AN ℵ₂-SOUSLIN TREE FROM A STRANGE HYPOTHESIS ABSTRACTS OF AMS (1985)P.198(84-T-03-160) SHE:4

SAHARON SHELAH

Institute of Mathematics The Hebrew University Jerusalem, Israel

Rutgers University Mathematics Department New Brunswick, NJ USA

I would like to thank Alice Leonhardt for the beautiful typing. First Typed - $98/{\rm Jan}/14$ Latest Revision - $98/{\rm Mar}/19$

 $\mathbf{2}$

SAHARON SHELAH

$\S1$

Theorem. Suppose CH holds and the filter \mathscr{D}_{ω_1} (see below) is \aleph_2 -saturated. Then there is an \aleph_2 -Souslin tree.

<u>Notation</u>: \mathscr{D}_{ω_1} is the filter generated by the closed unbounded subset of ω_1 . Let $S^{\alpha}_{\beta} = \{\delta < \aleph_{\alpha} : \mathrm{cf}(\delta) = \aleph_{\beta}\}.$

Proof. It is known that the assumption implies $2^{\aleph_1} = \aleph_2$. By Gregory [Gre] we know that if there is a stationary $S \subseteq S_0^2$ with no initial segment stationary, then there is an \aleph_2 -Souslin tree. So assume there is no such S. By Gregory [Gre], $\diamondsuit(S_0^2)$ holds, and let $\langle A_\delta : \delta \in S_0^2 \rangle$ exemplify this. For each $\alpha \in S_1^2$ define $\mathscr{P}_\alpha = \{B \subseteq \alpha : \{\delta < \alpha : B \cap \delta = A_\delta\}$ is a stationary subset of $\alpha\}$. If $|\mathscr{P}_\alpha| > \aleph_1$ let $B_i \in \mathscr{P}_\alpha(i < \aleph_2)$ be pairwise distinct and $\langle \gamma(\zeta) : \zeta < \omega_1 \rangle$ be an increasing continuous sequence of ordinals such that $\gamma(\zeta) < \alpha$ and $\bigcup_{\alpha} \gamma(\zeta) = \alpha$; let $S_i =:$

 $\{\zeta < \omega_1 : B_i \cap \gamma(\zeta) = A_{\gamma(\zeta)}\}$. Now S_i is a stationary subset of ω_1 (as $B_i \in \mathscr{P}_{\alpha}$) and $S_i \cap S_j$ is bounded for $i \neq j$ (as for some $\zeta_0 < \omega_1, B_i \cap \gamma(\zeta_0) \neq B_j \cap \gamma(\zeta_0)$) hence $\langle S_i : i < \omega_2 \rangle$ exemplifies that \mathscr{D}_{ω_1} is \aleph_2 -saturated, contradiction, hence $|P_{\alpha}| \leq \aleph_1$. Also for every $A \subseteq \omega_2$, $|[\delta \in S_0^2 : A \cap \delta = A_{\delta}]$ is stationary hence for some $\alpha \in S_1^2, \{\delta \in S_0^2 \cap \alpha : A \cap \delta = A_{\delta}\}$ is stationary below α . So $\langle \mathscr{P}_{\alpha} : \alpha \in S_1^2 \rangle$ exemplify a variant of $\Diamond(S_1^2)$ which by Kunen implies $\Diamond(S_1^2)$; together with $2^{\aleph_0} = \aleph_1, 2^{\aleph_1} = \aleph_2$ we finish.

Remark. We can replace $(\aleph_1, \mathscr{D}_{\omega_1})$ by $(\aleph_{\alpha}, D(\aleph_{\alpha+1}) + S_{\alpha}^{\alpha+1})$ if \aleph_{α} is regular. (Received December 7, 1983).

AN <code>%2-SOUSLIN</code> TREE FROM A STRANGE HYPOTHESIS ABSTRACTS OF AMS (1985)P.198(84-T-03-160) S

REFERENCES.

[Gre] John Gregory. Higher Souslin trees and the generalized continuum hypothesis.Journal of Symbolic Logic, 41(3):663-671, 1976.