ON THE ARROW PROPERTY SH782

Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

Abstract. We deal with a finite combinatorial problem arising for a question on generalizing Arrow theorem on social choices.

Key words and phrases. Arrow theorem, Social choice functions, finite combinatorics.
I would like to thank Alice Leonhardt for the beautiful typing.
Done 2/4/01
First Typed - 01/May/18
Latest Revision - 05/Apr/25
Corrections according to the proofreading for the Journal-Oct. 2004

§0 Introduction

Let X be a finite set of alternatives. A choice function c is a mapping which assigns to nonempty subsets S of X an element $c(S)$ of S. A rational choice function is one for which there is a linear ordering on the alternatives such that $c(S)$ is the maximal element of S according to that ordering. (We will concentrate on choice functions which are defined on subsets of X of fixed cardinality k and this will be enough.)

Arrow's impossibility theorem [Arr50] asserts that under certain natural conditions, if there are at least three alternatives then every non-dictatorial social choice gives rise to a non-rational choice function, i.e., there exist profiles such that the social choice is not rational. A profile is a finite list of linear orders on the alternatives which represent the individual choices. For general references on Arrow's theorem and social choice functions see [Fis73], [Pel84] and [Sen86].

Non-rational classes of choice functions which may represent individual behavior where considered in [KRS01] and [Kal01]. For example: $c(S)$ is the second largest element in S according to some ordering, or $c(S)$ is the median element of S (assume $|S|$ is odd) according to some ordering. Note that the classes of choice functions in these classes are symmetric namely are invariant under permutations of the alternatives. Gil Kalai asked if Arrow's theorem can be extended to the case when the individual choices are not rational but rather belong to an arbitrary non-trivial symmetric class of choice functions. (A class is non-trivial if it does not contain all choice functions.) The main theorem of this paper gives an affirmative answer in a very general setting. See also [RF86] for general forms of Arrow's and related theorem.

The part of the proof which deals with the simple case is related to clones which are studied in universal algebras (but we do not use this theory). On clones see [Szb99] and [Szn96].

Notation:

1) $n, m, k, \ell, r, s, t, i, j$ natural numbers always k, many times r are constant (there may be some misuses of k).
2) X a finite set.
3) \mathfrak{C} a family of choice function on $\binom{X}{k}=\{Y: Y \subseteq X,|Y|=k\}$.
4) \mathscr{F} is a clone on X (see Definition 2.3(2)).
5) $a, b, e \in X$.
6) $c, d \in \mathfrak{C}$.
7) $f, g \in \mathscr{F}$.

Annotated content

$\S 1$ Framework
[What are $X, \mathfrak{C}, \mathscr{F}=\operatorname{Av}(\mathfrak{C})$, the Arrow property restricted to $\binom{X}{k}, \mathfrak{C}$ is $(X, k)=F C F$ (note: no connection for different $k-s)$ and the Main theorem. For $\mathfrak{C}, \mathscr{F}, r=r(\mathscr{F})$.]

Part A: The simple case.
$\S 2$ Context and on nice f 's
[Define a clone, $r(\mathscr{F})$. If $f \in \mathscr{F}_{(r)}$ is not a monarchy, $r \geq 4$ on the family of not one-to-one sequences $\bar{a} \in{ }^{r} X$ then f is a projection, 2.5.
Define $f_{r ; \ell, k}$, basic implications on $f_{r ; \ell, k} \in \mathscr{F}, 2.6,2.7$.
If $r=3, f \in \mathscr{F}_{[s]}$ is not a monarchy on one-to-one triples, then f without loss of generality, is $f_{r ; 1,2}$ or $g_{r ; 1,2}$ on a relevant set, 2.8.
If $r=3, f$ is not a semi monarchy on permutations of \bar{a}.
If $r=3$, there are some "useful" $f, 2.11$. Implications on $f_{r ; \ell, k} \in \mathscr{F}$.]
$\S 3$ Getting \mathfrak{C} is full
[Sufficient condition for $r \geq 4$ with $f_{r ; 1,2}$ or so (3.1), similarly when $r=3$.
Sufficient condition for $r=3$ with $g_{r ; 1,2}$ or so (3.3).
A pure sufficient condition for \mathfrak{C} full 3.4.
Subset $\binom{X}{3}$, closed under a distance 3.5.
Getting the final conclusion (relying on §4).]
$\S 4$ The $r=2$ case.
[By stages we get a $f \in \mathscr{F}_{[r]}$ which is a monarchy with exactly one exceptional pair, 4.2-4.4. Then by composition we get $g \in \mathscr{F}_{2}$ similar to $f_{r ; 1,2}$.]

Part B: Non-simple case.
$\S 5$ Fullness - the non-simple case
[We derive "C is full" from various assumptions, and then prove the main theorem.]
$\S 6$ The case $r=2$.
$\S 7$ The case $r \geq 4$.

§1 Framework

1.1 Context. We fix a finite set X and $r=\{0, \ldots, r-1\}$.
1.2 Definition. 1) An (X, r)-election rule is a function c such that: for every "vote" $\bar{t}=\left\langle t_{a}: a \in X\right\rangle \in{ }^{X} r$ we have $c(\bar{t}) \in r=\{0, \ldots, r-1\}$.
2) c is a monarchy if $(\exists a \in X)\left(\forall \bar{t} \in{ }^{X} \bar{r}\right)\left[c(\bar{t})=t_{a}\right]$.
3) c is reasonable if $(\forall \bar{t})\left(c(t) \in\left\{t_{a}: a \in X\right\}\right)$.
1.3 Definition. 1) We say \mathfrak{C} is a family of choice functions for $X(X-F C F$ in short) if:

$$
\mathfrak{C} \subseteq\{c: c \text { is a function },
$$

$$
\begin{aligned}
& \operatorname{Dom}(c)=\mathscr{P}^{-}(X)(=\text { family of nonempty subsets of } X) \\
& \text { and } \left.\left(\forall Y \in \mathscr{P}^{-}(X)\right)(c(Y) \in Y)\right\} .
\end{aligned}
$$

2) \mathfrak{C} is called symmetric if for every $\pi \in \operatorname{Per}(X)=$ group of permutations of X we have

$$
c \in \mathfrak{C} \Rightarrow \pi * c \in \mathfrak{C}
$$

where

$$
\pi * c(Y)=\pi^{-1}(c \pi(Y))
$$

3) $\mathscr{P}_{\mathbb{C}}=\mathscr{P}^{-}(X)$.
1.4 Definition. 1) We say av is a r-averaging function for \mathfrak{C} if
(a) av is a function written $\operatorname{av}_{Y}\left(a_{1}, \ldots, a_{r}\right)$
(b) for any $c_{1}, \ldots, c_{r} \in \mathfrak{C}$, there is $c \in \mathfrak{C}$ such that $\left(\forall Y \in \mathscr{P}^{-}(X)\right)(c(Y))=\operatorname{av}_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right)$
(c) if $a \in Y \in \mathscr{P}^{-}(X)$ then $\operatorname{av}_{Y}(a, \ldots, a)=a$.
4) av is simple if $\operatorname{av}_{Y}\left(a_{1}, \ldots, a_{r}\right)$ does not depend on Y so we may omit Y.
5) $\mathrm{AV}_{r}(\mathfrak{C})=\{$ av: av is an r-averaging function for $\mathfrak{C}\}$, similarly $\mathrm{AV}_{r}^{s}(\mathfrak{C})=\{$ av: av is a simple r-averaging function for $\mathfrak{C}\}$.
6) $\operatorname{AV}(\mathfrak{C})=\bigcup_{r} A V_{r}(\mathfrak{C})$ and $A V^{s}(\mathfrak{C})=\bigcup_{r} A V_{r}^{s}(\mathfrak{C})$.
1.5 Definition. 1) We say that \mathfrak{C} which is an X-FCF, has the simple r-Arrow property if
av $\in \operatorname{AV}_{r}^{s}(\mathfrak{C}) \Rightarrow \bigvee_{t=1}^{r}\left(\forall a_{1}, \ldots, a_{r}\right)$ av $\left(a_{1}, \ldots, a_{r}\right)=a_{t}$
such av is called monarchical.
7) Similarly without simple (using $\mathrm{Av}_{r}(\mathfrak{C})$).
1.6 Question: 1) Under reasonable conditions does \mathfrak{C} have the Arrow property?
8) Does $|\mathfrak{C}| \leq \operatorname{poly}(|X|) \Rightarrow r$-Arrow property? This means, e.g., for every natural numbers r, n for every X large enough for every symmetric \mathfrak{C}; an X-FCF with $\leq|X|^{n}$ member, \mathfrak{C} has the r-Arrow property.
1.7 Remark. The question was asked with $\mathfrak{C}_{(X)}$ defined for every X; but in the treatment here this does not influence.

We actually deal with:
1.8 Definition. If $1 \leq k \leq|X|-1$ and we replace $\mathscr{P}^{-}(X)$ by $\binom{X}{k}=:\{Y: Y \subseteq$ $X,|Y|=k\}$, then \mathfrak{C} is called (X, k) - FCF, $\mathscr{P}_{\mathfrak{C}}=\binom{X}{k}, k=k(\mathfrak{C})$, av is [simple] r averaging function for \mathfrak{C}; let $k(\mathfrak{C})=\infty$ if $\mathscr{P}_{\mathfrak{C}}=\mathscr{P}^{-}(X)$; let $\mathscr{F}=\mathscr{F}(\mathfrak{C})=\operatorname{AV}^{s}(\mathfrak{C})$ and let $\mathscr{F}_{[r]}=\{f \in \mathscr{F}: f$ is r-place $\}$.
1.9 Discussion: This is justified because:

1) For simple averaging function, $k \geq r$ the restriction to $\binom{X}{k}$ implies the full result.
2) For the non-simple case there is a little connection between the various $\mathfrak{C} \upharpoonright\binom{X}{k}$ (exercise).

Our aim is (but we shall first prove the simple case):
1.10 Main Theorem. There are natural numbers $r_{1}^{*}, r_{2}^{*}<\omega$ (we shall be able to give explicit values, e.g. $r_{1}^{*}=r_{2}^{*}=7$ are O.K.) such that:
\circledast if X is finite, $r_{1}^{*} \leq k,|X|-r_{2}^{*} \geq k$ and \mathfrak{C} is a symmetrical (X, k)-FCF and some av $\in \operatorname{AV}_{r}(\mathfrak{C})$ is not monarchical, then every choice function for $\binom{X}{k}$ belongs to \mathfrak{C} ($=\mathfrak{C}$ is full).

Proof. By 5.10.
1.11 Conclusion. Assume X is finite, $r_{1}^{*} \leq k \leq|X|-r_{2}^{*}$ (where r_{1}^{*}, r_{2}^{*} from 1.10).

1) If \mathfrak{C} is an (X, k)-FCF and some member of $\operatorname{Av}_{r}(\mathfrak{C})$ is not monarchical, then $|\mathfrak{C}|=k^{\left(\left\lvert\, \begin{array}{c}|X| \\ k\end{array}\right.\right)}$.

Part A: The simple case.

$\S 2$ Context and on nice f 's

Note: Sometimes Part B gives alternative ways.
2.1 Hypothesis (for part A).
(a) X a finite set
(b) $5<k<|X|-5$
(c) \mathfrak{C} a symmetric (X, k)-FCF and $\mathfrak{C} \neq \emptyset$
(d) $\mathscr{F}_{[r]}=\{f: f$ an r-place function from X to X such that \mathfrak{C} is closed under f that is $\left.f \in \operatorname{AV}_{r}^{s}(\mathfrak{C})\right\}$
(e) $\mathscr{F}=\cup\left\{\mathscr{F}_{[r]}: r<\omega\right\}$.
2.2 Fact. \mathscr{F} is a clone on X (see 2.3 below) satisfying $f \in \mathscr{F}_{[r]} \Rightarrow f\left(x_{1}, \ldots, x_{r}\right) \in$ $\left\{x_{1}, \ldots, x_{r}\right\}$ and \mathscr{F} is symmetric, i.e. closed by conjugation by $\pi \in \operatorname{Per}(X)$.
2.3 Definition. 1) f is monarchical $=$ is a projection, if f is an r-place function (from X to X) and for some $t,\left(\forall x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{r}\right)=x_{t}$.
2) \mathscr{F} is a clone on X if it is a family of functions from X to X (for all arities, i.e., number of places) including the projections and closed under composition.
2.4 Definition. For $\mathfrak{C}, \mathscr{F}$ as in 2.1:

$$
r(\mathfrak{C})=r(\mathscr{F})=: \operatorname{Min}\left\{r: \text { some } f \in \mathfrak{C}_{r} \text { is not monarchical }\right\}
$$

(let $r(\mathscr{F})=\infty$ if \mathfrak{C} is monarchical).
2.5 Claim. Assume
(a) $f \in \mathscr{F}_{[r]}$
(b) $4 \leq r=r(\mathscr{F})=\operatorname{Min}\{r$:some $f \in \mathscr{F}$ is not a monarchy $\}$.

Then

1) for some $\ell \in\{1, \ldots, r\}$ we have $f\left(x_{1}, \ldots, x_{r}\right)=x_{\ell}$ if x_{1}, \ldots, x_{r} has some repetition.
2) $r \leq k$.

Proof. 1) Clearly there is a two-place function h from $\{1, \ldots, r\}$ to $\{1, \ldots, r\}$ such that: if $y_{\ell}=y_{k} \wedge \ell \neq k \Rightarrow f\left(y_{1}, \ldots, y_{r}\right)=y_{h(\ell, k)}$; we have some freedom so without loss of generality
$\boxtimes \ell \neq k \Rightarrow h(\ell, k) \neq k$.
Assume toward contradiction that (1)'s conclusion fails, i.e.
$\circledast h \upharpoonright\{(\ell, k): 1 \leq \ell<k \leq r\}$ is not constant.

Case 1: For some $\bar{x} \in{ }^{r} X$ and $\ell_{1} \neq k_{1} \in\{1, \ldots, r\}$ we have

$$
\begin{aligned}
& x_{\ell_{1}}=x_{k_{1}} \\
& f(\bar{x}) \neq x_{\ell_{1}}
\end{aligned}
$$

equivalently: $h\left\{\ell_{1}, k_{1}\right\} \notin\left\{\ell_{1}, k_{1}\right\}$, recalling \boxtimes.
Without loss of generality $\ell_{1}=r-1, k_{1}=r, f(\bar{x})=x_{1}$ (as for a permutation σ of $\{1, \ldots, r\}$ we can replace f by $\left.f_{\sigma}, f_{\sigma}\left(x_{1}, \ldots, x_{r}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)\right)$.

We can choose $x \neq y$ in X so $h(x, y, \ldots, y)=x$ hence $\ell \neq k \in\{2, \ldots, r\} \Rightarrow$ $h(\ell, k)=1$.
Now for $\ell \in\{2, \ldots, r\}$ we have agreed $h(1, \ell) \neq \ell,(\operatorname{see} \boxtimes)$ so as $h \upharpoonright\{(\ell, k): \ell<k\}$ is not constantly $1($ by $\circledast)$ without loss of generality $h(1,2)=3$. But as $r \geq 4$ letting $x \neq y \in X$ we have $f(x, x, y, y \ldots)$ is y as $h(1,2)=3$ and is x as $h(3,4)=1$, contradiction.

Case 2: Not Case 1.

Let $x \neq y$, now consider $f(x, x, y, y, \ldots)$, it is x as $h(1,2) \in\{1,2\}$ and it is y as $h(3,4) \in\{3,4\}$, contradiction.
2) Follows as for $r>k$ we always have a repetition (see Definition 1.4(1), f plays the role of c).
2.6 Definition. $f_{r ; \ell, k}=f_{r, \ell, k}$ is the r-place function on X defined by

$$
f_{r ; \ell, k}(\bar{x})= \begin{cases}x_{\ell} & \bar{x} \text { is with repetition } \\ x_{k} & \text { otherwise }\end{cases}
$$

2.7 Claim. 1) If $f_{r, 1,2} \in \mathscr{F}$ then $f_{r, \ell, k} \in \mathfrak{C}$ for $\ell \neq k \in\{1, \ldots, r\}$.
2) If $f_{r, 1,2} \in \mathscr{F}$ and $r \geq 3$ then $f_{r+1,1,2} \in \mathscr{F}$.

Proof. 1) Trivial (by 2.2).
2) First assume $r \geq 5$. Let $g\left(x_{1}, \ldots, x_{r+1}\right)=f_{r, 1,2}\left(x_{1}, x_{2}, \tau_{3}, \ldots, \tau_{r}\right)$ where $\tau_{m} \equiv f_{r, 1, m}\left(x_{1}, \ldots, x_{m}, x_{m+2}, \ldots, x_{r+1}\right)$; (that is x_{m+1} is omitted).
So for any \bar{a} :
if \bar{a} has no repetitions then:

$$
\begin{gathered}
\tau_{3}(\bar{a})=a_{3}, \ldots, \tau_{r}(\bar{a})=a_{r} \\
g(\bar{a})=f\left(a_{1}, a_{2}, a_{3}, \ldots, a_{r}\right)=a_{2}
\end{gathered}
$$

if \bar{a} has repetitions say $a_{\ell}=a_{k}$ then there is $m \in\{3, \ldots, r\} \backslash\{\ell-1, k-1\}$ hence $\left\langle a_{1}, \ldots, a_{m}, a_{m+2}, \ldots, a_{r+1}\right\rangle$ is with repetition so $\tau_{m}(\bar{a})=a_{1}$ so $\left(a_{1}, a_{2}, \ldots, \tau_{m}(\bar{a}), \ldots\right)$ has a repetition so $g(\bar{a})=a_{1}$.

Second assume $r=4$:
Let g be the function of arity 5 defined by: for $\bar{x}=\left(x_{1}, \ldots, x_{5}\right)$ we let $g(\bar{x})=f_{r, 1,2}\left(\tau_{1}(\bar{x}), \ldots, \tau_{4}(\bar{x})\right)$ where
$(*)_{1} \tau_{1}(\bar{x})=x_{1}$
$(*)_{2} \tau_{2}(\bar{x})=f_{r, 1,2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
$(*)_{3} \tau_{3}(\bar{x})=f_{r, 1,3}\left(x_{1}, x_{2}, x_{3}, x_{5}\right)$
$(*)_{4} \tau_{4}(\bar{x})=f_{r, 1,4}\left(x_{1}, x_{2}, x_{5}, x_{4}\right)$.
Note that
$(*)_{5}$ for \bar{x} with no repetition $\tau_{\ell}(\bar{x})=x_{\ell}$.
Now check that g is as required.
Third assume $r=3$:
Let $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{r, 1,2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ where

$$
\begin{gathered}
\tau_{1}=x_{1} \\
\tau_{2}=f_{r, 1,2}\left(x_{1}, x_{2}, x_{4}\right) \\
\tau_{3}=f_{r, 1,2}\left(x_{1}, x_{3}, x_{4}\right) .
\end{gathered}
$$

Now check (or see 4.7's proof).
2.8 Claim. Assume
(α) \mathscr{F} is as in 2.2
(β) every $f \in \mathscr{F}_{[2]}$ is a monarchy, $r=r[\mathscr{F}]=3$
$(\gamma) f^{*} \in \mathscr{F}_{[3]}$ and for no $i \in\{1,2,3\}$ do we have $\left(\forall \bar{b} \in{ }^{3} X\right)(\bar{b}$ not one-to-one $\left.\Rightarrow f^{*}(\bar{b})=b_{i}\right)$.

Then for some $g \in \mathscr{F}_{[3]}$ not a monarchy we have: (a) or (b) where
(a) for $\bar{b} \in{ }^{3} X$ which is not one-to-one $g(\bar{b})=f_{r ; 1,2}(\bar{b})$, i.e. $=b_{1}$
(b) for $\bar{b} \in{ }^{3} X$ which is not one-to-one $g(\bar{b})=g_{r ; 1,2}(\bar{b})$, see below

Where
2.9 Definition. $g_{r ; 1,2}$ is the following function ${ }^{1}$ from X to X.
$g_{r ; 1,2}\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\left\{\begin{array}{ll}x_{2} & \text { if } x_{2}=x_{3}=\ldots=x_{r} \\ x_{1} & \text { if otherwise }\end{array}\right.$.
Similarly $g_{r ; \ell, k}\left(x_{1}, \ldots, x_{r}\right)$ is x_{k} if $\left|\left\{x_{i}: i \neq \ell\right\}\right|=1$ and x_{ℓ} otherwise.

Proof of 2.8. The same as the proof of the next claim ignoring the one-to-one sequences (i.e. $f\left(a_{1}, a_{2}, a_{3}\right)$), see more later.

[^0]2.10 Claim. Assume \mathscr{F} is as in 2.2, $r=r(\mathscr{F})=3, f^{*} \in \mathscr{F}, f^{*}$ is a 3-place function and not a monarchy and $\bar{a} \in{ }^{3} X$ is with no repetition such that: if $\bar{a}^{\prime}=$ $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ is a permutation of \bar{a} then $f^{*}\left(\bar{a}^{\prime}\right)=a_{1}^{\prime}$; but $\neg\left(\forall \bar{b} \in{ }^{3} X\right)(\bar{b}$ not one-to-one \rightarrow $\left.\left.f^{*}(\bar{b})=b_{1}\right)\right)$.
Then for some $g \in \mathscr{F}_{3}$ we have (a) or we have (b) where:
(a)(i) for $\bar{b} \in{ }^{3} X$ with repetition, $g(\bar{b})=f_{r ; 1,2}(\bar{b})$, i.e. $g(\bar{b})=b_{1}$
(ii) $g\left(\bar{a}^{\prime}\right)=a_{2}^{\prime}$ for any permutation \bar{a}^{\prime} of \bar{a}
(b)(i) for $\bar{b} \in{ }^{3} X$ with repetition, $g(\bar{b})=g_{r ; 1,2}(\bar{b})$
(ii) $g\left(\bar{a}^{\prime}\right)=a_{1}^{\prime}$ for any permutation \bar{a}^{\prime} of \bar{a} (see on $g_{r ; 1,2}$ in 2.9).

Proof. Let $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right) ;(a, b, c)$ denote any permutation of \bar{a}.
Let $W=\left\{\bar{b}: \bar{b} \in{ }^{3} X\right.$ and $[\bar{b}$ is a permutation of \bar{a} or \bar{b} not one-to-one $\left.]\right\}$.
Let $\mathscr{F}^{-}=\{f \upharpoonright W: f \in \mathscr{F}\}, f=f^{*} \mid W$.
Let for $\eta \in{ }^{3}\{1,2\}, f_{\eta}$ be the 3 -place function with domain W, such that
$\boxtimes_{0} f_{\eta}\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\right)=a_{\sigma(1)}$ for $\sigma \in \operatorname{Per}\{1,2,3\}$
$\boxtimes_{1} f_{\eta}\left(a_{1}, a_{2}, a_{2}\right)=a_{\eta(1)}$
$\boxtimes_{2} f_{\eta}\left(a_{1}, a_{2}, a_{1}\right)=a_{\eta(2)}$
$\boxtimes_{3} f_{\eta}\left(a_{1}, a_{1}, a_{2}\right)=a_{\eta(3)}$
Now
$(*)_{0} f \in\left\{f_{\eta}: \eta \in{ }^{3} 2\right\}$
[why? just think: by the assumption on f^{*} and as $r(\mathscr{F})=3$, in details: for $\boxtimes_{1}, \boxtimes_{2}, \boxtimes_{2}$ remember that $f(x, y, y), f(x, y, x), f(x, x, y)$ are monarchies and for \boxtimes_{0} remember the assumption on \bar{a} and of course $f(x, x, x)=x$.]
$(*)_{1}$ if $\eta=\langle 1,1,1\rangle$ then f_{η} is $\neq f$
[why? $f_{\eta}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$ on W, i.e. is a monarchy]
$(*)_{2}$ if $\eta, \nu \in{ }^{3}\{1,2\}, \eta(1)=\nu(1), \eta(2)=\nu(3), \eta(3)=\nu(2)$, then $f_{\eta} \in \mathscr{F}^{-} \Leftrightarrow$ $f_{\nu} \in \mathscr{F}{ }^{-}$
[Why? In $f(x, y, z)$ we just exchange y and z]
$(*)_{3}$ if $f_{<2,2,2>} \in \mathscr{F}^{-}$then $f_{\langle 1,2,2\rangle} \in \mathscr{F}^{-}$
[Why? Define g by $g(x, y, z)=f_{<2,2,2>}\left(x, f_{<2,2,2>}(y, x, z), f_{<2,2,2>}(z, x, y)\right)$ (so $g \in \mathscr{F}^{-}$) hence

$$
g(a, b, c)=f_{<2,2,2>}(a, b, c)=a ; \text { hence } g \text { satisfies } \boxtimes_{0}
$$

$$
\begin{aligned}
g(a, b, b)= & \left.f_{<2,2,2>}\left(a, f_{<2,2,2>}(b, a, b), f_{<2,2,2>}(b, a, b)\right)\right) \\
& =f_{<2,2,2>}(a, a, a)=a \\
g(a, b, a)= & f_{<2,2,2>}\left(a, f_{<2,2,2>}(b, a, a), f_{<2,2,2>}(a, a, b)\right) \\
& =f_{<2,2,2>}(a, a, b)=b \\
g(a, a, b)= & f_{<2,2,2>}\left(a, f_{<2,2,2>}(a, a, b), f_{<2,2,2>}(b, a, a)\right) \\
& =f_{<2,2,2>}(a, b, a)=b .
\end{aligned}
$$

So $g=f_{<1,2,2\rangle}$ hence $f_{<1,2,2\rangle} \in \mathscr{F}^{-}$as promised.]
$(*)_{4} f_{<1,2,2>} \in \mathscr{F}^{-} \Rightarrow f_{<2,1,2>} \in \mathscr{F}^{-}$
[Why? Let

$$
g(x, y, z)=f_{<1,2,2>}\left(x, y, f_{<1,2,2>}(z, x, y)\right)
$$

So

$$
g(a, b, c)=a \text { hence } g \text { satisfies } \boxtimes_{0}
$$

and

$$
\begin{aligned}
g(a, b, b)= & f_{<1,2,2>}\left(a, b, f_{<1,2,2>}(b, a, b)\right) \\
& =f_{<1,2,2>}(a, b, a)=b
\end{aligned}
$$

$$
g(a, b, a)=f_{<1,2,2>}\left(a, b, f_{<1,2,2>}(a, a, b)\right)
$$

$$
=f_{<1,2,2>}(a, b, b)=a
$$

$$
\begin{aligned}
g(a, a, b)= & f_{<1,2,2>}\left(a, a, f_{<1,2,2>}(b, a, a)\right) \\
& =f_{<1,2,2>}(a, a, b)=b .
\end{aligned}
$$

So $g=f_{<2,1,2>}$ hence $f_{<2,1,2\rangle} \in \mathscr{F}^{-}$as promised.]
$(*)_{5} f_{<2,1,2>}=f_{3 ; 3,1}$, i.e.

$$
f_{<2,1,2>}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{lll}
x_{1} & \text { if } & \left|\left\{x_{1}, x_{2}, x_{3}\right\}\right|=3 \\
x_{3} & \text { if } & \left|\left\{x_{1}, x_{2}, x_{3}\right\}\right| \leq 2
\end{array}\right.
$$

when $\left(x_{1}, x_{2}, x_{3}\right) \in W$
[Why? Check.]
$(*)_{6} f_{<2,2,1>}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}$ if $2 \geq\left|\left\{x_{1}, x_{2}, x_{3}\right\}\right|$
[Why? Check.]
$(*)_{7} f_{\langle 2,1,2\rangle} \in \mathscr{F}^{-} \Leftrightarrow f_{<2,2,1\rangle} \in \mathscr{F}^{-}$
[Why? See $(*)_{2}$ in the beginning.]
$(*)_{8} f_{<1,2,1\rangle} \in \mathscr{F}^{-} \Leftrightarrow f_{<1,1,2\rangle} \in \mathscr{F}^{-}$
[Why? By $(*)_{2}$ in the beginning.]
$(*)_{9} f_{\langle 1,2,1\rangle} \in \mathscr{F}^{-} \Rightarrow f_{<2,2,1>} \in \mathscr{F}^{-}$.
[Why? Let $g(x, y, z)=f_{<1,2,1>}\left(x, f_{<1,2,1>}(y, z, x), f_{<1,2,1>}(z, x, y)\right)$

$$
\begin{aligned}
g(a, b, c)= & f_{<1,2,1>}\left(a, f_{<1,2,1>}(b, c, a), f_{<1,2,1>}(c, a, b)\right) \\
& =f_{<1,2,1>}(a, b, c)=a \\
& \text { and hence } g \text { satisfies } \boxtimes_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.g(a, b, b)=f_{<1,2,1>}\left(a, f_{<1,2,1>}(b, b, a), f_{<1,2,1>}(b, a, b)\right)=f_{<1,2,1>}(a, b, a)\right)=b \\
& g(a, b, a)=f_{<1,2,1>}\left(a, f_{<1,2,1>}(b, a, a), f_{<1,2,1>}(a, a, b)\right)=f_{<1,2,1>}(a, b, a)=b \\
& g(a, a, b)=f_{<1,2,1>}\left(a, f_{<1,2,1>}(a, b, a), f_{<1,2,1>}(b, a, a)\right)=f_{<1,2,1>}(a, b, b)=a
\end{aligned}
$$

So $g=f_{<2,2,1>}$ hence $f_{<2,2,1>} \in \mathscr{F}^{-}$.]

Diagram

Diagram (arrows mean belonging to \mathscr{F}^{-}follows)

$$
\begin{gathered}
f_{<2,2,2>} \in \mathscr{F}^{-} \\
\downarrow(*)_{3} \\
f_{<1,2,2>} \in \mathscr{F}^{-} \quad f_{<1,2,1>} \in \mathscr{F}_{(*)_{8}-}^{(*)_{8}} \underset{<\mathscr{F}_{<1,1,2>}}{\Leftrightarrow} \in \mathscr{F}^{-} \\
\downarrow(*)_{4} \\
\searrow \\
f_{<2,1,2>} \in \mathscr{F} \underset{(*)_{7}}{\Leftrightarrow} f_{<2,2,1>} \in \mathscr{F}_{9}^{-}
\end{gathered}
$$

among the 2^{3} function f_{η} one, $f_{<1,1,1>}$ is discarded being a monarchy, see $(*)_{1}$, six appear in the diagram above and implies $f_{r ; 3,1} \in \mathscr{F}^{-}$by $(*)_{5}$ hence clause (a) of 2.8 holds, and one is $g_{r ; 1,2}$ because

$$
(*)_{10} g_{r ; 1,2}=f_{<2,1,1>} \text { on } W .
$$

(Why? Check), so clause (b) of 2.8 holds.
Continuation of the proof of 2.8: As $r(\mathscr{F})=3$ for some $\eta \in{ }^{3} 2, f^{*}$ agrees with f_{η} for all not one-to-one triples \bar{b}. If $\eta=\langle 1,1,1\rangle$ we contradict assumption (γ) as in $(*)_{1}$ of the proof of 2.10 and if $\eta=\langle 2,1,1\rangle$, possibility (b) of 2.8 holds as in $(*)_{10}$ in the proof of 2.10. If $\eta=\langle 2,1,2\rangle$ then $f^{*}(\bar{b})=b_{3}$ for $\bar{b} \in{ }^{3} X$ not one-to-one (see $(*)_{5}$) and this contradicts assumption (γ); similarly if $\eta=\langle 2,2,1\rangle$. In the remaining case (see the diagram in the proof of 2.10), there is $f \in \mathscr{F}$ agreeing on $\left\{\bar{b} \in{ }^{3} X: \bar{b}\right.$ is not one-to-one $\}$ with f_{η} for $\eta=\langle 1,2,2\rangle$ or $\eta=\langle 1,2,1\rangle$, without loss of generality $f^{*}=f$.

If $\eta=\langle 1,2,2\rangle$ define g as in $(*)_{4}$, i.e. $g(x, y, z)=f^{*}\left(x, y, f^{*}(z, x, y)\right)$ so for a non one-to-one sequence $\bar{b} \in{ }^{3} X$ we have $g(\bar{b})=f_{<2,1,2>}(\bar{b})=b_{3}$. If for some one-to-one $\bar{a} \in{ }^{3} X$ we have $f^{*}\left(a_{3}, a_{1}, a_{2}\right) \neq a_{3}$ then $g\left(a_{1}, a_{2}, a_{3}\right)=f^{*}\left(a_{1}, a_{2}, f^{*}\left(a_{3}, a_{1}, a_{2}\right)\right) \in$ $\left\{a_{1}, a_{2}\right\}$ so permuting the variables we get possibility (a). So we are left with the case $\bar{a} \in{ }^{3} X$ is one-to-one $\Rightarrow f^{*}(\bar{a})=a_{1}$.
Let us define $g \in \mathscr{F}_{[3]}$ by $g\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(f^{*}\left(x_{2}, x_{3}, x_{1}\right), x_{3}, x_{2}\right)$. Let $\bar{b} \in{ }^{3} X$; if \bar{b} is with no repetitions then $g(\bar{b})=f^{*}\left(b_{2}, b_{3}, b_{2}\right)=b_{3}$. If $\bar{b}=(a, b, b)$ then $g(\bar{b})=f^{*}\left(f^{*}(b, b, a), b, b\right)=f^{*}(a, b, b)=a=b_{1}$ and if $\bar{b}=(a, b, a)$ then $g(\bar{b})=$ $f^{*}\left(f^{*}(b, a, a), a, b\right)=f^{*}(b, a, b)=a=b_{1}$ and if $\bar{b}=(a, a, b)$ then $g(\bar{b})=f^{*}\left(f^{*}(a, b, a), b, a\right)=$
$f^{*}(b, b, a)=a=b_{1}$; together for \bar{b} not one to one, $g(\bar{b})=b_{1}$. So g is as required in clause (a).

Lastly, let $\eta=\langle 1,2,1\rangle$ and let $g(x, y, z)=f^{*}\left(x, f^{*}(y, z, x), f^{*}(z, x, y)\right)$, now by $(*)_{9}$ of the proof of 2.10 , easily [\bar{b} is not one-to-one $\Rightarrow g(\bar{b})=f_{<2,2,1>}(\bar{b})=b_{2}$]. Now if (a_{1}, a_{2}, a_{3}) is with no repetitions and $f^{*}\left(a_{2}, a_{3}, a_{1}\right)=a_{1}$ then $g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}$ and possibility (a) holds for this g. Otherwise we have $\left[\bar{b} \in{ }^{3} X\right.$ is one-to-one $\left.\Rightarrow f^{*}(\bar{b}) \in\left\{b_{1}, b_{2}\right\}\right\}$; so if $\left(a_{1}, a_{2}, a_{3}\right) \in{ }^{3} X$ is one-to-one and $f^{*}\left(a_{2}, a_{3}, a_{1}\right) \neq a_{2}$ then $g\left(a_{1}, a_{2}, a_{3}\right) \neq a_{2}$ (as $f^{*}\left(a_{3}, a_{1}, a_{2}\right) \neq a_{2}$ hence $g\left(a_{1}, a_{2}, a_{3}\right)=g\left(a_{1}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ for some $\left.a_{2}^{\prime}, a_{3}^{\prime} \neq a_{2}\right)$ so g is not a monarchy hence possibility (a) holds. Hence $\left[\bar{b} \in{ }^{3} X\right.$ is one-to-one $\left.\Rightarrow f^{*}(\bar{b})=b_{2}\right]$. Let $g^{*} \in \mathscr{F}$ be $g^{*}(x, y, z)=f^{*}\left(f^{*}(x, y, z), f^{*}(x, z, y), x\right)$. Now if \bar{b} is one to one then $g^{*}(\bar{b})=f^{*}\left(b_{2}, b_{3}, b_{1}\right)=b_{3}$. Also if $\bar{b}=(a, b, b)$ then $g^{*}(\bar{b})=f^{*}\left(f^{*}(a, b, b), f^{*}(a, b, b), a\right)=f^{*}(a, a, a)=a$, and if $\bar{b}=(a, b, a)$ then $g^{*}(\bar{b})=f^{*}\left(f^{*}(a, b, a), f^{*}(a, a, b), a\right)=f^{*}(b, a, a)=b$ and if $\bar{b}=(a, a, b)$ then $g^{*}(\bar{b})=$ $f^{*}\left(f^{*}(a, a, b), f^{*}(a, b, a), a\right)=f^{*}(a, b, a)=b$. So g^{*} is as required in the case $\eta=\langle 1,2,2\rangle$ so we can return to the previous case.
2.11 Claim. Assume
(α) \mathscr{F} is as in 2.2
(β) every $f \in \mathscr{F}_{[2]}$ is monarchical
$(\gamma) f^{*} \in \mathscr{F}_{[3]}$ is not monarchical.

Then one of the following holds

(a) for every one-to-one $\bar{a} \in{ }^{3} X$ for some $f=f_{\bar{a}}$ we have
(i) $f_{\bar{a}}(\bar{a})=a_{2}$
(ii) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f_{\bar{a}}(\bar{b})=b_{1}$
(b) for every one-to-one $\bar{a} \in{ }^{3} X$, for some $f=f_{\bar{a}} \in \mathscr{F}_{[3]}$ we have:
(i) if \bar{b} is a permutation of \bar{a} then $f_{\bar{a}}(\bar{b})=b_{1}$
(ii) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f_{\bar{a}}(\bar{b})=g_{r ; 1,2}(\bar{b})$.

Proof. As \mathscr{F} is symmetric, it suffices to prove "for some \bar{a} " instead of "for every $\bar{a}^{\prime \prime}$.
Case 1: For some $\ell(*)$ if $\bar{b} \in{ }^{3} X$ is not one to one then $f^{*}(\bar{b})=b_{\ell(*)}$.
As f^{*} is not monarchical for some one-to-one $\bar{a} \in{ }^{3} X, f^{*}(\bar{a}) \neq a_{\ell(*)}$ say $f^{*}(\bar{a})=$ $a_{k(*)}, k(*) \neq \ell(*)$. As \mathscr{F} is symmetrical without loss of generality $\ell(*)=1, k(*)=$ 2. So possibility (a) holds.

Case 2: Not case 1.
By 2.8 , without loss of generality f^{*} satisfies (a) or (b) of 2.8 with f^{*} instead of g. But clause (a) of 2.8 is case 1 above. So we can assume that case (b) of 2.8 holds, i.e.
(*) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f^{*}(\bar{b})=g_{r ; 1,2}$, i.e.

$$
f^{*}(\bar{b})= \begin{cases}b_{2} & \text { if } b_{2}=b_{3} \\ b_{1} & \text { if } b_{2} \neq b_{3}\end{cases}
$$

If 2.10 applies we are done as then (a) or (b) of 2.10 holds hence (a) or (b) of 2.11 respectively holds, so assume 2.10 does not apply. So consider a one-to-one sequence $\bar{a} \in{ }^{3} X$ and (recalling that for $\bar{b} \in{ }^{3} X$ with repetitions $g_{r ; 1,2}(\bar{b})$ is preserved by permutations of \bar{b}) it follows that we have sequences \bar{a}^{1}, \bar{a}^{2}, both permutations of \bar{a} such that $\bigvee_{i}\left[\left(f^{*}\left(\bar{a}^{1}\right)=a_{i}^{1}\right) \equiv\left(f^{*}\left(\bar{a}^{2}\right) \neq a_{i}^{2}\right)\right]$.

Using closure under composition of \mathscr{F} and its being symmetric, for every permutation σ of $\{1,2,3\}$ (and as $g_{r ; 1,2}(\bar{b})$ is preserved by permuting the variables \bar{b} when \bar{b} is with repetition) for each $\sigma \in \operatorname{Per}\{1,2,3\}$ there is $f_{\sigma} \in \mathscr{F}_{[3]}$ such that:
(i) $f_{\sigma}\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\right)=a_{1}$
(ii) if $\bar{b} \in{ }^{3} X$ not one-to-one then $f(\bar{b})=g_{r ; 1,2}(\bar{b})$.

Let $\left\langle\sigma_{\rho}: \rho \in{ }^{3} 2\right\rangle$ list the permutations of $\{1,2,3\}$, necessarily with repetitions. Now we define by downward induction of $k \leq 3, f_{\rho} \in \mathscr{F}$ for $\rho \in{ }^{k} 2$ (sequences of zeroes and ones of length k) as follows:

$$
\ell g(\rho)=3 \Rightarrow f_{\rho}=f_{\sigma_{\rho}}
$$

$$
\ell g(\rho)<3 \Rightarrow f_{\rho}\left(x_{1}, x_{2}, x_{3}\right)=f_{\rho}\left(x_{1}, f_{\rho^{\wedge}<0>}\left(x_{1}, x_{2}, x_{3}\right), f_{\rho^{\wedge}<1>}\left(x_{1}, x_{2}, x_{3}\right)\right)
$$

Easily (by downward induction):
$(*)_{1}$ if $\bar{b} \in{ }^{3} X$ is with repetitions and $\rho \in{ }^{k} 2, k \leq 3$ then $f_{\rho}(\bar{b})=g_{r ; 1,2}(\bar{b})$ (as $g_{r ; 1,2}$ act as majority).
Now we prove by downward induction on $k \leq 3$
$(*)_{2}$ if \bar{b} is a permutation of $\bar{a}, \rho \in{ }^{k} 2, \rho \triangleleft \nu \in{ }^{3} 2$ and $f_{\nu}(\bar{b})=a_{1}$ then $f_{\rho}(\bar{b})=a_{1}$.
This is straight and so $f_{<>}$is as required in clause (b).
Similarly
2.12 Claim. 1) If $g_{r ; \ell, k} \in \mathscr{F}$ then
(a) $g_{r ; \ell_{1}, k_{1}} \in \mathscr{F}$ when $\ell_{1} \neq k_{1} \in\{1, \ldots, r\}$.

Proof. 1)(a) Trivial.

§3 Getting \mathfrak{C} is full

3.1 Lemma.: Assume

(a) $r \geq 3, \mathscr{F}$ is as in 2.2 (or just is a clone on X)
(*) $f_{r ; 1,2} \in \mathscr{F}$ or just
$(*)^{-}$if $\bar{a} \in{ }^{r} X$ one-to-one then for some $f=f_{\bar{a}} \in \mathscr{F}, f_{\bar{a}}(\bar{a})=a_{2}$ and $\left[\bar{b} \in{ }^{r} X\right.$ not one-to-one $\left.\Rightarrow f_{\bar{a}}(\bar{b})=b_{1}\right]$
(b) \mathfrak{C} is a (non empty) family of choice functions for $\binom{X}{k}=\{Y \subseteq X:|Y|=k\}$
(c) \mathfrak{C} is closed under every $f \in \mathscr{F}$
(d) \mathfrak{C} is symmetric
(e) $k \geq r>2, k \geq 7,|X|-k \geq 5, r$.

Then \mathfrak{C} is full (i.e. every choice function is in).

Proof. Without loss of generality $r \geq 4$ (if $r=3$ then clause (e) is fine also for $r=4$, if in clause (a) the case $(*)$ holds is O.K. by 2.7 , and if $(*)^{-}$we repeat the proof of 2.7 for the case $r=3$, only $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{<a_{1}, a_{2}, a_{3}>}\left(x_{1}, \tau_{2}, \tau_{3}\right)$ where $\tau_{2}=f_{\left\langle a_{1}, a_{2}, a_{4}\right\rangle}\left(x_{1}, x_{2}, x_{4}\right), \tau_{3}=f_{\left\langle a_{1}, a_{3}, a_{4}\right\rangle}\left(x_{1}, x_{3}, x_{4}\right)$ where for one-to-one $\bar{a} \in{ }^{3} X, f_{\bar{a}}$ is defined by the symmetry; this is the proof of 4.7). Assume
$\boxtimes c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, c_{1}^{*}\left(Y^{*}\right)=a_{1}^{*}$ and $a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$.
Question: Is there $c \in \mathfrak{C}$ such that $c\left(Y^{*}\right)=a_{2}^{*}$ and $\left(\forall Y \in\binom{X}{k}\right)\left(Y \neq Y^{*} \Rightarrow c(Y)=\right.$ $\left.c_{1}^{*}(Y)\right)$?
Choose $c_{2}^{*} \in \mathfrak{C}$ such that
(a) $c_{2}^{*}\left(Y^{*}\right)=a_{2}^{*}$
(b) $n\left(c_{2}^{*}\right)=\left|\left\{Y \in\binom{X}{k}: c_{2}^{*}(Y)=c_{1}^{*}(Y)\right\}\right|$ is maximal under (a).

Easily \mathfrak{C} is not a singleton so $n\left(c_{2}^{*}\right)$ is well defined.
3.2 Subfact: A positive answer to the question implies that \mathfrak{C} is full. [Why? Easy.]

Hence if $n\left(c_{2}^{*}\right)=\binom{|X|}{k}-1$ we are done so assume not and let $Z \in\binom{X}{k}, Z \neq$ $Y^{*}, c_{1}^{*}(Z) \neq c_{2}^{*}(Z)$.

Case 1: For some Z as above and $c_{3}^{*} \in \mathfrak{C}$ we have

$$
\begin{gathered}
c_{3}^{*}\left(Y^{*}\right) \notin\left\{a_{1}^{*}, a_{2}^{*}\right\} \\
c_{3}^{*}(Z) \in\left\{c_{1}^{*}(Z), c_{2}^{*}(Z)\right) .
\end{gathered}
$$

If so, let $a_{3}^{*}=c_{3}^{*}\left(Y^{*}\right)$ and $a_{4}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$, etc. so $\left\langle a_{1}^{*}, \ldots, a_{r}^{*}\right\rangle$ is one-to-one, $a_{\ell}^{*} \in Y^{*}$.
Let $c_{\ell}^{*} \in \mathfrak{C}$ for $\ell=4, \ldots$ be such that $c_{\ell}^{*}\left(Y^{*}\right)=a_{\ell}$ exists as \mathfrak{C} is symmetric.
By assumption (a) we can choose $f \in \mathscr{F}_{[r]}$ such that

$$
\left\{\begin{array}{l}
f\left(a_{1}^{*}, \ldots, a_{r}^{*}\right)=a_{2}^{*}, \\
\bar{a} \in{ }^{r} X \text { is with repetitions } \Rightarrow f(\bar{a})=a_{1}
\end{array}\right.
$$

Let $c=f\left(c_{1}^{*}, c_{2}^{*}, \ldots, c_{r}^{*}\right)$ so $c \in \mathfrak{C}$ and:

$$
\begin{gathered}
c\left(Y^{*}\right)=f\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{r}^{*}\right)=a_{2}^{*} \\
Y \in\binom{X}{k} \& c_{1}^{*}(Y)=c_{2}^{*}(Y) \Rightarrow c(Y)=f\left(c_{1}^{*}(Y), c_{2}^{*}(Y), \ldots\right) \\
=f\left(c_{1}^{*}(Y), c_{1}^{*}(Y), \ldots\right)=c_{1}^{*}(Y) \\
c(Z)=f\left(c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z), \ldots\right) \\
=c_{1}^{*}(Z)\left(\operatorname{as}\left|\left\{c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z)\right\}\right| \leq 2\right)
\end{gathered}
$$

So c contradicts the choice of c_{2}^{*}.
Case 2: There are $c_{3}^{*}, c_{4}^{*} \in \mathfrak{C}$ such that $c_{3}^{*}\left(Y^{*}\right) \neq c_{4}^{*}\left(Y^{*}\right)$ are $\neq a_{1}^{*}, a_{2}^{*}$ but $c_{3}^{*}(Z)=$ $c_{4}^{*}(Z)$ or at least $\left|\left\{c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z), c_{4}^{*}(Z)\right\}\right|<4$.

Proof. Similar.

Case 3: Not case 1 nor 2.
Let $\mathscr{P}=\left\{Z: Z \subseteq X,|Z|=k\right.$ and $\left.c_{1}^{*}(Z) \neq c_{2}^{*}(Z)\right\}$ so
$(*)_{1} \quad Y^{*} \in \mathscr{P}$ and $\mathscr{P} \neq\binom{ X}{k},\left\{Y^{*}\right\}$.
[Why? $\mathscr{P} \neq\left\{Y^{*}\right\}$ by the subfact above. Also we can find $Z \in\binom{X}{k}$
such that $\left|Y^{*} \backslash Z\right|=2, c_{1}^{*}\left(Y^{*}\right) \notin Z$. Let $\pi \in \operatorname{Per}(X)$ be the identity on $Z, \pi\left(c_{1}^{*}\left(Y^{*}\right)\right) \neq c_{1}^{*}\left(Y^{*}\right), \pi\left(Y^{*}\right)=Y^{*}$. So conjugating c_{1}^{*} by π we get c_{2}^{*} satisfying $n\left(c_{2}^{*}\right)>0$.]
$(*)_{2}$ if $Z \in \mathscr{P}, c \in \mathfrak{C}$ and $c(Z) \in\left\{c_{1}^{*}(Z), c_{2}^{*}(Z)\right\}$ then $c\left(Y^{*}\right) \in\left\{c_{1}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right)\right\}$. [Why? By not case 1 except when $Z=Y^{*}$ which is trivial.]

Sub-case 3a: For some Z we have

$$
\begin{cases}Z \in \mathscr{P} & \text { and : } \\ \left|Y^{*} \backslash Z\right| \geq 4 & \text { or just }\left|Y^{*} \backslash Z \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right| \geq 2 \text { and }\left|Y^{*} \backslash Z\right| \geq 3\end{cases}
$$

Let $b_{1}, b_{2}, b_{3} \in Y^{*} \backslash Z$ be pairwise distinct. As \mathfrak{C} is symmetric there are $d_{1}, d_{2}, d_{3} \in \mathfrak{C}$ such that $d_{\ell}\left(Y^{*}\right)=b_{\ell}$ for $\ell=1,2,3$. The number of possible truth values of $d_{\ell}(Z) \in Y^{*}$ is 2 so without loss of generality $d_{1}(Z) \in Y^{*} \leftrightarrow d_{2}(Z) \in Y^{*}$ and we can forget b_{3}, d_{3}.
So for some $\pi \in \operatorname{Per}(X)$ we have $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z, \pi \upharpoonright\left(Y^{*} \backslash Z\right)=$ identity hence $\pi\left(b_{\ell}\right)=b_{\ell}$ for $\ell=1,2$ and $\pi\left(d_{1}(Z)\right)=d_{2}(Z)$, note that $d_{\ell}(Z) \in Z$, so this is possible; so without loss of generality $d_{1}(Z)=d_{2}(Z)$.

As $\left|Y^{*} \backslash Z \backslash\left\{a_{2}^{*}, a_{2}^{*}\right\}\right| \geq 2$, using another $\pi \in \operatorname{Per}(X)$ without loss of generality $\left\{b_{1}, b_{2}\right\} \cap\left\{a_{1}^{*}, a_{2}^{*}\right\}=\emptyset$. So d_{1}, d_{2} gives a contradiction by our assumption "not case 2 ".

Remark. This is enough for non polynomial $|\mathfrak{C}|$ as $\left|\left\{Y:\left|Y \backslash Z^{*}\right| \leq 3\right\}\right| \leq|Y|^{6}$.

Case 3b: Not case 3a.

So $Z \in \mathscr{P} \backslash\left\{Y^{*}\right\} \Rightarrow\left|Z \backslash Y^{*}\right| \leq 3$ hence (recalling $\left|Z \backslash Y^{*}\right|=\left|Y^{*} \backslash Z\right|$) we have $Z \in \mathscr{P} \backslash\left\{Y^{*}\right\} \Rightarrow\left|Z \cap Y^{*}\right| \geq k-3 \geq 1$.
Now
\boxtimes_{0} for $Z \in \mathscr{P} \backslash\left\{Y^{*}\right\}$ there is $c^{*} \in \mathfrak{C}$ such that $c^{*}\left(Y^{*}\right) \neq c^{*}(Z)$
[Why? Otherwise "by \mathfrak{C} is symmetric" for any $Z \in \mathscr{P} \backslash\left\{Y^{*}\right\}$ we have:

$$
c \in \mathfrak{C} \wedge\left\{Y^{\prime}, Y^{\prime \prime}\right\} \subseteq\binom{X}{k} \wedge\left|Y^{\prime} \cap Y^{\prime \prime}\right|=\left|Z \cap Y^{*}\right| \Rightarrow c\left(Y^{\prime}\right)=c\left(Y^{\prime \prime}\right)
$$

Define a graph $\mathfrak{G}=\mathfrak{G}_{Z}$: the set of nodes $\binom{X}{k}$

$$
\text { the set of edge }\left\{\left(Y^{\prime}, Y^{\prime \prime}\right):\left|Y^{\prime} \cap Y^{\prime \prime}\right|=\left|Y^{*} \cap Z\right|\right\}
$$

now this graph is connected: if $\mathscr{P}_{1}, \mathscr{P}_{2}$ are nonempty disjoint set of nodes with union $\binom{X}{k}$, then there is a cross edge by 3.5 below (why? clause (α) there is impossible by $(*)_{1}$ and clause (β) is impossible by the first sentence of case 3 b). This gives contradiction to \circledast. So \boxtimes_{0} holds.]

We claim:
\boxtimes_{1} for $Z \in \mathscr{P}$ and $d \in \mathfrak{C}$ we have
$d\left(Y^{*}\right) \in Z \cap Y^{*} \Rightarrow d(Z)=d\left(Y^{*}\right)$.
[Why? Assume d, Z forms a counterexample; recall that $\left|Y^{*} \backslash Z\right| \leq 3$ and $k \geq 7$ (see 3.1(e)) so if $k \geq 8$ then $\left|Y^{*} \cap Z\right| \geq k-3 \geq 5$ so $Y^{*} \cap Z \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ has ≥ 3 members; looking again at sub-case 3a this always holds. Now for some $\pi_{1}, \pi_{2} \in \operatorname{Per}(X)$ we have $\pi_{1}\left(Y^{*}\right)=Y^{*}=\pi_{2}\left(Y^{*}\right), \pi_{1}(Z)=$ $Z=\pi_{2}(Z), \pi_{1}(d(Z))=\pi_{2}(d(Z)), \pi_{1}\left(d\left(Y^{*}\right)\right) \neq \pi_{2}\left(d\left(Y^{*}\right)\right)$ are from $Z \cap$ $Y^{*} \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$; recall we are assuming that $d\left(Y^{*}\right) \in Z \cap Y^{*}$ and $d(Z) \neq d\left(Y^{*}\right)$. Let d_{1}, d_{2} be gotten from d by conjugating by π_{1}, π_{2}, so we get Case 2 , contradiction to the assumption of Case 3.]
\boxtimes_{2} if $d \in \mathfrak{C}, Y \in\binom{X}{k}$ and $d(Y)=a$ then
$\left(\forall Y^{\prime}\right)\left(a \in Y^{\prime} \in\binom{X}{k} \rightarrow d\left(Y^{\prime}\right)=a\right)$.
[Why? By $\boxtimes_{1}+$ "C closed under permutations of X ", we get: if $k^{*} \in$ $N=:\left\{\left|Z \cap Y^{*}\right|: Z \in \mathscr{P} \backslash\left\{Y^{*}\right\}\right\}$ (which is not empty) then: if $Z_{1}, Z_{2} \in$ $\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k^{*}, d \in \mathfrak{C}$ and $d\left(Z_{1}\right) \in Z_{2}$ then $d\left(Z_{1}\right)=d\left(Z_{2}\right)$. Clearly if $k^{*} \in N$ then $k^{*}<k\left(\right.$ by $\left.Z \neq Y^{*}\right)$ and $2 k-k^{*} \leq|X|$. As in the beginning of the proof of \boxtimes_{1}, we can choose such $k^{*}>0$. So for the given $d \in \mathfrak{C}$ and $a \in X$, claim 3.5 below applied to $k^{*}-1, k-1, X \backslash\{a\},\left(\left\{Y^{\prime} \backslash\{a\}: a \in Y^{\prime}\right.\right.$ and $d(Y)=a\},\left\{Y^{\prime} \backslash\{a\}: a \in Y^{\prime}\right.$ and $\left.\left.d\left(Y^{\prime}\right) \neq a\right\}\right)$. By our assumption the first family is $\neq \emptyset$. Now clause (α) there gives the desired conclusion (for Y, a as in \boxtimes_{2}). As we know $k-k^{*} \leq 3, k \geq 7$ clause (β) is impossible so we are done.]

Now we get a contradiction: as said above in \boxtimes_{0} for some $c^{*} \in \mathfrak{C}$ and $Z \in \mathscr{P} \backslash\left\{Y^{*}\right\}$ we have $c^{*}\left(Y^{*}\right) \neq c^{*}(Z)$, choose $Y \in\binom{X}{k}$ such that $\left\{c^{*}\left(Y^{*}\right), c^{*}(Z)\right\} \subseteq Y$. So by \boxtimes_{2} we have $d(Y)=d\left(Y^{*}\right)$ and also $d(Y)=d(Z)$, contradiction.
3.3 Claim. In 3.1 we can replace (a) by
$(a)^{*}(i) \mathscr{F}$ is as in 2.2 (or just is a clone on $X, r=3$) and
(ii) $g^{*} \in \mathscr{F}_{[3]}$ where (note $g^{*}=g_{3 ; 1,2}$)

$$
g^{*}\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}x_{2} & x_{2}=x_{3} \\ x_{1} & \text { otherwise }\end{cases}
$$

or just
(ii) ${ }^{-}$for any $\bar{a}^{*} \in{ }^{r} X$ with no repetitions for some $g=g_{\bar{a}^{*}}, g\left(\bar{a}^{*}\right)=a_{1}^{*}$ and if $\bar{a} \in{ }^{r} X$ is with repetitions then $g_{\bar{a}^{*}}(\bar{a})=g^{*}(\bar{a})$.

Proof. Let $c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, a_{1}^{*}=c_{1}^{*}\left(Y^{*}\right), a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$, we choose c_{2}^{*} as in the proof of 3.1.

Let $\mathscr{P}=\left\{Y: Y \in\binom{X}{k}, Y \neq Y^{*}, c_{1}^{*}(Y) \neq c_{2}^{*}(Y)\right\}$; we assume $\mathscr{P} \neq \emptyset$ and shall get a contradiction, (this suffices).
$(*)_{1}$ there are no $Z \in \mathscr{P}$ and $d \in \mathfrak{C}$ such that

$$
\begin{gathered}
d\left(Y^{*}\right)=c_{2}^{*}\left(Y^{*}\right) \\
d(Z) \neq c_{2}^{*}(Z)
\end{gathered}
$$

[Why? If so, let $c=g\left(c_{1}^{*}, c_{2}^{*}, d\right)$ where g is g^{*} or just any $g_{\left\langle c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)>\right.}$ (from $(a)^{*}(i i)^{-}$of the assumption).

So $c \in \mathfrak{C}$ and
(A) $c\left(Y^{*}\right)=g\left(c_{1}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right), d\left(Y^{*}\right)\right)=g\left(c_{1}^{*}(Y), c_{2}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right)\right)=c_{2}^{*}\left(Y^{*}\right)$
(B) $c(Z)=g\left(c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)\right)=c_{1}^{*}(Z)$ as $d(Z) \neq c_{2}^{*}(Z)$
(two cases: if $\left\langle c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)\right\rangle$ with no repetitions - by the choice of g, otherwise it is equal to $g^{*}\left(c_{1}^{*}(Z), c_{2}^{*}(Z), c_{1}^{*}(Z)\right)=c_{1}^{*}(Z)$
(C) $Y \in\binom{Y}{k}, Y \neq Y^{*}, Y \notin \mathscr{P} \Rightarrow c_{2}^{*}(Y)=c_{1}^{*}(Y) \Rightarrow c(Y)=g\left(c_{1}^{*}(Y), c_{2}^{*}(Y), d(Y)\right)=$ $g^{*}\left(c_{1}^{*}(Y), c_{1}^{*}(Y), d(Y)\right)=c_{1}^{*}(Y)$.

So $(*)_{1}$ holds by c_{2}^{*}-s choice.]
$(*)_{2}$ if $\pi \in \operatorname{Per}(X), \pi\left(Y^{*}\right)=Y^{*}$ and $\pi\left(c_{2}^{*}\left(Y^{*}\right)\right)=c_{2}^{*}\left(Y^{*}\right)$ then
(α) $Y \in \mathscr{P} \& \pi(Y)=Y \Rightarrow \pi\left(c_{2}^{*}(Y)\right)=c_{2}^{*}(Y)$
(β) $Y \in \mathscr{P} \Rightarrow c_{2}^{*}(\pi(Y))=\pi\left(c_{2}^{*}(Y)\right)$.
[Why? Otherwise may "conjugate" c_{2}^{*} by π^{-1} getting $d \in \mathfrak{C}$ which gives a contradiction to $(*)_{1}$.]
$(*)_{3}$ let $Z \in \mathscr{P}$ then there are no $d_{1}, d_{2} \in \mathfrak{C}$ such that
$d_{1}(Z)=d_{2}(Z) \neq c_{2}^{*}(Z)$
$d_{1}\left(Y^{*}\right) \neq d_{2}\left(Y^{*}\right)$.
$\left[\right.$ Why? By $(*)_{1}, d_{\ell}\left(Y^{*}\right) \neq c_{2}^{*}\left(Y^{*}\right)$. Now let $g=g_{\left\langle c_{2}^{*}\left(Y^{*}\right), d_{1}\left(Y^{*}\right), d_{2}\left(Y^{*}\right)\right\rangle}$ be
as in the proof of $(*)_{1}$. If the conclusion fails we let $c=g\left(c_{2}^{*}, d_{1}, d_{2}\right)$ so $c\left(Y^{*}\right)=g\left(c_{2}^{*}\left(Y^{*}\right), d_{1}\left(Y^{*}\right), d_{2}\left(Y^{*}\right)\right)=c_{2}^{*}\left(Y^{*}\right)$ as $d_{1}\left(Y^{*}\right) \neq d_{2}\left(Y^{*}\right)+$ choice of g and $c(Z)=g\left(c_{2}^{*}(Z), d_{1}(Z), d_{2}(Z)\right)=d_{1}(Z) \neq c_{2}^{*}(Z)$ as $d_{1}(Z)=d_{2}(Z) \neq$ $c_{2}^{*}(Z)$.
So c contradicts $(*)_{1}$.]
$(*)_{4}$ for $Z \in \mathscr{P}$, there are no $d_{1}, d_{2} \in \mathfrak{C}$ such that $d_{1}(Z)=d_{2}(Z), d_{1}\left(Y^{*}\right) \neq$ $d_{2}\left(Y^{*}\right)$ except possibly when $\left\{d_{1}(Z)\right\}=\left\{c_{2}^{*}(Z)\right\} \in\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$.
[Why? If $d_{1}(Z) \neq c_{2}^{*}(Z)$ use $(*)_{3}$, so assume $d_{1}(Z)=c_{2}^{*}(Z)$. By the "except possibly" there is $\pi \in \operatorname{Per}(X)$ satisfying $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=$ Z and $\pi\left(c_{2}^{*}(Z)\right) \neq c_{2}^{*}(Z)$, now we use it to conjugate d_{1}, d_{2}, getting the situation in $(*)_{3}$; contradiction.]

Let

$$
K=\left\{(m): \text { for some } Z \in \mathscr{P} \text { we have }\left|Z \cap Y^{*}\right|=m\right\}
$$

we are assuming $K \neq \emptyset$. By $(*)_{4}+$ symmetry we know
$(*)_{5}$ if $(m) \in K, 1 \neq m<k-1$ and $c_{1}, c_{2} \in \mathfrak{C}$ and $Z_{1}, Z_{2} \in\binom{X}{k}$ satisfies $c_{1}\left(Z_{1}\right)=c_{2}\left(Z_{1}\right)$ and $\left|Z_{1} \cap Z_{2}\right|=m$, then $c_{1}\left(Z_{2}\right)=c_{2}\left(Z_{2}\right)$.
[Why? Let $Z \in \mathscr{P}$, some $\pi \in \operatorname{Per}(X)$ maps Z_{1}, Z_{2} to Z, Y^{*} respectively.]
Case 1: There is $(m) \in K$ such that $1 \neq m<k-1$, let $\mathscr{P}^{\prime}=\mathscr{P} \cup\left\{Y^{*}\right\}$.
For any $c_{1}, c_{2} \in \mathfrak{C}$ let $\mathscr{P}_{c_{1}, c_{2}}=\left\{Y \in\binom{Y}{k}: c_{1}(Y)=c_{2}(Y)\right\}$.
By $(*)_{5}$ we have $\left[Y_{1}, Y_{2} \in\binom{X}{k} \wedge\left|Y_{1} \cap Y_{2}\right|=m \Rightarrow\left[Y_{1} \in \mathscr{P}_{c_{1}, c_{2}} \equiv Y_{2} \in \mathscr{P}_{c_{1}, c_{2}}\right]\right]$.
Let $Y_{1} \in\binom{X}{k}, c_{1} \in \mathfrak{C}$, let $a=c_{1}\left(Y_{1}\right)$ let $Y_{2} \in\binom{X}{k}$ be such that $\{a, b\}=Y_{1} \backslash Y_{2}$ for some $b \neq a$. By conjugation there is $c_{2} \in \mathfrak{C}$ such that $c_{2}\left(Y_{1}\right)=a=c_{1}\left(Y_{1}\right) \quad \&$ $c_{1}\left(Y_{2}\right) \neq c_{2}\left(Y_{2}\right)$. So $Y_{1} \in \mathscr{P}_{c_{1}, c_{2}}$ and $Y_{2} \notin \mathscr{P}_{c_{1}, c_{2}}$. To $\mathscr{P}_{c_{1}, c_{2}}$ apply 3.5 below; so necessarily $|X|=2 k, m=0$. But as $m=0,(m) \in K$ there is $Y \in \mathscr{P}$ satisfying $\left|Y \cap Y^{*}\right|=m=0$ hence $Y=X \backslash Y^{*}$, and by $(*)_{2}(\alpha)$ we get a contradiction, i.e. we can find a π contradicting it.

Case 2: $(m) \in K, m=k-1$ and not Case 1, (i.e., for no $\left.m^{\prime}\right)$.
Let $Z \in \mathscr{P}$ be such that $\left|Z \cap Y^{*}\right|=k-1$ so by $(*)_{4}$ and \mathfrak{C} being symmetric
$(*)_{6}$ if $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1, d_{1}, d_{2} \in \mathfrak{C}, d_{1}\left(Z_{1}\right)=d_{2}\left(Z_{1}\right), d_{1}\left(Z_{2}\right) \neq$ $d_{2}\left(Z_{2}\right)$ then $\left\{d_{1}\left(Z_{1}\right)\right\}=Z_{1} \backslash Z_{2}$.
Also
$(*)_{7}$ if $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1$ then for no $d \in \mathfrak{C}$ do we have $d\left(Z_{1}\right) \neq$ $d\left(Z_{2}\right) \&\left\{d\left(Z_{1}\right), d\left(Z_{2}\right)\right\} \subseteq Z_{1} \cap Z_{2}$.
[Why? Applying appropriate $\pi \in \operatorname{Per}(X)$ we get a contradiction to $(*)_{6}$.]

Thus case (2) is finished by the following claim (and then we shall continue).
3.4 Claim. Assume $(a)^{*}$ of 3.3 and (b), (c) of 3.1 and $(*)_{7}$ above (on $\left.\mathfrak{C}\right)$. Then \mathfrak{C} is full.

Proof of 3.4. Now
$(*)_{8}$ for every $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1$ and $a \in Z_{1} \cap Z_{2}$ there is no $d \in \mathfrak{C}$ such that $d\left(Z_{1}\right)=d\left(Z_{2}\right)=a$.

Why? Otherwise we can find Z_{1}, Z_{2} such that $\left|Z_{1} \cap Z_{2}\right|=k-1, d\left(Z_{1}\right)=d\left(Z_{2}\right)=a$ hence for every $Z_{1}, Z_{2} \in\binom{X}{k}$ such that $\left|Z_{1} \cap Z_{2}\right|=k-1$ and $a \in Z_{1} \cap Z_{2}$ there is such a d (using appropriate $\pi \in \operatorname{Per}(X)$).
Let $Z_{1}, Z_{2} \in\binom{X}{k}$ such that $\left|Z_{1} \cap Z_{2}\right|=k-1$. Let $x \neq y \in Z_{1} \cap Z_{2}$. Choose $d_{1} \in \mathfrak{C}$ such that $d_{1}\left(Z_{1}\right)=d_{1}\left(Z_{2}\right)=x$.
Choose $d_{2} \in \mathfrak{C}$ such that $d_{2}\left(Z_{1}\right)=d_{2}\left(Z_{2}\right)=y$.
Choose $d_{3} \in \mathfrak{C}$ such that $d_{3}\left(Z_{1}\right)=y, d_{3}\left(Z_{2}\right) \in Z_{2} \backslash Z_{1}$.
Why is it possible to choose d_{3} ? (Using $\pi \in \operatorname{Per}(X)$), otherwise (using $(*)_{7}$) we have
\otimes if $Y_{1}, Y_{2} \in\binom{X}{k},\left|Y_{1} \cap Y_{2}\right|=k-1$
$d \in \mathfrak{C}, d\left(Y_{1}\right) \in Y_{1} \cap Y_{2}$ then $d\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$
hence by $(*)_{7}, d\left(Y_{2}\right)=d\left(Y_{1}\right)$
so for $d \in \mathfrak{C}$ we have (by a chain of Y^{\prime} s)

$$
Y_{1}, Y_{2} \in\binom{X}{k}, d\left(Y_{1}\right) \in Y_{1} \cap Y_{2} \Rightarrow d\left(Y_{2}\right)=d\left(Y_{1}\right)
$$

Let $c \in \mathfrak{C}, Y_{1} \in\binom{X}{k}, x_{1}=c\left(Y_{1}\right)$. Let $x_{2} \in X \backslash Y_{1}, Y_{2}=Y_{1} \cup\left\{x_{2}\right\} \backslash\left\{x_{1}\right\}$, so if $c\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$ we get a contradiction, so $d\left(Y_{2}\right)=x_{2}$.
Let $x_{3} \in Y_{1} \cap Y_{2}, Y_{3}=Y_{1} \cup Y_{2} \backslash\left\{x_{3}\right\}$ so $Y_{3} \in\binom{X}{k},\left|Y_{3} \cap Y_{1}\right|=k-1=\left|Y_{3} \cap Y_{2}\right|$ and clearly $c\left(Y_{1}\right), c\left(Y_{2}\right) \in Y_{3}$.
If $c\left(Y_{3}\right) \notin Y_{1}$ then Y_{3}, Y_{1} contradict \otimes. If $c\left(Y_{3}\right) \notin Y_{2}$ then Y_{3}, Y_{2} contradict \otimes. But $c\left(Y_{3}\right) \in Y_{3} \subseteq Y_{1} \cup Y_{2}$ contradiction. So d_{3} exists.

We shall use $d_{1}, d_{2}, d_{3}, Z_{1}, Z_{2}$ to get a contradiction (thus proving $\left.(*)_{8}\right)$.
Let $\{z\}=Z_{2} \backslash Z_{1}$ so $\langle x, y, z\rangle$ is with no repetitions.
Let $d=g\left(d_{1}, d_{2}, d_{3}\right)$ so with $g=g^{*}$ or $g=g_{\langle x, y, z>}$

$$
\begin{aligned}
d\left(Z_{1}\right)= & g\left(d_{1}\left(Z_{1}\right), d_{2}\left(Z_{1}\right), d_{3}\left(Z_{1}\right)\right)=g(x, y, y)=y \\
& (\text { see Definition of } g)
\end{aligned}
$$

$$
\begin{gathered}
d\left(Z_{2}\right)=g\left(d_{1}\left(Z_{2}\right), d_{2}\left(Z_{2}\right), d_{3}\left(Z_{2}\right)\right) \\
=g(x, y, z)=x
\end{gathered}
$$

by Definition of g as $y \neq z$ because $y \in Z_{1}, z \notin Z_{1}$.

So Z_{1}, Z_{2}, d contradicts $(*)_{7}$.
So we have proved $(*)_{8}$.
$(*)_{9}$ if $\left|Z_{1} \cap Z_{2}\right|=k-1, Z_{1}, Z_{2} \in\binom{X}{k}, d \in \mathfrak{C}, d\left(Z_{1}\right) \in Z_{1} \cap Z_{2}$, then $d\left(Z_{2}\right) \in Z_{2} \backslash Z_{1}$. [Why? By $(*)_{7}, d\left(Z_{2}\right) \notin Z_{1} \cap Z_{2} \backslash\left\{d\left(Z_{1}\right)\right\}$ and by $(*)_{8}, d\left(Z_{2}\right) \notin\left\{d\left(Z_{1}\right)\right\}$.]

Now we shall finish proving the claim 3.4.

Let $c \in \mathfrak{C}$.

Now let $x_{1}, x_{2} \in X$ be distinct and $Y \subseteq X \backslash\left\{x_{1}, x_{2}\right\},|Y|=k$. Let $x_{3}=c(Y), x_{4} \in$ $Y \backslash\left\{x_{3}\right\}$ and $x_{5} \in Y \backslash\left\{x_{3}, x_{4}\right\}$.
So $Y_{1}=Y \cup\left\{x_{1}\right\} \backslash\left\{x_{4}\right\}$ belong to $\binom{X}{k}$ satisfies $\left|Y_{1} \cap Y\right|=k-1$ and $c(Y)=x_{3} \in Y_{1} \cap Y$ hence by $(*)_{9}$, we have $c\left(Y_{1}\right)=x_{1}$.
Let $Y_{2}=Y \cup\left\{x_{2}\right\} \backslash\left\{x_{4}\right\}$ so similarly $c\left(Y_{2}\right)=x_{2}$.
Let $Y_{3}=Y \cup\left\{x_{1}, x_{2}\right\} \backslash\left\{x_{4}, x_{5}\right\}$, so $Y_{3} \in\binom{X}{k}$ and $Y_{3} \backslash Y_{1}=\left\{x_{2}\right\}$ and $Y_{3} \backslash Y_{2}=\left\{x_{1}\right\}$. The proof now splits to three cases.
If $c\left(Y_{3}\right) \in Y$, then

$$
c\left(Y_{3}\right) \in Y_{3} \cap Y=Y \backslash\left\{x_{4}, x_{5}\right\} \subseteq Y_{1} \text { hence } c\left(Y_{3}\right) \in Y_{3} \cap Y_{1}
$$

recall

$$
c\left(Y_{1}\right)=x_{1} \in Y_{3} \cap Y_{1}
$$

and $c\left(Y_{3}\right) \neq x_{1}$ as $x_{1} \notin Y$ so $\left(Y_{3}, Y_{1}, c\right)$ contradicts $(*)_{7}$.
If $c\left(Y_{3}\right)=x_{1}$, then recalling $c\left(Y_{1}\right)=x_{1}$ clearly c, Y_{3}, Y_{1} contradicts $(*)_{8}$.
If $c\left(Y_{3}\right)=x_{2}$, then recalling $c\left(Y_{2}\right)=x_{2}$ clearly c, Y_{3}, Y_{2} contradicts $(*)_{8}$.
Together contradiction, so we have finished proving 3.4 hence Case 2 in the proof of 3.1.

Continuation of the proof of 3.1:
Case 3: Neither case 2 nor case 3.
As $\mathscr{P} \neq \emptyset$ (otherwise we are done) clearly $K=\{(1)\}$. So easily (clearly $2 k-1 \leq$ $|X|$ as $(1) \in K)$ and
\boxtimes_{1} if $\left|Y_{1} \cap Y_{2}\right|=1, Y_{1} \in\binom{X}{k}, Y_{2} \in\binom{X}{k}$ and $d \in \mathfrak{C}$ then $d\left(Y_{1}\right) \in Y_{1} \cap Y_{2} \vee d\left(Y_{2}\right) \in$ $Y_{1} \cap Y_{2}$.
[Why? Otherwise by conjugation we can get a contradiction to $(*)_{4}$ above.]
$\boxtimes_{2} Y_{1}, Y_{2} \in\binom{X}{k},\left|Y_{1} \cap Y_{2}\right|=k-1, d \in \mathfrak{C}, d\left(Y_{1}\right), d\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$ is impossible.
[Why? Assume toward contradiction that this fails. Let $x \in Y_{1} \backslash Y_{2}$ and $y \in Y_{2} \backslash Y_{1}$, we can find $Y_{3} \in\binom{X}{k}$ such that $Y_{3} \cap\left(Y_{1} \cup Y_{2}\right)=\{x, y\}$ so $Y_{3} \cap Y_{1}=\{x\}, Y_{3} \cap Y_{2}=\{y\} ;$ this is possible as $|X| \geq 2 k-1$. Apply \boxtimes_{1} to Y_{3}, Y_{1}, d and as $d\left(Y_{1}\right) \neq x\left(\right.$ as $\left.d\left(Y_{1}\right) \in Y_{2}\right)$ we have $c\left(Y_{3}\right)=x$.
Apply \boxtimes_{1} to Y_{3}, Y_{2}, d and as $d\left(Y_{2}\right) \neq y$ (as $\left.d\left(Y_{2}\right) \in Y_{1}\right)$ we get $d\left(Y_{3}\right)=y$. But $x \neq y$, contradiction.]

By \boxtimes_{2} we can use the proof of case 2 from $(*)_{7}$, i.e. Claim 3.4 to get contradiction. $\square_{3.3}$
3.5 Claim. Assume
(a) $k^{*}<k<|X|<\aleph_{0}$,
(b) $\mathscr{P} \subseteq\binom{X}{k}$
(c) if $Z, Y \in\binom{X}{k},|Z \cap Y|=k^{*}$ then $Z \in \mathscr{P} \Leftrightarrow Y \in \mathscr{P}$.
(d) $2 k-k^{*} \leq|X|$ (this is equivalent to clause (c) being non empty).

Then

(α) $\mathscr{P}=\emptyset \vee \mathscr{P}=\binom{X}{k} \underline{o r}$
(β) $|X|=2 k, k^{*}=0$ and so $E=E_{X, k}=:\left\{\left(Y_{1}, Y_{2}\right): Y_{1} \in\binom{X}{k}, Y_{2} \in\binom{X}{k},\left(Y_{1} \cup\right.\right.$ $\left.\left.Y_{2}=X\right)\right\}$ is an equivalence relation on X, with each equivalence class is a doubleton and \mathscr{P} is a union of a set of E-equivalence classes.

Proof. If not clause (α), then for some $Z_{1} \in \mathscr{P}, Z_{2} \in\binom{X}{k} \backslash \mathscr{P}$ we have $\left|Z_{1} \backslash Z_{2}\right|=1$. Let $Z_{1} \backslash Z_{2}=\left\{a^{*}\right\}, Z_{2} \backslash Z_{1}=\left\{b^{*}\right\}$.

Case 1: $2 k-k^{*}<|X|$.
We can find a set $Y^{+} \subseteq X \backslash\left(Z_{1} \cup Z_{1}\right)$ with $k-k^{*}$ members (use $\left|Z_{1} \cup Z_{2}\right|=$ $\left.k+1,\left|X \backslash\left(Z_{1} \cup Z_{2}\right)\right|=|X|-(k+1) \geq\left(2 k-k^{*}+1\right)-(k+1)=k-k^{*}\right)$.
Let $Y^{-} \subseteq Z_{1} \cap Z_{2}$ be such that $\left|Y^{-}\right|=k^{*}$.
Let $Z=Y^{-} \cup Y^{+}$so $Z \in\binom{X}{k},\left|Z \cap Z_{1}\right|=\left|Y^{-}\right|=k^{*},\left|Z \cap Z_{2}\right|=\left|Y^{-}\right|=k^{*}$ hence $Z_{1} \in \mathscr{P} \leftrightarrow Z \in \mathscr{P} \leftrightarrow Z_{2} \in \mathscr{P}$, contradiction.

Case 2: $2 k-k^{*}=|X|$ and $k^{*}>0$.

Let $Y^{+}=X \backslash\left(Z_{1} \cup Z_{2}\right)$ so

$$
\left|Y^{+}\right|=\left(2 k-k^{*}\right)-(k+1)=k-k^{*}-1 .
$$

Let $Y^{-} \subseteq Z_{1} \cap Z_{2}$ be such that $\left|Y^{-}\right|=k^{*}-1$ (O.K. as $\left.\left|Z_{1} \cap Z_{2}\right|=k-1 \geq k^{*}\right)$.
Let $Z=Y^{+} \cup Y^{-} \cup\left\{a^{*}, b^{*}\right\}$. So $|Z|=\left(k-k^{*}-1\right)+\left(k^{*}-1\right)+2=k,\left|Z_{1} \cap Z\right|=$ $\left|Y^{-} \cup\left\{a^{*}\right\}\right|=k^{*},\left|Z_{2} \cap Z\right|=\left|Y^{-} \cup\left\{b^{*}\right\}\right|=k^{*}$ and as in case 1 we are done.
3.6 Claim. Assume $k \geq 7,|X|-k \geq 5$. If $r(\mathscr{F})<\infty$ then 3.1 or 3.3 apply so \mathfrak{C} is full.

Remark. Recall $r(\mathscr{F})=\operatorname{Inf}\left\{r\right.$: some $f \in \mathscr{F}_{[r]}$ is not a monarchy $\}$, see Definition 2.4.

Proof.

Case 1: $r(\mathscr{F}) \geq 4$.
Let $f \in \mathscr{F}_{[r]}$ exemplify it, so by 2.5 we have $k \geq r$ and for some $\ell(*)$:

$$
\bar{a} \in{ }^{r} X \text { with repetitions } \Rightarrow f(\bar{a})=a_{\ell(*)} .
$$

As f is not a monarchy for some $k(*) \in\{1, \ldots, r\}$ and $\bar{a}^{*} \in{ }^{r} X$ we have $f\left(\bar{a}^{*}\right)=$ $a_{k(*)} \neq a_{\ell(*)}$.

Without loss of generality $\ell(*)=1, k(*)=2$ and 3.1 apply.
Case 2: $r(\mathscr{F})=3$.
Let $f^{*} \in \mathscr{F}_{[r]}$ exemplify it. Now apply 2.11; if (a) there holds, apply 3.1, if (b) there holds, apply 3.3.

Case 3: $r(\mathscr{F})=2$.
By 4.7 below, clause (a) of 3.1 holds so we are done.

$\S 4$ The case $r=2$

This is revisited in $\S 6$ (non simple case), and we can make presentation simpler (e.g. 6.4).
4.1 Hypothesis. As in 2.1 and
(a) $r(\mathscr{F})=2$
(b) $|X| \geq 5$ (have not looked at 4).
4.2 Claim. Choose $\bar{a}^{*}=\left\langle a_{1}^{*}, a_{2}^{*}\right\rangle, a_{1}^{*} \neq a_{2}^{*} \in X$.
4.3 Claim. For some $f \in \mathscr{F}_{[2]}$ and $\bar{b} \in{ }^{2} X$ we have
(a) $f\left(\bar{a}^{*}\right)=a_{2}^{*}$
(b) $\bar{a}^{*} \wedge \bar{b}$ is with no repetition
(c) $f(\bar{b})=b_{1} \neq b_{2}$.

Proof. There is $f \in \mathscr{F}_{[2]}$ not monarchical so for some $\bar{b}, \bar{c} \in{ }^{2} X$

$$
f(\bar{b})=b_{1} \neq b_{2}, f(\bar{c})=c_{2} \neq c_{1} .
$$

If $\operatorname{Rang}(\bar{b}) \cap \operatorname{Rang}(\bar{c})=\emptyset$ we can conjugate \bar{c} to \bar{a}^{*}, f to f^{\prime} which is as required. If not, find $\bar{d} \in{ }^{2} X, d_{1} \neq d_{2}$ satisfying $\operatorname{Rang}(\bar{d}) \cap(\operatorname{Rang}(\bar{a}) \cup \operatorname{Rang}(\bar{b}))=\emptyset$ so \bar{d}, \bar{b} or \bar{d}, \bar{c} are like \bar{c}, \bar{b} or \bar{b}, \bar{c} respectively.
4.4 Claim. There is $f^{*} \in \mathscr{F}_{[2]}$ such that
(a) $f^{*}\left(\bar{a}^{*}\right)=\bar{a}_{2}^{*}$
(b) $b_{1} \neq b_{2} \in X,\left\{b_{1}, b_{2}\right\} \subseteq\left\{a_{1}^{*}, a_{2}^{*}\right\} \Rightarrow f\left(b_{1}, b_{2}\right)=b_{2}$
(c) $b_{1} \neq b_{2},\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}^{*}, a_{2}^{*}\right\} \Rightarrow f\left(b_{1}, b_{2}\right)=b_{1}$.

Proof. Choose f such that
(a) $f \in \mathscr{F}_{[2]}$
(b) $f\left(\bar{a}^{*}\right)=a_{2}^{*}$
(c) $n(f)=\left|\left\{\bar{b} \in{ }^{2} X: f(\bar{b})=b_{1}\right\}\right|$ is maximal under $(a)+(b)$.

Let $\mathscr{P}=\left\{\bar{b} \in{ }^{2} X: f(\bar{b})=b_{1}\right\}$. In each case we can assume that the previous cases do not hold for any f satisfying (a), (b), (c).

Case 1: There is $\bar{b} \in{ }^{2}\left(X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right)$ such that $f(\bar{b})=b_{2} \neq b_{1}$.
There is $g \in \mathscr{F}_{[2]}, g\left(\bar{a}^{*}\right)=a_{2}^{*}, g(\bar{b})=b_{1}$ (by $4.3+$ conjugation). Let $f^{+}(x, y)=$ $f(x, g(x, y))$.
So
(A) $f^{+}\left(\bar{a}^{*}\right)=f\left(a_{1}^{*}, g\left(\bar{a}^{*}\right)\right)=f\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$
(B) $f^{+}(\bar{b})=f\left(b_{1}, g(\bar{b})\right)=f\left(b_{1}, b_{1}\right)=b_{1}$
(C) if $\bar{c} \in \mathscr{P}$ then $f(\bar{c})=c_{1}$.
[Why does (C) hold? If $g(\bar{c})=c_{1}$ then $f^{+}(\bar{c})=f\left(c_{1}, g(\bar{c})\right)=f\left(c_{1}, c_{1}\right)=c_{1}$.
If $g(\bar{c})=c_{2}$ then $f^{+}(\bar{c})=f\left(c_{1}, g(\bar{c})\right)=f\left(c_{1}, c_{2}\right)=f(\bar{c})=c_{1}$ (last equality as $\bar{c} \in \mathscr{P})$.
By the choice of f the existence of f^{+}is impossible so
$(*) \bar{b} \in{ }^{2}\left(X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right) \Rightarrow f(\bar{b})=b_{1} \Rightarrow \bar{b} \in \mathscr{P}$ (if $b_{1}=b_{2}$ - trivial).
$\underline{\text { Case 2: }}$ There are $b_{1} \neq b_{2}$ such that $\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}^{*}, a_{2}^{*}\right\}, f\left(b_{1}, b_{2}\right)=b_{2}$ and $b_{1} \neq$ $a_{1}^{*} \wedge b_{2} \neq a_{2}^{*}$.

There is $g \in \mathscr{F}_{[2]}$ such that $g\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}, g\left(b_{1}, b_{2}\right)=b_{1}$.
[Why? There is $\pi \in \operatorname{Per}(X), \pi\left(b_{1}\right)=a_{1}^{*}, \pi\left(b_{2}\right)=a_{2}^{*}, \pi^{-1}\left(\left\{b_{1}, b_{2}\right\}\right)$ is disjoint to $\left\{a_{1}^{*}, a_{2}^{*}\right\}$. Conjugate f by π^{-1}, getting g so $g\left(a_{1}^{*}, a_{2}^{*}\right)=g\left(\pi b_{1}, \pi b_{2}\right)=\pi\left(f\left(b_{1}, b_{2}\right)\right)=$ $\pi\left(b_{2}\right)=a_{2}^{*}$; let c_{1}, c_{2} be such that $\pi\left(c_{1}\right)=b_{1}, \pi\left(c_{2}\right)=b_{2}$ so

$$
g\left(b_{1}, b_{2}\right)=g\left(\pi c_{1}, \pi c_{2}\right)=\pi\left(f\left(c_{1}, c_{2}\right)\right)=\pi\left(c_{1}\right)=b_{1}
$$

(third equality as $c_{1}, c_{2} \notin\left\{a_{2}^{*}, a_{2}^{*}\right\}$ by not Case 1). So there is such $g \in \mathscr{F}$.]
Let $f^{+}(x, y)=f(x, g(x, y))$, as before f^{+}contradicts the choice of f.
Case 3: For some $b^{\prime} \neq b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(a_{1}^{*}, b^{\prime}\right)=b^{\prime} \wedge f\left(a_{1}^{*}, b^{\prime \prime}\right)=a_{1}^{*}$.
As in Case 2, using $\pi \in \operatorname{Per}(X)$ such that $\pi\left(a_{1}^{*}\right)=a_{1}^{*}, \pi\left(a_{2}^{*}\right)=a_{2}^{*}, \pi\left(b^{\prime}\right)=b^{\prime \prime}$.
Case 4: For some $b^{\prime} \neq b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(b^{\prime}, a_{2}^{*}\right)=a_{2}^{*} \wedge f\left(b^{\prime \prime}, a_{2}^{*}\right)=b^{\prime \prime}$.
As in Case 3 ; recall that without loss of generality Case 1,2,3,4 fails.
Case 5: For some $b^{\prime}, b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(a_{1}^{*}, b^{\prime}\right)=b^{\prime} \wedge f\left(b^{\prime \prime}, a_{2}^{*}\right)=a_{2}^{*}$.
As Cases $1,2,3,4$ fail, this holds for every such $b^{\prime}, b^{\prime \prime}$; so without loss of generality $b^{\prime} \neq$ $b^{\prime \prime}$ and prove as in Case 2 conjugating by $\pi \in \operatorname{Per}(X)$ such that $\pi\left(b^{\prime}\right)=a_{2}^{*}, \pi\left(a_{1}^{*}\right)=$ a_{1}^{*} and $\pi\left(b^{\prime \prime}\right)=b^{\prime \prime}$ getting g which satisfies $g\left(a_{1}^{*}, a_{2}^{*}\right)=g\left(\pi a_{1}^{*}, \pi b^{\prime}\right)=\pi\left(f\left(a_{1}^{*}, b^{\prime}\right)\right)=$
$\pi\left(b^{\prime}\right)=a_{2}^{*}$ and $g\left(b^{\prime \prime}, a_{2}^{*}\right)=g\left(\pi b^{\prime \prime}, \pi b^{\prime}\right)=\pi\left(f\left(b^{\prime \prime}, b^{\prime}\right)\right)=\pi\left(b^{\prime \prime}\right)=b^{\prime \prime}$ whereas $f\left(b^{\prime}, a_{2}^{*}\right)=a_{2}^{*}$; so $f^{+}(x, y)=f(x, g(x, y))$ contradicts the choice of f.
Without loss of generality, Cases 1-5 fail.
Case 6: For some $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(a_{1}^{*}, b\right)=b$ and $f\left(a_{2}^{*}, b\right)=a_{2}^{*}$ follows.
$\underline{\text { Sub-case 6A: }} f\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}$.
Then let $\pi \in \operatorname{Per}(X), \pi\left(a_{1}^{*}\right)=a_{2}^{*}, \pi\left(a_{2}^{*}\right)=a_{1}^{*}\left(\right.$ and $\pi(a)=a$ for $\left.a \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right)$, then $g=\pi f \pi^{-1}$ satisfies $\left.g\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}, g\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}\right)$ but for $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}, g\left(a_{1}^{*}, b\right)=$ $g\left(\pi a_{2}^{*}, \pi b\right)=\pi\left(f\left(a_{2}^{*}, b\right)\right)=\pi a_{2}^{*}=a_{1}^{*}$, easy contradiction using f^{+}(or as below)).

Sub-case 6B: So as Cases 1-5,6A fail we have

$$
\circledast \forall b_{1}, b_{2} \in X\left[f\left(b_{1}, b_{2}\right) \neq b_{1} \leftrightarrow\left(b_{1}=a_{1}^{*} \& b_{2} \neq a_{1}^{*}\right)\right] .
$$

Hence for every $c \in X$ there is $f_{c} \in \mathscr{F}_{[2]}$ such that

$$
\circledast_{f_{c}} \forall b_{1}, b_{2} \in X\left[f_{c}\left(b_{1}, b_{2}\right) \neq b_{1} \leftrightarrow\left(b_{1}=c \& b_{2} \neq c\right)\right] .
$$

Let $a \neq c$ be from X and define $f_{a, c} \in \mathscr{F}_{[2]}$ by $f_{a, c}(x, y)=f_{a}\left(x, f_{c}(y, x)\right)$.
Assume $b_{1} \neq b_{2}$ so $f_{a, c}^{*}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1}$ implies $f_{c}\left(b_{2}, b_{1}\right) \in\left\{b_{1}, b_{2}\right\}, f_{a, c}\left(b_{1}, b_{2}\right)=$ $f_{a}\left(b_{1}, f_{c}\left(b_{2}, b_{1}\right)\right)$ and so (by the choice of $\left.f_{a}\right) b_{1}=a \& f_{c}\left(b_{2}, b_{1}\right)=b_{2}$ which (by the choice of f_{c}) implies ($b_{1}=a$ and) $b_{2} \neq c$. But $b_{1}=a \& b_{2} \neq c \& b_{1} \neq b_{2}$ implies $f_{c}\left(b_{2}, b_{1}\right)=b_{2}, f_{a, c}\left(b_{1}, b_{2}\right)=f_{a}\left(b_{1}, b_{2}\right)=b_{2}$. So $f_{a, c}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1} \Leftrightarrow$ $b_{1}=a \& b_{2} \neq c \& b_{2} \neq b_{1}$.
Let $a=a_{1}^{*}$. Let $\left\langle c_{i}: i<i^{*}=\right| X|-2\rangle$ list $X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$. We define by induction on $i \leq i^{*}$, a function $f_{i} \in \mathscr{F}_{[2]}$ by

$$
\begin{gathered}
f_{0}(x, y)=y \\
f_{i+1}(x, y)=f_{i}\left(x, f_{a, c_{i}}(x, y)\right)
\end{gathered}
$$

and let $f^{\prime}=f_{i^{*}}$. Now by induction on i we can show $f_{i}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$ and $f^{\prime}\left(b_{1}, b_{2}\right)=$ $b_{2} \neq b_{1} \Rightarrow\left(\forall i<i^{*}\right)\left(f_{a, c_{i}}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1}\right)$.
So $f^{\prime} \in \mathscr{F}_{[2]}, f^{\prime}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$ and $b_{1} \neq b_{2} \wedge\left(b_{1}, b_{2}\right) \neq\left(a_{1}^{*}, a_{2}^{*}\right)$ implies $f^{\prime}\left(b_{1}, b_{2}\right)=b_{1}$. By the choice of f (minimal $n(f)$) we get a contradiction.

Case 7: For some $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(b, a_{2}^{*}\right)=a_{2}^{*}$ and $f\left(a_{1}^{*}, b\right)=a_{2}^{*}$ follows. Similar to Case 6.

Sub-case 7A: $f\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}$.
Similar to 6A.

Sub-case 7B: That is, as there, without loss of generality for every $a \in X$ for some $f_{a} \in \mathscr{F}_{[2]}$ we have
$\circledast\left(\forall b_{1}, b_{2} \in X\right)\left[\left(f_{a}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1} \leftrightarrow b_{2}=a \neq b_{1}\right)\right]$.
Let $a \neq c \in X$ let $f_{a, c}(x, y)=f_{a}\left(f_{c}(y, x), x\right)$.
So for $b_{1} \neq b_{2} \in X$
(i) $f_{a, c}\left(b_{1}, b_{2}\right)=b_{2}\left(\neq b_{1}\right)$ implies $f_{a}\left(f_{c}\left(b_{2}, b_{1}\right), b_{1}\right)=b_{2}$ which implies $b_{2}=c \quad \&$ $f_{c}\left(b_{2}, b_{1}\right)=b_{2}$ which implies $b_{2}=c \& b_{1} \neq a$.

We continue as there.
Case 8: Not Cases 1-7; not the conclusion.
So for $\bar{a}=\left(a_{1}, a_{2}\right)={ }^{2} X, a_{1} \neq a_{2}$ there is $f_{\bar{a}} \in \mathscr{F}$ such that

$$
\begin{gathered}
\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}, a_{2}\right\} \Rightarrow f_{\bar{a}}\left(b_{1}, b_{2}\right)=b_{1} \\
f_{\bar{a}}\left(a_{1}, a_{2}\right)=a_{2}
\end{gathered}
$$

and (as "not the conclusion")

$$
f_{\bar{a}}\left(a_{2}, a_{1}\right)=a_{2}
$$

Let $\left.\left.\left\langle\bar{b}^{i}: i<i^{*}=\right| X\right|^{2}-|X|-2\right\rangle$ list the pairs $\bar{b}=\left(b_{1}, b_{2}\right) \in{ }^{2} X$ such that $b_{1} \neq b_{2},\left\{b_{1}, b_{2}\right\} \neq\left\{a_{1}^{*}, a_{2}^{*}\right\}$.
Define $g_{i} \in \mathscr{F}_{[2]}$ by induction on i.
Let $g_{0}(x, y)=x$.
Let $g_{i+1}(x, y)=f_{\bar{b}^{i}}\left(g_{i}(x, y), y\right)$.
We can prove by induction on $i \leq i^{*}$ that: $g_{i}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{1}^{*}, g_{i}\left(a_{2}^{*}, a_{1}^{*}\right)=a_{2}^{*}, j<i \Rightarrow$ $g_{i}\left(\bar{b}^{j}\right)=b_{2}^{j}$. So $g_{i^{*}}$ is as required interchanging 1 and 2 that is $g(x, y)=: g_{i^{*}}(y, x)$ is as required.
4.5 Definition/Choice. For $b \neq c \in X$ let $f_{b, c}$ be like f in 4.4 with (b, c) instead of $\left(a_{1}^{*}, a_{2}^{*}\right)$, so $f_{c, b}(c, b)$ is b and $f(b, c)=c$ and $f\left(x_{1}, x_{2}\right)=x_{1}$ if $\left\{x_{1}, x_{2}\right\} \nsubseteq\{b, c\}$.
4.6 Claim. Let $a_{1}, a_{2}, a_{3} \in X$ be pairwise distinct.

Then for some $g \in \mathscr{F}_{[3]}$:
(i) $\bar{b} \in{ }^{3} X$ with repetitions $\Rightarrow g(\bar{b})=b_{1}$,
(ii) $g\left(a_{1}, a_{2}, a_{3}\right)=a_{2}$.

Proof. Without loss of generality we replace a_{2} by a_{3} in (ii).
Let h_{ℓ} for $\ell=1,2,3,4$ be the three place functions

$$
\begin{gathered}
h_{1}(\bar{x})=f_{a_{1}, a_{2}}\left(x_{1}, x_{2}\right) \\
h_{2}(\bar{x})=f_{a_{1}, a_{3}}\left(x_{1}, x_{3}\right) \\
h_{3}(\bar{x})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{x}), h_{2},(\bar{x})\right) \\
h_{4}(\bar{x})=f_{a_{1}, a_{3}}\left(x, h_{3}(\bar{x})\right) .
\end{gathered}
$$

Clearly $h_{1}, h_{2}, h_{3}, h_{4} \in \mathscr{F}_{[3]}$. We shall show h_{4} is as required.
To prove clause (ii) note that for $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right)$ we have $h_{1}(\bar{a})=a_{2}, h_{2}(\bar{a})=$ $a_{3}, h_{3}(\bar{a})=f_{a_{2}, a_{3}}\left(a_{2}, a_{3}\right)=a_{3}$ and $h_{4}(\bar{a})=f_{a_{1}, a_{3}}\left(a_{1}, a_{3}\right)=a_{3}$ as agreed above. To prove clause (i), let $\bar{b} \in{ }^{3} X$ be such that $\bar{b} \neq \bar{a}$.

Case 1: $b_{1} \neq a_{1}, a_{3}$ so

$$
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=b_{1} \text { as } b_{1} \neq a_{1}, a_{3}
$$

Case 2: $b_{1}=a_{1}, b_{2} \neq a_{2}$ hence $b_{1} \neq a_{2}, a_{3}$, so

$$
\begin{gathered}
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=f_{a_{1}, a_{2}}\left(a_{1}, b_{2}\right)=a_{1}=b_{1}, \\
\text { as } b_{2} \neq a_{2}\left(\text { if } b_{2}=a_{1}\right. \text { also O.K) } \\
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, h_{2}(\bar{b})\right)=b_{1} \text { as } b_{1} \neq a_{2}, a_{3} \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=h_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1} .
\end{gathered}
$$

$\underline{\text { Case 3: }} b_{1}=a_{1}, b_{2}=a_{2}, b_{3} \neq a_{3}$, so

$$
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=f_{a_{1}, a_{2}}\left(a_{1}, a_{2}\right)=a_{2}=b_{2}
$$

$$
h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=f_{a_{1}, a_{3}}\left(a_{1}, b_{3}\right)=a_{1}=b_{1} \text { as } b_{3} \neq a_{3}\left(\text { if } b_{3}=a_{1} \text { fine }\right)
$$

$$
\begin{gathered}
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=h_{a_{2}, a_{3}}\left(b_{2}, b_{1}\right)=b_{2} \text { as } b_{1}=a_{1} \neq a_{2}, a_{3} \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{2}\right)=b_{1} \text { as } b_{2}=a_{2} \neq a_{1}, a_{3}
\end{gathered}
$$

Case 4: $b_{1}=a_{3}, b_{3} \neq a_{1}$. So

$$
\begin{aligned}
& h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=f_{a_{1}, a_{3}}\left(a_{3}, b_{3}\right)=a_{3}=b_{1} \\
& \quad \text { as } b_{3} \neq a_{1} \text { (if } b_{3}=a_{3} \text { then } b_{3}=b_{1} \text { so O.K. too) }
\end{aligned}
$$

$$
\begin{gathered}
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1} \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, f_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1}
\end{gathered}
$$

$\underline{\text { Case 5: }} b_{1}=a_{3}, b_{3}=a_{1}$.

$$
\begin{gathered}
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=b_{1} \text { as } b_{1}=a_{3} \neq a_{1}, a_{2} \\
h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=b_{3} \text { as }\left\{b_{1}, b_{3}\right\}=\left\{a_{1}, a_{3}\right\} \\
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, b_{3}\right) \equiv b_{1} \text { as } b_{3}=a_{1} \neq a_{2}, a_{3} \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, f_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1} .
\end{gathered}
$$

as required.
4.7 Claim. Let $\bar{a}^{*}=\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*}\right) \in{ }^{4} X$ be with no repetitions. Then for some $g \in \mathscr{F}_{[4]}$ we have
(i) if $\bar{b} \in{ }^{4} X$ is with repetitions then $f(\bar{b})=b_{1}$
(ii) $g\left(\bar{a}^{*}\right)=a_{2}^{*}$.

Proof. For any $\bar{a} \in{ }^{3} X$ with no repetitions let $f_{\bar{a}}$ be as in 4.6 for the sequence \bar{a}. Let us define with $\left(\bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right), g(\bar{x})=g_{0}\left(x_{1}, g_{2}\left(x_{1}, x_{2}, x_{4}\right), g_{3}\left(x_{1}, x_{3}, x_{4}\right)\right)$ with $g_{0}=f_{\left\langle a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\rangle}, g_{2}=f_{\left\langle a_{1}^{*}, a_{2}^{*}, a_{4}^{*}\right\rangle}, g_{3}=f_{\left\langle a_{1}^{*}, a_{3}^{*}, a_{4}^{*}\right\rangle}$. So
(A) $g\left(\bar{a}^{*}\right)=g_{0}\left(a_{1}^{*}, g_{2}\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right), g_{3}\left(a_{1}^{*}, a_{3}^{*}, a_{4}^{*}\right)\right)=g_{0}\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right)=a_{2}^{*}$
(B) if $\bar{b} \in{ }^{4} X$ and $\left\langle b_{1}, b_{2}, b_{4}\right\rangle$ is with repetitions then $g_{2}\left(b_{1}, b_{2}, b_{4}\right)=b_{1}$, hence $g(\bar{b})=g_{0}\left(b_{1}, b_{1}, g_{3}\left(b_{1}, b_{3}, b_{4}\right)\right)=b_{1}$
(C) if $\bar{b} \in{ }^{4} X$ and $\left\langle b_{1}, b_{3}, b_{4}\right\rangle$ is with repetitions then $g_{3}\left(b_{1}, b_{3}, b_{4}\right)=b_{1}$, hence $g(\bar{b})=g_{0}\left(b_{1}, g_{2}\left(b_{1}, b_{2}, b_{4}\right), b_{1}\right)=b_{1}$
(D) $\bar{b} \in{ }^{4} X$ is with repetitions, but neither (B) nor (C) then necessarily $b_{2}=b_{3}$ so $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is with repetitions, so $g(\bar{b})=g_{0}\left(b_{1}, b_{2}, b_{3}\right)=b_{1}$.

Part B: Non simple case
 $\S 5$ Fullness for the non simple case

5.1 Context. As in $\S 1: \mathfrak{C}$ is a (X, k)-FCF, $\mathscr{F}=\cup\left\{\mathscr{F}_{[r]}: r<\infty\right\}$ and $\mathscr{F}=\{f: f \in$ $\operatorname{AV}(\mathfrak{C})\}$, so

$$
\begin{aligned}
\mathscr{F}_{[r]}=\{f: & f \text { is (not necessarily simple) function written } \\
& f_{Y}\left(x_{1}, \ldots, x_{r}\right), \text { for } Y \in\binom{X}{k}, x_{1}, \ldots, x_{r} \in Y \text { such that } \\
& f_{Y}\left(x_{1}, \ldots, x_{r}\right) \in\left\{x_{1}, \ldots, x_{r}\right\} \text { and } \\
& \mathfrak{C} \text { is closed under } f, \text { i.e. if } c_{1}, \ldots, c_{r} \in \mathfrak{C} \\
& \text { and } c \text { is defined by } c=f\left(c_{1}, \ldots, c_{r}\right) \\
& \text { i.e. } \left.c(Y)=f_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right) \text { then } c \in \mathfrak{C}\right\}
\end{aligned}
$$

and we add (otherwise use Part A; alternatively combine the proofs).
5.2 Hypothesis. If $f \in \mathscr{F}$ is simple then it is a monarchy.
5.3 Definition. 1) $\mathscr{F}[Y]=\left\{f_{Y}: f \in \mathscr{F}\right\}$.
2) $\mathscr{F}_{[r]}(Y)=\left\{f_{Y}: f \in \mathscr{F}_{[r]}\right\}$.
5.4 Observation. If $f \in \mathscr{F}_{[r]}, Y \in\binom{X}{k}$, then f_{Y} is an r-place function from Y to Y and
(*) $\mathscr{F}[Y]$ is as in 2.2 on Y.
5.5 Definition. 1) $r(\mathscr{F})=\operatorname{Min}\left\{r: r \geq 2\right.$, some $f \in \mathscr{F}_{[r]}$ is not a monarchy $\}$ where
2) f is a monarchy if for some t we have $\forall Y \forall x_{1}, \ldots, x_{r} \in Y\left[f_{Y}\left(x_{1}, \ldots, x_{r}\right)=x_{t}\right]$.
5.6 Claim. 1) For proving that \mathfrak{C} is full it is enough to prove, for some $r \in$ $\{3, \ldots, k\}$
(*) for every $Y \in\binom{X}{k}$ and $\bar{a} \in{ }^{r} Y$ which is one to one there is $f=f^{\bar{a}, Y} \in \mathscr{F}$ such that
(i) $f_{Y}(\bar{a})=a_{2}$
(ii) if $Z \in\binom{X}{k}, Z \neq Y, \bar{b} \in{ }^{r} Z$ then $f_{Z}(\bar{b})=b_{1}$.
2) If $r \geq 4$ we can weaken $f_{Z}(\bar{b})=b_{1}$ in clause (ii) to [$b_{3}=b_{4} \vee b_{1}=b_{2} \vee b_{1}=$ $\left.b_{3} \vee b_{2}=b_{3}\right] \rightarrow f_{Y}(\bar{b})=b_{1}$.

Proof. The proof is as in the proof of 3.1 or 5.7 or 5.8 below only we choose $c_{3}, c_{4}, \ldots, c_{r}$ such that $\bar{a}=\left\langle c_{\ell}(Y): \ell=1,2, \ldots, r\right\rangle$ is without repetitions and $f=f^{\bar{a}, Y}$ from (*).
5.7 Claim. In 5.6 we can replace ($*$) by: $r=3$ and
(*) if $Y \in\binom{X}{k}$ and $\bar{a} \in{ }^{3} Y$ one-to-one (or just $a_{2} \neq a_{3}$), then for some $g \in \mathscr{F}_{[r]}$
(i) $g_{Y}(\bar{a})=a_{1}$
(ii) if $Z \in\binom{Y}{k}, Z \neq Y, \bar{b} \in{ }^{3} Z$ is not one-to-one then $g_{Z}(\bar{b})=b_{2}$ if $b_{2}=b_{3}$ and is b_{1} if otherwise (i.e. $g_{3 ; 1,2}(\bar{b})$).

Proof. Like 3.3. Let $c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, a_{1}^{*}=c_{2}\left(Y^{*}\right), a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$ we choose c_{2}^{*} as in the proof of 5.6, i.e. 3.1, that is $c_{2}^{*}\left(Y^{*}\right)=a_{2}^{*}$ and with $|\mathscr{P}|$ minimal where $\mathscr{P}=\left\{Y: Y \in\binom{X}{k}, Y \neq Y^{*}, c_{1}^{*}(Y) \neq c_{2}^{*}(Y)\right\}$. As there it suffices to prove that $\mathscr{P}=\emptyset$. Now otherwise
\boxtimes there are no $Z \in \mathscr{P}$ and $d \in \mathfrak{C}$ such that

$$
\begin{gathered}
d\left(Y^{*}\right)=c_{2}^{*}\left(Y^{*}\right) \\
d(Z) \neq c_{2}^{*}(Z)
\end{gathered}
$$

[Why? If so, let $c=g^{*}\left(c_{1}^{*}, c_{2}^{*}, d\right)$ where g is from (*) for $Z, a_{1}=c_{1}^{*}(Z), a_{2}=$ $\left.c_{2}^{*}(Z), a_{3}=d(Z).\right]$

Continue as there: the $g_{\bar{a}}$ depends also on Y, and we write $c(Y)=f_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right)$.
5.8 Claim. Assume $r(\mathscr{F})=2,(\mathfrak{C}, \mathscr{F}$ as usual) and
(*) for every $a_{1} \neq a_{2} \in Y \in\binom{X}{k}$ for some $f=f_{\left\langle a_{1}, a_{2}\right\rangle}^{Y} \in \mathscr{F}$ we have
(i) $f_{Y}(\bar{a})=a_{2}$
(ii) $Z \in\binom{Y}{k}, Z \neq Y, \bar{b} \in{ }^{2} Z \Rightarrow f_{Z}(\bar{b})=b_{1}$.

Then \mathfrak{C} is full.

Remark. \mathfrak{C} is full iff every choice function of $\binom{X}{k}$ belongs to it.
Proof. If \mathfrak{C} is not full, as $\mathfrak{C} \neq \emptyset$ there are $c_{1} \in \mathfrak{C}, c_{0} \notin \mathfrak{C}, c_{0}$ a choice function for $\binom{X}{k}$. Choose such a pair $\left(c_{1}, c_{0}\right)$ with $|\mathscr{P}|$ minimal where $\mathscr{P}=\left\{Y \in\binom{X}{k}: c_{1}(Y) \neq\right.$ $\left.c_{0}(Y)\right\}$. So clearly \mathscr{P} is a singleton, say $\{Y\}$. By symmetry for some $c_{2} \in \mathfrak{C}$ we have $c_{2}(Y)=c_{0}(Y)$. Let f be $f_{c_{1}(Y), c_{0}(Y)}^{Y}=f_{c_{1}(Y), c_{2}(Y)}^{Y}$ from the assumption so $f \in \mathscr{F}$ and let $c=f\left(c_{1}, c_{2}\right)$ so clearly $c \in \mathfrak{C}$ (as \mathfrak{C} is closed under every member of $\mathscr{F})$.
Now
(A) $c(Y)=f_{Y}\left(c_{1}(Y), c_{2}(Y)\right)=c_{2}(Y)=c_{0}(Y)$
(B) if $Z \in\binom{X}{k} \backslash\{Y\}$ then

$$
c(Z)=f_{Z}\left(c_{1}(Z), c_{2}(Z)\right)=c_{1}(Z)=c_{0}(Y)
$$

So $c=c_{0}$ hence $c_{0} \in \mathfrak{C}$, contradiction.
5.9 Claim. Assume $r(\mathscr{F})=2$ and $\boxtimes\left(f^{*}\right)$ of 6.9 (see Definitions 6.3, 6.6) below holds. Then \mathfrak{C} is full.

Proof. We use conventions from $6.6,6.7,6.9$ below. In $\boxtimes\left(f^{*}\right)$ there are two possibilities.

Possibility (i):
This holds by 5.8.
Possibility (ii):
Similar to the proof of 5.8. Again $\mathscr{P}=\{Y\}$ where $\mathscr{P}=\left\{Y \in\binom{X}{k}: c_{1}(Y) \neq\right.$ $\left.c_{0}(Y)\right\}$. We choose $c_{2} \in \mathfrak{C}$ such that $c_{2}(Y)=c_{0}(Y) \quad \& \quad c_{2}(X \backslash Y)=c_{1}(X \backslash Y)$, continue as before. Why is this possible? Let $\pi \in \operatorname{Per}(X)$ be such that $\pi(Y)=$ $Y, \pi\left(c_{1}(Y)\right)=c_{0}(Y), \pi\left(c_{1}(X \backslash Y)\right)=c_{1}(X \backslash Y)$ (and of course $\left.\pi(X \backslash Y)=X \backslash Y\right)$. Now conjugating c_{1} by π gives c_{2} as required.
5.10 Claim. If $r(\mathscr{F})<\infty$ then \mathfrak{C} is full.

Proof. Let $r=r(\mathscr{F})$.
Case 1: $r=2$.
So hypothesis 6.1 below (next section) holds.
If $\boxtimes(f)$ of 6.9 holds for some $f \in \mathscr{F}_{[r]}$, by 5.9 we know that \mathfrak{C} is full. If $\boxtimes(f)$ of 6.9 fails for every $f \in \mathscr{F}_{[r]}$ then hypothesis 6.11 below holds hence $6.12-6.18$ holds. So by 6.18 we know that ($*$) of 5.6 holds (and $\mathscr{P}_{ \pm}$is a singleton, see $6.17(\mathrm{c})+$ $6.18(2))$. So by $5.6, \mathfrak{C}$ is full.

Case 2: $r \geq 4$.
So hypothesis 7.1 below holds. By 7.5 clearly (*) of 5.6 holds hence by $5.6(2)$ we know that \mathfrak{C} is full.

Case 3: $r=3$.
Let $f^{*} \in \mathscr{F}_{[3]}$ be not a monarchy. So for $\bar{b} \in{ }^{3} Y$ not one-to-one, $Y \in\binom{X}{k}$, clearly $f_{Y}^{*}(\bar{b})$ does not depend on Y, so we write $f^{-}(\bar{b})$. If for some $\ell(*), f^{-}(\bar{b})=b_{\ell(*)}$ for every such \bar{b} then easily $5.6(1)$ apply. If $f^{-}(\bar{b})=g_{r ; 1,2}(\bar{b})$, let $\bar{a} \in{ }^{3} Y, Y \in\binom{X}{k}, \bar{a}$ is one-to-one, so $f_{Y}(\bar{b})=a_{k}$ for some k; by permuting the variables, f^{-}does not change while we have $k=1$, so 5.7 apply. If both fail, then by repeating the proof of 2.8 of Part A, for some $f^{\prime} \in \mathscr{F}_{[3]}$, for $\bar{b} \in{ }^{3} X$ not one-to-one we have $\bar{b} \in{ }^{3} Y \Rightarrow f_{Y}^{\prime}(\bar{b})=f_{\langle 1,2,1\rangle}(\bar{b})$ or for \bar{b} not one to one $\bar{b} \in{ }^{3} Y \Rightarrow f_{Y}^{\prime}(\bar{b})=f_{\langle 1,2,2\rangle}(\bar{b})$. By the last paragraph of the proof of 2.8 we can assume the second case holds. In this case repeat the proof of the case $\eta=\langle 1,2,2\rangle$ in the end of the proof of 2.8 .

$$
\S 6 \text { The CASE } r(\mathscr{F})=2
$$

For this section
6.1 Hypothesis. $r=2$.
6.2 Discussion: So (α) or (β) holds where
(α) there are $Y \in\binom{X}{k}$ and $f \in \mathscr{F}_{[r]}(Y)$ which is not monarchy. Hence by $\S 4$, i.e. 4.4 for $a \neq b \in Y$ there is $f=f_{a, b}^{Y} \in \mathscr{F}_{2}[Y]$

$$
f_{Y}(x, y)= \begin{cases}y & \text { if }\{x, y\}=\{a, b\} \\ x & \text { if otherwise }\end{cases}
$$

(β) every f_{Y} is a monarchy but some $f \in \mathscr{F}_{[r]}$ is not.
6.3 Definition/Choice. Choose $f^{*} \in \mathscr{F}_{2}$ such that
(a) $\neg(\forall Y)(\forall x, y \in Y)\left(f_{Y}(x, y)=x\right)$
(b) under (a), $n(f)=\left|\operatorname{dom}_{1}(f)\right|$ is maximal where $\operatorname{dom}_{1}(f)=\{(Z, a, b)$: $f_{Z}(a, b)=a \neq b$ and $Z \in\binom{X}{k}$ and $\{a, b\} \subseteq Z$ of course $\}$.
6.4 Fact. If $f_{1}, f_{2} \in \mathscr{F}_{[2]}$ and f is $f(x, y)=f_{1}\left(x, f_{2}(x, y)\right.$) (formally $f(Y, x, y)=$ $f_{1}\left(Y, x, f_{2}(Y, x, y)\right)$ but we shall be careless) then $\operatorname{dom}_{1}(f)=\operatorname{dom}_{1}\left(f_{1}\right) \cup \operatorname{dom}_{1}\left(f_{2}\right)$.

Proof. Easy.

6.5 Claim. If $Z \in\binom{X}{k}, f_{Z}^{*}\left(a^{*}, b^{*}\right)=b^{*} \neq a$ then
(a) $(\forall x, y \in Z)\left[f_{Z}^{*}(x, y)=y\right] \underline{\text { or }}$
(b) $x, y \in Z \wedge\{x, y\} \nsubseteq\left\{a^{*}, b^{*}\right\} \Rightarrow f_{Z}^{*}(x, y)=x$.

Proof. As in $4.4(+6.3+6.4)$, recalling 5.4, i.e., that $\mathscr{F}[Z]$ is a clone.
6.6 Definition. Let
(1) $\mathscr{P}_{1}=\mathscr{P}_{1}\left(f^{*}\right)=\left\{Z \in\binom{X}{k}:(\forall a, b \in Z)\left(f_{Z}^{*}(a, b)=a\right\}\right.$
(2) $\mathscr{P}_{2}=\mathscr{P}_{2}\left(f^{*}\right)=\left\{Z \in\binom{X}{k}:(\forall a, b \in Z)\left(f_{Z}^{*}(a, b)=b\right\}\right.$
(3) $\mathscr{P}_{ \pm}=\mathscr{P}_{ \pm}\left(f^{*}\right)=\binom{X}{k} \backslash \mathscr{P}_{1}\left(f^{*}\right) \backslash \mathscr{P}_{2}^{*}\left(f^{*}\right)$.
6.7 Claim. For $Y \in\binom{X}{k}$ we have

1) $Y \in \mathscr{P}_{ \pm}\left(f^{*}\right)$ iff $Y \in\binom{X}{k}$ and $(\exists a, b \in Y)\left(f_{Y}^{*}(a, b)=a \neq b\right)$ and $(\exists a, b \in$ $Y)\left(f_{Y}^{*}(a, b)=b \neq a\right)$.
2) If $Y \in \mathscr{P}_{ \pm}$, then there are $a_{Y} \neq b_{Y} \in Y$ such that $f_{Y}^{*}\left(a_{Y}, b_{Y}\right)=b_{Y}$ and

$$
\{a, b\} \subseteq Y \wedge\{a, b\} \nsubseteq\left\{a_{Y}, b_{Y}\right\} \Rightarrow f_{Y}^{*}(a, b)=a
$$

Proof. By 6.5.
6.8 Claim. 1) $\left\langle\mathscr{P}_{1}, \mathscr{P}_{2}, \mathscr{P}_{ \pm}\right\rangle$is a partition of $\binom{X}{k}$.
2) For $Y \in \mathscr{P}_{ \pm}$the pair $\left(a_{Y}, b_{Y}\right)$ is well defined (but maybe (b_{Y}, a_{Y}) can serve as well).

Proof. 1) By Definition 6.6.
2) By 6.7.
6.9 Claim. If $\mathscr{P}_{2}\left(f^{*}\right) \neq \emptyset$ then
$\boxtimes\left(f^{*}\right)(i) \mathscr{P}_{2}=\mathscr{P}_{2}\left(f^{*}\right)$ is a singleton, $\mathscr{P}_{ \pm}=\emptyset \underline{\text { or }}$
(ii) $2 k=|X|, \mathscr{P}_{2}$ is a $\left\{Y^{*}, Y^{* *}\right\} \subseteq\binom{X}{k}$ where $Y^{*} \cup Y^{* *}=X$ and $\mathscr{P}_{ \pm}=\emptyset$.

Proof. Assume $\mathscr{P}_{2} \neq \emptyset$, let $Y^{*} \in \mathscr{P}_{2}$. As f^{*} is not a monarchy $(*)_{1} \mathscr{P}_{1} \cup \mathscr{P}_{ \pm} \neq \emptyset$.

By Definition 6.6 and Fact $6.4, f^{*} \in \mathscr{F}_{[r]}$ satisfies
$(*)_{2}(i) f_{Y^{*}}^{*}(a, b)=b$ for $a, b \in Y^{*}$
(ii) if $g \in \mathscr{F}_{[r]}, g_{Y^{*}}(a, b)=b$ for $a, b \in Y^{*}$ then $\operatorname{dom}_{1}\left(f^{*}\right) \supseteq \operatorname{dom}_{1}(g)$.

Hence
$(*)_{3}$ if $Y_{1} \in \mathscr{P}_{2}, Y_{2} \notin \mathscr{P}_{2}, k^{*}=\left|Y_{1} \cap Y_{2}\right|$ and $Y \in\binom{Y}{k},\left|Y \cap Y^{*}\right|=k^{*}$, then $Y \notin \mathscr{P}_{2}$ (even $Y \in \mathscr{P}_{1} \leftrightarrow Y_{2} \in \mathscr{P}_{1}$).
[Why? By $(*)_{2}$ as we can conjugate f^{*} by $\pi \in \operatorname{Per}(X)$ which maps Y^{*} onto Y_{1} and Y_{1} onto Y_{2}.]

So by 3.5 (applied to k^{*}) and $(*)_{1}$
$(*)_{4}(i) \mathscr{P}_{2}$ is the singleton $\left\{Y^{*}\right\}$ or
(ii) \mathscr{P}_{2} is a $\left\{Y^{*}, Y^{* *}\right\}, 2 k=|X|$ and $Y^{* *}=X \backslash Y^{*}$
$(*)_{5} \quad$ if $Z \in \mathscr{P}_{ \pm}$, then (α) or (β)
(α) $\left\{a_{Z}, b_{Z}\right\}=Z \cap Y^{*}, f_{Z}^{*}\left(b_{Z}, a_{Z}\right)=a_{Z}$
(阝) $\left\{a_{Z}, b_{Z}\right\}=Z \backslash Y^{*}, f_{Z}^{*}\left(b_{Z}, a_{Z}\right)=a_{Z}$.
[Why? If $\left\{a_{Z}, b_{Z}\right\} \notin\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$ then as $k \geq 3$ we can choose $\pi \in$ $\operatorname{Per}(X), \pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z$ such that $\pi^{\prime \prime}\left\{a_{Z}, b_{Z}\right\} \nsubseteq\left\{a_{Z}, b_{Z}\right\}$ and use $6.3,6.4$ on a conjugate of f^{*}. So $\left\{a_{Z}, b_{Z}\right\} \in\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$ and if $f_{Z}^{*}\left(b_{Z}, a_{Z}\right) \neq a_{Z}$ we use $\pi \in \operatorname{Per}(X)$ such that $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z$ and $\pi\left(a_{Z}\right)=b_{Z}, \pi\left(b_{Z}\right)=a_{Z}$ and 6.4.]

It is enough by $(*)_{4}$ to prove $\mathscr{P}_{ \pm}=\emptyset$.
So assume toward contradiction $\mathscr{P}_{ \pm} \neq \emptyset$.
By $(*)_{5}$ one of the following two cases occurs.

Case 1: $Z^{*} \in \mathscr{P}_{ \pm},\left|Z^{*} \cap Y^{*}\right|=k-2$.
As we are allowed to assume $k+4<|X|$ there is $\mathrm{Y} \in\binom{X}{k}$ such that $\left|Y \cap Y^{*}\right|=k-1$ and $Y \cap Z^{*}=Y^{*} \cap Z^{*}$. Now (by $(*)_{5}$) we have $Y \notin \mathscr{P}_{ \pm}$and (by $(*)_{4}$) we have $Y \notin \mathscr{P}_{2}$ so $Y \in \mathscr{P}_{1}$. So there is $\pi \in \operatorname{Per}(X)$ such that $\pi\left(Y^{*}\right)=Y, \pi \upharpoonright Z^{*}=$ identity, let $f=\left(f^{*}\right)^{\pi}$ so by 6.4 we get a contradiction to the choice of f^{*}.

Case 2: $Z^{*} \in \mathscr{P}_{ \pm},\left|Z^{*} \cap Y^{*}\right|=2$.
A proof similar to case 1 works if $Z^{*} \cup Y^{*} \neq X$.
Otherwise, let $\pi \in \operatorname{Per}(X)$ be the identity on $Z^{*} \cap Y^{*}$ and interchange Z^{*}, Y^{*}. Otherwise apply 6.4 on $f^{*},\left(f^{*}\right)^{\pi}$ so $\left(a_{Z^{*}}, b_{Z^{*}}\right) \notin \operatorname{dom}_{1}\left(f^{*}\right) \cup \operatorname{dom}_{1}\left(\left(f^{*}\right)^{\pi}\right)$, etc. easy contradiction.
6.10 Remark. if $\boxtimes\left(f^{*}\right)$ of 6.9 holds for some f^{*} then (in the context of $\S 5$) \mathfrak{C} is full by 5.9 .
6.11 Hypothesis. For no $f \in \mathscr{F}_{[r]}$ as in 6.3 is $\boxtimes(f)$.
6.12 Conclusion. 1) $\mathscr{P}_{2}\left(f^{*}\right)=\emptyset$.
2) $\mathscr{P}_{ \pm} \neq \emptyset$.
3) $\mathscr{P}_{1} \neq \emptyset$.
4) If $Y \in \mathscr{P}_{ \pm}$and $\left|Y \cap Z_{1}\right|=\left|Y \cap Z_{2}\right|$ and $a_{Y} \in Z_{1} \leftrightarrow a_{Y} \in Z_{2}$ and $b_{Y} \in Z_{1} \leftrightarrow$ $b_{Y} \in Z_{2}$ where, of course, $Y, Z_{1}, Z_{1} \in\binom{X}{k}$, then $Z_{1} \in \mathscr{P}_{ \pm} \leftrightarrow Z_{2} \in \mathscr{P}_{ \pm}$.

Proof. 1) By $6.11+6.9$.
2) Otherwise f^{*} is a monarchy.
3) Assume not, so $\mathscr{P}_{ \pm}=\binom{X}{k}$. Let $Y \in \mathscr{P}_{ \pm}, Z \in\binom{X}{k}, Z \cap\left\{a_{Y}, b_{Y}\right\}=\emptyset$ and 2 $|Z \cap Y|>2$ and $|Z \backslash Y|>2$, we can get a contradiction to $n\left(f^{*}\right)$-s minimality.
4) By 6.3 and 6.4 as we can find $\pi \in \operatorname{Per}(X)$ such that $\pi(Y)=Y, \pi\left(Z_{1}\right)=$ $Z_{2}, \pi\left(a_{Y}\right)=a_{Y}, \pi\left(b_{Y}\right)=b_{Y}$.
6.13 Claim. If $Y, Z \in \mathscr{P}_{ \pm}$and $Y \neq Z$, then there is no $\pi \in \operatorname{Per}(X)$ such that:

$$
\begin{gathered}
\pi(Y)=Y, \pi(Z)=Z \\
\pi\left(a_{Y}\right)=a_{Y}, \pi\left(b_{Y}\right)=b_{Y} \\
\left\{\pi\left(a_{Z}\right), \pi\left(b_{Z}\right)\right\} \nsubseteq\left\{a_{Z}, b_{Z}\right\} .
\end{gathered}
$$

Proof. By Definition/Choice 6.3 and Fact 6.4.
6.14 Claim. If $Y \in \mathscr{P}_{ \pm}, Z \in \mathscr{P}_{ \pm}, 2<|Y \cap Z|<k-2$ then $\left\{a_{Z}, b_{Z}\right\}=\left\{a_{Y}, b_{Y}\right\}$.

Proof. By 6.13 except when $Y \cap Z=\left\{a_{Y}, b_{Y}, a_{Z}, b_{Z}\right\}$. Then choose $Z_{1}=Z$ and $Z_{2} \in\binom{X}{k}$ such that $Z_{2} \cap(Y \cap Z)=\left\{a_{Y}, b_{Y}\right\},\left|Y \cap Z_{1}\right|=|Y \cap Z|, Z_{1} \backslash Y \cap Z=$ $Y \backslash Y_{*} \backslash Y \cap Z$ where $Y_{*} \subseteq Y \backslash Z$ has $|Y \cap Z|-2$ members. By 6.12(2), $Z_{2} \in \mathscr{P}_{ \pm}$so as in the original case $Y \cap Z_{1}=\left\{a_{Y}, b_{Y}, a_{Z_{2}}, b_{Z_{2}}\right\}$ and for Z_{1}, Z_{2} the original case suffices. (Alternatively as a lemma $4<|Y \cap Z|<k-4$ and in 6.12 replace 4 by 6 .

[^1]6.15 Claim. If $Z_{0}, Z_{1} \in \mathscr{P}_{ \pm}$and $\left|Z_{1} \backslash Z_{0}\right|=1$ then $\left\{a_{Z_{0}}, b_{Z_{0}}\right\}=\left\{a_{Z_{1}}, b_{Z_{1}}\right\}$.

Proof. We shall choose by induction $i=0,1,2,3,4$ a set $Z_{i} \in \mathscr{P}_{ \pm}$such that $j<i \Rightarrow\left|Z_{i} \backslash Z_{j}\right|=i-j$. By 6.14 we have $i-j=3,4 \Rightarrow\left\{a_{Z_{i}}, b_{Z_{i}}\right\}=\left\{a_{Z_{j}}, b_{Z_{j}}\right\}$ as this applies to $(j, i)=(0,4)$ and $(j, i)=(1,4)$ we get the desired conclusion by transitivity of equality.

To choose Z_{i}, let $x_{i} \in X \backslash\left(Z_{0} \cup \ldots \cup Z_{i-1}\right)$; possible as we exclude $k+i-1$ elements and choose $y_{i} \in Z_{0} \cap \ldots \cap Z_{i-1} \backslash\left\{a_{Z_{i-1}}, b_{Z_{i-1}}\right\}$. Now let $Z_{i}=Z_{i-1} \cup\left\{y_{i}\right\} \backslash\left\{x_{i}\right\}$ easily $j<i \Rightarrow\left|Z_{i} \backslash Z_{j}\right|=i-j$ and $Z_{i} \in \mathscr{P}_{ \pm}$by $6.12(4)$ with Y, Z_{1}, Z_{2} there standing for Z_{i-1}, Z_{i-2}, Z_{i} here.
6.16 Choice: $Y^{*} \in \mathscr{P}_{ \pm}$.

6.17 Conclusion.

(a) $Y^{*} \in \mathscr{P}_{ \pm}$
(b) if $Y \in \mathscr{P}_{ \pm}$then $\left\{a_{Y}, b_{Y}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$
(c) one of the following possibilities holds
(α) $\mathscr{P}_{ \pm}=\left\{Y^{*}\right\}$
(β) $\mathscr{P}_{ \pm}=\left\{Y \in\binom{X}{k}:\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq Y\right\}$
(γ) $\mathscr{P}_{ \pm}=\left\{Y^{*}, Y^{* *}\right\}$ where $Y^{* *}=\left(X \backslash Y^{*}\right) \cup\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ and $|X|=2 k-2$ hence $\left\{a_{Y^{* *}}, b_{Y^{* *}}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$.

Proof of 6.17. Note that
(*) if $Y_{1}, Y_{2} \in \mathscr{P}_{ \pm},\left|Y_{1} \backslash Y_{2}\right|=1$ and $Y_{3} \in \mathscr{P}_{ \pm}, Y_{4} \in\binom{X}{k},\left|Y_{3} \backslash Y_{4}\right|=1$ and $\left\{a_{Y_{3}}, b_{Y_{3}}\right\}=\left\{a_{Y_{1}}, b_{Y_{1}}\right\} \subseteq Y_{4}$ then $Y_{4} \in \mathscr{P}_{ \pm}$(hence $\left\{a_{Y_{4}}, b_{Y_{4}}\right\}=\left\{a_{Y_{3}}, b_{Y_{3}}\right\}=$ $\left\{a_{Y_{1}}, b_{Y_{1}}\right\}$).
[Why? As there is a permutation π of X such that $\pi\left(a_{Y_{1}}\right)=a_{Y_{1}}, \pi\left(b_{Y_{1}}\right)=$ $b_{Y_{1}}, \pi\left(Y_{3}\right)=Y_{1}, \pi\left(Y_{4}\right)=Y_{2}$. By 6.4 we get a contradiction to the choice of f^{*}.]

The hence of $(c)(\gamma)$ is by 6.13 .
By the choice of $Y^{*} \in \mathscr{P}_{ \pm}$, we have (a), now (b) follows from (c) so it is enough to prove (c). Assume $(\alpha),(\gamma)$ fail and we shall prove (β). So there is $Z_{1} \in \mathscr{P}_{ \pm}$such that $Z_{1} \notin\left\{Y^{*},\left(X \backslash Y^{*}\right) \cup\left\{a_{Y^{*}}, b_{Y^{*}}\right\}\right\}$. We can find $c_{1}, c_{2} \in X \backslash\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ such that $c_{1} \in Y^{*} \leftrightarrow c_{2} \in Y^{*}$ and $c_{1} \in Z_{1} \leftrightarrow c_{2} \notin Z_{1}$.
[Why? if $Y^{*} \cup Z_{1} \neq X$ any $c_{1} \in X \backslash Y^{*} \backslash Z_{1}, c_{2} \in Z_{1} \backslash Y^{*}$ will do; so assume $Y^{*} \cup Z_{1}=$ X so as $k+2<|X|$ clearly $\left|Y^{*} \cap Z\right|<k-2$ hence by $6.14,\left|Z_{1} \cap Y^{*}\right| \leq 2$. As not case (γ) of (c), that is by the choice of Z_{1}, necessarily $\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \nsubseteq Y^{*} \cap$ Z_{1} and using $\pi \in \operatorname{Per}(X), \pi \upharpoonright Z_{1}=\operatorname{id}, \pi\left(Y^{*}\right)=Y^{*}, \pi$ the identity on Z_{1} and $\left\{\pi\left(a_{Y^{*}}\right), \pi\left(b_{Y^{*}}\right)\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ now by 6.13 we contradict $6.3+6.4$.]

Let $Z_{2}=Z_{1} \cup\left\{c_{1}, c_{2}\right\} \backslash\left(Z_{1} \cap\left\{c_{1}, c_{2}\right\}\right)$ so $Z_{1}, Z_{2} \in\binom{X}{k}$ and $\left|Z_{2} \cap Y^{*}\right|=\left|Z_{1} \cap Y^{*}\right|$ and $Z_{1} \cap\left\{a_{Y^{*}}, b_{Y^{*}}\right\}=Z_{2} \cap\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ hence by $6.12(4)$ we have $Z_{2} \in \mathscr{P}_{ \pm}$and clearly $\left|Z_{1} \backslash Z_{2}\right|=1$.

By 6.15 we have $\left\{a_{Z_{1}}, b_{Z_{1}}\right\}=\left\{a_{Z_{2}}, b_{Z_{2}}\right\}$. Similarly by (*) we can prove by induction on $m=\left|Z \backslash Z_{1}\right|$ that $\left\{a_{Z_{1}}, b_{Z_{1}}\right\} \subseteq Z \in\binom{X}{k} \Rightarrow Z \in \mathscr{P}_{ \pm} \& \quad\left\{a_{Z}, b_{Z}\right\}=$ $\left\{a_{Z_{1}}, b_{Z_{1}}\right\}$. If (β) of (c) fails, then there is $Z_{3} \in \mathscr{P}_{ \pm}$satisfying $\left\{a_{Z_{1}}, b_{Z_{1}}\right\} \nsubseteq Z$. Easily $\left\{a_{Z_{3}}, b_{Z_{3}}\right\} \subseteq Z \in\binom{X}{k} \Rightarrow Z \in \mathscr{P}_{ \pm} \quad \& \quad\left\{a_{Z}, b_{Z}\right\}=\left\{a_{Z_{3}}, b_{Z_{3}}\right\}$. As we are assuming $k \geq 4$, we can find $Y \in\binom{X}{k}$, such that $\left\{a_{Z_{1}}, b_{Z_{1}}, a_{Z_{3}}, b_{Z_{3}}\right\} \subseteq Y$; contradiction.
6.18 Claim. 1) The (*) of 5.8 holds.
2) In 6.17 clause (c), clause (α) holds.

Proof. 1) Obvious by part (2) from (α).
2) First assume (β), so by 6.18 , clause (b), $6.3+6.4$ we have without loss of generality either $\{a, b\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq Y \in\binom{X}{k} \Rightarrow f_{Y}^{*}(a, b)=b$ or $\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq$ $Y \in\binom{X}{K} \Rightarrow f_{Y}^{*}\left(a_{Y^{*}}, b_{Y^{*}}\right)=b_{Y^{*}}=f\left(b_{Y^{*}}, a_{Y^{*}}\right)$. In both cases f^{*} is simple and not a monarchy contradiction to 5.2.
Second, assume (γ). Let $\left\langle\pi_{i}: i<i^{*}\right\rangle$ be a list of the permutations π of X such that $\pi\left(a_{Y^{*}}, b_{Y^{*}}\right)=\left(a_{Y^{*}}, b_{Y^{*}}\right)$.

Let f_{i}^{*} be f^{*} conjugated by π_{i}. Now define g^{i} for $i \leq i^{*}$ by induction on i : $g_{Y}^{0}\left(x_{1}, x_{2}\right)=x_{1}, g_{Y}^{i+1}\left(x_{1}, x_{2}\right)=f_{i}^{*}\left(g_{Y}^{i}\left(x_{1}, x_{2}\right), x_{2}\right)$. So $g^{i^{*}} \in \mathscr{F}_{[2]}$ and $\operatorname{dom}_{2}\left(g^{i^{*}}\right)=$ $\bigcap_{i<i^{*}} \operatorname{dom}_{2}\left(f_{i}^{*}\right)$ where $\operatorname{dom}_{2}(g)=\left\{(Z, a, b): a, b \in Z \in\binom{X}{k}\right.$ and $\left.g_{Z}(a, b)=b \neq a\right\}$, so $\operatorname{dom}_{1}\left(g^{i^{*}}\right)=\bigcup_{i<i^{*}} \operatorname{dom}_{1}\left(f_{i}^{*}\right)$ hence
$(*)_{1} g_{Y}^{i^{*}}\left(a_{1}, a_{2}\right)=a_{2}$ if $\left\{a_{1}, a_{2}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$
$(*)_{2} g_{Y}^{i^{*}}\left(a_{1}, a_{2}\right)=a_{1}$ if $\left\{a_{1}, a_{2}\right\} \neq\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$.
Now g is simple but not a monarchical contradiction to 5.2.
§7 The case $r \geq 4$
7.1 Hypothesis. $r=r(\mathscr{F}) \geq 4$.
7.2 Claim. 1) For every $f \in \mathscr{F}_{r}$ there is $\ell(f) \in\{1, \ldots, r\}$ such that
\circledast if $Y \in\binom{X}{k}, \bar{a} \in{ }^{r} Y$ and $|\operatorname{Rang}(\bar{a})|<r$ (i.e. \bar{a} is not one-to-one) then $f_{Y}(\bar{a})=a_{\ell(f)}$.
2) $r \leq k$.

Proof. 1) Clearly there is a two-place function h from $\{1, \ldots, r\}$ to $\{1, \ldots, r\}$ such that: if $y_{1}, \ldots, y_{r} \in Y \in\binom{X}{k}, y_{\ell}=y_{k} \wedge \ell \neq k \Rightarrow f_{Y}\left(y_{1}, \ldots, y_{r}\right)=y_{h(\ell, k)}$; we have some freedom so let without loss of generality

$$
\boxtimes \ell \neq k \Rightarrow h(\ell, k) \neq k .
$$

Assume toward contradiction that the conclusion fails, i.e., there is no $\ell(f)$ as required; i.e.
$\circledast^{\prime} h \upharpoonright\{(m, n): 1 \leq m<n \leq r\}$ is not constant.
Case 1: For some $\bar{x} \in{ }^{r} Y, Y \in\binom{X}{k}$ and $\ell_{1} \neq k_{1} \in\{1, \ldots, r\}$ we have

$$
\begin{gathered}
|\operatorname{Rang}(\bar{x})|=r-1 \\
x_{\ell_{1}}=x_{k_{1}} \\
f_{Y}(\bar{x}) \neq x_{\ell_{1}},
\end{gathered}
$$

equivalently: $h\left(\ell_{1}, k_{1}\right) \notin\{\ell, k\}$.
Without loss of generality $\ell_{1}=r-1, k_{1}=r, f_{Y}(\bar{x})=x_{1}$ (as by a permutation σ of $\{1, \ldots, r\}$ we can replace f by $\left.f^{\sigma}: f_{Y}^{\sigma}\left(x_{1}, \ldots, x_{2}\right)=f_{Y}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)\right)$.

We can choose $Y \in\binom{X}{k}$ and $x \neq y$ in Y so $h(x, y, \ldots, y)=x$ hence $\ell \neq k \in$ $\{2, \ldots, r\} \Rightarrow h(\ell, k)=1$.
Now for $\ell \in\{2, \ldots, r\}$ we have agreed $h(1, \ell) \neq \ell$, (see \boxtimes), as we can assume $h \upharpoonright$ $\{(m, n): 1 \leq m<n \leq r\}$ is not constantly 1 , by \circledast^{\prime} for some such $\ell, h(1, \ell) \neq 1$ so without loss of generality $\ell=2$ so $h(1,2) \neq 1,2$, so without loss of generality $h(1,2)=$ 3 but as $r \geq 4$ we have if $x \neq y \in Y \in\binom{X}{k}$ then $f_{Y}(x, x, y, y, \ldots, y)$ is y as $h(1,2)=3$ and is x as $h(3,4)=1$, contradiction. So
$* h \upharpoonright\{(\ell, k): 1 \leq \ell<k \leq r\}$ is constantly 1.
hence

$$
\bar{x} \in{ }^{r} X \text { is with repetitions } \Rightarrow h(\bar{x})=x_{1}
$$

as required.
Case 2: Not Case 1.
So $h(\ell, k) \in\{\ell, k\}$ for $\ell \neq k \in\{1, \ldots, r\}$. Now let $Y \in\binom{X}{k}, x \neq y \in Y$ and look at $f_{Y}(x, x, y, y, \ldots)$ it is both x as $h(1,2) \in\{1,2\}$ and y as $h(3,4) \in\{3,4\}$, contradiction.
2) This follows as if $f \in \mathscr{F}_{[r]}$ and $k<r(\mathscr{F})$ and $\ell(*)$ is as in part (1) then $f_{Y}(\bar{x})=x_{\ell(*)}$ always, as $x_{\ell(*)}$ has repetitions by pigeon-hole.

Recall
7.3 Definition. $f=f_{r ; \ell, k}=f^{r ; \ell, k}$ is the r-place function

$$
f_{Y}(\bar{x})=\left\{\begin{array}{lll}
x_{\ell} & \bar{x} & \text { is with repetitions } \\
x_{k} & & \text { otherwise }
\end{array}\right.
$$

7.4 Claim. 1) If $f_{r ; 1,2} \in \mathscr{F}$ then $f_{r ; \ell, k} \in \mathscr{F}$ for $\ell \neq k$.
2) If $f_{r ; 1,2} \in \mathscr{F}, r \geq 3$ then $f_{r+1 ; 1,2} \in \mathscr{F}$.

Proof. 1) Trivial.
2) For $r \geq 5$ let $g\left(x_{1}, \ldots, x_{r+1}\right)=f_{r, 1,2}\left(x_{1}, x_{2}, \tau_{3}\left(x_{1}, \ldots\right) \ldots \tau_{r}\left(x_{1}, \ldots\right)\right)$ where $\tau_{m} \equiv f_{r, 1, m}\left(x_{1}, \ldots, x_{m}, x_{m+2}, \ldots, x_{r+1}\right)$ that is x_{m+1} is omitted.
Continue as in the proof of 2.7 .
7.5 Claim. Assume $Y \in\binom{X}{k}, \bar{a} \in{ }^{r} Y$ is one-to-one. There is $f=f^{Y, \bar{a}} \in \mathscr{F}_{r}$ such that $f_{Y}^{Y, \bar{a}}(\bar{a})=a_{2}$ and $f_{Z}^{Y, \bar{a}}(\bar{b})=b_{1}$ if $Z \in\binom{X}{k}$ and $\bar{b} \in{ }^{r} X$ is not one to one (so $(*)$ of 5.6(2) holds).

Proof. Let $f \in \mathscr{F}_{r}$ be not monarchical, and without loss of generality $\ell(*)=1$ in 7.2. By being not a monarchy, for some Y, \bar{a} and some $k \in\{2, \ldots, r\}$ we have $f_{Y}(\bar{a})=a_{k} \neq a_{1}$; necessarily \bar{a} is one-to-one. Conjugating by $\pi \in \operatorname{Per}(X)$ and permuting $[2, r]$, we get $f^{Y, \bar{a}}$ as required, in particular $f^{Y, \bar{a}}(\bar{a})=a_{2}$.

REFERENCES.

[Arr50] Kenneth Arrow. A difficulty in the theory of social welfare. J. of Political Economy, 58:328-346, 1950.
[Fis73] Peter Fishburn. The Theory of Social Choice. Princeton University Press, 1973.
[Kal01] Gil Kalai. Learnability and rationality of choice. Preprint, 2001.
[KRS01] Gil Kalai, Ariel Rubinstein, and Ran Spiegler. Comments on rationalizing choice functions which violate rationality. Preprint, 2001.
[Pel84] Bezalel Peleg. Game theoretic analysis of voting in committees, volume 7 of Econometric Society Monographs in Pure Theory. Cambridge University Press, Cambridge, 1984.
[RF86] Ariel Rubinstein and Peter Fishburn. Algebraic aggregation theory. J. Econom. Theory, 38:63-77, 1986.
[Sen86] Amartya Sen. Social choice theory. In Arrow and Intriligator, editors, Handbook of Mathematical Economics, Vol III, chapter 22, pages 10731182. North-Holland, Amsterdam, 1986.
[Szb99] László Szabó. Algebras that are simple with weak automorphisms. Algebra Universalis, 42:205-233, 1999.
[Szn96] Ágnes Szendrei. Clones in universal algebra. volume 99 of Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics]. Presses de l'Universiti de Montrial, Montreal, QC, 1986.

[^0]: ${ }^{1}$ this is the majority function for $r=3$

[^1]: ${ }^{2}$ I am sure that after careful checking we can improve the bound

