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2 SAHARON SHELAH

§0 Introduction

Let X be a finite set of alternatives. A choice function c is a mapping which
assigns to nonempty subsets S of X an element c(S) of S. A rational choice function
is one for which there is a linear ordering on the alternatives such that c(S) is the
maximal element of S according to that ordering. (We will concentrate on choice
functions which are defined on subsets of X of fixed cardinality k and this will be
enough.)

Arrow’s impossibility theorem [Arr50] asserts that under certain natural condi-
tions, if there are at least three alternatives then every non-dictatorial social choice
gives rise to a non-rational choice function, i.e., there exist profiles such that the
social choice is not rational. A profile is a finite list of linear orders on the alter-
natives which represent the individual choices. For general references on Arrow’s
theorem and social choice functions see [Fis73], [Pel84] and [Sen86].

Non-rational classes of choice functions which may represent individual behavior
where considered in [KRS01] and [Kal01]. For example: c(S) is the second largest
element in S according to some ordering, or c(S) is the median element of S (assume
|S| is odd) according to some ordering. Note that the classes of choice functions
in these classes are symmetric namely are invariant under permutations of the
alternatives. Gil Kalai asked if Arrow’s theorem can be extended to the case when
the individual choices are not rational but rather belong to an arbitrary non-trivial
symmetric class of choice functions. (A class is non-trivial if it does not contain
all choice functions.) The main theorem of this paper gives an affirmative answer
in a very general setting. See also [RF86] for general forms of Arrow’s and related
theorem.

The part of the proof which deals with the simple case is related to clones which
are studied in universal algebras (but we do not use this theory). On clones see
[Szb99] and [Szn96].

Notation:

1) n,m, k, `, r, s, t, i, j natural numbers always k,
many times r are constant (there may be some misuses of k).
2) X a finite set.

3) C a family of choice function on
(
X
k

)
= {Y : Y ⊆ X, |Y | = k}.

4) F is a clone on X (see Definition 2.3(2)).
5) a, b, e ∈ X.
6) c, d ∈ C.
7) f, g ∈ F .
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Annotated content

§1 Framework

[What are X,C,F = Av(C), the Arrow property restricted to
(
X
k

)
,C is

(X, k) = FCF (note: no connection for different k − s) and the Main
theorem. For C,F , r = r(F ).]

Part A: The simple case.

§2 Context and on nice f ’s

[Define a clone, r(F ). If f ∈ F(r) is not a monarchy, r ≥ 4 on the family
of not one-to-one sequences ā ∈ rX then f is a projection, 2.5.
Define fr;`,k, basic implications on fr;`,k ∈ F , 2.6, 2.7.
If r = 3, f ∈ F[s] is not a monarchy on one-to-one triples, then f without
loss of generality, is fr;1,2 or gr;1,2 on a relevant set, 2.8.
If r = 3, f is not a semi monarchy on permutations of ā.
If r = 3, there are some “useful” f , 2.11. Implications on fr;`,k ∈ F .]

§3 Getting C is full

[Sufficient condition for r ≥ 4 with fr;1,2 or so (3.1), similarly when r = 3.
Sufficient condition for r = 3 with gr;1,2 or so (3.3).
A pure sufficient condition for C full 3.4.
Subset

(
X
3

)
, closed under a distance 3.5.

Getting the final conclusion (relying on §4).]

§4 The r = 2 case.

[By stages we get a f ∈ F[r] which is a monarchy with exactly one ex-
ceptional pair, 4.2 - 4.4. Then by composition we get g ∈ F2 similar to
fr;1,2.]

Part B: Non-simple case.

§5 Fullness - the non-simple case

[We derive “C is full” from various assumptions, and then prove the main
theorem.]

§6 The case r = 2.

§7 The case r ≥ 4.
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4 SAHARON SHELAH

§1 Framework

1.1 Context. We fix a finite set X and r = {0, . . . , r − 1}.

1.2 Definition. 1) An (X, r)-election rule is a function c such that: for every
“vote” t̄ = 〈ta : a ∈ X〉 ∈ Xr we have c(t̄) ∈ r = {0, . . . , r − 1}.
2) c is a monarchy if (∃a ∈ X)(∀t̄ ∈ X r̄)[c(t̄) = ta].
3) c is reasonable if (∀t̄)(c(t) ∈ {ta : a ∈ X}).

1.3 Definition. 1) We say C is a family of choice functions for X (X − FCF in
short) if:

C ⊆ {c :c is a function,

Dom(c) = P−(X)(= family of nonempty subsets of X)

and (∀Y ∈P−(X))(c(Y ) ∈ Y )}.

2) C is called symmetric if for every π ∈ Per(X) = group of permutations of X we
have

c ∈ C⇒ π ∗ c ∈ C

where

π ∗ c(Y ) = π−1(cπ(Y )).

3) PC = P−(X).

1.4 Definition. 1) We say av is a r-averaging function for C if

(a) av is a function written avY (a1, . . . , ar)

(b) for any c1, . . . , cr ∈ C, there is c ∈ C such that
(∀Y ∈P−(X))(c(Y )) = avY (c1(Y ), . . . , cr(Y ))

(c) if a ∈ Y ∈P−(X) then avY (a, . . . , a) = a.

2) av is simple if avY (a1, . . . , ar) does not depend on Y so we may omit Y .
3) AVr(C) = {av : av is an r-averaging function for C}, similarly AVs

r(C) = {av :
av is a simple r-averaging function for C}.
4) AV(C) =

⋃
r

AVr(C) and AV s(C) =
⋃
r

AV sr (C).
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1.5 Definition. 1) We say that C which is an X-FCF, has the simple r-Arrow
property if

av ∈ AVs
r(C)⇒

r∨
t=1

(∀a1, . . . , ar) av(a1, . . . , ar) = at

such av is called monarchical.
2) Similarly without simple (using Avr(C)).

1.6 Question: 1) Under reasonable conditions does C have the Arrow property?
2) Does |C| ≤ poly(|X|)⇒ r-Arrow property? This means, e.g., for every natural
numbers r, n for every X large enough for every symmetric C; an X-FCF with
≤ |X|n member, C has the r-Arrow property.

1.7 Remark. The question was asked with C(X) defined for every X; but in the
treatment here this does not influence.

We actually deal with:

1.8 Definition. If 1 ≤ k ≤ |X| − 1 and we replace P−(X) by
(
X
k

)
=: {Y : Y ⊆

X, |Y | = k}, then C is called (X, k) - FCF, PC =
(
X
k

)
, k = k(C), av is [simple] r-

averaging function for C; let k(C) =∞ if PC = P−(X); let F = F (C) = AVs(C)
and let F[r] = {f ∈ F : f is r-place}.

1.9 Discussion: This is justified because:
1) For simple averaging function, k ≥ r the restriction to

(
X
k

)
implies the full result.

2) For the non-simple case there is a little connection between the various C �
(
X
k

)
(exercise).

Our aim is (but we shall first prove the simple case):

1.10 Main Theorem. There are natural numbers r∗1 , r
∗
2 < ω (we shall be able to

give explicit values, e.g. r∗1 = r∗2 = 7 are O.K.) such that:

~ if X is finite, r∗1 ≤ k, |X| − r∗2 ≥ k and C is a symmetrical (X, k)-FCF and

some av ∈ AVr(C) is not monarchical, then every choice function for
(
X
k

)
belongs to C (= C is full).

Proof. By 5.10.

1.11 Conclusion. Assume X is finite, r∗1 ≤ k ≤ |X| − r∗2 (where r∗1 , r
∗
2 from 1.10).

1) If C is an (X, k)-FCF and some member of Avr(C) is not monarchical, then

|C| = k(|X|k ).
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6 SAHARON SHELAH

Part A: The simple case.

§2 Context and on nice f ’s

Note: Sometimes Part B gives alternative ways.

2.1 Hypothesis (for part A).

(a) X a finite set

(b) 5 < k < |X| − 5

(c) C a symmetric (X, k)-FCF and C 6= ∅
(d) F[r] = {f : f an r-place function from X to X such that C is closed under

f that is f ∈ AVs
r(C)}

(e) F = ∪{F[r] : r < ω}.

2.2 Fact. F is a clone on X (see 2.3 below) satisfying f ∈ F[r] ⇒ f(x1, . . . , xr) ∈
{x1, . . . , xr} and F is symmetric, i.e. closed by conjugation by π ∈ Per(X).

2.3 Definition. 1) f is monarchical = is a projection, if f is an r-place function
(from X to X) and for some t, (∀x1, . . . , xn)f(x1, . . . , xr) = xt.
2) F is a clone on X if it is a family of functions from X to X (for all arities, i.e.,
number of places) including the projections and closed under composition.

2.4 Definition. For C,F as in 2.1:

r(C) = r(F ) =: Min{r : some f ∈ Cr is not monarchical}

(let r(F ) =∞ if C is monarchical).

2.5 Claim. Assume

(a) f ∈ F[r]

(b) 4 ≤ r = r(F ) = Min{r:some f ∈ F is not a monarchy}.
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Then
1) for some ` ∈ {1, . . . , r} we have f(x1, . . . , xr) = x` if x1, . . . , xr has some
repetition.
2) r ≤ k.

Proof. 1) Clearly there is a two-place function h from {1, . . . , r} to {1, . . . , r} such
that: if y` = yk ∧ ` 6= k ⇒ f(y1, . . . , yr) = yh(`,k); we have some freedom so
without loss of generality

� ` 6= k ⇒ h(`, k) 6= k.

Assume toward contradiction that (1)’s conclusion fails, i.e.

~ h � {(`, k) : 1 ≤ ` < k ≤ r} is not constant.

Case 1: For some x̄ ∈ rX and `1 6= k1 ∈ {1, . . . , r} we have

x`1 = xk1

f(x̄) 6= x`1

equivalently: h{`1, k1} /∈ {`1, k1}, recalling �.

Without loss of generality `1 = r − 1, k1 = r, f(x̄) = x1 (as for a permutation σ of
{1, . . . , r} we can replace f by fσ, fσ(x1, . . . , xr) = f(xσ(1), . . . , xσ(r))).

We can choose x 6= y in X so h(x, y, . . . , y) = x hence ` 6= k ∈ {2, . . . , r} ⇒
h(`, k) = 1.
Now for ` ∈ {2, . . . , r} we have agreed h(1, `) 6= `, (see �) so as h � {(`, k) : ` < k} is
not constantly 1 (by ~) without loss of generalityh(1, 2) = 3. But as r ≥ 4 letting
x 6= y ∈ X we have f(x, x, y, y . . . ) is y as h(1, 2) = 3 and is x as h(3, 4) = 1,
contradiction.

Case 2: Not Case 1.

Let x 6= y, now consider f(x, x, y, y, . . . ), it is x as h(1, 2) ∈ {1, 2} and it is y as
h(3, 4) ∈ {3, 4}, contradiction.
2) Follows as for r > k we always have a repetition (see Definition 1.4(1), f plays
the role of c). �2.5
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8 SAHARON SHELAH

2.6 Definition. fr;`,k = fr,`,k is the r-place function on X defined by

fr;`,k(x̄) =

{
x` x̄ is with repetition

xk otherwise

2.7 Claim. 1) If fr,1,2 ∈ F then fr,`,k ∈ C for ` 6= k ∈ {1, . . . , r}.
2) If fr,1,2 ∈ F and r ≥ 3 then fr+1,1,2 ∈ F .

Proof. 1) Trivial (by 2.2).
2) First assume r ≥ 5. Let g(x1, . . . , xr+1) = fr,1,2(x1, x2, τ3, . . . , τr) where
τm ≡ fr,1,m(x1, . . . , xm, xm+2, . . . , xr+1); (that is xm+1 is omitted).

So for any ā:
if ā has no repetitions then:

τ3(ā) = a3, . . . , τr(ā) = ar

g(ā) = f(a1, a2, a3, . . . , ar) = a2

if ā has repetitions say a` = ak then there is m ∈ {3, . . . , r}\{` − 1, k − 1} hence
〈a1, . . . , am, am+2, . . . , ar+1〉 is with repetition so τm(ā) = a1 so (a1, a2, . . . , τm(ā), . . . )
has a repetition so g(ā) = a1.

Second assume r = 4:
Let g be the function of arity 5 defined by: for x̄ = (x1, . . . , x5) we let

g(x̄) = fr,1,2(τ1(x̄), . . . , τ4(x̄)) where

(∗)1 τ1(x̄) = x1

(∗)2 τ2(x̄) = fr,1,2(x1, x2, x3, x4)

(∗)3 τ3(x̄) = fr,1,3(x1, x2, x3, x5)

(∗)4 τ4(x̄) = fr,1,4(x1, x2, x5, x4).
Note that

(∗)5 for x̄ with no repetition τ`(x̄) = x`.

Now check that g is as required.

Third assume r = 3:
Let g(x1, x2, x3, x4) = fr,1,2(τ1, τ2, τ3) where
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ON THE ARROW PROPERTY SH782 9

τ1 = x1

τ2 = fr,1,2(x1, x2, x4)

τ3 = fr,1,2(x1, x3, x4).

Now check (or see 4.7’s proof). �2.7

2.8 Claim. Assume

(α) F is as in 2.2

(β) every f ∈ F[2] is a monarchy, r = r[F ] = 3

(γ) f∗ ∈ F[3] and for no i ∈ {1, 2, 3} do we have (∀b̄ ∈ 3X)(b̄ not one-to-one

⇒ f∗(b̄) = bi).

Then for some g ∈ F[3] not a monarchy we have: (a) or (b) where

(a) for b̄ ∈ 3X which is not one-to-one g(b̄) = fr;1,2(b̄), i.e. = b1

(b) for b̄ ∈ 3X which is not one-to-one g(b̄) = gr;1,2(b̄), see below

Where

2.9 Definition. gr;1,2 is the following function1 from X to X.

gr;1,2,(x1, x2, . . . , xr) =

{
x2 if x2 = x3 = . . . = xr

x1 if otherwise
.

Similarly gr;`,k(x1, . . . , xr) is xk if |{xi : i 6= `}| = 1 and x` otherwise.

Proof of 2.8. The same as the proof of the next claim ignoring the one-to-one
sequences (i.e. f(a1, a2, a3)), see more later.

1this is the majority function for r = 3

Paper Sh:782, version 2005-04-25 10. See https://shelah.logic.at/papers/782/ for possible updates.



10 SAHARON SHELAH

2.10 Claim. Assume F is as in 2.2, r = r(F ) = 3, f∗ ∈ F , f∗ is a 3-place
function and not a monarchy and ā ∈ 3X is with no repetition such that: if ā′ =
(a′1, a

′
2, a
′
3) is a permutation of ā then f∗(ā′) = a′1; but ¬(∀b̄ ∈ 3X)(b̄ not one-to-one →

f∗(b̄) = b1)).
Then for some g ∈ F3 we have (a) or we have (b) where:

(a)(i) for b̄ ∈ 3X with repetition, g(b̄) = fr;1,2(b̄), i.e. g(b̄) = b1

(ii) g(ā′) = a′2 for any permutation ā′ of ā

(b)(i) for b̄ ∈ 3X with repetition, g(b̄) = gr;1,2(b̄)

(ii) g(ā′) = a′1 for any permutation ā′ of ā (see on gr;1,2 in 2.9).

Proof. Let ā = (a1, a2, a3); (a, b, c) denote any permutation of ā.
Let W = {b̄ : b̄ ∈ 3X and [b̄ is a permutation of ā or b̄ not one-to-one]}.

Let F− = {f �W : f ∈ F}, f = f∗ �W .
Let for η ∈ 3{1, 2}, fη be the 3-place function with domain W , such that

�0 fη(aσ(1), aσ(2), aσ(3)) = aσ(1) for σ ∈ Per{1, 2, 3}
�1 fη(a1, a2, a2) = aη(1)

�2 fη(a1, a2, a1) = aη(2)

�3 fη(a1, a1, a2) = aη(3)

Now

(∗)0 f ∈ {fη : η ∈ 32}
[why? just think: by the assumption on f∗ and as r(F ) = 3, in details:
for �1,�2,�2 remember that f(x, y, y), f(x, y, x), f(x, x, y) are monarchies
and for �0 remember the assumption on ā and of course f(x, x, x) = x.]

(∗)1 if η = 〈1, 1, 1〉 then fη is 6= f
[why? fη(x1, x2, x3) = x1 on W , i.e. is a monarchy]

(∗)2 if η, ν ∈ 3{1, 2}, η(1) = ν(1), η(2) = ν(3), η(3) = ν(2), then fη ∈ F− ⇔
fν ∈ F−

[Why? In f(x, y, z) we just exchange y and z]

(∗)3 if f<2,2,2> ∈ F− then f<1,2,2> ∈ F−

[Why? Define g by g(x, y, z) = f<2,2,2>(x, f<2,2,2>(y, x, z), f<2,2,2>(z, x, y))
(so g ∈ F−) hence

g(a, b, c) = f<2,2,2>(a, b, c) = a; hence g satisfies �0
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g(a, b, b) =f<2,2,2>(a, f<2,2,2>(b, a, b), f<2,2,2>(b, a, b)))

= f<2,2,2>(a, a, a) = a

g(a, b, a) =f<2,2,2>(a, f<2,2,2>(b, a, a), f<2,2,2>(a, a, b))

= f<2,2,2>(a, a, b) = b

g(a, a, b) =f<2,2,2>(a, f<2,2,2>(a, a, b), f<2,2,2>(b, a, a))

= f<2,2,2>(a, b, a) = b.

So g = f<1,2,2> hence f<1,2,2> ∈ F− as promised.]

(∗)4 f<1,2,2> ∈ F− ⇒ f<2,1,2> ∈ F−

[Why? Let

g(x, y, z) = f<1,2,2>(x, y, f<1,2,2>(z, x, y))

So

g(a, b, c) = a hence g satisfies �0

and

g(a, b, b) =f<1,2,2>(a, b, f<1,2,2>(b, a, b))

= f<1,2,2>(a, b, a) = b

g(a, b, a) =f<1,2,2>(a, b, f<1,2,2>(a, a, b))

= f<1,2,2>(a, b, b) = a

g(a, a, b) =f<1,2,2>(a, a, f<1,2,2>(b, a, a))

= f<1,2,2>(a, a, b) = b.
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12 SAHARON SHELAH

So g = f<2,1,2> hence f<2,1,2> ∈ F− as promised.]

(∗)5 f<2,1,2> = f3;3,1, i.e.

f<2,1,2>(x1, x2, x3) =

{
x1 if |{x1, x2, x3}| = 3

x3 if |{x1, x2, x3}| ≤ 2

when (x1, x2, x3) ∈W
[Why? Check.]

(∗)6 f<2,2,1>(x1, x2, x3) = x2 if 2 ≥ |{x1, x2, x3}|
[Why? Check.]

(∗)7 f<2,1,2> ∈ F− ⇔ f<2,2,1> ∈ F−

[Why? See (∗)2 in the beginning.]

(∗)8 f<1,2,1> ∈ F− ⇔ f<1,1,2> ∈ F−

[Why? By (∗)2 in the beginning.]

(∗)9 f<1,2,1> ∈ F− ⇒ f<2,2,1> ∈ F−.
[Why? Let g(x, y, z) = f<1,2,1>(x, f<1,2,1>(y, z, x), f<1,2,1>(z, x, y))

g(a, b, c) =f<1,2,1>(a, f<1,2,1>(b, c, a), f<1,2,1>(c, a, b))

= f<1,2,1>(a, b, c) = a

and hence g satisfies �0

g(a, b, b) = f<1,2,1>(a, f<1,2,1>(b, b, a), f<1,2,1>(b, a, b)) = f<1,2,1>(a, b, a)) = b

g(a, b, a) = f<1,2,1>(a, f<1,2,1>(b, a, a), f<1,2,1>(a, a, b)) = f<1,2,1>(a, b, a) = b

g(a, a, b) = f<1,2,1>(a, f<1,2,1>(a, b, a), f<1,2,1>(b, a, a)) = f<1,2,1>(a, b, b) = a.

So g = f<2,2,1> hence f<2,2,1> ∈ F−.]
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ON THE ARROW PROPERTY SH782 13

Diagram

Diagram (arrows mean belonging to F− follows)

f<2,2,2> ∈ F−

↓ (∗)3

f<1,2,2> ∈ F− f<1,2,1> ∈ F−(∗)8 ⇔(∗)8
F<1,1,2> ∈ F−

↓ (∗)4 (∗)9 ↘

f<2,1,2> ∈ F ⇔
(∗)7

f<2,2,1> ∈ F−

among the 23 function fη one, f<1,1,1> is discarded being a monarchy, see (∗)1, six
appear in the diagram above and implies fr;3,1 ∈ F− by (∗)5 hence clause (a) of
2.8 holds, and one is gr;1,2 because

(∗)10 gr;1,2 = f<2,1,1> on W .

(Why? Check), so clause (b) of 2.8 holds. �2.10

Continuation of the proof of 2.8: As r(F ) = 3 for some η ∈ 32, f∗ agrees with
fη for all not one-to-one triples b̄. If η = 〈1, 1, 1〉 we contradict assumption (γ)
as in (∗)1 of the proof of 2.10 and if η = 〈2, 1, 1〉, possibility (b) of 2.8 holds as
in (∗)10 in the proof of 2.10. If η = 〈2, 1, 2〉 then f∗(b̄) = b3 for b̄ ∈ 3X not
one-to-one (see (∗)5) and this contradicts assumption (γ); similarly if η = 〈2, 2, 1〉.
In the remaining case (see the diagram in the proof of 2.10), there is f ∈ F
agreeing on {b̄ ∈ 3X : b̄ is not one-to-one} with fη for η = 〈1, 2, 2〉 or η = 〈1, 2, 1〉,
without loss of generality f∗ = f .

If η = 〈1, 2, 2〉 define g as in (∗)4, i.e. g(x, y, z) = f∗(x, y, f∗(z, x, y)) so for a non
one-to-one sequence b̄ ∈ 3X we have g(b̄) = f<2,1,2>(b̄) = b3. If for some one-to-one
ā ∈ 3X we have f∗(a3, a1, a2) 6= a3 then g(a1, a2, a3) = f∗(a1, a2, f

∗(a3, a1, a2)) ∈
{a1, a2} so permuting the variables we get possibility (a). So we are left with the
case ā ∈ 3X is one-to-one ⇒ f∗(ā) = a1.
Let us define g ∈ F[3] by g(x1, x2, x3) = f∗(f∗(x2, x3, x1), x3, x2). Let b̄ ∈ 3X;

if b̄ is with no repetitions then g(b̄) = f∗(b2, b3, b2) = b3. If b̄ = (a, b, b) then
g(b̄) = f∗(f∗(b, b, a), b, b) = f∗(a, b, b) = a = b1 and if b̄ = (a, b, a) then g(b̄) =
f∗(f∗(b, a, a), a, b) = f∗(b, a, b) = a = b1 and if b̄ = (a, a, b) then g(b̄) = f∗(f∗(a, b, a), b, a) =
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14 SAHARON SHELAH

f∗(b, b, a) = a = b1; together for b̄ not one to one, g(b̄) = b1. So g is as required in
clause (a).

Lastly, let η = 〈1, 2, 1〉 and let g(x, y, z) = f∗(x, f∗(y, z, x), f∗(z, x, y)), now by
(∗)9 of the proof of 2.10, easily [b̄ is not one-to-one⇒ g(b̄) = f<2,2,1>(b̄) = b2]. Now
if (a1, a2, a3) is with no repetitions and f∗(a2, a3, a1) = a1 then g(a1, a2, a3) = a1

and possibility (a) holds for this g. Otherwise we have [b̄ ∈ 3X is one-to-one
⇒ f∗(b̄) ∈ {b1, b2}]; so if (a1, a2, a3) ∈ 3X is one-to-one and f∗(a2, a3, a1) 6= a2 then
g(a1, a2, a3) 6= a2 (as f∗(a3, a1, a2) 6= a2 hence g(a1, a2, a3) = g(a1, a

′
2, a
′
3) for some

a′2, a
′
3 6= a2) so g is not a monarchy hence possibility (a) holds. Hence [b̄ ∈ 3X is

one-to-one⇒ f∗(b̄) = b2]. Let g∗ ∈ F be g∗(x, y, z) = f∗(f∗(x, y, z), f∗(x, z, y), x).
Now if b̄ is one to one then g∗(b̄) = f∗(b2, b3, b1) = b3. Also if b̄ = (a, b, b) then
g∗(b̄) = f∗(f∗(a, b, b), f∗(a, b, b), a) = f∗(a, a, a) = a, and if b̄ = (a, b, a) then
g∗(b̄) = f∗(f∗(a, b, a), f∗(a, a, b), a) = f∗(b, a, a) = b and if b̄ = (a, a, b) then g∗(b̄) =
f∗(f∗(a, a, b), f∗(a, b, a), a) = f∗(a, b, a) = b. So g∗ is as required in the case
η = 〈1, 2, 2〉 so we can return to the previous case. �2.8

2.11 Claim. Assume

(α) F is as in 2.2

(β) every f ∈ F[2] is monarchical

(γ) f∗ ∈ F[3] is not monarchical.

Then one of the following holds

(a) for every one-to-one ā ∈ 3X for some f = fā we have

(i) fā(ā) = a2

(ii) if b̄ ∈ 3X is not one-to-one then fā(b̄) = b1

(b) for every one-to-one ā ∈ 3X, for some f = fā ∈ F[3] we have:

(i) if b̄ is a permutation of ā then fā(b̄) = b1

(ii) if b̄ ∈ 3X is not one-to-one then fā(b̄) = gr;1,2(b̄).

Proof. As F is symmetric, it suffices to prove “for some ā” instead of “for every
ā”.

Case 1: For some `(∗) if b̄ ∈ 3X is not one to one then f∗(b̄) = b`(∗).

As f∗ is not monarchical for some one-to-one ā ∈ 3X, f∗(ā) 6= a`(∗) say f∗(ā) =
ak(∗), k(∗) 6= `(∗). As F is symmetrical without loss of generality `(∗) = 1, k(∗) =
2. So possibility (a) holds.
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Case 2: Not case 1.
By 2.8, without loss of generalityf∗ satisfies (a) or (b) of 2.8 with f∗ instead of

g. But clause (a) of 2.8 is case 1 above. So we can assume that case (b) of 2.8
holds, i.e.

(∗) if b̄ ∈ 3X is not one-to-one then f∗(b̄) = gr;1,2, i.e.

f∗(b̄) =

{
b2 if b2 = b3

b1 if b2 6= b3

If 2.10 applies we are done as then (a) or (b) of 2.10 holds hence (a) or (b) of
2.11 respectively holds, so assume 2.10 does not apply. So consider a one-to-one
sequence ā ∈ 3X and (recalling that for b̄ ∈ 3X with repetitions gr;1,2(b̄) is preserved
by permutations of b̄) it follows that we have sequences ā1, ā2, both permutations

of ā such that
∨
i

[(f∗(ā1) = a1
i ) ≡ (f∗(ā2) 6= a2

i )].

Using closure under composition of F and its being symmetric, for every per-
mutation σ of {1, 2, 3} (and as gr;1,2(b̄) is preserved by permuting the variables b̄
when b̄ is with repetition) for each σ ∈ Per{1, 2, 3} there is fσ ∈ F[3] such that:

(i) fσ(aσ(1), aσ(2), aσ(3)) = a1

(ii) if b̄ ∈ 3X not one-to-one then f(b̄) = gr;1,2(b̄).

Let 〈σρ : ρ ∈ 32〉 list the permutations of {1, 2, 3}, necessarily with repetitions.
Now we define by downward induction of k ≤ 3, fρ ∈ F for ρ ∈ k2 (sequences of
zeroes and ones of length k) as follows:

`g(ρ) = 3⇒ fρ = fσρ

`g(ρ) < 3⇒ fρ(x1, x2, x3) = fρ(x1, fρˆ<0>(x1, x2, x3), fρˆ<1>(x1, x2, x3)),

Easily (by downward induction):

(∗)1 if b̄ ∈ 3X is with repetitions and ρ ∈ k2, k ≤ 3 then fρ(b̄) = gr;1,2(b̄) (as
gr;1,2 act as majority).
Now we prove by downward induction on k ≤ 3

(∗)2 if b̄ is a permutation of ā, ρ ∈ k2, ρ / ν ∈ 32 and fν(b̄) = a1 then fρ(b̄) = a1.

This is straight and so f<> is as required in clause (b). �2.11

Similarly
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16 SAHARON SHELAH

2.12 Claim. 1) If gr;`,k ∈ F then

(a) gr;`1,k1 ∈ F when `1 6= k1 ∈ {1, . . . , r}.

Proof. 1)(a) Trivial. �2.12
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§3 Getting C is full

3.1 Lemma.: Assume

(a) r ≥ 3, F is as in 2.2 (or just is a clone on X)

(∗) fr;1,2 ∈ F or just

(∗)− if ā ∈ rX one-to-one then for some f = fā ∈ F , fā(ā) = a2 and
[b̄ ∈ rX not one-to-one ⇒ fā(b̄) = b1]

(b) C is a (non empty) family of choice functions for
(
X
k

)
= {Y ⊆ X : |Y | = k}

(c) C is closed under every f ∈ F

(d) C is symmetric

(e) k ≥ r > 2, k ≥ 7, |X| − k ≥ 5, r.

Then C is full (i.e. every choice function is in).

Proof. Without loss of generality r ≥ 4 (if r = 3 then clause (e) is fine also for
r = 4, if in clause (a) the case (∗) holds is O.K. by 2.7, and if (∗)− we repeat
the proof of 2.7 for the case r = 3, only g(x1, x2, x3, x4) = f<a1,a2,a3>(x1, τ2, τ3)
where τ2 = f<a1,a2,a4>(x1, x2, x4), τ3 = f<a1,a3,a4>(x1, x3, x4) where for one-to-one
ā ∈ 3X, fā is defined by the symmetry; this is the proof of 4.7). Assume

� c∗1 ∈ C, Y ∗ ∈
(
X
k

)
, c∗1(Y ∗) = a∗1 and a∗2 ∈ Y ∗\{a∗1}.

Question: Is there c ∈ C such that c(Y ∗) = a∗2 and (∀Y ∈
(
X
k

)
)(Y 6= Y ∗ ⇒ c(Y ) =

c∗1(Y ))?
Choose c∗2 ∈ C such that

(a) c∗2(Y ∗) = a∗2

(b) n(c∗2) = |{Y ∈
(
X
k

)
: c∗2(Y ) = c∗1(Y )}| is maximal under (a).

Easily C is not a singleton so n(c∗2) is well defined.

3.2 Subfact: A positive answer to the question implies that C is full.
[Why? Easy.]

Hence if n(c∗2) =
(|X|
k

)
− 1 we are done so assume not and let Z ∈

(
X
k

)
, Z 6=

Y ∗, c∗1(Z) 6= c∗2(Z).

Case 1: For some Z as above and c∗3 ∈ C we have
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18 SAHARON SHELAH

c∗3(Y ∗) /∈ {a∗1, a∗2}

c∗3(Z) ∈ {c∗1(Z), c∗2(Z)).

If so, let a∗3 = c∗3(Y ∗) and a∗4 ∈ Y ∗\{a∗1, a∗2, a∗3}, etc. so 〈a∗1, . . . , a∗r〉 is one-to-one,
a∗` ∈ Y ∗.
Let c∗` ∈ C for ` = 4, . . . be such that c∗` (Y

∗) = a` exists as C is symmetric.
By assumption (a) we can choose f ∈ F[r] such that{

f(a∗1, . . . , a
∗
r) = a∗2,

ā ∈ rX is with repetitions ⇒ f(ā) = a1

Let c = f(c∗1, c
∗
2, . . . , c

∗
r) so c ∈ C and:

c(Y ∗) = f(a∗1, a
∗
2, . . . , a

∗
r) = a∗2

Y ∈
(
X

k

)
& c∗1(Y ) = c∗2(Y )⇒ c(Y ) = f(c∗1(Y ), c∗2(Y ), . . . )

= f(c∗1(Y ), c∗1(Y ), . . . ) = c∗1(Y )

c(Z) =f(c∗1(Z), c∗2(Z), c∗3(Z), . . . )

= c∗1(Z) (as |{c∗1(Z), c∗2(Z), c∗3(Z)}| ≤ 2).

So c contradicts the choice of c∗2.

Case 2: There are c∗3, c
∗
4 ∈ C such that c∗3(Y ∗) 6= c∗4(Y ∗) are 6= a∗1, a

∗
2 but c∗3(Z) =

c∗4(Z) or at least |{c∗1(Z), c∗2(Z), c∗3(Z), c∗4(Z)}| < 4.

Proof. Similar.

Case 3: Not case 1 nor 2.
Let P = {Z : Z ⊆ X, |Z| = k and c∗1(Z) 6= c∗2(Z)} so

(∗)1 Y ∗ ∈P and P 6=
(
X
k

)
, {Y ∗}.

[Why? P 6= {Y ∗} by the subfact above. Also we can find Z ∈
(
X
k

)
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such that |Y ∗\Z| = 2, c∗1(Y ∗) /∈ Z. Let π ∈ Per(X) be the identity on
Z, π(c∗1(Y ∗)) 6= c∗1(Y ∗), π(Y ∗) = Y ∗. So conjugating c∗1 by π we get c∗2
satisfying n(c∗2) > 0.]

(∗)2 if Z ∈P, c ∈ C and c(Z) ∈ {c∗1(Z), c∗2(Z)} then c(Y ∗) ∈ {c∗1(Y ∗), c∗2(Y ∗)}.
[Why? By not case 1 except when Z = Y ∗ which is trivial.]

Sub-case 3a: For some Z we have{
Z ∈P and :

|Y ∗\Z| ≥ 4 or just |Y ∗\Z\{a∗1, a∗2}| ≥ 2 and |Y ∗\Z| ≥ 3

Let b1, b2, b3 ∈ Y ∗\Z be pairwise distinct. As C is symmetric there are d1, d2, d3 ∈ C
such that d`(Y

∗) = b` for ` = 1, 2, 3. The number of possible truth values of
d`(Z) ∈ Y ∗ is 2 so without loss of generality d1(Z) ∈ Y ∗ ↔ d2(Z) ∈ Y ∗ and we can
forget b3, d3.
So for some π ∈ Per(X) we have π(Y ∗) = Y ∗, π(Z) = Z, π � (Y ∗\Z) = identity
hence π(b`) = b` for ` = 1, 2 and π(d1(Z)) = d2(Z), note that d`(Z) ∈ Z, so this is
possible; so without loss of generality d1(Z) = d2(Z).

As |Y ∗\Z\{a∗2, a∗2}| ≥ 2, using another π ∈ Per(X) without loss of generality
{b1, b2} ∩ {a∗1, a∗2} = ∅. So d1, d2 gives a contradiction by our assumption “not case
2”.

Remark. This is enough for non polynomial |C| as |{Y : |Y \Z∗| ≤ 3}| ≤ |Y |6.

Case 3b: Not case 3a.
So Z ∈ P\{Y ∗} ⇒ |Z\Y ∗| ≤ 3 hence (recalling |Z\Y ∗| = |Y ∗\Z|) we have

Z ∈P\{Y ∗} ⇒ |Z ∩ Y ∗| ≥ k − 3 ≥ 1.
Now

�0 for Z ∈P\{Y ∗} there is c∗ ∈ C such that c∗(Y ∗) 6= c∗(Z)
[Why? Otherwise “by C is symmetric” for any Z ∈P\{Y ∗} we have:

~ c ∈ C ∧ {Y ′, Y ′′} ⊆
(
X

k

)
∧ |Y ′ ∩ Y ′′| = |Z ∩ Y ∗| ⇒ c(Y ′) = c(Y ′′)

Define a graph G = GZ : the set of nodes
(
X
k

)
the set of edge {(Y ′, Y ′′) : |Y ′ ∩ Y ′′| = |Y ∗ ∩ Z|}
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now this graph is connected: if P1,P2 are nonempty disjoint set of nodes with
union

(
X
k

)
, then there is a cross edge by 3.5 below (why? clause (α) there is im-

possible by (∗)1 and clause (β) is impossible by the first sentence of case 3b). This
gives contradiction to ~. So �0 holds.]

We claim:

�1 for Z ∈P and d ∈ C we have
d(Y ∗) ∈ Z ∩ Y ∗ ⇒ d(Z) = d(Y ∗).
[Why? Assume d, Z forms a counterexample; recall that |Y ∗\Z| ≤ 3 and
k ≥ 7 (see 3.1(e)) so if k ≥ 8 then |Y ∗ ∩ Z| ≥ k − 3 ≥ 5 so Y ∗ ∩ Z\{a∗1, a∗2}
has ≥ 3 members; looking again at sub-case 3a this always holds. Now
for some π1, π2 ∈ Per(X) we have π1(Y ∗) = Y ∗ = π2(Y ∗), π1(Z) =
Z = π2(Z), π1(d(Z)) = π2(d(Z)), π1(d(Y ∗)) 6= π2(d(Y ∗)) are from Z ∩
Y ∗\{a∗1, a∗2}; recall we are assuming that d(Y ∗) ∈ Z∩Y ∗ and d(Z) 6= d(Y ∗).
Let d1, d2 be gotten from d by conjugating by π1, π2, so we get Case 2, con-
tradiction to the assumption of Case 3.]

�2 if d ∈ C, Y ∈
(
X
k

)
and d(Y ) = a then

(∀Y ′)(a ∈ Y ′ ∈
(
X
k

)
→ d(Y ′) = a).

[Why? By �1 + “C closed under permutations of X”, we get: if k∗ ∈
N =: {|Z ∩ Y ∗| : Z ∈ P\{Y ∗}} (which is not empty) then: if Z1, Z2 ∈(
X
k

)
, |Z1 ∩ Z2| = k∗, d ∈ C and d(Z1) ∈ Z2 then d(Z1) = d(Z2). Clearly if

k∗ ∈ N then k∗ < k (by Z 6= Y ∗) and 2k − k∗ ≤ |X|. As in the beginning
of the proof of �1, we can choose such k∗ > 0. So for the given d ∈ C and
a ∈ X, claim 3.5 below applied to k∗ − 1, k − 1, X\{a}, ({Y ′\{a} : a ∈ Y ′
and d(Y ) = a}, {Y ′\{a} : a ∈ Y ′ and d(Y ′) 6= a}). By our assumption the
first family is 6= ∅. Now clause (α) there gives the desired conclusion (for
Y, a as in �2). As we know k− k∗ ≤ 3, k ≥ 7 clause (β) is impossible so we
are done.]

Now we get a contradiction: as said above in �0 for some c∗ ∈ C and Z ∈P\{Y ∗}
we have c∗(Y ∗) 6= c∗(Z), choose Y ∈

(
X
k

)
such that {c∗(Y ∗), c∗(Z)} ⊆ Y . So by �2

we have d(Y ) = d(Y ∗) and also d(Y ) = d(Z), contradiction. �3.1

3.3 Claim. In 3.1 we can replace (a) by

(a)∗(i) F is as in 2.2 (or just is a clone on X, r = 3) and

(ii) g∗ ∈ F[3] where (note g∗ = g3;1,2)

g∗(x1, x2, x3) =

{
x2 x2 = x3

x1 otherwise
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or just

(ii)− for any ā∗ ∈ rX with no repetitions for some g = gā∗ , g(ā∗) = a∗1 and if
ā ∈ rX is with repetitions then gā∗(ā) = g∗(ā).

Proof. Let c∗1 ∈ C, Y ∗ ∈
(
X
k

)
, a∗1 = c∗1(Y ∗), a∗2 ∈ Y ∗\{a∗1}, we choose c∗2 as in the

proof of 3.1.
Let P = {Y : Y ∈

(
X
k

)
, Y 6= Y ∗, c∗1(Y ) 6= c∗2(Y )}; we assume P 6= ∅ and shall

get a contradiction, (this suffices).

(∗)1 there are no Z ∈P and d ∈ C such that

d(Y ∗) = c∗2(Y ∗)

d(Z) 6= c∗2(Z).

[Why? If so, let c = g(c∗1, c
∗
2, d) where g is g∗ or just any g<c∗1(Z),c∗2(Z),d(Z)>

(from (a)∗(ii)− of the assumption).

So c ∈ C and

(A) c(Y ∗) = g(c∗1(Y ∗), c∗2(Y ∗), d(Y ∗)) = g(c∗1(Y ), c∗2(Y ∗), c∗2(Y ∗)) = c∗2(Y ∗)

(B) c(Z) = g(c∗1(Z), c∗2(Z), d(Z)) = c∗1(Z) as d(Z) 6= c∗2(Z)
(two cases: if 〈c∗1(Z), c∗2(Z), d(Z)〉 with no repetitions - by the choice of g,
otherwise it is equal to g∗(c∗1(Z), c∗2(Z), c∗1(Z)) = c∗1(Z)

(C) Y ∈
(
Y
k

)
, Y 6= Y ∗, Y /∈P ⇒ c∗2(Y ) = c∗1(Y )⇒ c(Y ) = g(c∗1(Y ), c∗2(Y ), d(Y )) =

g∗(c∗1(Y ), c∗1(Y ), d(Y )) = c∗1(Y ).

So (∗)1 holds by c∗2-s choice.]

(∗)2 if π ∈ Per(X), π(Y ∗) = Y ∗ and π(c∗2(Y ∗)) = c∗2(Y ∗) then

(α) Y ∈P & π(Y ) = Y ⇒ π(c∗2(Y )) = c∗2(Y )

(β) Y ∈P ⇒ c∗2(π(Y )) = π(c∗2(Y )).
[Why? Otherwise may “conjugate” c∗2 by π−1 getting d ∈ C which
gives a contradiction to (∗)1.]

(∗)3 let Z ∈P then there are no d1, d2 ∈ C such that
d1(Z) = d2(Z) 6= c∗2(Z)
d1(Y ∗) 6= d2(Y ∗).
[Why? By (∗)1, d`(Y

∗) 6= c∗2(Y ∗). Now let g = g<c∗2(Y ∗),d1(Y ∗),d2(Y ∗)> be

Paper Sh:782, version 2005-04-25 10. See https://shelah.logic.at/papers/782/ for possible updates.



22 SAHARON SHELAH

as in the proof of (∗)1. If the conclusion fails we let c = g(c∗2, d1, d2) so
c(Y ∗) = g(c∗2(Y ∗), d1(Y ∗), d2(Y ∗)) = c∗2(Y ∗) as d1(Y ∗) 6= d2(Y ∗)+ choice of
g and c(Z) = g(c∗2(Z), d1(Z), d2(Z)) = d1(Z) 6= c∗2(Z) as d1(Z) = d2(Z) 6=
c∗2(Z).
So c contradicts (∗)1.]

(∗)4 for Z ∈ P, there are no d1, d2 ∈ C such that d1(Z) = d2(Z), d1(Y ∗) 6=
d2(Y ∗) except possibly when {d1(Z)} = {c∗2(Z)} ∈ {Z ∩ Y ∗, Z\Y ∗}.
[Why? If d1(Z) 6= c∗2(Z) use (∗)3, so assume d1(Z) = c∗2(Z). By the
“except possibly” there is π ∈ Per(X) satisfying π(Y ∗) = Y ∗, π(Z) =
Z and π(c∗2(Z)) 6= c∗2(Z), now we use it to conjugate d1, d2, getting the
situation in (∗)3; contradiction.]

Let

K = {(m) : for some Z ∈P we have |Z ∩ Y ∗| = m}

we are assuming K 6= ∅. By (∗)4+ symmetry we know

(∗)5 if (m) ∈ K, 1 6= m < k − 1 and c1, c2 ∈ C and Z1, Z2 ∈
(
X
k

)
satisfies

c1(Z1) = c2(Z1) and |Z1 ∩ Z2| = m, then c1(Z2) = c2(Z2).
[Why? Let Z ∈P, some π ∈ Per(X) maps Z1, Z2 to Z, Y ∗ respectively.]

Case 1: There is (m) ∈ K such that 1 6= m < k − 1, let P ′ = P ∪ {Y ∗}.
For any c1, c2 ∈ C let Pc1,c2 = {Y ∈

(
Y
k

)
: c1(Y ) = c2(Y )}.

By (∗)5 we have [Y1, Y2 ∈
(
X
k

)
∧ |Y1 ∩ Y2| = m⇒ [Y1 ∈Pc1,c2 ≡ Y2 ∈Pc1,c2 ]].

Let Y1 ∈
(
X
k

)
, c1 ∈ C, let a = c1(Y1) let Y2 ∈

(
X
k

)
be such that {a, b} = Y1\Y2

for some b 6= a. By conjugation there is c2 ∈ C such that c2(Y1) = a = c1(Y1) &
c1(Y2) 6= c2(Y2). So Y1 ∈ Pc1,c2 and Y2 /∈ Pc1,c2 . To Pc1,c2 apply 3.5 below; so
necessarily |X| = 2k,m = 0. But as m = 0, (m) ∈ K there is Y ∈ P satisfying
|Y ∩ Y ∗| = m = 0 hence Y = X\Y ∗, and by (∗)2(α) we get a contradiction, i.e. we
can find a π contradicting it.

Case 2: (m) ∈ K,m = k − 1 and not Case 1, (i.e., for no m′).
Let Z ∈P be such that |Z ∩ Y ∗| = k − 1 so by (∗)4 and C being symmetric

(∗)6 if Z1, Z2 ∈
(
X
k

)
, |Z1 ∩ Z2| = k − 1, d1, d2 ∈ C, d1(Z1) = d2(Z1), d1(Z2) 6=

d2(Z2) then {d1(Z1)} = Z1\Z2.
Also

(∗)7 if Z1, Z2 ∈
(
X
k

)
, |Z1 ∩ Z2| = k − 1 then for no d ∈ C do we have d(Z1) 6=

d(Z2) & {d(Z1), d(Z2)} ⊆ Z1 ∩ Z2.
[Why? Applying appropriate π ∈ Per(X) we get a contradiction to (∗)6.]
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Thus case (2) is finished by the following claim (and then we shall continue).

3.4 Claim. Assume (a)∗ of 3.3 and (b),(c) of 3.1 and (∗)7 above (on C). Then C
is full.

Proof of 3.4. Now

(∗)8 for every Z1, Z2 ∈
(
X
k

)
, |Z1 ∩ Z2| = k − 1 and a ∈ Z1 ∩ Z2 there is no d ∈ C

such that d(Z1) = d(Z2) = a.

Why? Otherwise we can find Z1, Z2 such that |Z1 ∩Z2| = k− 1, d(Z1) = d(Z2) = a

hence for every Z1, Z2 ∈
(
X
k

)
such that |Z1 ∩ Z2| = k − 1 and a ∈ Z1 ∩ Z2 there is

such a d (using appropriate π ∈ Per(X)).

Let Z1, Z2 ∈
(
X
k

)
such that |Z1 ∩Z2| = k − 1. Let x 6= y ∈ Z1 ∩Z2. Choose d1 ∈ C

such that d1(Z1) = d1(Z2) = x.
Choose d2 ∈ C such that d2(Z1) = d2(Z2) = y.
Choose d3 ∈ C such that d3(Z1) = y, d3(Z2) ∈ Z2\Z1.

Why is it possible to choose d3? (Using π ∈ Per(X)), otherwise (using (∗)7) we
have⊗

if Y1, Y2 ∈
(
X
k

)
, |Y1 ∩ Y2| = k − 1

d ∈ C, d(Y1) ∈ Y1 ∩ Y2 then d(Y2) ∈ Y1 ∩ Y2

hence by (∗)7, d(Y2) = d(Y1)
so for d ∈ C we have (by a chain of Y ’s)

Y1, Y2 ∈
(
X

k

)
, d(Y1) ∈ Y1 ∩ Y2 ⇒ d(Y2) = d(Y1).

Let c ∈ C, Y1 ∈
(
X
k

)
, x1 = c(Y1). Let x2 ∈ X\Y1, Y2 = Y1 ∪ {x2}\{x1}, so if

c(Y2) ∈ Y1 ∩ Y2 we get a contradiction, so d(Y2) = x2.

Let x3 ∈ Y1 ∩ Y2, Y3 = Y1 ∪ Y2\{x3} so Y3 ∈
(
X
k

)
, |Y3 ∩ Y1| = k − 1 = |Y3 ∩ Y2| and

clearly c(Y1), c(Y2) ∈ Y3.
If c(Y3) /∈ Y1 then Y3, Y1 contradict

⊗
. If c(Y3) /∈ Y2 then Y3, Y2 contradict

⊗
.

But c(Y3) ∈ Y3 ⊆ Y1 ∪ Y2 contradiction. So d3 exists.
We shall use d1, d2, d3, Z1, Z2 to get a contradiction (thus proving (∗)8).

Let {z} = Z2\Z1 so 〈x, y, z〉 is with no repetitions.
Let d = g(d1, d2, d3) so with g = g∗ or g = g<x,y,z>

d(Z1) =g(d1(Z1), d2(Z1), d3(Z1)) = g(x, y, y) = y

(see Definition of g)
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d(Z2) =g(d1(Z2), d2(Z2), d3(Z2))

= g(x, y, z) = x

by Definition of g as y 6= z because y ∈ Z1, z /∈ Z1.

So Z1, Z2, d contradicts (∗)7.
So we have proved (∗)8.

(∗)9 if |Z1∩Z2| = k−1, Z1, Z2 ∈
(
X
k

)
, d ∈ C, d(Z1) ∈ Z1∩Z2, then d(Z2) ∈ Z2\Z1.

[Why? By (∗)7, d(Z2) /∈ Z1 ∩ Z2\{d(Z1)} and by (∗)8, d(Z2) /∈ {d(Z1)}.]

Now we shall finish proving the claim 3.4.

Let c ∈ C.
Now let x1, x2 ∈ X be distinct and Y ⊆ X\{x1, x2}, |Y | = k. Let x3 = c(Y ), x4 ∈

Y \{x3} and x5 ∈ Y \{x3, x4}.
So Y1 = Y ∪{x1}\{x4} belong to

(
X
k

)
satisfies |Y1∩Y | = k−1 and c(Y ) = x3 ∈ Y1∩Y

hence by (∗)9, we have c(Y1) = x1.
Let Y2 = Y ∪ {x2}\{x4} so similarly c(Y2) = x2.

Let Y3 = Y ∪ {x1, x2}\{x4, x5}, so Y3 ∈
(
X
k

)
and Y3\Y1 = {x2} and Y3\Y2 = {x1}.

The proof now splits to three cases.
If c(Y3) ∈ Y , then

c(Y3) ∈ Y3 ∩ Y = Y \{x4, x5} ⊆ Y1 hence c(Y3) ∈ Y3 ∩ Y1

recall

c(Y1) = x1 ∈ Y3 ∩ Y1

and c(Y3) 6= x1 as x1 /∈ Y so (Y3, Y1, c) contradicts (∗)7.
If c(Y3) = x1, then recalling c(Y1) = x1 clearly c, Y3, Y1 contradicts (∗)8.
If c(Y3) = x2, then recalling c(Y2) = x2 clearly c, Y3, Y2 contradicts (∗)8.
Together contradiction, so we have finished proving 3.4 hence Case 2 in the proof
of 3.1. �3.4

Continuation of the proof of 3.1:

Case 3: Neither case 2 nor case 3.
As P 6= ∅ (otherwise we are done) clearly K = {(1)}. So easily (clearly 2k−1 ≤

|X| as (1) ∈ K) and

Paper Sh:782, version 2005-04-25 10. See https://shelah.logic.at/papers/782/ for possible updates.



ON THE ARROW PROPERTY SH782 25

�1 if |Y1∩Y2| = 1, Y1 ∈
(
X
k

)
, Y2 ∈

(
X
k

)
and d ∈ C then d(Y1) ∈ Y1∩Y2∨d(Y2) ∈

Y1 ∩ Y2.
[Why? Otherwise by conjugation we can get a contradiction to (∗)4 above.]

�2 Y1, Y2 ∈
(
X
k

)
, |Y1 ∩ Y2| = k − 1, d ∈ C, d(Y1), d(Y2) ∈ Y1 ∩ Y2 is impossible.

[Why? Assume toward contradiction that this fails. Let x ∈ Y1\Y2 and

y ∈ Y2\Y1, we can find Y3 ∈
(
X
k

)
such that Y3 ∩ (Y1 ∪ Y2) = {x, y} so

Y3 ∩ Y1 = {x}, Y3 ∩ Y2 = {y}; this is possible as |X| ≥ 2k − 1. Apply �1 to
Y3, Y1, d and as d(Y1) 6= x (as d(Y1) ∈ Y2) we have c(Y3) = x.
Apply �1 to Y3, Y2, d and as d(Y2) 6= y (as d(Y2) ∈ Y1) we get d(Y3) = y.
But x 6= y, contradiction.]

By �2 we can use the proof of case 2 from (∗)7, i.e. Claim 3.4 to get contradiction.
�3.3

3.5 Claim. Assume

(a) k∗ < k < |X| < ℵ0,

(b) P ⊆
(
X
k

)
(c) if Z, Y ∈

(
X
k

)
, |Z ∩ Y | = k∗ then Z ∈P ⇔ Y ∈P.

(d) 2k − k∗ ≤ |X| (this is equivalent to clause (c) being non empty).

Then

(α) P = ∅ ∨P =
(
X
k

)
or

(β) |X| = 2k, k∗ = 0 and so E = EX,k =: {(Y1, Y2) : Y1 ∈
(
X
k

)
, Y2 ∈

(
X
k

)
, (Y1 ∪

Y2 = X)} is an equivalence relation on X, with each equivalence class is a
doubleton and P is a union of a set of E-equivalence classes.

Proof. If not clause (α), then for some Z1 ∈P, Z2 ∈
(
X
k

)
\P we have |Z1\Z2| = 1.

Let Z1\Z2 = {a∗}, Z2\Z1 = {b∗}.

Case 1: 2k − k∗ < |X|.
We can find a set Y + ⊆ X\(Z1 ∪ Z1) with k − k∗ members (use |Z1 ∪ Z2| =

k + 1, |X\(Z1 ∪ Z2)| = |X| − (k + 1) ≥ (2k − k∗ + 1)− (k + 1) = k − k∗).
Let Y − ⊆ Z1 ∩ Z2 be such that |Y −| = k∗.

Let Z = Y − ∪ Y + so Z ∈
(
X
k

)
, |Z ∩ Z1| = |Y −| = k∗, |Z ∩ Z2| = |Y −| = k∗ hence

Z1 ∈P ↔ Z ∈P ↔ Z2 ∈P, contradiction.

Case 2: 2k − k∗ = |X| and k∗ > 0.
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Let Y + = X\(Z1 ∪ Z2) so

|Y +| = (2k − k∗)− (k + 1) = k − k∗ − 1.

Let Y − ⊆ Z1 ∩ Z2 be such that |Y −| = k∗ − 1 (O.K. as |Z1 ∩ Z2| = k − 1 ≥ k∗).
Let Z = Y + ∪ Y − ∪ {a∗, b∗}. So |Z| = (k − k∗ − 1) + (k∗ − 1) + 2 = k, |Z1 ∩ Z| =
|Y − ∪ {a∗}| = k∗, |Z2 ∩ Z| = |Y − ∪ {b∗}| = k∗ and as in case 1 we are done. �3.5

3.6 Claim. Assume k ≥ 7, |X| − k ≥ 5. If r(F ) < ∞ then 3.1 or 3.3 apply so C
is full.

Remark. Recall r(F ) = Inf{r : some f ∈ F[r] is not a monarchy}, see Definition
2.4.

Proof.

Case 1: r(F ) ≥ 4.
Let f ∈ F[r] exemplify it, so by 2.5 we have k ≥ r and for some `(∗):

ā ∈ rX with repetitions ⇒ f(ā) = a`(∗).

As f is not a monarchy for some k(∗) ∈ {1, . . . , r} and ā∗ ∈ rX we have f(ā∗) =
ak(∗) 6= a`(∗).

Without loss of generality `(∗) = 1, k(∗) = 2 and 3.1 apply.

Case 2: r(F ) = 3.
Let f∗ ∈ F[r] exemplify it. Now apply 2.11; if (a) there holds, apply 3.1, if (b)

there holds, apply 3.3.

Case 3: r(F ) = 2.
By 4.7 below, clause (a) of 3.1 holds so we are done. �3.6
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§4 The case r = 2

This is revisited in §6 (non simple case), and we can make presentation simpler
(e.g. 6.4).

4.1 Hypothesis. As in 2.1 and

(a) r(F ) = 2

(b) |X| ≥ 5 (have not looked at 4).

4.2 Claim. Choose ā∗ = 〈a∗1, a∗2〉, a∗1 6= a∗2 ∈ X.

4.3 Claim. For some f ∈ F[2] and b̄ ∈ 2X we have

(a) f(ā∗) = a∗2

(b) ā∗ˆb̄ is with no repetition

(c) f(b̄) = b1 6= b2.

Proof. There is f ∈ F[2] not monarchical so for some b̄, c̄ ∈ 2X

f(b̄) = b1 6= b2, f(c̄) = c2 6= c1.

If Rang(b̄) ∩ Rang(c̄) = ∅ we can conjugate c̄ to ā∗, f to f ′ which is as required.
If not, find d̄ ∈ 2X, d1 6= d2 satisfying Rang(d̄) ∩ (Rang(ā) ∪ Rang(b̄)) = ∅ so d̄, b̄
or d̄, c̄ are like c̄, b̄ or b̄, c̄ respectively. �4.3

4.4 Claim. There is f∗ ∈ F[2] such that

(a) f∗(ā∗) = ā∗2

(b) b1 6= b2 ∈ X, {b1, b2} ⊆ {a∗1, a∗2} ⇒ f(b1, b2) = b2

(c) b1 6= b2, {b1, b2} * {a∗1, a∗2} ⇒ f(b1, b2) = b1.

Proof. Choose f such that

(a) f ∈ F[2]

(b) f(ā∗) = a∗2

(c) n(f) = |{b̄ ∈ 2X : f(b̄) = b1}| is maximal under (a) + (b).
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Let P = {b̄ ∈ 2X : f(b̄) = b1}. In each case we can assume that the previous cases
do not hold for any f satisfying (a), (b), (c).

Case 1: There is b̄ ∈ 2(X\{a∗1, a∗2}) such that f(b̄) = b2 6= b1.
There is g ∈ F[2], g(ā∗) = a∗2, g(b̄) = b1 (by 4.3 + conjugation). Let f+(x, y) =
f(x, g(x, y)).
So

(A) f+(ā∗) = f(a∗1, g(ā∗)) = f(a∗1, a
∗
2) = a∗2

(B) f+(b̄) = f(b1, g(b̄)) = f(b1, b1) = b1

(C) if c̄ ∈P then f(c̄) = c1.

[Why does (C) hold? If g(c̄) = c1 then f+(c̄) = f(c1, g(c̄)) = f(c1, c1) = c1.
If g(c̄) = c2 then f+(c̄) = f(c1, g(c̄)) = f(c1, c2) = f(c̄) = c1 (last equality as
c̄ ∈P).]
By the choice of f the existence of f+ is impossible so

(∗) b̄ ∈ 2(X\{a∗1, a∗2})⇒ f(b̄) = b1 ⇒ b̄ ∈P (if b1 = b2 - trivial).

Case 2: There are b1 6= b2 such that {b1, b2} * {a∗1, a∗2}, f(b1, b2) = b2 and b1 6=
a∗1 ∧ b2 6= a∗2.

There is g ∈ F[2] such that g(a∗1, a
∗
2) = a∗2, g(b1, b2) = b1.

[Why? There is π ∈ Per(X), π(b1) = a∗1, π(b2) = a∗2, π
−1({b1, b2}) is disjoint to

{a∗1, a∗2}. Conjugate f by π−1, getting g so g(a∗1, a
∗
2) = g(πb1, πb2) = π(f(b1, b2)) =

π(b2) = a∗2; let c1, c2 be such that π(c1) = b1, π(c2) = b2 so

g(b1, b2) = g(πc1, πc2) = π(f(c1, c2)) = π(c1) = b1

(third equality as c1, c2 /∈ {a∗2, a∗2} by not Case 1). So there is such g ∈ F .]

Let f+(x, y) = f(x, g(x, y)), as before f+ contradicts the choice of f .

Case 3: For some b′ 6= b′′ ∈ X\{a∗1, a∗2} we have f(a∗1, b
′) = b′ ∧ f(a∗1, b

′′) = a∗1.
As in Case 2, using π ∈ Per(X) such that π(a∗1) = a∗1, π(a∗2) = a∗2, π(b′) = b′′.

Case 4: For some b′ 6= b′′ ∈ X\{a∗1, a∗2} we have f(b′, a∗2) = a∗2 ∧ f(b′′, a∗2) = b′′.
As in Case 3; recall that without loss of generality Case 1,2,3,4 fails.

Case 5: For some b′, b′′ ∈ X\{a∗1, a∗2} we have f(a∗1, b
′) = b′ ∧ f(b′′, a∗2) = a∗2.

As Cases 1,2,3,4 fail, this holds for every such b′, b′′; so without loss of generality b′ 6=
b′′ and prove as in Case 2 conjugating by π ∈ Per(X) such that π(b′) = a∗2, π(a∗1) =
a∗1 and π(b′′) = b′′ getting g which satisfies g(a∗1, a

∗
2) = g(πa∗1, πb

′) = π(f(a∗1, b
′)) =
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π(b′) = a∗2 and g(b′′, a∗2) = g(πb′′, πb′) = π(f(b′′, b′)) = π(b′′) = b′′ whereas
f(b′, a∗2) = a∗2; so f+(x, y) = f(x, g(x, y)) contradicts the choice of f .
Without loss of generality, Cases 1-5 fail.

Case 6: For some b ∈ X\{a∗1, a∗2} we have f(a∗1, b) = b and f(a∗2, b) = a∗2 follows.

Sub-case 6A: f(a∗2, a
∗
1) = a∗1.

Then let π ∈ Per(X), π(a∗1) = a∗2, π(a∗2) = a∗1 (and π(a) = a for a ∈ X\{a∗1, a∗2}),
then g = πfπ−1 satisfies g(a∗1, a

∗
2) = a∗2, g(a∗2, a

∗
1) = a∗1) but for b ∈ X\{a∗1, a∗2}, g(a∗1, b) =

g(πa∗2, πb) = π(f(a∗2, b)) = πa∗2 = a∗1, easy contradiction using f+ (or as below)).

Sub-case 6B: So as Cases 1-5,6A fail we have

~ ∀b1, b2 ∈ X[f(b1, b2) 6= b1 ↔ (b1 = a∗1 & b2 6= a∗1)].

Hence for every c ∈ X there is fc ∈ F[2] such that

~fc ∀b1, b2 ∈ X[fc(b1, b2) 6= b1 ↔ (b1 = c & b2 6= c)].

Let a 6= c be from X and define fa,c ∈ F[2] by fa,c(x, y) = fa(x, fc(y, x)).
Assume b1 6= b2 so f∗a,c(b1, b2) = b2 6= b1 implies fc(b2, b1) ∈ {b1, b2}, fa,c(b1, b2) =
fa(b1, fc(b2, b1)) and so (by the choice of fa) b1 = a & fc(b2, b1) = b2 which (by
the choice of fc) implies (b1 = a and) b2 6= c. But b1 = a & b2 6= c & b1 6= b2
implies fc(b2, b1) = b2, fa,c(b1, b2) = fa(b1, b2) = b2. So fa,c(b1, b2) = b2 6= b1 ⇔
b1 = a & b2 6= c & b2 6= b1.

Let a = a∗1. Let 〈ci : i < i∗ = |X| − 2〉 list X\{a∗1, a∗2}. We define by induction on
i ≤ i∗, a function fi ∈ F[2] by

f0(x, y) = y

fi+1(x, y) = fi(x, fa,ci(x, y))

and let f ′ = fi∗ . Now by induction on i we can show fi(a
∗
1, a
∗
2) = a∗2 and f ′(b1, b2) =

b2 6= b1 ⇒ (∀i < i∗)(fa,ci(b1, b2) = b2 6= b1).
So f ′ ∈ F[2], f

′(a∗1, a
∗
2) = a∗2 and b1 6= b2 ∧ (b1, b2) 6= (a∗1, a

∗
2) implies f ′(b1, b2) = b1.

By the choice of f (minimal n(f)) we get a contradiction.

Case 7: For some b ∈ X\{a∗1, a∗2} we have f(b, a∗2) = a∗2 and f(a∗1, b) = a∗2 follows.

Similar to Case 6.

Sub-case 7A: f(a∗2, a
∗
1) = a∗1.

Similar to 6A.
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Sub-case 7B: That is, as there, without loss of generality for every a ∈ X for some
fa ∈ F[2] we have

~ (∀b1, b2 ∈ X)[(fa(b1, b2) = b2 6= b1 ↔ b2 = a 6= b1)].

Let a 6= c ∈ X let fa,c(x, y) = fa(fc(y, x), x).
So for b1 6= b2 ∈ X

(i) fa,c(b1, b2) = b2( 6= b1) implies fa(fc(b2, b1), b1) = b2 which implies b2 = c &
fc(b2, b1) = b2 which implies b2 = c & b1 6= a.

We continue as there.

Case 8: Not Cases 1-7; not the conclusion.
So for ā = (a1, a2) = 2X, a1 6= a2 there is fā ∈ F such that

{b1, b2} * {a1, a2} ⇒ fā(b1, b2) = b1

fā(a1, a2) = a2

and (as “not the conclusion”)

fā(a2, a1) = a2

Let 〈b̄i : i < i∗ = |X|2 − |X| − 2〉 list the pairs b̄ = (b1, b2) ∈ 2X such that
b1 6= b2, {b1, b2} 6= {a∗1, a∗2}.
Define gi ∈ F[2] by induction on i.
Let g0(x, y) = x.
Let gi+1(x, y) = fb̄i(gi(x, y), y).
We can prove by induction on i ≤ i∗ that: gi(a

∗
1, a
∗
2) = a∗1, gi(a

∗
2, a
∗
1) = a∗2, j < i⇒

gi(b̄
j) = bj2. So gi∗ is as required interchanging 1 and 2 that is g(x, y) =: gi∗(y, x)

is as required. �4.4

4.5 Definition/Choice. For b 6= c ∈ X let fb,c be like f in 4.4 with (b, c) instead
of (a∗1, a

∗
2), so fc,b(c, b) is b and f(b, c) = c and f(x1, x2) = x1 if {x1, x2} * {b, c}.

4.6 Claim. Let a1, a2, a3 ∈ X be pairwise distinct.
Then for some g ∈ F[3]:

(i) b̄ ∈ 3X with repetitions ⇒ g(b̄) = b1,

(ii) g(a1, a2, a3) = a2.
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Proof. Without loss of generality we replace a2 by a3 in (ii).

Let h` for ` = 1, 2, 3, 4 be the three place functions

h1(x̄) = fa1,a2(x1, x2)

h2(x̄) = fa1,a3(x1, x3)

h3(x̄) = fa2,a3(h1(x̄), h2, (x̄))

h4(x̄) = fa1,a3(x, h3(x̄)).

Clearly h1, h2, h3, h4 ∈ F[3]. We shall show h4 is as required.
To prove clause (ii) note that for ā = (a1, a2, a3) we have h1(ā) = a2, h2(ā) =
a3, h3(ā) = fa2,a3(a2, a3) = a3 and h4(ā) = fa1,a3(a1, a3) = a3 as agreed above. To
prove clause (i), let b̄ ∈ 3X be such that b̄ 6= ā.

Case 1: b1 6= a1, a3 so

h4(b̄) = fa1,a3(b1, h3(b̄)) = b1 as b1 6= a1, a3.

Case 2: b1 = a1, b2 6= a2 hence b1 6= a2, a3, so

h1(b̄) = fa1,a2(b1, b2) = fa1,a2(a1, b2) = a1 = b1,

as b2 6= a2 (if b2 = a1 also O.K)

h3(b̄) = fa2,a3(h1(b̄), h2(b̄)) = fa2,a3(b1, h2(b̄)) = b1 as b1 6= a2, a3

h4(b̄) = fa1,a3(b1, h3(b̄)) = ha1,a3(b1, b1) = b1.

Case 3: b1 = a1, b2 = a2, b3 6= a3, so

h1(b̄) = fa1,a2(b1, b2) = fa1,a2(a1, a2) = a2 = b2

h2(b̄) = fa1,a3(b1, b3) = fa1,a3(a1, b3) = a1 = b1 as b3 6= a3 (if b3 = a1 fine)
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h3(b̄) = fa2,a3(h1(b̄), h2(b̄)) = ha2,a3(b2, b1) = b2 as b1 = a1 6= a2, a3.

h4(b̄) = fa1,a3(b1, h3(b̄)) = fa1,a3(b1, b2) = b1 as b2 = a2 6= a1, a3.

Case 4: b1 = a3, b3 6= a1.
So

h1(b̄) = fa1,a2(b1, b2) = b1 as b1 = a3 6= a1, a2

h2(b̄) = fa1,a3(b1, b3) = fa1,a3(a3, b3) = a3 = b1

as b3 6= a1 (if b3 = a3 then b3 = b1 so O.K. too)

h3(b̄) = fa2,a3(h1(b̄), h2(b̄)) = fa2,a3(b1, b1) = b1

h4(b̄) = fa1,a3(b1, f3(b̄)) = fa1,a3(b1, b1) = b1.

Case 5: b1 = a3, b3 = a1.

h1(b̄) = fa1,a2(b1, b2) = b1 as b1 = a3 6= a1, a2

h2(b̄) = fa1,a3(b1, b3) = b3 as {b1, b3} = {a1, a3}

h3(b̄) = fa2,a3(h1(b̄), h2(b̄)) = fa2,a3(b1, b3) ≡ b1 as b3 = a1 6= a2, a3

h4(b̄) = fa1,a3(b1, f3(b̄)) = fa1,a3(b1, b1) = b1.

as required. �4.6
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4.7 Claim. Let ā∗ = (a∗1, a
∗
2, a
∗
3, a
∗
4) ∈ 4X be with no repetitions. Then for some

g ∈ F[4] we have

(i) if b̄ ∈ 4X is with repetitions then f(b̄) = b1

(ii) g(ā∗) = a∗2.

Proof. For any ā ∈ 3X with no repetitions let fā be as in 4.6 for the sequence ā.
Let us define with (x̄ = (x1, x2, x3, x4)), g(x̄) = g0(x1, g2(x1, x2, x4), g3(x1, x3, x4))
with g0 = f〈a∗1 ,a∗2 ,a∗3〉, g2 = f〈a∗1 ,a∗2 ,a∗4〉, g3 = f〈a∗1 ,a∗3 ,a∗4〉. So

(A) g(ā∗) = g0(a∗1, g2(a∗1, a
∗
2, a
∗
3), g3(a∗1, a

∗
3, a
∗
4)) = g0(a∗1, a

∗
2, a
∗
3) = a∗2

(B) if b̄ ∈ 4X and 〈b1, b2, b4〉 is with repetitions then g2(b1, b2, b4) = b1, hence
g(b̄) = g0(b1, b1, g3(b1, b3, b4)) = b1

(C) if b̄ ∈ 4X and 〈b1, b3, b4〉 is with repetitions then g3(b1, b3, b4) = b1, hence
g(b̄) = g0(b1, g2(b1, b2, b4), b1) = b1

(D) b̄ ∈ 4X is with repetitions, but neither (B) nor (C) then necessarily b2 = b3
so 〈b1, b2, b3〉 is with repetitions, so
g(b̄) = g0(b1, b2, b3) = b1.

�4.7
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Part B: Non simple case
§5 Fullness for the non simple case

5.1 Context. As in §1: C is a (X, k)-FCF, F = ∪{F[r] : r <∞} and F = {f : f ∈
AV(C)}, so

F[r] = {f :f is (not necessarily simple) function written

fY (x1, . . . , xr), for Y ∈
(
X

k

)
, x1, . . . , xr ∈ Y such that

fY (x1, . . . , xr) ∈ {x1, . . . , xr} and

C is closed under f, i.e. if c1, . . . , cr ∈ C

and c is defined by c = f(c1, . . . , cr)

i.e. c(Y ) = fY (c1(Y ), . . . , cr(Y )) then c ∈ C}

and we add (otherwise use Part A; alternatively combine the proofs).

5.2 Hypothesis. If f ∈ F is simple then it is a monarchy.

5.3 Definition. 1) F [Y ] = {fY : f ∈ F}.
2) F[r](Y ) = {fY : f ∈ F[r]}.

5.4 Observation. If f ∈ F[r], Y ∈
(
X
k

)
, then fY is an r-place function from Y to Y

and

(∗) F [Y ] is as in 2.2 on Y .

5.5 Definition. 1) r(F ) = Min{r : r ≥ 2, some f ∈ F[r] is not a monarchy}
where
2) f is a monarchy if for some t we have ∀Y ∀x1, . . . , xr ∈ Y [fY (x1, . . . , xr) = xt].

5.6 Claim. 1) For proving that C is full it is enough to prove, for some r ∈
{3, . . . , k}

(∗) for every Y ∈
(
X
k

)
and ā ∈ rY which is one to one there is f = f ā,Y ∈ F

such that

(i) fY (ā) = a2

(ii) if Z ∈
(
X
k

)
, Z 6= Y, b̄ ∈ rZ then fZ(b̄) = b1.
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2) If r ≥ 4 we can weaken fZ(b̄) = b1 in clause (ii) to [b3 = b4 ∨ b1 = b2 ∨ b1 =
b3 ∨ b2 = b3]→ fY (b̄) = b1.

Proof. The proof is as in the proof of 3.1 or 5.7 or 5.8 below only we choose
c3, c4, . . . , cr such that ā = 〈c`(Y ) : ` = 1, 2, . . . , r〉 is without repetitions and
f = f ā,Y from (∗). �5.6

5.7 Claim. In 5.6 we can replace (∗) by: r = 3 and

(∗) if Y ∈
(
X
k

)
and ā ∈ 3Y one-to-one (or just a2 6= a3), then for some g ∈ F[r]

(i) gY (ā) = a1

(ii) if Z ∈
(
Y
k

)
, Z 6= Y, b̄ ∈ 3Z is not one-to-one then gZ(b̄) = b2 if b2 = b3

and is b1 if otherwise (i.e. g3;1,2(b̄)).

Proof. Like 3.3. Let c∗1 ∈ C, Y ∗ ∈
(
X
k

)
, a∗1 = c2(Y ∗), a∗2 ∈ Y ∗\{a∗1} we choose c∗2

as in the proof of 5.6, i.e. 3.1, that is c∗2(Y ∗) = a∗2 and with |P| minimal where

P = {Y : Y ∈
(
X
k

)
, Y 6= Y ∗, c∗1(Y ) 6= c∗2(Y )}. As there it suffices to prove that

P = ∅. Now otherwise

� there are no Z ∈P and d ∈ C such that

d(Y ∗) = c∗2(Y ∗)

d(Z) 6= c∗2(Z).

[Why? If so, let c = g∗(c∗1, c
∗
2, d) where g is from (∗) for Z, a1 = c∗1(Z), a2 =

c∗2(Z), a3 = d(Z).]

Continue as there: the gā depends also on Y , and we write c(Y ) = fY (c1(Y ), . . . , cr(Y )).

�5.7
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5.8 Claim. Assume r(F ) = 2, (C,F as usual) and

(∗) for every a1 6= a2 ∈ Y ∈
(
X
k

)
for some f = fY〈a1,a2〉 ∈ F we have

(i) fY (ā) = a2

(ii) Z ∈
(
Y
k

)
, Z 6= Y, b̄ ∈ 2Z ⇒ fZ(b̄) = b1.

Then C is full.

Remark. C is full iff every choice function of
(
X
k

)
belongs to it.

Proof. If C is not full, as C 6= ∅ there are c1 ∈ C, c0 /∈ C, c0 a choice function for(
X
k

)
. Choose such a pair (c1, c0) with |P| minimal where P = {Y ∈

(
X
k

)
: c1(Y ) 6=

c0(Y )}. So clearly P is a singleton, say {Y }. By symmetry for some c2 ∈ C we
have c2(Y ) = c0(Y ). Let f be fYc1(Y ),c0(Y ) = fYc1(Y ),c2(Y ) from the assumption so

f ∈ F and let c = f(c1, c2) so clearly c ∈ C (as C is closed under every member of
F ).

Now

(A) c(Y ) = fY (c1(Y ), c2(Y )) = c2(Y ) = c0(Y )

(B) if Z ∈
(
X
k

)
\{Y } then

c(Z) = fZ(c1(Z), c2(Z)) = c1(Z) = c0(Y ).

So c = c0 hence c0 ∈ C, contradiction. �5.8

5.9 Claim. Assume r(F ) = 2 and �(f∗) of 6.9 (see Definitions 6.3, 6.6) below
holds. Then C is full.

Proof. We use conventions from 6.6, 6.7, 6.9 below. In �(f∗) there are two possi-
bilities.

Possibility (i):
This holds by 5.8.

Possibility (ii):
Similar to the proof of 5.8. Again P = {Y } where P = {Y ∈

(
X
k

)
: c1(Y ) 6=

c0(Y )}. We choose c2 ∈ C such that c2(Y ) = c0(Y ) & c2(X\Y ) = c1(X\Y ),
continue as before. Why is this possible? Let π ∈ Per(X) be such that π(Y ) =
Y, π(c1(Y )) = c0(Y ), π(c1(X\Y )) = c1(X\Y ) (and of course π(X\Y ) = X\Y ).
Now conjugating c1 by π gives c2 as required. �5.9
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5.10 Claim. If r(F ) <∞ then C is full.

Proof. Let r = r(F ).

Case 1: r = 2.
So hypothesis 6.1 below (next section) holds.
If �(f) of 6.9 holds for some f ∈ F[r], by 5.9 we know that C is full. If �(f) of

6.9 fails for every f ∈ F[r] then hypothesis 6.11 below holds hence 6.12-6.18 holds.
So by 6.18 we know that (∗) of 5.6 holds (and P± is a singleton, see 6.17(c) +
6.18(2)). So by 5.6, C is full.

Case 2: r ≥ 4.
So hypothesis 7.1 below holds. By 7.5 clearly (∗) of 5.6 holds hence by 5.6(2) we

know that C is full.

Case 3: r = 3.
Let f∗ ∈ F[3] be not a monarchy. So for b̄ ∈ 3Y not one-to-one, Y ∈

(
X
k

)
, clearly

f∗Y (b̄) does not depend on Y , so we write f−(b̄). If for some `(∗), f−(b̄) = b`(∗) for

every such b̄ then easily 5.6(1) apply. If f−(b̄) = gr;1,2(b̄), let ā ∈ 3Y, Y ∈
(
X
k

)
, ā

is one-to-one, so fY (b̄) = ak for some k; by permuting the variables, f− does not
change while we have k = 1, so 5.7 apply. If both fail, then by repeating the
proof of 2.8 of Part A, for some f ′ ∈ F[3], for b̄ ∈ 3X not one-to-one we have

b̄ ∈ 3Y ⇒ f ′Y (b̄) = f〈1,2,1〉(b̄) or for b̄ not one to one b̄ ∈ 3Y ⇒ f ′Y (b̄) = f〈1,2,2〉(b̄).
By the last paragraph of the proof of 2.8 we can assume the second case holds. In
this case repeat the proof of the case η = 〈1, 2, 2〉 in the end of the proof of 2.8.

�5.10
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§6 The case r(F ) = 2

For this section

6.1 Hypothesis. r = 2.

6.2 Discussion: So (α) or (β) holds where

(α) there are Y ∈
(
X
k

)
and f ∈ F[r](Y ) which is not monarchy. Hence by §4,

i.e. 4.4 for a 6= b ∈ Y there is f = fYa,b ∈ F2[Y ]

fY (x, y) =

{
y if {x, y} = {a, b}
x if otherwise

(β) every fY is a monarchy but some f ∈ F[r] is not.

6.3 Definition/Choice. Choose f∗ ∈ F2 such that

(a) ¬(∀Y )(∀x, y ∈ Y )(fY (x, y) = x)

(b) under (a), n(f) = |dom1(f)| is maximal where dom1(f) = {(Z, a, b) :

fZ(a, b) = a 6= b and Z ∈
(
X
k

)
and {a, b} ⊆ Z of course}.

6.4 Fact. If f1, f2 ∈ F[2] and f is f(x, y) = f1(x, f2(x, y)) (formally f(Y, x, y) =
f1(Y, x, f2(Y, x, y)) but we shall be careless) then dom1(f) = dom1(f1)∪ dom1(f2).

Proof. Easy.

6.5 Claim. If Z ∈
(
X
k

)
, f∗Z(a∗, b∗) = b∗ 6= a then

(a) (∀x, y ∈ Z)[f∗Z(x, y) = y] or

(b) x, y ∈ Z ∧ {x, y} * {a∗, b∗} ⇒ f∗Z(x, y) = x.

Proof. As in 4.4 (+ 6.3 + 6.4), recalling 5.4, i.e., that F [Z] is a clone. �6.5
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6.6 Definition. Let

(1) P1 = P1(f∗) = {Z ∈
(
X
k

)
: (∀a, b ∈ Z)(f∗Z(a, b) = a}

(2) P2 = P2(f∗) = {Z ∈
(
X
k

)
: (∀a, b ∈ Z)(f∗Z(a, b) = b}

(3) P± = P±(f∗) =
(
X
k

)
\P1(f∗)\P∗

2 (f∗).

6.7 Claim. For Y ∈
(
X
k

)
we have

1) Y ∈ P±(f∗) iff Y ∈
(
X
k

)
and (∃a, b ∈ Y )(f∗Y (a, b) = a 6= b) and (∃a, b ∈

Y )(f∗Y (a, b) = b 6= a).
2) If Y ∈P±, then there are aY 6= bY ∈ Y such that f∗Y (aY , bY ) = bY and

{a, b} ⊆ Y ∧ {a, b} * {aY , bY } ⇒ f∗Y (a, b) = a.

Proof. By 6.5.

6.8 Claim. 1) 〈P1,P2,P±〉 is a partition of
(
X
k

)
.

2) For Y ∈ P± the pair (aY , bY ) is well defined (but maybe (bY , aY ) can serve as
well).

Proof. 1) By Definition 6.6.
2) By 6.7.

6.9 Claim. If P2(f∗) 6= ∅ then

�(f∗)(i) P2 = P2(f∗) is a singleton, P± = ∅ or

(ii) 2k = |X|,P2 is a {Y ∗, Y ∗∗} ⊆
(
X
k

)
where Y ∗ ∪ Y ∗∗ = X and P± = ∅.

Proof. Assume P2 6= ∅, let Y ∗ ∈P2. As f∗ is not a monarchy

(∗)1 P1 ∪P± 6= ∅.

By Definition 6.6 and Fact 6.4, f∗ ∈ F[r] satisfies

(∗)2(i) f∗Y ∗(a, b) = b for a, b ∈ Y ∗

(ii) if g ∈ F[r], gY ∗(a, b) = b for a, b ∈ Y ∗ then dom1(f∗) ⊇ dom1(g).
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Hence

(∗)3 if Y1 ∈ P2, Y2 /∈ P2, k
∗ = |Y1 ∩ Y2| and Y ∈

(
Y
k

)
, |Y ∩ Y ∗| = k∗, then

Y /∈P2 (even Y ∈P1 ↔ Y2 ∈P1).
[Why? By (∗)2 as we can conjugate f∗ by π ∈ Per(X) which maps Y ∗ onto
Y1 and Y1 onto Y2.]

So by 3.5 (applied to k∗) and (∗)1

(∗)4(i) P2 is the singleton {Y ∗} or

(ii) P2 is a {Y ∗, Y ∗∗}, 2k = |X| and Y ∗∗ = X\Y ∗

(∗)5 if Z ∈P±, then (α) or (β)

(α) {aZ , bZ} = Z ∩ Y ∗, f∗Z(bZ , aZ) = aZ

(β) {aZ , bZ} = Z\Y ∗, f∗Z(bZ , aZ) = aZ .

[Why? If {aZ , bZ} /∈ {Z ∩ Y ∗, Z\Y ∗} then as k ≥ 3 we can choose π ∈
Per(X), π(Y ∗) = Y ∗, π(Z) = Z such that π′′{aZ , bZ} * {aZ , bZ} and

use 6.3, 6.4 on a conjugate of f∗. So {aZ , bZ} ∈ {Z ∩ Y ∗, Z\Y ∗} and if
f∗Z(bZ , aZ) 6= aZ we use π ∈ Per(X) such that π(Y ∗) = Y ∗, π(Z) = Z and
π(aZ) = bZ , π(bZ) = aZ and 6.4.]

It is enough by (∗)4 to prove P± = ∅.
So assume toward contradiction P± 6= ∅.
By (∗)5 one of the following two cases occurs.

Case 1: Z∗ ∈P±, |Z∗ ∩ Y ∗| = k − 2.

As we are allowed to assume k+4 < |X| there is Y∈
(
X
k

)
such that |Y ∩Y ∗| = k−1

and Y ∩ Z∗ = Y ∗ ∩ Z∗. Now (by (∗)5) we have Y /∈ P± and (by (∗)4) we have
Y /∈ P2 so Y ∈ P1. So there is π ∈ Per(X) such that π(Y ∗) = Y, π � Z∗ =
identity, let f = (f∗)π so by 6.4 we get a contradiction to the choice of f∗.

Case 2: Z∗ ∈P±, |Z∗ ∩ Y ∗| = 2.
A proof similar to case 1 works if Z∗ ∪ Y ∗ 6= X.
Otherwise, let π ∈ Per(X) be the identity on Z∗ ∩ Y ∗ and interchange Z∗, Y ∗.

Otherwise apply 6.4 on f∗, (f∗)π so (aZ∗ , bZ∗) /∈ dom1(f∗) ∪ dom1((f∗)π), etc.
easy contradiction.

�6.9

6.10 Remark. if �(f∗) of 6.9 holds for some f∗ then (in the context of §5) C is full
by 5.9.
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6.11 Hypothesis. For no f ∈ F[r] as in 6.3 is �(f).

6.12 Conclusion. 1) P2(f∗) = ∅.
2) P± 6= ∅.
3) P1 6= ∅.
4) If Y ∈ P± and |Y ∩ Z1| = |Y ∩ Z2| and aY ∈ Z1 ↔ aY ∈ Z2 and bY ∈ Z1 ↔
bY ∈ Z2 where, of course, Y, Z1, Z1 ∈

(
X
k

)
, then Z1 ∈P± ↔ Z2 ∈P±.

Proof. 1) By 6.11 + 6.9.
2) Otherwise f∗ is a monarchy.

3) Assume not, so P± =
(
X
k

)
. Let Y ∈ P±, Z ∈

(
X
k

)
, Z ∩ {aY , bY } = ∅ and2

|Z ∩ Y | > 2 and |Z\Y | > 2, we can get a contradiction to n(f∗)-s minimality.
4) By 6.3 and 6.4 as we can find π ∈ Per(X) such that π(Y ) = Y, π(Z1) =
Z2, π(aY ) = aY , π(bY ) = bY . �6.12

6.13 Claim. If Y,Z ∈P± and Y 6= Z, then there is no π ∈ Per(X) such that:

π(Y ) = Y, π(Z) = Z

π(aY ) = aY , π(bY ) = bY

{π(aZ), π(bZ)} * {aZ , bZ}.

Proof. By Definition/Choice 6.3 and Fact 6.4.

6.14 Claim. If Y ∈P±, Z ∈P±, 2 < |Y ∩ Z| < k − 2 then {aZ , bZ} = {aY , bY }.

Proof. By 6.13 except when Y ∩ Z = {aY , bY , aZ , bZ}. Then choose Z1 = Z and

Z2 ∈
(
X
k

)
such that Z2 ∩ (Y ∩ Z) = {aY , bY }, |Y ∩ Z1| = |Y ∩ Z|, Z1\Y ∩ Z =

Y \Y∗\Y ∩ Z where Y∗ ⊆ Y \Z has |Y ∩ Z| − 2 members. By 6.12(2), Z2 ∈P± so
as in the original case Y ∩ Z1 = {aY , bY , aZ2

, bZ2
} and for Z1, Z2 the original case

suffices. (Alternatively as a lemma 4 < |Y ∩ Z| < k − 4 and in 6.12 replace 4 by 6.

2I am sure that after careful checking we can improve the bound
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6.15 Claim. If Z0, Z1 ∈P± and |Z1\Z0| = 1 then {aZ0
, bZ0
} = {aZ1

, bZ1
}.

Proof. We shall choose by induction i = 0, 1, 2, 3, 4 a set Zi ∈ P± such that
j < i ⇒ |Zi\Zj | = i − j. By 6.14 we have i − j = 3, 4 ⇒ {aZi , bZi} = {aZj , bZj}
as this applies to (j, i) = (0, 4) and (j, i) = (1, 4) we get the desired conclusion by
transitivity of equality.

To choose Zi, let xi ∈ X\(Z0∪. . .∪Zi−1); possible as we exclude k+i−1 elements
and choose yi ∈ Z0∩ . . .∩Zi−1\{aZi−1

, bZi−1
}. Now let Zi = Zi−1∪{yi}\{xi} easily

j < i⇒ |Zi\Zj | = i− j and Zi ∈P± by 6.12(4) with Y, Z1, Z2 there standing for
Zi−1, Zi−2, Zi here.

6.16 Choice: Y ∗ ∈P±.

6.17 Conclusion.

(a) Y ∗ ∈P±

(b) if Y ∈P± then {aY , bY } = {aY ∗ , bY ∗}
(c) one of the following possibilities holds

(α) P± = {Y ∗}
(β) P± = {Y ∈

(
X
k

)
: {aY ∗ , bY ∗} ⊆ Y }

(γ) P± = {Y ∗, Y ∗∗} where Y ∗∗ = (X\Y ∗)∪{aY ∗ , bY ∗} and |X| = 2k− 2
hence {aY ∗∗ , bY ∗∗} = {aY ∗ , bY ∗}.

Proof of 6.17. Note that

(∗) if Y1, Y2 ∈ P±, |Y1\Y2| = 1 and Y3 ∈ P±, Y4 ∈
(
X
k

)
, |Y3\Y4| = 1 and

{aY3 , bY3} = {aY1 , bY1} ⊆ Y4 then Y4 ∈P± (hence {aY4 , bY4} = {aY3 , bY3} =
{aY1 , bY1}).
[Why? As there is a permutation π of X such that π(aY1

) = aY1
, π(bY1

) =
bY1

, π(Y3) = Y1, π(Y4) = Y2. By 6.4 we get a contradiction to the choice of
f∗.]

The hence of (c)(γ) is by 6.13.
By the choice of Y ∗ ∈P±, we have (a), now (b) follows from (c) so it is enough to
prove (c). Assume (α), (γ) fail and we shall prove (β). So there is Z1 ∈ P± such
that Z1 /∈ {Y ∗, (X\Y ∗)∪{aY ∗ , bY ∗}}. We can find c1, c2 ∈ X\{aY ∗ , bY ∗} such that
c1 ∈ Y ∗ ↔ c2 ∈ Y ∗ and c1 ∈ Z1 ↔ c2 /∈ Z1.
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[Why? if Y ∗∪Z1 6= X any c1 ∈ X\Y ∗\Z1, c2 ∈ Z1\Y ∗ will do; so assume Y ∗∪Z1 =
X so as k + 2 < |X| clearly |Y ∗ ∩ Z| < k − 2 hence by 6.14, |Z1 ∩ Y ∗| ≤ 2. As
not case (γ) of (c), that is by the choice of Z1, necessarily {aY ∗ , bY ∗} * Y ∗ ∩
Z1 and using π ∈ Per(X), π � Z1 = id, π(Y ∗) = Y ∗, π the identity on Z1 and
{π(aY ∗), π(bY ∗)} = {aY ∗ , bY ∗} now by 6.13 we contradict 6.3 + 6.4.]

Let Z2 = Z1 ∪ {c1, c2}\(Z1 ∩ {c1, c2}) so Z1, Z2 ∈
(
X
k

)
and |Z2 ∩ Y ∗| = |Z1 ∩ Y ∗|

and Z1 ∩ {aY ∗ , bY ∗} = Z2 ∩ {aY ∗ , bY ∗} hence by 6.12(4) we have Z2 ∈ P± and
clearly |Z1\Z2| = 1.

By 6.15 we have {aZ1
, bZ1
} = {aZ2

, bZ2
}. Similarly by (∗) we can prove by

induction on m = |Z\Z1| that {aZ1
, bZ1
} ⊆ Z ∈

(
X
k

)
⇒ Z ∈ P± & {aZ , bZ} =

{aZ1
, bZ1
}. If (β) of (c) fails, then there is Z3 ∈ P± satisfying {aZ1

, bZ1
} * Z.

Easily {aZ3
, bZ3
} ⊆ Z ∈

(
X
k

)
⇒ Z ∈ P± & {aZ , bZ} = {aZ3

, bZ3
}. As we

are assuming k ≥ 4, we can find Y ∈
(
X
k

)
, such that {aZ1

, bZ1
, aZ3

, bZ3
} ⊆ Y ;

contradiction. �6.18

6.18 Claim. 1) The (∗) of 5.8 holds.
2) In 6.17 clause (c), clause (α) holds.

Proof. 1) Obvious by part (2) from (α).
2) First assume (β), so by 6.18, clause (b), 6.3 + 6.4 we have without loss of

generality either {a, b} = {aY ∗ , bY ∗} ⊆ Y ∈
(
X
k

)
⇒ f∗Y (a, b) = b or {aY ∗ , bY ∗} ⊆

Y ∈
(
X
K

)
⇒ f∗Y (aY ∗ , bY ∗) = bY ∗ = f(bY ∗ , aY ∗). In both cases f∗ is simple and not

a monarchy contradiction to 5.2.
Second, assume (γ). Let 〈πi : i < i∗〉 be a list of the permutations π of X such that
π(aY ∗ , bY ∗) = (aY ∗ , bY ∗).

Let f∗i be f∗ conjugated by πi. Now define gi for i ≤ i∗ by induction on i :

g0
Y (x1, x2) = x1, g

i+1
Y (x1, x2) = f∗i (giY (x1, x2), x2). So gi

∗ ∈ F[2] and dom2(gi
∗
) =⋂

i<i∗

dom2(f∗i ) where dom2(g) = {(Z, a, b) : a, b ∈ Z ∈
(
X
k

)
and gZ(a, b) = b 6= a},

so dom1(gi
∗
) =

⋃
i<i∗

dom1(f∗i ) hence

(∗)1 gi
∗

Y (a1, a2) = a2 if {a1, a2} = {aY ∗ , bY ∗}
(∗)2 gi

∗

Y (a1, a2) = a1 if {a1, a2} 6= {aY ∗ , bY ∗}.

Now g is simple but not a monarchical contradiction to 5.2. �6.18
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§7 The case r ≥ 4

7.1 Hypothesis. r = r(F ) ≥ 4.

7.2 Claim. 1) For every f ∈ Fr there is `(f) ∈ {1, . . . , r} such that

~ if Y ∈
(
X
k

)
, ā ∈ rY and |Rang(ā)| < r (i.e. ā is not one-to-one) then

fY (ā) = a`(f).

2) r ≤ k.

Proof. 1) Clearly there is a two-place function h from {1, . . . , r} to {1, . . . , r} such

that: if y1, . . . , yr ∈ Y ∈
(
X
k

)
, y` = yk ∧ ` 6= k ⇒ fY (y1, . . . , yr) = yh(`,k); we have

some freedom so let without loss of generality

� ` 6= k ⇒ h(`, k) 6= k.

Assume toward contradiction that the conclusion fails, i.e., there is no `(f) as
required; i.e.

~′ h � {(m,n) : 1 ≤ m < n ≤ r} is not constant.

Case 1: For some x̄ ∈ rY, Y ∈
(
X
k

)
and `1 6= k1 ∈ {1, . . . , r} we have

|Rang(x̄)| = r − 1

x`1 = xk1

fY (x̄) 6= x`1 ,

equivalently: h(`1, k1) /∈ {`, k}.
Without loss of generality `1 = r− 1, k1 = r, fY (x̄) = x1 (as by a permutation σ of
{1, . . . , r} we can replace f by fσ : fσY (x1, . . . , x2) = fY (xσ(1), . . . , xσ(r))).

We can choose Y ∈
(
X
k

)
and x 6= y in Y so h(x, y, . . . , y) = x hence ` 6= k ∈

{2, . . . , r} ⇒ h(`, k) = 1.
Now for ` ∈ {2, . . . , r} we have agreed h(1, `) 6= `, (see �), as we can assume h �
{(m,n) : 1 ≤ m < n ≤ r} is not constantly 1, by ~′ for some such `, h(1, `) 6= 1 so
without loss of generality ` = 2 so h(1, 2) 6= 1, 2, so without loss of generalityh(1, 2) =

3 but as r ≥ 4 we have if x 6= y ∈ Y ∈
(
X
k

)
then fY (x, x, y, y, . . . , y) is y as

h(1, 2) = 3 and is x as h(3, 4) = 1, contradiction. So

~ h � {(`, k) : 1 ≤ ` < k ≤ r} is constantly 1.
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hence

x̄ ∈ rX is with repetitions ⇒ h(x̄) = x1

as required.

Case 2: Not Case 1.
So h(`, k) ∈ {`, k} for ` 6= k ∈ {1, . . . , r}. Now let Y ∈

(
X
k

)
, x 6= y ∈ Y and

look at fY (x, x, y, y, . . . ) it is both x as h(1, 2) ∈ {1, 2} and y as h(3, 4) ∈ {3, 4},
contradiction.
2) This follows as if f ∈ F[r] and k < r(F ) and `(∗) is as in part (1) then
fY (x̄) = x`(∗) always, as x`(∗) has repetitions by pigeon-hole. �7.2

Recall

7.3 Definition. f = fr;`,k = fr;`,k is the r-place function

fY (x̄) =

{
x` x̄ is with repetitions

xk otherwise

7.4 Claim. 1) If fr;1,2 ∈ F then fr;`,k ∈ F for ` 6= k.
2) If fr;1,2 ∈ F , r ≥ 3 then fr+1;1,2 ∈ F .

Proof. 1) Trivial.
2) For r ≥ 5 let g(x1, . . . , xr+1) = fr,1,2(x1, x2, τ3(x1, . . . ) . . . τr(x1, . . . )) where
τm ≡ fr,1,m(x1, . . . , xm, xm+2, . . . , xr+1) that is xm+1 is omitted.
Continue as in the proof of 2.7. �7.4

7.5 Claim. Assume Y ∈
(
X
k

)
, ā ∈ rY is one-to-one. There is f = fY,ā ∈ Fr such

that fY,āY (ā) = a2 and fY,āZ (b̄) = b1 if Z ∈
(
X
k

)
and b̄ ∈ rX is not one to one (so (∗)

of 5.6(2) holds).

Proof. Let f ∈ Fr be not monarchical, and without loss of generality `(∗) = 1 in
7.2. By being not a monarchy, for some Y, ā and some k ∈ {2, . . . , r} we have
fY (ā) = ak 6= a1; necessarily ā is one-to-one. Conjugating by π ∈ Per(X) and
permuting [2, r], we get fY,ā as required, in particular fY,ā(ā) = a2. �7.3
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