B €D B

[Why? By (11) and as 5 cb=> G(ﬁ,ég) = (51,52) = G(B,(sg) = fg)]
()5 G(02,03) = &

[Why? By clause (iii).]
(x)6 {zp: B < a} is asubset of 61 NV (v(a))-

Let (y; 11 < ¢+ 2) list bU {02, 3} increasing order.

Now we use the choice of G'y(,) to choose an increasing sequence (z; : i < ¢+ 2)
in 01 NBy(v(a)), 20 > g for B < a such that F'(z;,y;) = G(ys,y;) for i,j < +2
and F(xg,z;) = F(xg,y;) for i < (+2. Let 24 = z¢41 50 o = 61 N By(v(a)) is
> xzg for f < o
Also xz, satisfies (x)o of the recursive definition. Now 8 < a = F(xg,z,) =
F(zg,zc41) = F(x,yc41) = F(xs,03) which is & by (x)3 above, so for our choice
of x4, ()1 holds. Next if § € bU {02} then F(zq,x5) = F(xg,2¢4+1) = G(xs,03)
which is & by (%)4 or (%)5. So z, is as required. Oy
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