THE ERDÖS-RADO ARROW FOR SINGULAR

SAHARON SHELAH

```
Abstract. We prove that if \(\operatorname{cf}(\lambda)>\aleph_{0}\) and \(2^{\operatorname{cf}(\lambda)}<\lambda\) then \(\lambda \rightarrow\) \((\lambda, \omega+1)^{2}\) in ZFC
```


0. INTRODUCTION

For regular uncountable κ, the Erdös-Dushnik-Miller theorem, Theorem 11.3 of [1], states that $\kappa \rightarrow(\kappa, \omega+1)^{2}$. For singular cardinals, κ, they were only able to obtain the weaker result, Theorem 11.1 of [1], that $\kappa \rightarrow(\kappa, \omega)^{2}$. It is not hard to see that if $\operatorname{cf}(\kappa)=\omega$ then $\kappa \nrightarrow(\kappa, \omega+1)^{2}$. If $\operatorname{cf}(\kappa)>\omega$ and κ is a strong limit cardinal, then it follows from the General Canonization Lemma, Lemma 28.1 in [1], that $\kappa \rightarrow(\kappa, \omega+1)^{2}$. Question 11.4 of [1] is whether this holds without the assumption that κ is a strong limit cardinal, e.g., whether, in ZFC,

$$
\text { (1) } \aleph_{\omega_{1}} \rightarrow\left(\aleph_{\omega_{1}}, \omega+1\right)^{2}
$$

In [5] it was proved that $\lambda \rightarrow(\lambda, \omega+1)^{2}$ if $2^{\text {cf(}(\lambda)}<\lambda$ and there is a nice filter on κ, (see [3, Ch.V]: follows from suitable failures of SCH). Also proved there are consistency results when $2^{\mathrm{cf}(\lambda)} \geq \lambda$

Here continuing [5] but not relying on it, we eliminate the extra assumption, i.e, we prove (in ZFC)
Theorem 0.1. If $\aleph_{0}<\kappa=\operatorname{cf}(\lambda)$ and $2^{\kappa}<\lambda \underline{\text { then }} \lambda \rightarrow(\lambda, \omega+1)^{2}$.
Before starting the proof, let us recall the well known definition:
Definition 0.2. Let D be an \aleph_{1}-complete filter on Y, and $f \in{ }^{Y}$ Ord, and $\alpha \in \operatorname{Ord} \cup\{\infty\}$.

We define when $\operatorname{rk}_{D}(f)=\alpha$ by induction on α (it is well known that $\left.\operatorname{rk}_{D}(f)<\infty\right)$:
$(*) \operatorname{rk}_{D}(f)=\alpha$ iff $\beta<\alpha \Rightarrow \operatorname{rk}_{D}(f) \neq \beta$, and for every $g \in{ }^{Y}$ Ord satisfying $g<_{D} f$, there is $\beta<\alpha$ such that $\operatorname{rk}_{D}(g)=\beta$.
Notice that we will use normal filters on $\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$, so the demand of \aleph_{1} - completeness in the definition, holds for us.
Recall also
Definition 0.3. Assume Y, D, f are as in definition 0.2.

$$
J[f, D]=\left\{Z \subseteq Y: Y \backslash Z \in D \text { or } \operatorname{rk}_{D+(Y \backslash Z)}(f)>\operatorname{rk}_{D}(f)\right\}
$$

Lastly, we quote the next claim (the definition 0.3 and claim are from [2], and explicitly [4] $(5.8(2), 5.9))$:

Claim 0.4. Assume $\kappa>\aleph_{0}$ is realized, and D is a κ-complete (a normal) filter on Y.
$\underline{\text { Then }} J[f, D]$ is a κ-complete (a normal) ideal on Y disjoint to D for any $f \overline{\in^{Y} \text { Ord }}$

1. The proof

In this section we prove Theorem 0.1 of the Introduction, which, for convenience, we now restate.

Theorem 1.1. If $\aleph_{0}<\kappa=\operatorname{cf}(\lambda), 2^{\kappa}<\lambda$ then $\lambda \rightarrow(\lambda, \omega+1)^{2}$.
Proof.
Stage A We know that $\aleph_{0}<\kappa=\operatorname{cf}(\lambda)<\lambda, 2^{\kappa}<\lambda$ We will show that $\overline{\lambda \rightarrow(\lambda,} \omega+1)^{2}$.

So, towards a contradiction, suppose that
$(*)_{1} c:[\lambda]^{2} \rightarrow\{$ red, green $\}$ but has no red set of cardinality λ and no green set of order type $\omega+1$.
Choose $\bar{\lambda}$ such that:
$(*)_{2} \bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ is increasing and continuous with limit λ, and for $i=0$ or i a successor ordinal, λ_{i} is a successor cardinal. We also let $\Delta_{0}=\lambda_{0}$ and for $i<\kappa, \Delta_{1+i}=\left[\lambda_{i}, \lambda_{i+1}\right)$. For $\alpha<\lambda$ we will let $\mathbf{i}(\alpha)=$ the unique $i<\kappa$ such that $\alpha \in \Delta_{i}$.
We can clearly assume, in addition, that
$(*)_{3} \lambda_{0}>2^{\kappa}$, for $i<\kappa, \lambda_{i+1} \geq \lambda_{i}^{++}$, and that each Δ_{i} is homogeneously red for c.
The last is justified by the Erdös-Dushnik-Miller theorem for λ_{i+1}, i.e., as $\lambda_{i+1} \rightarrow\left(\lambda_{i+1}, \omega+1\right)^{2}$ because λ_{i+1} is regular.
Stage B: For $0<i<\kappa$, we define Seq_{i} to be $\left\{\left\langle\alpha_{0}, \ldots, \alpha_{n-1}\right\rangle: \mathbf{i}\left(\alpha_{0}\right)<\ldots<\right.$ $\left.\overline{\mathbf{i}\left(\alpha_{n-1}\right)}<i\right\}$. For $\zeta \in \Delta_{i}$ and $\left\langle\alpha_{0}, \ldots, \alpha_{n-1}\right\rangle=\bar{\alpha} \in \operatorname{Seq}_{i}$, we say $\bar{\alpha} \in \mathcal{T}^{\zeta}$ iff $\left\{\alpha_{0}, \ldots, \alpha_{n-1}, \zeta\right\}$ is homogeneously green for c. Note that an infinite $\triangleleft-$ increasing branch in \mathcal{T}^{ζ} violates the non-existence of a green set of order type $\omega+1$, so,
$(*)_{4} \mathcal{T}^{\zeta}$ is well-founded, that is we cannot find $\eta_{0} \triangleleft \eta_{1} \triangleleft \ldots \triangleleft \eta_{n} \triangleleft \ldots$
Therefore the following definition of a rank function, rk^{ζ}, on Seq_{i} can be carried out.

If $\eta \in \operatorname{Seq}_{i} \backslash T^{\zeta}$ then $\operatorname{rk}^{\zeta}(\eta)=-1$. We define $\operatorname{rk}^{\zeta}: \mathrm{Seq}_{i} \rightarrow \operatorname{Ord} \cup\{-1\}$ as follows by induction on the ordinal ξ, we have $\operatorname{rk}^{\zeta}(\bar{\alpha})=\xi$ iff for all $\epsilon<\xi, \operatorname{rk}^{\zeta}(\bar{\alpha})$ was not defined as ϵ but there is β such that $\operatorname{rk}^{\zeta}\left(\bar{\alpha}^{\complement}\langle\beta\rangle\right) \geq \epsilon$. Of course, if ξ is a successor ordinal, it is enough to check for $\epsilon=\xi-1$, and for limit ordinals, δ, if for all $\xi<\delta, \operatorname{rk}^{\zeta}(\bar{\alpha}) \geq \xi$, then $\operatorname{rk}^{\zeta}(\bar{\alpha}) \geq \delta$. In fact, it is clear that the range of rk^{ζ} is a proper initial segment of μ_{i}^{+}, where $\mu_{i}:=\operatorname{card}\left(\bigcup\left\{\Delta_{\epsilon}: \epsilon<i\right\}\right)$, and so, in particular, the range of rk^{ζ} has cardinality at most λ_{i}. Note that $\lambda_{i+1} \geq \lambda_{i}^{++}>\mu_{i}^{+}$.

Now we can choose B_{i}, an end-segment of Δ_{i} such that for all $\bar{\alpha} \in \operatorname{Seq}_{i}$ and all $0 \leq \gamma<\mu_{i}^{+}$, if there is $\zeta \in B_{i}$ such that $\operatorname{rk}^{\zeta}(\bar{\alpha})=\gamma$, then there are λ_{i+1} such ζ-s. Recall that Δ_{i} and therefore also B_{i} are of order type λ_{i+1}, which is a successor cardinal $>\mu_{i}^{+}>\left|\mathrm{Seq}_{i}\right|$ hence such B_{i} exists. Everything is now in place for the main definition.

Stage C: $(\bar{\alpha}, Z, D, f) \in K$ iff
(1) D is a normal filter on κ,
(2) $f: \kappa \rightarrow$ Ord,
(3) $Z \in D$
(4) for some $0<i<\kappa$ we have $\bar{\alpha} \in \operatorname{Seq}_{i}$ and Z is disjoint to $i+1$ and for every $j \in Z$ (hence $j>i$) there is $\zeta \in B_{j}$ such that $\operatorname{rk}^{\zeta}(\bar{\alpha})=f(j)$ (so, in particular, $\bar{\alpha} \in \mathcal{T}^{\zeta}$).

Stage D: Note that $K \neq \emptyset$, since if we choose $\zeta_{j} \in B_{j}$, for $j<\kappa$, take $Z=\kappa \backslash\{0\}, \bar{\alpha}=$ the empty sequence, choose D to be any normal filter on κ and define f by $f(j)=\operatorname{rk}^{\zeta_{j}}(\bar{\alpha})$, then $(\bar{\alpha}, Z, D, f) \in K$.

Now clearly by 0.2 , among the quadruples $(\bar{\alpha}, Z, D, f) \in K$, there is one with $\mathrm{rk}_{D}(f)$ minimal. So, fix one such quadruple, and denote it by $\left(\bar{\alpha}^{*}, Z^{*}, D^{*}, f^{*}\right)$. Let D_{1}^{*} be the filter on κ dual to $J\left[f^{*}, D^{*}\right]$, so by claim 0.4 it is a normal filter on κ extending D^{*}.

For $j \in Z^{*}$, set $C_{j}=\left\{\zeta \in B_{j}: \operatorname{rk}^{\zeta}\left(\bar{\alpha}^{*}\right)=f^{*}(j)\right\}$. Thus by the choice of B_{j} we know that $\operatorname{card}\left(C_{j}\right)=\lambda_{j+1}$, and for every $\zeta \in C_{j}$ the set $\left(\operatorname{Rang}\left(\bar{\alpha}^{*}\right) \cup\{\zeta\}\right)$ is homogeneously green under the colouring c. Now: suppose $j \in Z^{*}$. For every $\Upsilon \in Z^{*} \backslash(j+1)$ and $\zeta \in C_{j}$, let $C_{\Upsilon}^{+}(\zeta)=\left\{\xi \in C_{\Upsilon}: c(\{\zeta, \xi\})=\right.$ green $\}$. Also, let $Z^{+}(\zeta)=\left\{\Upsilon \in Z^{*} \backslash(j+1): \operatorname{card}\left(C_{\Upsilon}^{+}(\zeta)\right)=\lambda_{\Upsilon+1}\right\}$.
Stage E: For $j \in Z^{*}$ and $\zeta \in C_{j}$, let $Y(\zeta)=Z^{*} \backslash Z^{+}(\zeta)$. Since $\lambda_{0}>2^{\kappa}$ and $\lambda_{j+1}>\lambda_{0}$ is regular, for each $j \in Z^{*}$ there are $Y=Y_{j} \subseteq \kappa$ and $C_{j}^{\prime} \subseteq C_{j}$ with $\operatorname{card}\left(C_{j}^{\prime}\right)=\lambda_{j+1}$ such that $\zeta \in C_{j}^{\prime} \Rightarrow Y(\zeta)=Y_{j}$.

Let $\hat{Z}=\left\{j \in Z^{*}: Y_{j} \in D_{1}^{*}\right\}$. Now the proof split to two cases.
Case 1: $\hat{Z} \neq \emptyset \bmod D_{1}^{*}$
Define $Y^{*}=\left\{j \in \hat{Z}\right.$: for every $i \in \hat{Z} \cap j$, we have $\left.j \in Y_{i}\right\}$. Notice that Y^{*} is the intersection of \hat{Z} with the diagonal intersection of κ sets from D_{1}^{*} (since $i \in \hat{Z} \Rightarrow Y_{i} \in D_{1}^{*}$), hence (by the normality of D_{1}^{*}) $Y^{*} \neq \emptyset \bmod D_{1}^{*}$. But then, as we will see soon, by shrinking the C_{j}^{\prime} for $j \in Y^{*}$, we can get a homogeneous red set of cardinality λ, which is contrary to the assumption toward contradiction.

We define \hat{C}_{j} for $j \in Y^{*}$ by induction on j such that \hat{C}_{j} is a subset of C_{j}^{\prime} of cardinality λ_{j+1}. Now, for $j \in Y^{*}$, let \hat{C}_{j} be the set of $\xi \in C_{j}^{\prime}$ such that for every $i \in Y^{*} \cap j$ and every $\zeta \in \hat{C}_{i}$ we have $\xi \notin C_{j}^{+}(\zeta)$. So, in fact, \hat{C}_{j} has cardinality λ_{j+1} as it is the result of removing $<\lambda_{j+1}$ elements from C_{j}^{\prime} where $\left|C_{j}^{\prime}\right|=\lambda_{j+1}$ by its choice. Indeed, the number of such pairs (i, ζ) is $\leq \lambda_{j}$ and: for $i \in Y^{*} \cap j$ and $\zeta \in \hat{C}_{i}$:
(a) $j \in Y_{i}$ [Why? by the definition of Y^{*} as $\left.j \in Y^{*}\right]$
(b) $\zeta \in C_{i}^{\prime}$ [Why? as $\zeta \in \hat{C}_{i}$ and $\hat{C}_{i} \subseteq C_{i}^{\prime}$ by the induction hypothesis]
(c) $Y(\zeta)=Y_{i}$ [Why? as by (b) we have $\zeta \in C_{i}^{\prime}$ and the choice of $\left.C_{i}^{\prime}\right]$
(d) $j \in Y(\zeta)$ [Why? by (a)+(c)]
(e) $j \notin Z^{+}(\zeta)$ [Why? by (d) and the choice of $Y(\zeta)$ as $\left.Z^{*} \backslash Z^{+}(\zeta)\right]$
(f) $C_{j}^{+}(\zeta)$ has cardinality $<\lambda_{j+1}$ [Why? by (e) and the choice of $Z^{+}(\zeta)$, as $\left.j \in \hat{Z} \subseteq Z^{*}\right]$
So \hat{C}_{j} is a well defined subset of C_{j}^{\prime} of cardinality λ_{j+1} for every $j \in Y^{*}$. But then, clearly the union of the \hat{C}_{j} for $j \in Y^{*}$, call it \hat{C} satisfies:
(α) it has cardinality λ as $j \in Y^{*} \Rightarrow\left|\hat{C}_{j}\right|=\lambda_{j+1}$ and $\sup \left(Y^{*}\right)=\kappa$ as $\left.Y^{*} \neq \emptyset \bmod D_{1}^{*}\right]$
$(\beta) c \upharpoonright\left[\hat{C}_{j}\right]^{2}$ is constantly red [as we are assuming $(*)_{3}$]
(γ) if $i<j$ are from Y^{*} and $\zeta \in \hat{C}_{i}, \xi \in \hat{C}_{j}$ then $c\{\zeta, \xi\}=$ red [as $\left.\xi \notin C_{j}^{+}(\zeta)\right]$
So \hat{C} has cardinality λ and is homogeneously red. This concludes the proof in the case $\hat{Z} \neq \emptyset \bmod D_{1}^{*}$
Case 2: $\hat{Z}=\emptyset \bmod D_{1}^{*}$.
In that case there are $i \in Z^{*}, \beta \in C_{i}$ such that $Z^{+}(\beta) \neq \emptyset \bmod D_{1}^{*}$
[Why? well, $Z^{*} \in D^{*} \subseteq D_{1}^{*}$ and $\hat{Z}=\emptyset \bmod D_{1}^{*}$, hence $Z^{*} \backslash \hat{Z} \neq \emptyset$. Choose $i \in Z^{*} \backslash \hat{Z}$. By the definition of $\hat{Z}, Y_{i} \notin D_{1}^{*}$. So, if $\beta \in C_{i}^{\prime}$ then $Y(\beta)=Y_{i} \notin D_{1}^{*}$ and choose $\beta \in C_{i}^{\prime}$, so $Y(\beta) \notin D_{1}^{*}$ hence by the definition of $Y(\beta)$ we have $Z^{*} \backslash Z^{+}(\beta)=Y(\beta) \notin D_{1}^{*}$. Since $Z^{*} \in D_{1}^{*}$, we conclude that $\left.Z^{+}(\beta) \neq \emptyset \bmod D_{1}^{*}\right]$.

Let $\left.\bar{\alpha}^{\prime}=\bar{\alpha}^{*} \leftharpoonup \beta\right\rangle, Z^{\prime}=Z^{+}(\beta), D^{\prime}=D^{*}+Z^{\prime}$, it is a normal filter by the previous sentence as $D^{*} \subseteq D_{1}^{*}$ and lastly we define $f^{\prime} \in{ }^{\kappa}$ Ord by:
(a) if $j \in Z^{\prime}$ then $f^{\prime}(j)=\operatorname{Min}\left\{\mathrm{rk}^{\gamma}\left(\bar{\alpha}^{\prime}\right): \gamma \in C_{j}^{+}(\beta) \subseteq B_{j}\right\}$
(b) otherwise $f^{\prime}(j)=0$

Clearly
(α) $\left(\bar{\alpha}^{\prime}, Z^{\prime}, D^{\prime}, f^{\prime}\right) \in K$, and
(β) $f^{\prime}<_{D^{\prime}} f^{*}$
[Why? as $Z^{\prime} \in D^{\prime}$ and if $j \in Z^{\prime}$ then for some $\gamma \in C_{j}^{+}(\beta)$ we have $f^{\prime}(j)=\operatorname{rk}^{\gamma}\left(\bar{\alpha}^{\prime}\right)=\operatorname{rk}^{\gamma}\left(\bar{\alpha}^{*}\langle\langle\beta\rangle)\right.$ which by the definition of rk^{γ} is $<\operatorname{rk}^{\gamma}\left(\bar{\alpha}^{*}\right)=f^{*}(j)$, recalling (4) from stage C.]
hence
$(\gamma) \operatorname{rk}_{D^{\prime}}\left(f^{\prime}\right)<\operatorname{rk}_{D^{\prime}}\left(f^{*}\right)$
[Why? see Definition 0.2 .
But $\operatorname{rk}_{D^{\prime}}\left(f^{*}\right)=\operatorname{rk}_{D^{*}}\left(f^{*}\right)$ as $Z^{\prime}=Z^{+}(\beta) \neq \emptyset \bmod D_{1}^{*}$ by the definition of D_{1}^{*} as extending the filter dual to $J\left[f^{*}, D^{*}\right]$, see Definition 0.3 . Hence $\mathrm{rk}_{D^{\prime}}\left(f^{\prime}\right)<$ $\mathrm{rk}_{D^{*}}\left(f^{*}\right)$, so we get a contradiction to the choice of $\left(\bar{\alpha}^{*}, Z^{*}, D^{*}, f^{*}\right)$.
Clearly at least one of the two cases holds, so we are done.

References

[1] Paul Erdős, Andras Hajnal, A. Maté, and Richard Rado. Combinatorial set theory: Partition Relations for Cardinals, volume 106 of Studies in Logic and the Foundation of Math. North Holland Publ. Co, Amsterdam, 1984.
[2] Saharon Shelah. A note on cardinal exponentiation. The Journal of Symbolic Logic, 45:56-66, 1980. [Sh:71]
[3] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994. [Sh:g]
[4] Saharon Shelah. Applications of PCF theory. Journal of Symbolic Logic, 65:1624-1674, 2000. [Sh:589]
[5] Saharon Shelah and Lee Stanley. Filters, Cohen Sets and Consistent Extensions of the Erdős-Dushnik-Miller Theorem. Journal of Symbolic Logic, 65:259-271, 2000. math.LO/9709228. [ShSt:419]

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah

