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2 SAHARON SHELAH

§1 [SH 300A]

Verification of [Sh 300a, 1.13], Case 4:

(¥)1 M = lay, b] iff M = @(aria,biis) = @lao, bryg)
(*)2 M )Z ()O[C_lo,l_)l+ﬁj| as0<1+p
(¥)s M |=plal,, b] iff M = plarya,bis] iff 1+ <1+3iff a < g.

Comments on [Sh 300a. §1] end Here?:

1.1 Exercise: We call I a (), x)-candidate when for some s, the pair (/,5) is a
(A, x)-candidate which means

(a) 1
(b)
(c) Y <15 <782
)
)

is a linear order

5= (s’ : a < \, £ < 3) such that there is no repetition

(d 2 induce the same cut of {sﬁ p<al<3}

(e

1) Assume M = I, (e,y) = [ < 4], 9(z.5) = [p(x, 1) = 9(z, )] letiting § =
{(y1,y2) and I is a (A, x)-candidate. Then

SO&’ OZ’ O(

in I there is no increasing sequence of length .

(o) M has the (¢(z,y), x)-non-order property
(8) M has the (¢(x,y), A)-order property

(v) ¥z, 9) € {2, y)}*

2) There is a candidate (I,5) as assumed in (1), in fact with no increasing w-
sequence.

[Hint: use the inverse of a well ordering of order type x|

3) If there is a xT-Aronszajn tree then for Specker order I defined from it, not only
is a (xT, x7)-candidate but in it there is no monotonic sequence of length 6 := x™,
so we can add in part (1)

(8) M has the ({o(x,y)}>", xT)-non-order property.

4) Assume I* is a linear order of cardinality A with neither decreasing nor increasing
sequence of length xT, e.g. has density < x (an example is the order of the reals).
Then there is a linear order I which is a (), x")-candidate with no monotonic
sequence of length x* (so in part (1) we have also clause (9)).

[Hint: use I* x {0, 1,2} ordered lexicographically.]
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. X N
1.2 Exercise: In Lemma [Sh 300a, 2.9tex] we can replace <;¢ by <, and

then get LS(R& < u(=: 22"). For this we need other changes. [Saharon: more?]
By [Sh 300a, 1.15] we know that: A C M,|A] < p = [SR"(A, M)| < pu=" = p.
We try to choose M, ¢, by induction on o < i such that:

b ||Ma|| =

® () ACM,CN
(b)
(¢) (Mgs: S < a) is C-increasing continuous
(

d) Cq € "7 M exemplifies —(M, gg%x).

1.3 Question: 1) Is the cardinal bound in [Sh 300a, 5.1] optimal?
2) Similarly in [Sh 300a, 5.3=>5.2tex].
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§2 [SH 3008B]

2.1 Question: Can we allow (A)%) to be partial?

Discussion: 1) It seemed that if we check the proof in [Sh:h, II], we do not really
use (A)%) is well defined for every A C M, but only under restricted circumstances,
a first try is

(B0) if B := (A)%; is well defined then A C B C M

(B1) if B = (A)Y; then (B)%; = B

(B2) if AC M <; N then (A)%] is well defined iff (A)%;' is well defined and if so
then they are equal

(B?)) if NF(M(),Ml,MQ,MS) then <M1 U M2>§;\;}3 is well defined and Ss M5

(B4) 77.

2) Or should we use ({B; : ¢t € I})% and it depends on the history?

2.2 Observation.: Ax(A3) follows from Ax(C1),(C3(a),(b)) and (A2).
Remark. This is [Sh 300b, 1.7=1.4.Ttex|(2).

Proof. Assume My C My and My <; N for ¢/ = 1,2. By Ax(C2) we can find
M/ (¢ < 3) and fi, fo such that:

(a) NFs(Mg, My, M3, M)

(b) Mo = Mg

(¢) fi1, f2 is an isomorphism from N, My onto M, M respectively
(d) Fp 2 ida,-

By renaming f; = idy so My = N (and of course My = M) so NF¢(My, Moy, N, M3).
By Ax(C3)(a) we have NFq(My, Mo, My, M3). Now M; < N <; M3 hence
by Ax(A2) we have M; <; M3 and of course My U My C M;. Now apply
Ax(C3)(c) with My, My, My, M5, My here standing for My, M1, Ma, M3, M* there,
its assumptions hold by the previous sentence. The conclusion of Ax(C3)(c) gives
NF, (Mo, My, My, My) which by Ax(C1) gives My < M, as required. Os o

2.3 Question: In [Sh 300b, 2.3|, use indiscernible sequence of cardinality p = 22"
or X7, enough?
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We can give more details on [Sh 300b, 2.3tex], the (D, z)-sequence-homogeneous.
We may give details to uniqueness of (D, \)-prime.

2.4 Discussion: Ax(D2) for [Sh 300b, 2.18=2.3Ctex]
Give details for:

(a) for (D,x)-primary we have uniqueness,

(b) for primes (nec?)
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§3 ON [SH 300¢]

We can give details of (< p)-stably constructible from [Sh 300c, §4] as in [Sh 300d,
§5]. Saharon: prepare for quoting in [Sh 300f, §4,55] where Ax(A4) we replaced by
Ax(C2)*, (Ad)%,.

In particular the uniqueness of “anti-prime”.

3.1 Claim. Assume A\ < |A| + LS(s) and A > u = cf(u) > LS(s). There is an
isomorphism from Ale(%l) onto Afgz(dz) over A when for £ = 1,2 we have:

@, (a) o is a (< p)-stable construction inside N
(b) A% = A
(¢) By <s A has cardinality < p and u C lg(<y) is closed of cardinality
<pand A%*NACB,,B' = (B,UB,)% so B <, AZK(M) and
B’ <, B and B is of cardinality < p then for A-oridnal o we have:
(a) sup(u) <o < lyg()
(B) wit =u

(v) B is isomorphic to B over B'.
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§4 ON [SH 300D]

(4A) Details:
We give details on [Sh 300d, 2.12=2.9tex], [Sh 300d, 3.17=3.15tex|. See [Sh

300d, 2.9=2.6tex| + [Sh 300d, 2.11=2.8tex](2), expand? Refer to

(4B) On [Sh 300d] for quoting in [Sh 300e, 4.6]

4.1 Claim. Assume (M, : a < 0) is <g-increasing continuous, (N, : a < 0) is
<s-increasin continuous o« < § = M, <s N, and p | Ms € S.<(Ms).

1) If p € S<%(Ns),p | No does not fork over M, for every a < 8, then p does not
fork over M.

2) If Ms <s Msy1 and M, Ny, Msiq1 are in stable amalgamation for o < & then
Ms, N5, Ms+1 are in stable amalgamation.

Proof. By [Sh 300c, 1.10](1)=1.0tex(1), [Sh 300d, 3.11](2), recalling Definition [Sh
300d, 3.3,3.5).

Remark. 1) Already exists?
2) Used in [Sh 300e, 4.6].

(4C) Comments On €4
We give the model €°9 where equivalence classes can be represented as elements.
It is good for superstable s, where each p € .1(M) has a canonical base consisting

of a singleton, etc.
Generally, see remark [Sh 300d, 7.5] or below (7).

4.2 Definition. 1) Let

E, = {& :£ is an equivalence relation on *|¢|,

preserved by automorphism of €}.

2) For a € X|C|, £ € &, we say a/E is A-invariant where A is a subset of € if every
automorphism h of €, h | A = id4, maps a/FE into itself.
3) We say a/E (where a € X|€|, E € &) is finitary when:

if M <, ¢, a/E is M-invariant and M = U M, (M, :a <)
a<d
is <s-increasing then for some a < §, a/E is M, invariant.
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4) We say E € &), is finitary if every a/E (a € X|€]) is finitary.
5) We say a/FE has a base (a x-base) if it is invariant over some A, |A| < ||C||,

(1A] <x)-
6) We say E € &, has base [u-base] if every equivalence class has a base [u-base].
7) Let & be the family of finitary E' € &, which has a base.

4.3 Claim. 1) Ifa € “>¢€ (or even a € X2€),a/E has base and is finitary then it
has a base M <4 € such that || M| < x.

2) The number of E € &, is < 92X 1T
3) If x > xs then E € &y iff E € & s finitary and has xs-base.

4.4 Claim. Suppose x(0) < x(1) and E1 € &1y and every a/Ey has a x(0)-base.
Then we can find Ey € &y and functions h from the set of E1-sequence classes
onto the set of Eg-equivalence classes [of ordinals < ||€||X(ND] such that:

(x) a/E7 has base A iff h(a/E1) has base A.

Proof. Fill.

4.5 Definition. 1) We let for any M <; €, M4 be a model with universe

|M| U {a/E ca e XO> M| E e E;(s)}

relations and functions:
those of €
Pgp ={a/E:acx®ZM}
Fg the partial function F(a) = a/FE
2) K*°4 is the class of models isomorphic to some M®? (using equivalence class € as

a class).
3) Next we define <°®4:

M* Siq N* iff there are M <; N <, €, (Neq,Meq) ~ (N*,M*)

4) NF°1 is the class of (M7, My, M3, M}) such that for some
My <s € for £ <3 we have My = M," for £ < 3 and NF (M, My, M3, My).
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§5 ON [SH 300E]

(5A) Details on X: [Sh 300e, 4.2=4.1.Ttex]

Proof of [Sh 300e, 4.1.7](3). Check with [Sh 300, 5.3=5.3tex|(6).

First, the implication (a) = (b) is trivial.

Second, assume (b) and let b € A€ such that tp(b, A) does not fork over M.
Let A = ||M|| + |€g(b)| + xs and N be (Dg, AT)-homogeneous such that M <, N.
Continue as in the proof of [Sh 300e, 4.8=4.6tex](2) below.

About (c) see xxxx.

Proof of [Sh 300e, 4.2]. 1) For Ji’ i.e. Definition [Sh 300e, 4.1](1), [Sh 300d,

4.1] they say the same as in [Sh 300d, 4.1], we can find Ny, Ny realizing pi, po
respectively such that M, N1, N> is in stable amalgamation.

2) For L, i.e. Definition [Sh 300e, 4.1](2), [Sh 300d, 4.3](2), the equivalence holds
the definition of “stationarization” are compatible.

3) For pL B, i.e. Definition [Sh 300e, 4.1](4), [Sh 300d, 4.5](1), we are assuming
p € S <%(N), again we use the equivalence of the definition of “stationarization”
are compatible (and (b), i.e. the definitions of | are compatible.

4) For pJa_M assume M <; N,p € /<°°(N), there seemingly is a difference: in

[Sh 300d, 4.5](2), we demand g € .,~°°(M) = pLlq and in [Sh 300e, 4.1](3) ¢ €
S <>®(M) = plq, so in the second version the demand is seemingly strongly: we
have more ¢. Butif the first version holds, let ¢ = tp(a, M) € <>(M), let
MUa C M; <s €, and ¢ list My,a ¢ so q :=tp(¢, M) € L=°(M) hence ¢ Lp.
But if N <, Ny and p; = tp(b, N) is a stationarization of p and tp(a;, N1) is a
stationarization of ¢ then we can find ¢; such that tp(é;, V1) is a stationarization
of g1 and a; < ¢;, and we easily finish.

Remark. See 4.1, intended for quoting in [Sh 300e, 4.6].

(5B) Details on x: [Sh 300e, 4.8=4.6tex]

Proof of [Sh 300e, 4.8=4.6tex](2).

(Canibalize for [Sh 300e, 4.3](3)=4.1.7(3) revise) but see [Sh 300e, 5.3=5.3tex](6).
2) Let Ms := U{M; : i < 6} and Ns := U{N; : i < &}, hence Ms <, N5 <, C.
Assume b € “€ and tp(b, Ms U C) does not fork over My, and we should prove
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that it is weakly orthogonal to tp(NNs, Ms U C). For this it suffices to prove that
tp(b, Ns) does not fork over Mj.

Let Msy1 be such that M;s ub C Msi1 <s € and let bt list the members of M1
such that b = b | a. There is b’ realizing tp(b*, M;s) such that tp(b*, N;) does not
fork over Ms. So tp(b' | a, Ms) = tp(b*™ | a, Ms5) = tp(b, Ms) and tp(d' | a, Ns)
does not fork over Mshence tp(b' | o, Ms U C) does not fork over M;.

As also tp(b, Ms U C) does not fork over Ms and tp(b, Ms) = tp(b' | a, Mj) is
stationary so follows that tp(b, Ms U C) = tp(b' | a, M5 U C).

Hence by [Sh 300e, 2.5](6) it suffices to prove that tp(b', Ms U C) is weakly
orthogonal to tp(Ns, Ms U C). So let b” realize tp(b', Ms U C) and let s =C]
Rang(b”). So Ms <s M}, <s € and tp(Mj ,, Ms U C) does not fork over M;
and it suffices to prove that tp(Mj, ,, Ns) does not fork over M;.

By symmetry [Sh 300e, 2.10=2.9tex| we have tp(C, My’ ;) does not fork over Ms.
But tp(C, M) does not fork over My hence by transitivity [Sh 300e, 2.5](4),2.4(2)
we have tp(C, My, ;) does not fork over My. For each i < d,tp(C, My, ;) does not
fork over M; (by monotonicity) [Sh 300e, 2.5](1) but tp(V;, M; U C’)Ja_MZ hence

tp(Ny, My, ;) does not fork over M;. By symmetry [Sh 300e, 2.5](4),2.4(2) we have
tp(M{_,, N;) does not fork over M; hence by continuity ([Sh 300d, 3.11](2) recalling
Definition [Sh 300d, 3.3,3.5] we have tp(Mg_,, N5) does not fork over Ms, which
as said above, suffice.

(5x) Everybody is nice
On nice types we can improve the result on being nice eliminating the supersta-
bility so this improves [Sh 300e, 6.3=6.3tex].

5.1 Claim. If M <; € and ¢ € “C and ¢ € “€ then there are M™*, N* such that

(a) M* <; N* andc e “”(N*),M* <, M

(0) [IN*]l < A xs + [€g(2)|

(¢) tp(¢, M) does not fork over M*

(d) tp(N*, M* U¢) is weakly orthogonal to tp(M, M* U¢c).

Proof. 1) We assume that such M*, N* does not exist and will eventually derive a
contradiction. We choose M;, N;(i < A1), fi(i < AT) by induction on i < A" such
that:

O (a) M; <s M is <s-increasing, tp(¢, M) does not fork over M
(b) EGNZ,|]NZH§)\andJ<z:>NJ <, N;
(c) fiis a <;-embedding of N; into M; increasing with i
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(d)  f; is the identity on My U ¢
(e) tp(Ny, fi(M;4+1)) forks over M;
(f) fOl"thlt, Mz: UMJ,N@: UNJ

j<i j<i

Construction:.

Case 1:. i =0

Choose (as s is xs-based), Ny <s € such that ¢ C Ny and No N M, Ny, M is in
stable amalgamation and || Ny|| < A. Let My = No N M and fy = idyy,-
Clearly clause (b) holds as well as “My < M” from clause (a), clause (c) is trivial
and the other conditions are inapplicable.

Case 2:. i =7+ 1.

So Nj, M; are defined (and are as required) and let g; be an automorphism of
¢y, extending f; so g; 2 idaue. Consider g;(N;), M; as candidates for N*, M* in
the conclusion of 5.1(1), so they should fail some demand. As ||M;| < |[|N;| < A,
M; <, M,M; <, gj_l(Nj) <s € and ¢ € g7 !(N;) necessarily tp(gj_l(Nj),Mj Ue¢)
is not weakly orthogonal to tp(M, M; U ¢). So there is N; <, € isomorphic to
g;l(N ;) over M; U ¢, say by the isomorphism h;, such that:

tp(NJ’., M) forks over M;.

Then we can find N}’ < €, || N/'[| < A such that N} C N;" and N;" N M, N/, M are
in stable amalgamation (exists as s is A-based). We let M; =: M N N/ and let h;“
be an automorphism of € extending h; and satisfying f;7 = g; o h;’, N; = f;'(Ni”)
and f; = f | M. Note hf | (Moue) C hf | (Mjuc) = idp,ue hence
h;’ I (Myueé) = iday,ue and g; [ (MpU¢) = f; | (MpU¢) = idague so together
fF T (Moue) = (g0 h;“) I (Mo U¢) = idag,ug; i-e. clause (d) holds.

Recall N; := f;"(N]), now M; < N/ hence f;(M;) = f;"(M;) <s f;"(N!") = N;;
so clause (c) holds, too; also N; <s N/ hence f;L(N]’-) <, fH(N!/) = N; but
fiF(NT) = g;(h) (N})) = g?(g}l(Nj) = Nj. Together N; <; Nj, i.e. clause (b)
holds. Clause (a) holds trivially and clause (f) is irrelevant. Clause (e) holds as
tp(INV;, N]') forks over M; by the choices of N7, N;’ and f;" preserves this.

So we are done with case 2.

Case 3. 1 = 0 i1s a limit ordinal.
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Let My = UMB and Ny = UN5 and f5 = Ufg
B<d B<6 B<$
So we have finished the construction, we can choose My+, Ny+, (fa+; 14 < AT)
such that the relevant demands in [(a) — (f) hold. But then (f;(M;), f(N;) i <
AT) contradict “s is ys-based” (see [Sh 300c, 2.8]).
2) Left to the reader (use [Sh 300e, 5.4=>5.4tex](4)). Os.1

5.2 Remark. If ¢ C N and |{g(¢)| = A, then tp(N, M U¢) has character (= localness)
< A+ xs as 5 is (A + xs)-based.

5.3 Conclusion. 1) Every p € #°°~(N), (such that N <s €, m < w) is prenice.

2) If A > ys, M <, € is (Ds, AT )-homogeneous and ¢ € ** € then tp(¢, M) is nice.

3) In [Sh 300e, §6,87] we can waive “superstable” in all the claims except [Sh 300e,
7.12=7.9tex| and can weaken “regular p € <¥(M)” to “regular p € S <>(M)".

Proof. 1) By (2).
2) By 5.1.
3) Check. D5_3
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§6 ON [SH 300F]

(A)  On the n-place indiscernibility - FILL
(C)  “Strengthening the order <" revisited

Concerning [Sh 300f, 3.2]

6.1 Claim. Assume [Sh 300f, 3.1], i.e. fill.
Then s is (As, \)-stable when x € [xs,0%), A = XX = Jy(x) when ¢ = 2. Check.

Proof. We combine the proofs of [Sh 300f, 2.10.7], [Sh 300a, 1.10]. Fill. (070523)
What does ¢ = 2 mean?

* * *
6.2 Question: Where is [Sh 300f], Ax(C10), rigidity, is used?

6.3 Question: Concerning [Sh 300f, 3.19=3.13tex], it is proved for x =i (and z = j
is O.K.) what about A = nc?

The following answer Question ?-6.3. That is, we try to eliminate the use of the
scite{f3.2F} undefined

rigidity axiom, paying a low price on cardinalities which does not affect the Main

conclusion ?, [Sh 300f, 3.32=3.15tex].
scite{3.15} undefined

First concerning [Sh 300f, 3.13=3.10tex].

We use freely
6.4 Definition.

®"*X mean as in [Sh 300f, 3.11=3.8.21tex].

6.5 Claim. Suppose v =1,xs < x < A = 2X < 0*; ifNFg\7X(M0,M1,M2,M3) then
(M, U M) <2 M;.
[Hint: We assume that this fails and to prove the (Ay, Ja()\))-order property. First,

without loss of generality||[My]| < X. Second, let a(x) be an ordinal, R a two-
place relation on «o(x) such that aRg = (a even NS odd). We now can define
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Mg(*)7M ay(a < a(0))Mia gy (for (a,B) € R) as in T with Mo, My, My, Mz here
—> scite%?.]?} undefined
standing for Mo, Mg, Mg, M(;”O there. Now we like to prove them M,y <% | Mg(*)

when a < a(x) and M,y <5 Mg(*) when aRB and for a < B we have

(Miay U Mgy ) <

g x a(x)
1re Sxox Mg & aRB.
R

Thus we prove first for the case (Yo, B)[aRS = B = B¢] to which T apply. Then the
—> scite{ 3.13} undefined

general case is done applying 7 and the previous sentence.
—> scite{ 3.13} undefined

Recall that 7 does not depend on Az(C10).]
—> scite{ 3.13} undefined

For 6.8, instead of using §1 (the original idea) we use the following exercise.
We get (N, : u € [\]) independenty by finding many independent realizations of
t(Ni—jy, Ny U Nijy-

6.6 Claim. Assume xs < x < A = XX, x < 60*. Assume M, §§’A My and e €
XZ(My) and for every N <, My of cardinality < 2X there is & € 9} (M) realizing
tps,a, (6, N) such that M |= (37)(¢(Z, €, ).

Then we can find N; for £ =0,1,2,3 and

(a) Nj € K has cardinality < X
NG S N3 30 N3 <3 Me

)

(b) Ng <Xox NT <X Ms, N3 <

() N§ <x

@ Ng <l N

(e) m is an isomorphism from N§ onto Ny over N§
)
)

(f
(g

cC N;

if N§ <¢ Ni7 <ex My and | N || < X then there is a <s-embedding (or even
<s-embedding) » of N5 into My over N§ such that:

(@) {%(N3),Ns,Ni} is independent over Ng inside Ms

(8) Ma = (37)(%, K(0), €).
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6.7 Claim. A relative of [Sh 300f, 1.6=1.4tex] but is

(A) price: we assume no (A<, k)-order so we use, e.g. %5, o\

(B) in the proof the Ny, ;v part comes by having dim(tp(Ny; ;3. (N; U Nj)§)
large

(C) (by first larger submodels then shrink, i.e. using <}° -submodels (or SZA*)
so have the stronger result.

Concerning [Sh 300f, 3.17=3.11tex]

6.8 Claim. [Weak symmetry] Suppose x = j and NFY ) (Mo, My, Ma, M3) and
M3 == <M1 U M2>%213 then NF§7X(MO,M2,M1,M3) when

(CI/) NF%\,)\(M07M17M27M3)
(b) xs < x < A=233(chi) < 0*

Proof. Part (A):

Let x¢ = Jy(chi). Assume that the desired conclusion fails hence there is IV such
that ®y j; (Saharon: define) || N¢|| = x¢ and there is no <;-embedding f of N3
into My over Ny mapping Ns into M. For the other direction there is a mapping

so we can apply 7.
—> scite{f3.9X} undefined

Part (B): Let a, list Ny for ¢ < 3, Rang(a;) € Rang(ay) € Rang(az) and
©(73, 2,71, T0) = ¢N(Z3,T2,71,T0) 50 M3 |= @i(as, az, az, ag).

Let N' = (N} : £ < 3) be such that ®x1 gy and Ny <, N{ for ¢ < 3 and
N} €3 My (or little more).

Part (C):

We use 6.7 instead of 7.
—> scite{f3.9X} undefined

Concerning [\Sh:300f=3.11tex |

Claim. Suppose A = i,xs < x < A = 2X and rm NF§_ (Mo, M1, M2, M3) and
My <3< Mg <%\ My where Mg = (MgUM,)%5 . Then NFZ_ (Mg, My, M, Ms).

[Hint: We try to repeat the proof of 7. First, when we apply 7 there we apply part (1)
— scite{3.11} undefined
—> scite{ 3.10} undefined

here so My <* Ms. Second, the proof NF;;}X(M[{, My, M3, M3) causes no problem.
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Lastly, if ﬂNFg(’X(Ma‘,MQ*,Ml, Ms), f then in addition to the asymmetry we have
a strange situation: given a € X=(M3), ¢ € X=(M3) for some Ny (¢ < 3), N, N3, of
cardinality < x all is natural and ¢ C N3,a € N, so we can “reflect” N3 into M3
over N5, say for £ but not such that f(Ny) C M.

(D)  Revisiting: failure of Ax(A4)y, implies non-structure.

*

Hypothesis. s is an AxFr] and x} is well defined (or x¥*?).

Discussion: Below we prefer to investigate AxFr], rather than rely on s = t*,t an

AxFr.

6.9 Question: Give details to [Sh 300f, 4.5=4n.3.9](2), i.e. (< Ng)-stable construc-
tions; give details.

6.10 Question: Assume in Definition [Sh 300f, 3.19=3.13tex]|, t € I = M; <;4) N

but (U M) £s N. Can we get a structure theory? Without loss of generality

tel
|I| is minimal. I = k, so without loss of generality x is reular (putting blocks

together). But this is §5, but maybe an easier case.

Was in the end of [Sh 300f, §4]:

6.11 Claim. If x and N = (N, : n < W) are as in [Sh 300f 4.9=/4f Stex]’s
conclusion (about M) for the case 0 = Rg, then for some <q-increasing se-
quence M = (M, : n < w) of members of K;(Jr) we have (Vo) (%) from [Sh 300f,
4.7=4f.3tex/(5).

Remark. Proof copied January 2007 from [Sh 300f, 4.7tex]|, there is was moved to
AP.

Proof. Let x be as there and choose p as 2X. So there is a sequence (N, : n < w)
be as there for p and let N = N, := U{N,, : n < w}. As =(Ny <44) INV), that is
—(No <%, N) clearly we can find Mo, M such that

(*)1 (a) My <s M are from K}
(b) My <s Nopand M <, N
()

there is no <;-embedding of M into Ny over M.
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By [Sh 300c, 3.7,3.8] without loss of generality
(%), M, :=MNN, < N, forn <w.
Also
()3 if n < w then there is no <s-embedding of M into N,, over M.

[Why? Because if f is such a <;-embedding then applying the definition of M gfbx
M,, to the pair of models (M, f(M)) getting an <s;-embedding g of f(M) into Ny
over My, so g o f contradicts (x)1(c).]

Let M = (M, : n <w) and let g, = idyy, .
Next

(x)4 if @ < p* and n < w then 1rke]\7[mb”‘(gm N,,) > a moreover! there is a canon-
ical (s, des,(a))-tree witnessing it (i.e. as in [Sh 300f, 4.7=4£.3](4)).

[Why ()47 We prove this by induction on o < p (for all n < w simultaneously). For
a = 0 this is trivial. Arriving to «, fix n < w. We first note that by the induction
hypothesis, for every 8 < o we have rkf\;lb’“(gnH,NnH) > /3 hence by [Sh 300f,
4n.5.4tex] applied to s there is a canonical tree (Np 1,5, NJT52, frtl o e des(B))
for M | [n + 1,w) such that fZJ;l”B = gn+1 and Ny 3 < My41. Clearly there
is N1 <. N, 41 of cardinality < p such that U{N, 115 : 8 < a} C N?*! (hence
NpHLP C N for B < a,n € des(B)). As N, <i, , N1 there is a <;-embedding
h = hy.o of N1 into N,, over M,,.

Now we define f;»*, NJ»* for n € des(a) as follows f25 = g,, NZ$' = M, and if
n=<pB>"v,f<anve des(f) then fj"* = ho f+1 (and NJ»* = h(N}1F).
So the “moreover” holds by [Sh 300f, 4.7=4£.3](4) (or directly) we can deduce that
Kk 7 (gn, Npn) > . So we have carried the induction proving (x)4.]

Now by ()4 as || M,|| = x and p = 2X = (2X)X = X, by [Sh 300f, 4.7=4f.3tex](5)
we get (Vo € Ord)[(x)5], so we are done. O

—> scite{f4.3A} undefined

Remark. Saharon: 6.12 + 7 were copied from [Sh 300f], the question is: can we
—> scite{4f.6} undefined

prove them in weak framework rather than prove it in s there, i.e.

Lwe can waive it here, but use trees as in [Sh 300f, 4.7=4f.3](4); however then we have to apply

[Sh 300f, xxx-4n.5.4] proving ()4
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6.12 Claim. Assume x} is well defined and Az(A6) holds (so s is p-based). If

M = (M, : n < w) is <s-increasing, then we can find an independent (s, des(c))-

tree of models n for M with Ny, = N* and f2. = f (hence by ?(2) = [Sh 300f,
—> scite{ f4.3} undefined

4£.3](2)) a related canonical tree in fact (U NYR« <s N*) provided that

U
®) (a) M= (M, :n<w) is <s-increasing
(0) A>x=x;+ XMl :n <w}

(¢c) Nt eK,

(d) f is a <s-embedding of My into N*
(e) tkFMNfN"i8) > a

(f) «is an ordinal < \T.

Proof. Let (n, : v < v(x) < A) list des(a) such that 7., <7y, = 11 < 72. Now we
choose (M, f, ) by induction on v < ~(x) such that

(¥)1 (a) M} <s N*is <s-increasing continuous

®) 1M < X+

(¢) fn, is a <s-embedding of My, ) into N*

(d) if B <~ then Rang(f,,) C MJ

(e) ifmg<mg then f, C fy,

( f<>=1T

( ify = f+1 and ng = ng, " () then NFs(fnﬂ1 (Mgg(nﬁl)), M3, fng (Mog(ngy, N¥)
(h) ify=B+1,m=mns"(c) then tk™*(f,,, N*) > ¢.

For v = 0 let f, = f and Mg = f,,(Mp). For v limit use Ax(A6). The main

point is to choose f, when 1, = ng"(¢) and v = 8+ 1 and so MJ, f,, have

already been chosen. Clearly rk?\%nb’A( fns>»N*) > € hence we can find a sequence

f={(fn,.c:¢<A) such that

(¥)2 (a) fy, ¢ is a <s-embedding of M, into N*
(b)  fu,.c extends f,, and tk"N(fy, o N*) > €
() (fn,.c(Mpny1): ¢ <) is independent over f,,(M,) inside N*.

Hence it suffices to find one ¢ < A such that NF(f,, (Mogn,), M3, fr., c(Meg(ns)+1), N*)
and let f, = fy, ¢. Such ( exists by “s is (x + |7|)-based. Oe.12
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6.13 Claim. Assume s satisfies Az(A6)T and % is well defined, 6 regular and
Ax(A4); fails.
Then

(a) 0 < cf(x3)

(b) [possibly decrease 02] failure is exemplified by models of cardinality < 2Xs
i.e. there is an <g-increasing continuous sequence (M; : i < 0) of members
of Ky of cardinality < 2Xs such that i < 6 = M, % My where My =

Proof. Let ;1 = 2Xs by the definition of X% necessarily 6 < cf(x%). Now without loss of generality ¢
is minimal. Choose as counter example (M; : i < 6)"(Mp) to Ax(A4)} with minimal
A= 2{||M;]| : i <0} If X < u then we are done.
So assume A > p. For i < 0 let {aq,; : © < A} list the members of M;. We choose
by induction on a < A\,n < w for every u € [A\]" a sequence (M, ; : i < ) such
that:
@ (a) Mu,i <5 Mz

(0) [ Myl < p
(¢) My, include U{M,;:vCu’j<iorv=uAj<i}U{ag;: P € u}.

By the definition of x} clearly s satisfies LSP,, hence we can carry the definition.
It is also clear that u; C uy € (A<M Adyp < iy = My, iy <s My,i,. Let
My =U{M,; :i<0}. As X is minimal clearly u € [N\|<NAi < § = M, ; <s M, ¢
(SO Muﬁ S Ks)
Now for u C v € [\]™ by Ax(A4)%,. applied to (M, : u € [\]<M,i < ), M
we get that M, ; <s My so My € Ks. By Ax(A6)" applied to (M, ; : u € [A\]<N0)
and My we get U{M,,; : u € [\|<N0} <4 My, i.e. M; <s My.

6.14 Claim. If y and N = (N, : n < w) are as in ?’s (or see [Sh 300f, §4])
—> scite{f4.5.3} undefined

conclusion for the case 0 = Ny, then for some < )-increasing sequence M = (M, :

n < w) of members of K;(Jr) we have (Vo) (%)%, from [Sh 300f, 4.7=4f.3tex](5). But

the proof repeats 7!
—> scite{f4.3A} undefined

Remark. The proof repeats 77
—> scite{f4.3A} undefined
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Proof. Let x be as there and choose p as 2X. So there is a sequence (N, : n < w)
be as there for p and let N = N, := U{N,, : n < w}. As =(Ny <44) INV), that is
—(No <&, N) clearly we can find Mo, M such that

(¥)1 (a) Moy <s M are from K3
(b) My <s Nopand M <, N
(¢) there is no <s-embedding of M into Ny over Mj.

By [Sh 300c, 3.7,3.8] without loss of generality
(*)n My :=MNN, <; N, forn<w.
Also
(x)3 if n < w then there is no <;-embedding of M into N,, over Mj.

[Why? Because if f is such a <;-embedding then applying the definition of M gfhx
M,, to the pair of models (M, f(M)) getting an <g-embedding g of f(M) into Ny
over My, so g o f contradicts (*)1(c).]

Let M = (M, :n < w) and let g, = idyy, .
Next

(x)4 if @ < p* and n < w then rk%ﬂb’”(gn, N,,) > a moreover? there is a canon-

ical (s, des, (a))-tree witnessing it (i.e. as in [Sh 300f, 4.7=4f.3tex](4)).

[Why (%)4?7 We prove this by induction on o < p (for all n < w simultaneously).
For a = 0 this is trivial. Arriving to «, fix n < w. We first note that by the
induction hypothesis, for every 8 < a we have rk?&nb’“ (9n+1, Nny1) > B hence by
6.12 applied to s there is a canonical tree (Ny+1 3, NZ]”'LE, f,?“ :n € des(p)) for
M | [n + 1,w) such that fz;rl’ﬁ = gn+1 and N1 38 <g My41. Clearly there is
NI+l <. N,.1 of cardinality < p such that U{Nn+1,5 : B < a} € N1 (hence
N;“”B C N for 8 < a,n € des(B)). As N, <}, , Npy1 there is a <;-embedding
h = hy o of N1 into N,, over M,,.

Now we define f*, N;» for n € des(a) as follows f2$ = g,,, N2¥ = M,, and if
n=<pB>"v,f<anve des(f) then fj"* = ho f*1% (and NJ»* = h(N}1F).
So the “moreover” holds by [Sh 300f, 4.3tex|(4) (or directly) we can deduce that
tk ;7 (gn, Npn) > a. So we have carried the induction proving (x)4.]

Now by (%)4 as | M,|| = x and p = 2X = (2X)X = X, by [Sh 300f, 4.3tex](5) we
get (Va € Ord)[(x)g], so we are done. U614

2we can waive it here, but use trees as in [Sh 300f, 4.7=4f.3tex](4); however then we have to

apply 6.12 proving ()4
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End copying!

(E)  Failure of Ax(A4)y implies non-structure We now pay a
Debt from [Sh 300f, §5]:
Giving details to the proof of [Sh 300f, 5.12=>5f.5.29].

6.15 Hypothesis. s satisfies AxFr] .
We define p14(s),6(s) as in [Sh 300f, 5.2=5.1tex] and Ty <r,, T}, T,, see [Sh
300f, 5.4-5.9=>5f.0-5{.3.7].

We can define Ny, <y, as there, which rely on the choice of (M} : ¢ < 6), a
counterexample to Ax(A4);. But what we prove here does not depend on this, so
we prefer

6.16 Definition. [Revisel] 1) Ty is the class .7 = (.7, <) which satisfies:

(a) (J,<) is a partial order with a minimal element

(b) (7,<) is a normal well founded tree, that is: for every t € T, 9, = {s:
s <y t} is well ordered (so in particular linearly ordered) and if it has no
last element then z is its unique least upper bound in 7.

(c) Fort € 7, otp{s:s <;t}is <6 and we call it levs(z)
moreover

(d) there is <p-increasing sequence of length 6 of members of 7.

2) 1 <7, Ty (or Ty extends 77) when 77 C % are from Ty and s <g, t € 7 =
seTy.

3) A S%ég Iy or when A <7, F and if t € F, and levy,(t) is a limit ordinal then
(Vs)(s<p,t—>seTy)=tel.

6.17 Observation. [(1) copied [Sh 300f, 5{.4.8]] 1) <ns» partially ordered N&".
2) Assume {M; : t € I} is locally independent over M inside N. If we let N’ :=
U{(U M)+ J C I is finite} then M, N',(M,; : t € I) are as in Definition [Sh

teJ
3001, 3.20=3.13Atex].

6.18 Claim. 1) If 7 € T}° then there is a canonical 7 -tree n of models. More-
over, it is unique, i.e. if ny,ny are 7 -trees of models then there is an isomorphism
f from Ny, onto Ny, such thatn € T = fo fit = fi2.

2)If 71 <t, Jo € T and m is a Ji-tree of models then there is n € Ny such
that m <N, n. Moreover, n is unique, i.e. if ng are Jy-trees of models and m < ny
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for £ =1,2 then there is an isomorphism f from Ny, onto Ny, over Ny, such that

ne T = fofi=fr

Remark. This just copies [Sh 300f, 5f.5.7tex].

6.19 Claim. (Copied from [Sh 300f, 5f.5.29])

Assume that ., € Ty and n, is a canonical F,-tree of models for M.
1) If T <t, Z. then for some canonical T -tree n we have n, <N, n.
2) In part (1), n is unique and Ny = (U{N;* 1 n € 9})%:*.
3) Assume Iy <p, i for ¢ = 0,1,2 and 73N T = Fy and ny <N, Nx iS a
canonical Fy-tree for £ = 0,1,2. Then NF4(Nny, Nnyy NVnys Nn,) and A U T =
T = Np, = (Np, U NnQ)%ln*.
4) If (7. : e < a) is <t,-increasing continuous and T <1, T ande < o = n, =
n [ 7. then (n. : e < a) is <N, -continuous.
5) If A C J, is a mazximal set of pairwise <z, -incomparable members of T, and
n=n, | (Z%)<a and n, :=n, | (TMU(Z)<a) forn € A then (Ny, : n € A) is
independent in Ny, .

Remark. This copies [Sh 300f, 5{.5.29tex]. Recheck the proof.

Proof. We prove by induction on the ordinal v that all parts of 6.18 holds when

6.18 .7, TGSV and all parts of ? hold when 7, € T}.
—> scite{f5.5.29} undefined

Case 1: 7= 0.
This is trivial as:

® if 71, % <r, Z then 7 <y, Ty or T <7, T.

Case 2: v a limit ordinal.
Nothing to prove.

Case 3:

For n € A, we let 9,,* = %[m U (J4%)<a then by the choice of A,, %* € TG<8
and there is a canonical .7, *-tree n, of models and a canonical (7;)<a-tree ny of
models such that ng <n, n, <n, n. for n € A, and (N, :n € A) is independent
over Ny, in Ny, and Ny, = (U{Ny, :n€ A} U anﬁ\}l*.

Now we prove each of the parts:
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Part (1) of ?:

Without loss of generality assume 7 <r, J, and let 7 = 7 N (J)<a and
Ty =T NI and I = 7 U .

As F € Te<7 by the induction hypothesis there is a unique nj = ny [ Jj so
ny <n, ng such that 7, = 7.

As Z,. = T € T,;” by the induction hypothesis also n. = n. [ Z/,n? | 7"
are well defined as in .7’ N 7} it follows that NFE(N%,NHQ,NH/E,NHQ) holds.
By Ax(C2)" we know that there is N** <; Ny, such that N** = (U{N/, :
n

n € A%, and (Nny @ n € A,) is independent over Ny, inside N” so n” =
n | (UTy; : n € A}) is well defined. Easily (Njporan;, @ 1 € As}) (Nn,) is
independent over Ny, inside N” and n” = (U{Ny; : 1 € A, }U{Nn,})%- So again
by Ax(C2)~ there is N’ < N” = Ny such that N’ = (U{Ny, : 7 € A% and so
n’ =n, [ (U{Z] :n € A,})is well defined and Ny = N’, but 7 = U{F] : n € A.},
as A, is non-empty so we are done proving part (1) in Case 3.

Part (2):

As |Ny| is necessarily (U{N}** :n € T)))%..
Part (3):

()1 without loss of generality (7, )<a, U1 U %% = ..
[Why? By part (1).]

()2 without loss of generality 73 U 7 = Zi.
[Why? As in the proof of part (1).]

()3 if (Ji)<a = F the conclusion holds.

[Why? Let %f =N forne A for £=1,2. So nfl =n, | ﬂf is well defined
and we apply Ax(C2)*(a) to {Nne : (n,£) € A, x {1,2} over Ny, inside Ny, ]

()4 without loss of generality 7 C 9.
[Why? ]
()5 without loss of generality 7 = 9.

[Why? We change the “heart” to be %.]
Together we are done.

Part (4):
Version 1: First deal A\(7)<a.
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So without loss of generality A C (7)< and easy.

Version 2: Let n; =n | (7l cup(Fi)<a)),ny =n [ (J)<a.
It is enough to prove that

() for any n < w and distinct 79, ...,n,—1 € A, the sequence <Nn;7£ 0 < mn)is
independent over Nné).

But (*) can be proved easily by part (3) (compare with case 7).

Part (5):
Add 9 to T,,_, etc. See Case 4.

Part (1).(2) of 6.18:
Straight.

Case 4: o = f+1, 3 a limit ordinal so cf(d) < 6; so without loss of generality o < 6.
Let n} =n. [ 7 for e < 6.

Part (1):

If 7 C T. for some € < § this is obvious. In general, let .7/ = .7 N %, so
n. =n, [ 7. <N, n. is well defined and is <p,-increasing continuous.

Hence by Ax(A4)%Z, the model N§ = U{Ny, : € < ) belongs to K; and € < § =
Nnr <g Nj. Clearly (Nn, : € < §) is <s-increasing continuous, (Nn, : € < §) is
<,-increasing continuous and ¢ < ( < § =7 and by Ax(A4)%Z,, as cf(d) < 6 also
(Nn: 1€ < 6)"(Nj) is <s-increasing continuous.

Also e < ¢ < 0 = NF;(Nng,Nn.,Nnz, Nn). As Ax(A4)%, holds by [Sh
300b, 1.6=1.4tex] = [Sh:F822, 1b.5] we know that N§j <, Nn, and ¢ < ¢ =
NF(No, Na_, N, Nag )-

Clearly we are done.

Part (2):
Should be clear.

Part (3):

By part (1) without loss of generality 71 U %5 = 7, and ny := n [ T, is well
defined. For £ =0,1,2 let 7! = .7/ N 7" and n’ = n, | Z*.

As in the proof of part (1) we have e < ¢ <= NFs(Npo, Ny, Npo, Nng). For
c<C<dletnl,, =n. | (%170 (%NT")).

Clearly for ¢ < ¢ < ¢ we have ngg <N, n.. Hence by [Sh 300c, 1.7=1.4Atex| =
[Sh:F822, 1h.4A] we have (Nnﬁ € < 0) is <s-increasing continuous.

FILL.
Part (4):
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Forne€ Alet ny =n | (J)<a and n% =n, | %[n], so ny <N, n, and n;] < n,
and 7" € T). By Ax(C2)" () it suffices to prove that:

(%) for every n < w and distinct ng, ..., n,—1 € A, (Nn;w : £ < n) is independent
over Np,.

But this we can prove by induction on n by using part (3).

Part (5):

Let (. : € < §) be gien (not necessary § < 0!). Son. = n [ I <N, N, is
well defined by part (1), so Ny, <s Ny, and clearly by Ax(B) (n. : ¢ < §) is
C-increasing continuous. Hence it is <s-increasing continuous so we are done.

Part (6).(7):
Should be clear. Us.18, Lo

—> scite{f5.5.29} undefined

Case 5: a=p+ 1,0 odd.
Easy.

Saharon: Also details for [Sh 300f, 5£.7].
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§7 ON [SH 300¢]

Concerning [Sh 300g, 1.4=1f.4tex]

7.1 Claim. Assume s, € G is increasing for a < § and we define s5 = U{s, : a <
0} as in [Sh 3009, 1.3=1f.5].

1) s5 belongs to S.

2) For each of the following axioms, if s, satisfies it then so does sg:

(A4)7 (A4)*7 (A4)0; (03)’ (04)> (06)7 (07)

3) For each of the following sets of axioms, if s, satisfies each member of the set
then so does sg

(a) (C2) + (C4); [also (C2) meaning in (C2) we add M = (M; U M;)5;
(b) (C5) + (C4); [also strength (C5) as in [Sh 300c, §1]].

Proof. Fill.

* * *

Discussion: Unfortunately in Theorem [Sh 300g, 1.7] we assume “the existence of
P«Jr 9
<cf(xi -
To avoid this we can try to develop “s satisfied AxFr; and x; well defined +

(Ad),

+
stationary sets C S) non-reflecting in any § € S

(A) we have stable constructions

(B) we can get non-structure from non-superstability (so it says (M; : i <
0+ 1),a € Myy1\My, the type tp(a, My, Myy1) forks over M;) for every
i < 0. Have to recheck everything.
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