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0. INTRODUCTION

For regular uncountable k, the Erdos-Dushnik-Miller theorem, Theorem
11.3 of [1], states that x — (k, w+ 1)2. For singular cardinals, &, they were
only able to obtain the weaker result, Theorem 11.1 of [1], that x — (k, w)?.
It is not hard to see that if cf(k) = w then k 4 (k, w+1)2. If cf (k) > w and
K is a strong limit cardinal, then it follows from the General Canonization
Lemma, Lemma 28.1 in [I], that x — (k, w + 1)2. Question 11.4 of [I] is
whether this holds without the assumption that  is a strong limit cardinal,

e.g., whether, in ZFC,

(1) Ny = Ry, w+1)2%

In [5] it was proved that A — (\,w + 1)? if 2¢f(Y) < X\ and there is a nice
filter on &, (see [3, Ch.V]: follows from suitable failures of SCH). Also proved
there are consistency results when 2cf(A) > )\

Here continuing [5] but not relying on it, we eliminate the extra assump-
tion, i.e, we prove (in ZFC)

Theorem 0.1. If Xy < k = cf(\) and 2% < X then A — (\, w+1)2.
Before starting the proof, let us recall the well known definition:

Definition 0.2. Let D be an Rj-complete filter on Y, and f € ¥ Ord, and
a € Ord U {oo}.

We define when rkp(f) = a by induction on « (it is well known that
tkp(f) < o00):

(*) tkp(f) = a iff B < a = rkp(f) # B, and for every g € YOrd
satisfying g <p f, there is 8 < « such that rkp(g) = 5.

Notice that we will use normal filters on £ = cf(k) > Ng, so the demand of
N1- completeness in the definition, holds for us.
Recall also

Definition 0.3. Assume Y, D, f are as in definition (0.2

I D = {ZCY Y\ Z €D ortkp.oz(f) > tko(f)}
Lastly, we quote the next claim (the definition and claim are from [2],
and explicitly [4](5.8(2),5.9)):

Claim 0.4. Assume k > g is realized, and D is a k-complete (a normal)
filter on Y.

Then J[f, D] is a k-complete (a normal) ideal on'Y disjoint to D for any
feYord
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1. THE PROOF

In this section we prove Theorem of the Introduction, which, for con-
venience, we now restate.

Theorem 1.1. If Xy < k = cf(\), 2% < X then A — (A, w+ 1)

Proof.
Stag(J;A We know that Ry < k = cf(A) < A, 2¢ < X\ We will show that
A= (A, w+1)2
So, towards a contradiction, suppose that
(¥)1 ¢: [N? — {red, green} but has no red set of cardinality A and no
green set of order type w + 1.
Choose X such that:
(¥)2 A = (\; : i < k) is increasing and continuous with limit A, and for
1 = 0 or ¢ a successor ordinal, \; is a successor cardinal. We also let
Ag = A and for i < k, A14; = [Ai, Ait1). For a < A we will let
i(a) = the unique ¢ < k such that a € A;.
We can clearly assume, in addition, that
()3 Ao > 2", for i < K, Aip1 > )\;-H', and that each A; is homogeneously
red for c.

The last is justified by the Erdds-Dushnik-Miller theorem for A;;1, i.e., as
Air1 — (Aiy1,w + 1)% because \;yq is regular.

Stage B: For 0 < i < k, we define Seq; to be {(a, ..., an—1) : i(ap) < ... <
i(a,_1) < i}. For ¢ € A; and (g, ...,an_1) = @ € Seq;, we say a € T¢
iff {ag,...,an—1, ¢} is homogeneously green for c¢. Note that an infinite <-
increasing branch in 7¢ violates the non-existence of a green set of order
type w + 1, so,

()4 T¢ is well-founded, that is we cannot find g <am1 9... <49, <. ...

Therefore the following definition of a rank function, rk¢, on Seq,; can be
carried out.

If € Seq; \ T¢ then rk%(n) = —1. We define 1k° : Seq; — Ord U {—1}
as follows by induction on the ordinal &, we have rk‘(a) = ¢ iff for all
€ < &,1k%(@) was not defined as e but there is 3 such that rk¢(a” (8)) > e.
Of course, if £ is a successor ordinal, it is enough to check for ¢ = £ — 1,
and for limit ordinals, 6, if for all £ < §, k(@) > &, then rk%(a) > 4.
In fact, it is clear that the range of rk¢ is a proper initial segment of ,uf,
where p; := card(|J {A¢ : € < i}), and so, in particular, the range of rk® has
cardinality at most A;. Note that A\;4+1 > /\j'F > uj‘.

Now we can choose B;, an end-segment of A; such that for all @ € Seq;
and all 0 < v <y, if there is ¢ € B; such that rk¢ (@) = , then there are
Ai+1 such (-s. Recall that A; and therefore also B; are of order type A;y1,
which is a successor cardinal > p;” > |Seq;| hence such B; exists. Everything
is now in place for the main definition.
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Stage C: (a, Z, D, f) e K iff
(1) D is a normal filter on &,
(2) f:r— Ord,
(3) Ze D
(4) for some 0 < ¢ < k we have @ € Seq; and Z is disjoint to ¢ + 1 and
for every j € Z (hence j > i) there is ¢ € B; such that rk*(a) = f(j)
(so, in particular, @ € T¢).

Stage D: Note that K # (), since if we choose (; € Bj, for j < &, take
Z =k \ {0}, a = the empty sequence, choose D to be any normal filter on
r and define f by f(j) = rk% (&), then (a, Z, D, f) € K.

Now clearly by among the quadruples (@, Z, D, f) € K, there is
one with rkp(f) minimal. So, fix one such quadruple, and denote it by
(a*, Z*, D*, f*). Let D7 be the filter on & dual to J[f*, D*], so by claim
[0:4]it is a normal filter on x extending D*.

For j € Z*,set C; = {¢ € B; : 1k%(a@*) = f*(j)}. Thus by the choice of B;
we know that card(C}) = Aj41, and for every ¢ € C} the set (Rang(a*)U{(})
is homogeneously green under the colouring c¢. Now: suppose j € Z*. For
every Y € Z*\ (j+1) and ¢ € C}, let C(¢) = {€ € Cy : ¢({¢,&}) = green}.
Also, let ZT(() ={Y € Z*\ (j + 1) : card(CE(¢)) = Ar41}-

Stage E: For j € Z* and ¢ € C}, let Y(¢) = Z* \ ZT(¢). Since A\g > 2" and
Aj+1 > Ag is regular, for each j € Z* there are Y = Y; C s and C]’- Cc Cj
with card(C’]’) = Aj+1 such that ¢ € C]‘ =Y() =Y.

Let Z = {j € Z* : Y; € Di}. Now the proof split to two cases.

Case 1: Z # () mod D3

Define Y* = {j € Z: for every i € Z N j, we have j € Y;}. Notice that
Y* is the intersection of Z with the diagonal intersection of & sets from D*
(since i € Z = Y; € D), hence (by the normality of D}) Y* # () mod D3,
But then, as we will see soon, by shrinking the C; for j € Y*, we can get a
homogeneous red set of cardinality A, which is contrary to the assumption

toward contradiction. R
We define C; for j € Y* by induction on j such that Cj is a subset of CJ’»

of cardinality Aj11. Now, for j € Y™, let C’j be the set of £ € C;- such that
for every i € Y* N j and every ¢ € C; we have & & C’;’(C). So, in fact, é’j
has cardinality A;41 as it is the result of removing < A; 41 elements from CJ'»
where |C}| = Aji1 by its choice. Indeed, the number of such pairs (i,() is

< A; and: fori e Y*Njand ¢ € Cy:
(a) j €Y; [Why? by the definition of Y* as j € Y*]

€ Y(¢) [Why? by (a)+(c)]
i & Z1(¢) [Why? by (d) and the choice of Y (¢) as Z* \ ZT(¢)]
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(f) C’j(() lias cardinality < Aj1 [Why? by (e) and the choice of Z1((),
as j € Z C Z*]
So C’j is a well defined subset of C:J' of cardinality /\j+1Afor every j € Y*.
But then, clearly the union of the C; for j € Y™, call it C' satisfies:
(a) it has cardinality A [as j € Y* = |C;| = A\j41 and sup(Y*) = & as
Y* # () mod D]
(B) clCy)? is constantly red [as we are assuming (*)3]
(v) if i < j are from Y* and ¢ € Cy,€ € C'j then ¢{¢,&} = red [as
£¢ Cf(Q)]
So C has ca{dinality A and is homogeneously red. This concludes the proof
in the case Z # () mod D3

Case 2: Z = () mod D3,
In that case there are i € Z*, 8 € C; such that Z7(8) # 0 mod Dj
[Why? well, Z* € D* C D} and Z = () mod D, hence Z*\ Z # 0.
Choose i € Z*\ Z. By the definition of Z, Y; ¢ D%. So, if 8 € C! then
Y (8) =Y; ¢ D7 and choose 3 € C}, so Y (8) ¢ D7 hence by the definition of
Y (B8) we have Z* \ ZT(B) = Y (B) ¢ Dj. Since Z* € D}, we conclude that
ZT(B) # 0 mod D).
Let & = a*{(B),Z' = Z+(B),D' = D* + Z’, it is a normal filter by the
previous sentence as D* C Dy and lastly we define f’ € ®Ord by:
(a) if j € Z' then f'(j) = Min{rk" (&) : v € Cj(ﬁ) C B;}
(b) otherwise f'(j) =0
Clearly
(o) (&,Z',D', ") € K, and
B) f' <p [*

[Why? as Z' € D' and if j € Z' then for some v € C;r(ﬂ) we
have f'(j) = rk? (&) = rk”(a*(8)) which by the definition of rk” is
<rk7(a*) = f*(j), recalling (4) from stage C.]

hence

(v) tkp () <rkp(f*)

[Why? see Definition [0.2].

But tkp/ (f*) = rkp«(f*) as Z’ = Z1(8) # 0 mod D7 by the definition of D}
as extending the filter dual to J[f*, D*], see Definition[0.3] Hence rkp/(f’) <
rkp«(f*), so we get a contradiction to the choice of (a*, Z*, D*, f*).

Clearly at least one of the two cases holds, so we are done. ([
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