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0. introduction

For regular uncountable κ, the Erdös-Dushnik-Miller theorem, Theorem
11.3 of [1], states that κ→ (κ, ω+ 1)2. For singular cardinals, κ, they were
only able to obtain the weaker result, Theorem 11.1 of [1], that κ→ (κ, ω)2.
It is not hard to see that if cf(κ) = ω then κ 6→ (κ, ω+1)2. If cf (κ) > ω and
κ is a strong limit cardinal, then it follows from the General Canonization
Lemma, Lemma 28.1 in [1], that κ → (κ, ω + 1)2. Question 11.4 of [1] is
whether this holds without the assumption that κ is a strong limit cardinal,
e.g., whether, in ZFC,

(1) ℵω1 → (ℵω1 , ω + 1)2.

In [5] it was proved that λ→ (λ, ω + 1)2 if 2cf(λ) < λ and there is a nice
filter on κ, (see [3, Ch.V]: follows from suitable failures of SCH). Also proved

there are consistency results when 2cf(λ) ≥ λ
Here continuing [5] but not relying on it, we eliminate the extra assump-

tion, i.e, we prove (in ZFC)

Theorem 0.1. If ℵ0 < κ = cf(λ) and 2κ < λ then λ→ (λ, ω + 1)2.

Before starting the proof, let us recall the well known definition:

Definition 0.2. Let D be an ℵ1-complete filter on Y , and f ∈ Y Ord, and
α ∈ Ord ∪ {∞}.

We define when rkD(f) = α by induction on α (it is well known that
rkD(f) <∞):

(*) rkD(f) = α iff β < α ⇒ rkD(f) 6= β, and for every g ∈ Y Ord
satisfying g <D f , there is β < α such that rkD(g) = β.

Notice that we will use normal filters on κ = cf(κ) > ℵ0, so the demand of
ℵ1- completeness in the definition, holds for us.
Recall also

Definition 0.3. Assume Y,D, f are as in definition 0.2.

J [f,D] = {Z ⊆ Y : Y \ Z ∈ D or rkD+(Y \Z)(f) > rkD(f)}
Lastly, we quote the next claim (the definition 0.3 and claim are from [2],
and explicitly [4](5.8(2),5.9)):

Claim 0.4. Assume κ > ℵ0 is realized, and D is a κ-complete (a normal)
filter on Y .

Then J [f,D] is a κ-complete (a normal) ideal on Y disjoint to D for any
f ∈ Y Ord
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1. The proof

In this section we prove Theorem 0.1 of the Introduction, which, for con-
venience, we now restate.

Theorem 1.1. If ℵ0 < κ = cf(λ), 2κ < λ then λ→ (λ, ω + 1)2.

Proof.
Stage A We know that ℵ0 < κ = cf(λ) < λ, 2κ < λ We will show that

λ→ (λ, ω + 1)2.
So, towards a contradiction, suppose that

(∗)1 c : [λ]2 → {red, green} but has no red set of cardinality λ and no
green set of order type ω + 1.

Choose λ̄ such that:

(∗)2 λ̄ = 〈λi : i < κ〉 is increasing and continuous with limit λ, and for
i = 0 or i a successor ordinal, λi is a successor cardinal. We also let
∆0 = λ0 and for i < κ, ∆1+i = [λi, λi+1). For α < λ we will let
i(α) = the unique i < κ such that α ∈ ∆i.

We can clearly assume, in addition, that

(∗)3 λ0 > 2κ, for i < κ, λi+1 ≥ λ++
i , and that each ∆i is homogeneously

red for c.

The last is justified by the Erdös-Dushnik-Miller theorem for λi+1, i.e., as
λi+1 → (λi+1, ω + 1)2 because λi+1 is regular.

Stage B: For 0 < i < κ, we define Seqi to be {〈α0, ..., αn−1〉 : i(α0) < ... <

i(αn−1) < i}. For ζ ∈ ∆i and 〈α0, ..., αn−1〉 = ᾱ ∈ Seqi, we say ᾱ ∈ T ζ
iff {α0, ..., αn−1, ζ} is homogeneously green for c. Note that an infinite /-
increasing branch in T ζ violates the non-existence of a green set of order
type ω + 1, so,

(∗)4 T ζ is well-founded, that is we cannot find η0 / η1 / . . . / ηn / . . ..

Therefore the following definition of a rank function, rkζ , on Seqi can be
carried out.

If η ∈ Seqi \ T ζ then rkζ(η) = −1. We define rkζ : Seqi → Ord ∪ {−1}
as follows by induction on the ordinal ξ, we have rkζ(ᾱ) = ξ iff for all

ε < ξ, rkζ(ᾱ) was not defined as ε but there is β such that rkζ(ᾱ
_〈β〉) ≥ ε.

Of course, if ξ is a successor ordinal, it is enough to check for ε = ξ − 1,
and for limit ordinals, δ, if for all ξ < δ, rkζ(ᾱ) ≥ ξ, then rkζ(ᾱ) ≥ δ.

In fact, it is clear that the range of rkζ is a proper initial segment of µ+
i ,

where µi := card(
⋃
{∆ε : ε < i}), and so, in particular, the range of rkζ has

cardinality at most λi. Note that λi+1 ≥ λ++
i > µ+

i .
Now we can choose Bi, an end-segment of ∆i such that for all ᾱ ∈ Seqi

and all 0 ≤ γ < µ+
i , if there is ζ ∈ Bi such that rkζ(ᾱ) = γ, then there are

λi+1 such ζ-s. Recall that ∆i and therefore also Bi are of order type λi+1,
which is a successor cardinal > µ+

i > |Seqi| hence such Bi exists. Everything
is now in place for the main definition.
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Stage C: (ᾱ, Z, D, f) ∈ K iff

(1) D is a normal filter on κ,
(2) f : κ→ Ord,
(3) Z ∈ D
(4) for some 0 < i < κ we have ᾱ ∈ Seqi and Z is disjoint to i + 1 and

for every j ∈ Z (hence j > i) there is ζ ∈ Bj such that rkζ(ᾱ) = f(j)

(so, in particular, ᾱ ∈ T ζ).

Stage D: Note that K 6= ∅, since if we choose ζj ∈ Bj , for j < κ, take
Z = κ \ {0}, ᾱ = the empty sequence, choose D to be any normal filter on

κ and define f by f(j) = rkζj (ᾱ), then (ᾱ, Z, D, f) ∈ K.
Now clearly by 0.2, among the quadruples (ᾱ, Z, D, f) ∈ K, there is

one with rkD(f) minimal. So, fix one such quadruple, and denote it by
(ᾱ∗, Z∗, D∗, f∗). Let D∗1 be the filter on κ dual to J [f∗, D∗], so by claim
0.4 it is a normal filter on κ extending D∗.

For j ∈ Z∗, set Cj = {ζ ∈ Bj : rkζ(ᾱ∗) = f∗(j)}. Thus by the choice of Bj
we know that card(Cj) = λj+1, and for every ζ ∈ Cj the set (Rang(ᾱ∗)∪{ζ})
is homogeneously green under the colouring c. Now: suppose j ∈ Z∗. For
every Υ ∈ Z∗ \ (j+1) and ζ ∈ Cj , let C+

Υ (ζ) = {ξ ∈ CΥ : c({ζ, ξ}) = green}.
Also, let Z+(ζ) = {Υ ∈ Z∗ \ (j + 1) : card(C+

Υ (ζ)) = λΥ+1}.

Stage E: For j ∈ Z∗ and ζ ∈ Cj , let Y (ζ) = Z∗ \ Z+(ζ). Since λ0 > 2κ and

λj+1 > λ0 is regular, for each j ∈ Z∗ there are Y = Yj ⊆ κ and C ′j ⊆ Cj
with card(C ′j) = λj+1 such that ζ ∈ C ′j ⇒ Y (ζ) = Yj .

Let Ẑ = {j ∈ Z∗ : Yj ∈ D∗1}. Now the proof split to two cases.

Case 1: Ẑ 6= ∅ mod D∗1
Define Y ∗ = {j ∈ Ẑ: for every i ∈ Ẑ ∩ j, we have j ∈ Yi}. Notice that

Y ∗ is the intersection of Ẑ with the diagonal intersection of κ sets from D∗1
(since i ∈ Ẑ ⇒ Yi ∈ D∗1), hence (by the normality of D∗1) Y ∗ 6= ∅ mod D∗1.
But then, as we will see soon, by shrinking the C ′j for j ∈ Y ∗, we can get a
homogeneous red set of cardinality λ, which is contrary to the assumption
toward contradiction.

We define Ĉj for j ∈ Y ∗ by induction on j such that Ĉj is a subset of C ′j
of cardinality λj+1. Now, for j ∈ Y ∗, let Ĉj be the set of ξ ∈ C ′j such that

for every i ∈ Y ∗ ∩ j and every ζ ∈ Ĉi we have ξ 6∈ C+
j (ζ). So, in fact, Ĉj

has cardinality λj+1 as it is the result of removing < λj+1 elements from C ′j
where |C ′j | = λj+1 by its choice. Indeed, the number of such pairs (i, ζ) is

≤ λj and: for i ∈ Y ∗ ∩ j and ζ ∈ Ĉi:
(a) j ∈ Yi [Why? by the definition of Y ∗ as j ∈ Y ∗]
(b) ζ ∈ C ′i [Why? as ζ ∈ Ĉi and Ĉi ⊆ C ′i by the induction hypothesis]
(c) Y (ζ) = Yi [Why? as by (b) we have ζ ∈ C ′i and the choice of C ′i]
(d) j ∈ Y (ζ) [Why? by (a)+(c)]
(e) j /∈ Z+(ζ) [Why? by (d) and the choice of Y (ζ) as Z∗ \ Z+(ζ)]
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(f) C+
j (ζ) has cardinality < λj+1 [Why? by (e) and the choice of Z+(ζ),

as j ∈ Ẑ ⊆ Z∗]
So Ĉj is a well defined subset of C ′j of cardinality λj+1 for every j ∈ Y ∗.
But then, clearly the union of the Ĉj for j ∈ Y ∗, call it Ĉ satisfies:

(α) it has cardinality λ [as j ∈ Y ∗ ⇒ |Ĉj | = λj+1 and sup(Y ∗) = κ as
Y ∗ 6= ∅ mod D∗1]

(β) c�[Ĉj ]2 is constantly red [as we are assuming (∗)3]

(γ) if i < j are from Y ∗ and ζ ∈ Ĉi, ξ ∈ Ĉj then c{ζ, ξ} = red [as
ξ /∈ C+

j (ζ)]

So Ĉ has cardinality λ and is homogeneously red. This concludes the proof
in the case Ẑ 6= ∅ mod D∗1

Case 2: Ẑ = ∅ mod D∗1.
In that case there are i ∈ Z∗, β ∈ Ci such that Z+(β) 6= ∅ mod D∗1
[Why? well, Z∗ ∈ D∗ ⊆ D∗1 and Ẑ = ∅ mod D∗1, hence Z∗ \ Ẑ 6= ∅.

Choose i ∈ Z∗ \ Ẑ. By the definition of Ẑ, Yi /∈ D∗1. So, if β ∈ C ′i then
Y (β) = Yi /∈ D∗1 and choose β ∈ C ′i, so Y (β) /∈ D∗1 hence by the definition of
Y (β) we have Z∗ \ Z+(β) = Y (β) /∈ D∗1. Since Z∗ ∈ D∗1, we conclude that
Z+(β) 6= ∅ mod D∗1].

Let ᾱ′ = ᾱ∗_〈β〉, Z ′ = Z+(β), D′ = D∗ + Z ′, it is a normal filter by the
previous sentence as D∗ ⊆ D∗1 and lastly we define f ′ ∈ κOrd by:

(a) if j ∈ Z ′ then f ′(j) = Min{rkγ(ᾱ′) : γ ∈ C+
j (β) ⊆ Bj}

(b) otherwise f ′(j) = 0

Clearly

(α) (ᾱ′, Z ′, D′, f ′) ∈ K, and
(β) f ′ <D′ f

∗

[Why? as Z ′ ∈ D′ and if j ∈ Z ′ then for some γ ∈ C+
j (β) we

have f ′(j) = rkγ(ᾱ′) = rkγ(ᾱ∗_〈β〉) which by the definition of rkγ is
< rkγ(ᾱ∗) = f∗(j), recalling (4) from stage C.]

hence
(γ) rkD′(f

′) < rkD′(f
∗)

[Why? see Definition 0.2].

But rkD′(f
∗) = rkD∗(f

∗) as Z ′ = Z+(β) 6= ∅ mod D∗1 by the definition of D∗1
as extending the filter dual to J [f∗, D∗], see Definition 0.3. Hence rkD′(f

′) <
rkD∗(f

∗), so we get a contradiction to the choice of (ᾱ∗, Z∗, D∗, f∗).
Clearly at least one of the two cases holds, so we are done. �
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