
SPECTRA OF MONADIC

SECOND ORDER SENTENCES

SH817

Saharon Shelah

The Hebrew University of Jerusalem
Einstein Institute of Mathematics

Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel

Department of Mathematics
Hill Center-Busch Campus

Rutgers, The State University of New Jersey
110 Frelinghuysen Road

Piscataway, NJ 08854-8019 USA

Abstract. For a monadic sentence ψ in the finite vocabulary we show that the

spectra, the set of cardinalities of models of ψ is almost periodic under reasonable

conditions. The first is that every model is so called “weakly k-decomposable”. The
second is that we restrict ourselves to a nice class of models constructed by some

recursion.

This research was supported by the Israel Science Foundation

I would like to thank Alice Leonhardt for the beautiful typing.

Publ. 817; Public
First Typed - 03/Apr/11

Latest Revision - 04/Feb/6

Typeset by AMS-TEX

1

Paper Sh:817, version 2004-02-05 10. See https://shelah.logic.at/papers/817/ for possible updates.



2 SAHARON SHELAH

Introduction

This continues [GuSh 536] and was announced there. For a monadic second
order sentence ψ in the language with one unary functions and unary predicates,
the spectra of the sentence (i.e., the set {||M || : M a finite model of ψ} is (see
[GuSh: 536]) periodic, but this fail badly when we allow, e.g. two unary functions.
In the second section we characterize the family of finite structures which really
behave like the unary function case, i.e., the proof works.
In section one we assume that a monadic second order sentence satisfies: every
model is not indecomposable, i.e., has a non trivial decoposition in a weak sense
(see Definition 1.2). We conclude that the specra is not arbitrary, mainly - there
are no big gaps in it (from some point on). This is of course considerably weaker
conclusion than what we know for the languages with only a unary function (under
a much weaker assumption) or in §2.
This work was done when Gurevich was writing [GuSh 536], but he at first did not
include an announcement in the version he circulated insisting that I rewrote it to
his satisfaction. Meanwhile Fischer and Makowsky [FiMw03] started [FiMw03] to
work from the earlier version of [GuSh 536] continuing it in a different direction,
using counting monadic logic and dealing with tree and clique width of graphs
(and of models). It seems that Definition 2.2 maybe a variant of “clique width of
models”; see on this [FiMw03].
Clearly we can in §1 use operations like 2.2 instead of M1 ∪M2.

Note that in the definition of weakly k-decomposable we do not require that the
“component” M1,M2 belongs to K. As it was indirectly asked and to clarify Defi-
nition 1.3, we add:
0.1 Example: The class K of finite incidence (or edge) graphs is not weakly k-
decomposable for every k.

Why? Let m be such that m ≥ k +
(
k
2

)
,m ≥ 2k + 2 and it suffices to prove

that for every n > m, the statement ~ of Definition 1.2(1) fail. Let G be the
complete graph with set of nodes {b1, . . . , bn}, so the incidence graph G′ has set
of nodes A = {b1, . . . , bn} ∪ {ci,j : 1 ≤ i < j ≤ n} and set of edges {{bi, ci,j} :
1 ≤ i < j ≤ n} ∪ {{bj , ci,j} : 1 ≤ i < j ≤ n}. So toward contradiction assume
A = A1 ∪ A2, |A1 ∩ A2| ≤ k and |A1| ≥ m, |A2| ≥ m with no edge (of G′) between
A1\A2 and A2\A1. Let u = {i : bi ∈ A1 ∩ A2 or for some j, ci,j ∈ A1 ∩ A2 or
cj,i ∈ A1 ∩A2}. So |u| ≤ 2k. Let c{i,j} = c{j,i} = ci,j when 1 ≤ i < j ≤ n.

Case 1: For some i1, i2 we have bi1 ∈ A1\A2, bi2 ∈ A2\A1.
So for every i ∈ {1, . . . , n}\{i1, i2} for some ` ∈ {1, 2}, bi ∈ A`, so {bi, c{i,i3−`}}

is an edge of G′ hence either bi ∈ A1 ∩ A2 or ci,i3−` ∈ A1 ∩ A2 hence (in both
possibilities) i ∈ u so n− 2 ≤ |u| but |u| ≤ 2k and 2k + 2 ≤ m < n, contradiction.
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SPECTRA OF MONADIC SECOND ORDER SENTENCES SH817 3

Case 2: Not Case 1.
So for some ` ∈ {1, 2} we have {b1, . . . , bn} ⊆ A`, hence A3−`\A` ⊆ {ci,j : bi, bj ∈

A1∩A2}, without loss of generality ` = 1 so |A2| ≤ |A2∩A1|+ |A2\A1| ≤ k+
(
k
2

)
<

m, contradiction. �0.1

0.2 Notation. 1) Let n,m, `, k, i, j, d be natural numbers.
2) τ is a vocabulary (i.e., set of predicates, individual constants and function sym-
bols, the last are not used here).
We thank Mor Doron for various helpful comments.
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4 SAHARON SHELAH

§1 Weakly decomposable

We can deal just with graphs just as this is traditional. The restriction to
relational vocabulary is for simplifying our statements.

1.1 Context. 1) Let τ be a finite relational vocabulary, i.e., a finite set of predicates.
2) Let K∗τ be the class of τ -models and recall ‖M‖ is the number of elements of
M ∈ K∗τ , R

M is the interpretation of the predicate R ∈ τ .
3) Let K denote a family of τ -models closed under isomorphisms.

1.2 Definition. 1) We say that K is weakly k-decomposable if: for every m there
is n such that

~k,m,n if M ∈ K, ‖M‖ ≥ n then we can find submodels M1,M2 (for graphs-induced
subgraphs G1, G2) such that

(a) M1 ∪M2 = M i.e., a ∈M ⇔ a ∈M1 ∨ a ∈M2 and RM = RM1 ∪RM2

for any R ∈ τ (for graphs: G,G1, G2 let G = G1 ∪G2 mean that the
set of nodes is the union of the set of nodes of G1 and of G2, and the
set of edges of G is the union of the set of edges of G1 and of G2)

(b) |M1 ∩M2| ≤ k
(c) ‖M`‖ ≥ m for ` = 1, 2.

2) For a monadic second order sentence ψ (in a vocabulary τ) we say that ψ is
weakly k-decomposable if Kτψ is (see part (3)).

3) For a vocabulary τ (as in 1.1) and sentence ψ (in this vocabulary) let Kτψ = {M :

M is a finite τ -model such that M |= ψ}. We may suppress τ , when clear from the
context.

1.3 Claim. Assume

(∗)k∗ψ ψ a monadic second order sentence, in the vocabulary τ such that K = Kτψ
is weakly k∗-decomposable

then Sp(ψ) = {‖M‖ : M ∈ K} satisfies for some n∗, that

~ if n1 < n2 are successive members of Sp(ψ) and n∗ < n1 then n2 < 2n1.
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Proof. Let ψ have quantifier depth ≤ d∗.
Let m∗1 > k∗ be large enough such that

�1 if M1 ∈ K∗τ (yes K∗τ and not K), ‖M1‖ > k∗ and a1, . . . , ak ∈M1 and k ≤ k∗
then there are M2 ∈ K∗τ and b1, . . . , bk ∈ M2 such that (see [GuSh 536] or
2.6 below)
Thd

∗
(M1, a1, . . . , ak) = Thd

∗
(M2, b1, . . . , bk)

and k∗ < ‖M2‖ < m∗1.

Let m∗2 be such that the statement ~k∗,m∗1 ,m∗2 from Definition 1.2 holds (for K).
Now assume that n1 < n2 are successive members of Sp(ψ) and n2 > m∗2. Hence

there is M ∈ K with exactly n2 members. So applying ~k∗,m∗1 ,m∗2 to M we can
find M1,M2 as in Definition 1.2 and let {a1, . . . , ak} list M1 ∩M2; so k ≤ k∗ and
‖M1‖, ‖M2‖ ≥ m∗1. Without loss of generality ‖M1‖ ≤ ‖M2‖, still ‖M1‖ ≥ m∗1.
By the choice of m∗1 there is (M ′1, b1, . . . , bk) such that k∗ < ‖M ′1‖ < m∗1 and

Thd
∗
(M ′1, b1, . . . , bk) = Thd

∗
(M1, a1, . . . , a2).

Without loss of generality ` ∈ {1, . . . , k} ⇒ b` = a` and no member (for graphs
- node) of M ′1 belongs to M2\{a1, . . . , ak}. Let M ′ = M ′1 +

{a1,...,ak}
M2 be defined

naturally (set of elements of M ′ = union of set of elements of M ′1 and set of elements

of M2 and RM = RM
′
1 ∪RM2 for R ∈ τ).

By the addition theorem (for local monadic theories, see 2.7(c)) we have M ′ |= ψ,
i.e., M ′ ∈ K and

� 1
2‖M‖ ≤ ‖M2‖ < ‖M ′‖ = ‖M ′1‖ + ‖M2‖ − k < m∗1 + ‖M2‖ − k ≤ ‖M1‖ +
‖M2‖ − k = ‖M‖.

That is n2/2 < ‖M ′‖ < n2 but M ′ ∈ K so ‖M ′‖ ∈ Sp(K) so there is n′ ∈ Sp(K)
such that n2/2 < n′ < n2 so we are done. �1.3

1.4 Conclusion. If ϕ is a second order monadic sentence and (∗)k∗ϕ of 1.3 holds and
α is a real > 0 then for some n∗ we have

� = �ϕ,α,n∗ n∗ < n ∈ Sp(ϕ) = (∃m ∈ (Sp(ϕ))[n < m < (1 + α)n].

Proof. Let Ξ be the family of positive reals α such that

~1 for every monadic second order sentence ψ (for any vocabulary τ as in 1.1)
such that (∗)k∗ψ holds, the conclusion �ϕ,α,n∗ of 1.4 holds for some n∗ (no

harm in varying k∗, too).
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6 SAHARON SHELAH

Note that allowing individual constants in τ is O.K. (either allow them or code
them by unary predicates); for a vocabulary τ let τ+k be τ ∪ {P` : ` = 1, . . . , n},
where the P` are distinct unary predicates not from τ .
Clearly 0 < β < α & β ∈ Ξ⇒ α ∈ Ξ. By Claim 1.3 we have 1 ∈ Ξ.

We shall now prove that

~2 if α ∈ Ξ⇒ α/2 ∈ Ξ.

This clearly suffices. So let α, τ, ψ,K = Kτψ be given. Let d be above the quantifier
depth of ψ. For k ≤ k∗ let

K′k = K′ψ,k = {(M ′, P1, . . . , Pk) :for some M ∈ K and M1,M2 as in 1.2

in particular |M1 ∩M2| ≤ k∗ we have M ′ = M1

and {a1, . . . , ak} lists M1 ∩M2 and P` = {a`}}.

This is a class of τ+k models. Let {Thd(M ′, P1, . . . , Pk) : (M ′, P1, . . . , Pk) ∈ K′k} be
listed as tk1 , . . . , t

k
m and for ` ∈ {1, . . . ,m} let K′k,` = K′ψ,k,` = {(M ′, P1, . . . , Pk) ∈

K′k : Thd(M ′, P1, . . . , Pk) = tk` }. So N ∈ K′k,` ⇒ |PN1 | = . . . = |PNk | = 1.
It is not hard to see

~3 for some monadic second order sentence ψk,` of quantifier depth d in the

vocabulary τ+k,K′k,` is the class of models of ψk,`, i.e., is Kτ
+k

ψk,`
for every

relevant pair (k, `).
[Why? By direct checking K′k,` is a class of τ+k-models and there is such

monadic sentences by the definition of Thd.]

~4 Kτ
+k

ψk,`
is weakly k∗-decomposable.

[Why? Clearly ψk,` is a monadic sentence in the vocabulary τ+k.
By the choice of tk` there are M,M1,M2, a1, . . . , ak as in the definition of K′k.

Now expand M1 to a τ+k-model M∗1 by P
M∗1
i = {ai} and so tk` = Thd(M∗1 ).

We have to prove “K′k,` weakly decomposable”, i.e., Definition 1.3. So let

a number m be given. Let m′ = m + ‖M2‖ and let n be as guaranteed

for m′ by (∗)k∗ψ for Kτψ. We shall show that n is as required for Kτ
+k

ψk,`
.

Let (M ′1, P
′
1, . . . , P

′
k) ∈ K′k,`, ‖M ′1‖ ≥ n so without loss of generality (i.e. by

renaming) P ′i = {ai} (for i = 1, . . . , k) and M ′1\{a1, . . . , ak} ∩M2 = ∅. We
can define N such that N,M ′1,M2, a1, . . . , ak are as in 1.3 so by the addition
theorem (see §2) Thd(N,P ′1, . . . , P

′
k) = Thd(M,P ′1, . . . , P

′
k) so N |= ψ. As

‖N‖ ≥ ‖M ′1‖ ≥ n by the choice of n we can find find N1, N2, k
′ ≤ k∗ and

b̄ = 〈b` : ` = 1, . . . , k′〉 such that the tuple (N,N1, N2, b̄) is as in 1.3, i.e.,
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N = N1 +
{b1,...,bk′}

N2 and ‖N1‖, ‖N2‖ ≥ m′. Let N ′` = N` � (|M ′1|) and

c̄ = 〈c` : ` 6= 1, . . . , k′′〉 enumerate {b` : ` = 1, . . . , k′} ∩M ′1.
Clearly ‖N ′`‖ ≥ ‖N`‖ − ‖M2‖ ≥ m′ − ‖M2‖ = m by the choice of m′

above. So (M ′1, N
′
1, N

′
2, c̄) is as required in the conclusion of 1.3 for ψk,`.]

~5 (∗)k∗ψk,` holds

[why? By ~3 +~4.]

Hence by the induction hypothesis for some m∗

~6 the conclusion of �ψk,`,α,m∗ of 1.4 holds (for any relevant k, `)

Let n∗ be as in 1.2(1) for k∗,m∗,K = Kτψ.
So it is enough to prove that �ψ,α,n∗ holds. Now for any M ∈ K with ≥ n∗ elements
there areM1,M2, k, a1, . . . , ak as in Definition 1.2(1) such thatm∗ ≤ ‖M1‖ ≤ ‖M2‖.
So for some `, (M1, P1, . . . , Pk) ∈ K′k,`, Pi = {ai} for i = 1, . . . , k, so as we are
assuming ~6 clearly

~7 we can choose (M ′1, P
′
1, . . . , P

′
k) ∈ K′k,` such that

‖M1‖
1 + α

< ‖M ′1‖ < ‖M1‖.

Without loss of generality (by renaming)

P ′i = Pi,M
′
1 ∩M2 = {a1, . . . , ak}.

We can define M ′ ∈ Kτψ as in the proof of 1.3 so with universe |M ′1| ∪ |M2|.
Hence

~8 ‖M‖ > ‖M ′‖ = ‖M2‖+ ‖M ′1‖ − k > ‖M2‖+
‖M1‖
1 + α

− k

=
1

(1 + α)
(‖M2‖+ α‖M2‖+ ‖M1‖ − k − αk)

=
1

1 + α
(‖M‖+ α‖M2‖ − αk)

≥ 1

1 + α
(‖M‖+ α‖M‖/2)− αk

1 + α
=

1 + α/2

1 + α
‖M‖ − αk

1 + α
.

Let
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8 SAHARON SHELAH

β =:
1 + α

1 + α/2
− 1 =

α/2

1 + α/2
< α/2.

So by ~8 we have

‖M‖ > 1 + α/2

1 + α
‖M‖ − αk

1 + α
=

1

(1 + β)
‖M‖ − αk

1 + α
=

1

1 + α/2
‖M‖

+ (
1

1 + β
− 1

1 + α/2
)‖M‖ − αk

1 + k

=
1

1 + α/2
‖M‖+ (

α/2− β
(1 + β)(1 + α/2)

‖M‖ − αk

1 + α
).

So we conclude: if conclusion 1.4 holds for α > 0 it holds for α/2 provided that
(α/2−β)‖M‖ > αk

1+α (1+β)(1+α/2), of course which holds if ‖M‖ is large enough.

So we can prove by induction on i that � holds for α ≥ 1
2i . �1.4
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§2 what the method of [GuSh 536] gives

2.1 Discussion: The result above is interesting but leave us unsatisfied. For trees
we get essentially sharp results. Here the spectra is not characterized. We know
that it is quite restricted but, e.g. is it almost periodic?

The problem is that we do not see here a parallel to the operations generating
the class.

We may consider such classes:

2.2 Definition. Let τ and k∗ be fixed, τ a finitary vocabulary with predicates only
(coding function and individual constants by them if necessary) and let Kk∗ = Kc`τ,k∗
be the minimal family of (M,a1, . . . , ak),M a finite τ -model, k ≤ k∗, a` ∈ M such
that

(a) Kk∗ = Kτ,k∗ includes all the (M, c1, . . . , ck), k ≤ k∗, c` ∈ M with M a
τ -structure with ≤ k∗ elements

(b) if (M`, a
`
1, . . . , a

`
k`

) ∈ Kk∗ for ` = 1, 2 and

x ∈M1 ∧x ∈M2 ⇒ x ∈ {a11, . . . , a1k1}∩{a
2
1, . . . , a

2
k2
} then (M, b1, . . . , bk) ∈

Kk∗ when:

~ (i) x an element of M ⇒ x an element (= node) of M1 or of M2

(ii) x an element of M`, x /∈ {a`1, . . . , a`k`} ⇒ x an element of M

(iii) {b1, . . . , bk} ⊆ {a11, . . . , a1k1} ∪ {a
2
1 . . . a

2
k2
}

(iv) if R ∈ τ is m-place predicate, and y1, . . . , ym ∈M, z1, . . . , zm
∈M then 〈y1, . . . , ym〉 ∈ RM ≡ 〈z1, . . . , zm〉 ∈ RM when:

(�) (zi = zj) ≡ (yi = yj), (zi = a1`) ≡ (yi = a1`)
(zi = a2`) ≡ (yi = a2`), (zi ∈M`) ≡ (yi ∈M`) and letting
w` = {i : yi ∈M`} the quantifier free type of 〈yi : i ∈ w`〉
in M` is equal to the quantifier free type
of 〈zi : i ∈ w`〉 in M` for ` = 1, 2.

2.3 Claim. We can prove for Kτ,k∗ what we have proved for trees in [GuSh 536];
including almost periodically of the spectrum for monadic sentences (see 2.7(f)).

Proof. This is clause (f) of Claim 2.7 proved below (as in [GuSh 536]).

2.4 Question: Is the class Kk∗ known? Interesting? (see §0)
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10 SAHARON SHELAH

Of course, e.g., the result on the spectrum is inherited by reducts. After second
thoughts I decide to add details (but naturally in the style of [Sh 42] rather than
[GuSh 536] as far as there is a difference).

2.5 Notation: τ is a vocabulary which has only predicates and possibly individual
constants. If R ∈ τ is an m-place predicate we write arity(R) = m; let arity(τ) =
max({1} ∪ {arity(R) : R ∈ τ}).

Let τm = τ + {P0, . . . , Pm−1} be the vocabulary τ when we add the (new and
pairwise distinct) predicates P0, . . . , Pm−1 which below will be unary, similarly
τ + {c0, . . . , ck−1} for c` individual constants and τm,k = τm + {τ0, . . . , ck−1}.

2.6 Definition. 1) Let τ be a finite vocabulary τ consisting of predicates only;
P0, P1, . . . be unary predicates /∈ τ ; (for notational simplicity). For a τ -model M
and sequence Ū m = 〈U` : ` < m〉 of subsets of M we define Thn(M, Ū m) by
induction on n:

(a) n = 0 it is the set of sentences ψ = (∃x0, . . . , xr−1)∧Φ where r ≤ arity(τ)+
1,Φ a set of basic formulas of τ + {P0, . . . , Pm−1} such that (M, Ū m) |= ψ

(b) Thn+1(M, Ū m) = {Thn(M, Ū mˆ〈Um〉) : Um ⊆M}.

2) THn,m(τ) is the set of formally possible Thn(M, 〈U` : ` < m〉); see below; if
m = 0 we may omit m.
3) For a class K of models let THn,m(K) be {Thn(M,U0, . . . ,Um−1) : M ∈ K,U0, . . . ,⊆
M}; if m = 0 we may omit it.
4) Let Kτ,k∗,k be the set of models (M, c1, . . . , ck) ∈ Kτ,k∗ ,M a τ -structure.

2.7 Claim. Let τ have predicates only, define τk = τ + {c0, . . . , ck−1} and let
k∗ ≥ arity(τ) and n be given.

We can compute the following (from τ, k∗, n∗,m∗)

(a) for n ≤ n∗,m ≤ m∗ − n, k ≤ k∗, THn(τm,k) which, the set of formally
possible Thn(M, 〈U0, . . . ,Um−1〉, a0, . . . , ak),M a τ -model

(b) the set Sτm,k∗,k1,k2,k of schemes defined implicitly in Definition 2.2

(c) we can compute the functions
F =: Fnτm,k1,k2,k : THn(τm,k1) × THn(τm,k2) ×Sτm,k∗,k1,k2,k → THn(τm,k)

such that (where M1,M2,M are τm-models) if (M`, a
`
0, . . . , a

`
k`−1) for ` =

1, 2 and (M,a0, . . . , ak−1) are as in Definition 2.2 for the scheme s and
t` = Thn(M`, a

`
0, . . . , a

`
k`−1) for ` = 1, 2 and t = Thn(M,a0, . . . , ak−1) then

t = Fn(t1, t2, s), in particular the representative models does not matter

(d) we can compute Tnτm,k∗,k = {Thn(M, c0, . . . , ck−1) : M is a τm-model with

≤ k∗ elements}
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(e) the sequence 〈THn(Kτ,k∗,k) : k ≤ k∗〉 can be computed (could use τm)

(f) for each t ∈ THn(Kτ,k∗,k), the set

Spt = {‖M‖ : (M,a0, . . . , ak−1) ∈ Kτ,k∗,k and Thn(M,a0, . . . , ak−1) = t}

is eventually periodic; i.e. for some m1,m2 ∈ M we have: if `1, `2 > m1

are equal modulo m2 then `1 ∈ Spt ≡ `2 ∈ Spt;

Proof. Straight by now, e.g.,

Clause (a): For n = 0 trivial and for n+ 1 we can let

THn+1(τm,k) = P(THn(τm+1,k)).

Clause (c): This is the addition theorem proved by induction on n.

Clause (e): We start with the sequence 〈Tnτ,k∗,k : k ≤ k∗〉 and close it under the

operations Fnτ,k∗,k1,k2(−,−, s), s ∈ Sτ,k∗,k1,k2,k . That is we define 〈T ik : k ≤ k∗〉 by

induction on i ≤
∑
k<k∗

|THn(τk)| as follows:

(α) T 0
k = Tnτ,k∗,k from clause (d)

(β) T i+1
k = T ik ∪ {Fnτ,k∗,k1,k2(t1, t2, s), t1 ∈ T ik1 , t2 ∈ T

i
k2
, s ∈ S n

τ,k∗,k1,k2,k
}.

By cardinality considerations we know that for the last i we have THn(Kτ,k∗,k) = T ik
(for k ≤ k∗) as

(γ) for each k, ∅ ⊆ T 0
k ⊆ T 1

k ⊆ . . . ⊆ T ik ⊆ . . . and the number of i for which

T kik 6= T i+1
k is ≤ |THn(τk)| and

(δ) if T ik = T i+1
k for every k ≤ k∗ then j ≥ i ∧ k ≤ k∗ ⇒ T jk = T ik.

Clause (f): By the proof above and observation 2.8 below. �2.7

2.8 Observation. Assume that

(a) m ∈ N,W is a finite set of quadruples {〈`1, `2, `3, j〉 : `1, `1, `3 < m and
j ∈ N}

(b) N i
` (` < m, i ∈ N) is a finite set of natural numbers

(c) N i+1
` = N i

`∪{n1+n2−j: for some (`1, `2, `3, j) ∈W we have n1 ∈ N i
`1
, n2 ∈

N i
`2
, `3 = `}.
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Then each set N` =: ∪{N i
` : i a natural number} is almost periodic.

Proof. Let i < m, clearly n ∈ Ni iff we can find a witness (T , ¯̀, n̄, w̄) which means

~ (a) T is a finite set of sequences of zeroes and ones closed under
initial segments

(b) ¯̀= 〈`η : η ∈ T 〉 such that `<> = i

(c) n̄ = 〈nη : η ∈ T 〉 such that n<> = n

(d) w̄ = 〈wη : η ∈ T not maximal〉, wη ∈W

(e) if η ∈ T is /-maximal then nη ∈ N0
`η

(f) if η ∈ T is not /-maximal then η0 = ηˆ〈0〉 ∈ T and η1 = ηˆ〈1〉 ∈ T
and we have

wη = (`ηˆ〈0〉, `ηˆ〈1〉, `η, nηˆ〈0〉 + nηˆ〈1〉 − nη)

(g) (follows): nη ∈ N`η for η ∈ T .

Now let n∗1 =: 2m × n∗0 where n∗0 =: max(
⋃
`

N0
` ) and let n∗ =: n∗1!. Assume

(∗)0 n∗ < n ∈ N` and there is no n′ such that n∗ < n′ ∈ N`, n′ < n and n = n′

mod n∗.

Choose (T , ¯̀, n̄, w̄) as above such that (`<>, n<>) = (`, n) and |T | minimal. Let

U = {ν ∈ T : if ν / ρ ∈ T then nν < nρ}

and let

t(ν) = Max{|{m : ν E ρ � m and ρ � m ∈ U }| : ν / ρ ∈ T }.

Now

(∗)1 ν0 E ν1 ∈ T ⇒ t(ν0) ≥ t(ν1) and if ν ∈ U is not /-maximal then t(ν) =
Min{t(ν_〈j〉) + 1 : ν_〈j〉 ∈ T }.

[Why? Look at the definitions.]

(∗)2 if ν ∈ T then nν ≤ 2t(ν) × n∗0
[Why? We prove this by induction on t(ν) and then on |{ρ : ν E ρ ∈
T }|. If ν is /-maximal in T necessarily nν ∈ N0

`ν
hence nν ≤ n∗0 so the

conclusion of (∗)2 in this case is trivial. If ν ∈ U , ν is not /-maximal in
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T then nν ≤ 2 × Max{nν_<j> : ν_ < j >∈ T , j = 0, 1} and clearly
t(ν) = Max{t(ν_ < j >) + 1 : j = 0, 1}, so we can check easily. Lastly, if
ν ∈ T \U we can find ν1 such that nν ≤ nν1 , ν / ν1 ∈ T so t(ν) ≥ t(ν1) by
(∗)1 and so nν ≤ nν1 ≤ 2t(ν1) × n∗0 ≤ 2t(ν) × n∗0 as required.]

(∗)3 there are ν0 / ν1 from U such that `ν0 = `ν1 .
[Why? As n<> = n > 2m×n∗0, by (∗)2 we know that t(<>) > m, hence we
can find ν0 / ν1 / . . . / νm all from U . As `ν0 , . . . , `νm < m clearly for some
j(0) < j(1) ≤ m we have `νj(0) = `νj(1) .]

(∗)4 if ν0 ∈ U is /-maximal such that for some ν1, ν0 / ν1 ∈ U & `ν0 = `ν1
then t(ν0) ≤ m.
[Why? Look at the definition of t(ν1), i.e., repeat the proof of (∗)3.]

(∗)5 for some ν0 / ν1 from U ⊆ T , `ν0 = `ν1 and nν0 < nν1 and nν0 ≤ n∗1
[Why? By (∗)3 we can find ν0 / ν1 from U with `ν0 = `ν1 so without loss
of generality ν1 is /-maximal, hence by (∗)4 we know t(ν0) ≤ m, so by (∗)2,
nν0 ≤ n∗1.]

Now we can take a copy of A = {ρ ∈ T : ν0 E ρ but ¬ν1 / ρ} and insert it
just before ν1 any number of times, hence n + i(nη0 − nη1) ∈ N` for any i. As
nν0 − nν1 ≤ nη1 < n∗1 we are done. (We can compute a bound when this starts.
That is omitting A we get n − (nη0 − nη1) ∈ N` hence by the assumption on n in
(∗)0, n =: n− (nη0 − nη1) ≤ n∗ so n ≤ n∗ + (nη0 − nη1) ≤ n∗ + n∗1.) �2.8

Remark. Of course, also in §1 we can use sums as in 2.2.
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