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2 SAHARON SHELAH

§1 [Sh 300a]

Verification of [Sh 300a, 1.13], Case 4:

(∗)1 M |= ψ[ā′α, b̄
′
β ] iff M |= ϕ(a1+α, b̄1+β) ≡ ϕ[a0, b̄1+β ]

(∗)2 M |= ϕ[ā0, b̄1+β ] as 0 < 1 + β

(∗)3 M |= ψ[ā′α, b̄
′
β ] iff M |= ϕ[ā1+α, b̄1+β ] iff 1 + α < 1 + β iff α < β.

Comments on [Sh 300a, §1] end Here?:

1.1 Exercise: We call I a (λ, χ)-candidate when for some s̄, the pair (I, s̄) is a
(λ, χ)-candidate which means

(a) I is a linear order

(b) s̄ = 〈s`α : α < λ, ` < 3〉 such that there is no repetition

(c) s0
α <I s

1
α <I s

2
α

(d) s0
α, s

1
α, s

2
α induce the same cut of {s`β : β < α, ` < 3}

(e) in I there is no increasing sequence of length χ.

1) Assume M = I, ϕ(x, y) = [x < y], ψ(x, ȳ) = [ϕ(x, y1) ≡ ϕ(x, y2)] letting ȳ =
〈y1, y2〉 and I is a (λ, χ)-candidate. Then

(α) M has the (ϕ(x, y), χ)-non-order property

(β) M has the (ψ(x, ȳ), λ)-order property

(γ) ψ(x, ȳ) ∈ {ϕ(x, y)}es.

2) There is a candidate (I, s̄) as assumed in (1), in fact with no increasing ω-
sequence.
[Hint: use the inverse of a well ordering of order type χ]
3) If there is a χ+-Aronszajn tree then for Specker order I defined from it, not only
is a (χ+, χ+)-candidate but in it there is no monotonic sequence of length θ := χ+,
so we can add in part (1)

(δ) M has the ({ϕ(x, y)}i,r, χ+)-non-order property.

4) Assume I∗ is a linear order of cardinality λ with neither decreasing nor increasing
sequence of length χ+, e.g. has density ≤ χ (an example is the order of the reals).
Then there is a linear order I which is a (λ, χ+)-candidate with no monotonic
sequence of length χ+ (so in part (1) we have also clause (δ)).

[Hint: use I∗ × {0, 1, 2} ordered lexicographically.]
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1.2 Exercise: In Lemma [Sh 300a, 2.9tex] we can replace ≤ℵ0qf,µ,χ by ≤ℵ0qf,<µ,χ and

then get LS(K ≤ µ(=: 22χ). For this we need other changes. [Saharon: more?]
By [Sh 300a, 1.15] we know that: A ⊆ M, |A| ≤ µ ⇒ |S<κ∆ (A,M)| ≤ µ<κ = µ.

We try to choose Mα, c̄α by induction on α < µ+ such that:

~ (a) A ⊆Mα ⊆ N
(b) ‖Mα‖ = µ

(c) 〈Mβ : β ≤ α〉 is ⊆-increasing continuous

(d) c̄α ∈ κ>M exemplifies ¬(Mα ≤κ∆,µ,χ).

1.3 Question: 1) Is the cardinal bound in [Sh 300a, 5.1] optimal?
2) Similarly in [Sh 300a, 5.3=5.2tex].
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4 SAHARON SHELAH

§2 [Sh 300b]

2.1 Question: Can we allow 〈A〉gn
M to be partial?

Discussion: 1) It seemed that if we check the proof in [Sh:h, II], we do not really
use 〈A〉gn

M is well defined for every A ⊆M , but only under restricted circumstances,
a first try is

(B0) if B := 〈A〉gn
M is well defined then A ⊆ B ⊆M

(B1) if B = 〈A〉gn
M then 〈B〉gn

M = B

(B2) if A ⊆M ≤s N then 〈A〉gn
M is well defined iff 〈A〉gn

N is well defined and if so
then they are equal

(B3) if NF(M0,M1,M2,M3) then 〈M1 ∪M2〉gn
M3

is well defined and ≤s Ms

(B4) ??.

2) Or should we use 〈{Bt : t ∈ I}〉gn
N and it depends on the history?

2.2 Observation.: Ax(A3) follows from Ax(C1),(C3(a),(b)) and (A2).

Remark. This is [Sh 300b, 1.7=1.4.7tex](2).

Proof. Assume M0 ⊆ M1 and M` ≤s N for ` = 1, 2. By Ax(C2) we can find
M∗` (` ≤ 3) and f1, f2 such that:

(a) NFs(M
∗
0 ,M

∗
1 ,M

∗
2 ,M

∗
3 )

(b) M0 = M∗0
(c) f1, f2 is an isomorphism from N,M0 onto M∗1 ,M

∗
2 respectively

(d) F` ⊇ idM0
.

By renaming f1 = idN soM∗2 = N (and of courseM∗1 = M0) so NFs(M0,M0, N,M
∗
3 ).

By Ax(C3)(a) we have NFs(M0,M0,M0,M
∗
3 ). Now M1 ≤s N ≤s M

∗
3 hence

by Ax(A2) we have M1 ≤s M∗3 and of course M0 ∪ M0 ⊆ M1. Now apply
Ax(C3)(c) with M0,M0,M0,M

∗
3 ,M1 here standing for M0,M1,M2,M3,M

∗ there,
its assumptions hold by the previous sentence. The conclusion of Ax(C3)(c) gives
NFs(M0,M0,M0,M1) which by Ax(C1) gives M0 ≤s M1, as required. �2.2

2.3 Question: In [Sh 300b, 2.3], use indiscernible sequence of cardinality µ = 22χ

or χ+, enough?
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∗ ∗ ∗

We can give more details on [Sh 300b, 2.3tex], the (D,x)-sequence-homogeneous.
We may give details to uniqueness of (D,λ)-prime.

∗ ∗ ∗

2.4 Discussion: Ax(D2) for [Sh 300b, 2.18=2.3Ctex]
Give details for:

(a) for (D,x)-primary we have uniqueness,

(b) for primes (nec?)
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6 SAHARON SHELAH

§3 On [Sh 300c]

We can give details of (< µ)-stably constructible from [Sh 300c, §4] as in [Sh 300d,
§5]. Saharon: prepare for quoting in [Sh 300f, §4,§5] where Ax(A4) we replaced by
Ax(C2)+, (A4)∗<θ.

In particular the uniqueness of “anti-prime”.

3.1 Claim. Assume λ ≤ |A| + LS(s) and λ ≥ µ = c`(µ) > LS(s). There is an

isomorphism from AA1

`g(A1) onto AA2

`g(A2) over A when for ` = 1, 2 we have:

~A`
(a) A is a (< µ)-stable construction inside N

(b) AA` = A

(c) B∗ ≤s A has cardinality < µ and u ⊆ `g(A`) is closed of cardinality

< µ and AA`
u ∩A ⊆ B∗, B′ = 〈Bu ∪B∗〉gn

N so B′ ≤s A
A`

`g(A`)
and

B′ ≤s B and B is of cardinality < µ then for λ-oridnal α we have:

(α) sup(u) < α < `g(A`)

(β) wA`
α = u

(γ) BA`
α is isomorphic to B over B′.
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§4 On [Sh 300d]

(4A) Details:
We give details on [Sh 300d, 2.12=2.9tex], [Sh 300d, 3.17=3.15tex]. See [Sh

300d, 2.9=2.6tex] + [Sh 300d, 2.11=2.8tex](2), expand? Refer to

(4B) On [Sh 300d] for quoting in [Sh 300e, 4.6]

4.1 Claim. Assume 〈Mα : α < δ〉 is ≤s-increasing continuous, 〈Nα : α ≤ δ〉 is
≤s-increasin continuous α ≤ δ ⇒Mα ≤s Nα and p �Mδ ∈ Sc

<∞(Mδ).
1) If p ∈ S <α(Nδ), p � Nα does not fork over Mα for every α < δ, then p does not
fork over Mδ.
2) If Mδ ≤s Mδ+1 and Mα, Nα,Mδ+1 are in stable amalgamation for α < δ then
Mδ, Nδ,Mδ+1 are in stable amalgamation.

Proof. By [Sh 300c, 1.10](1)=1.0tex(1), [Sh 300d, 3.11](2), recalling Definition [Sh
300d, 3.3,3.5].

Remark. 1) Already exists?
2) Used in [Sh 300e, 4.6].

(4C) Comments On Ceq

We give the model Ceq where equivalence classes can be represented as elements.
It is good for superstable s, where each p ∈ S 1(M) has a canonical base consisting
of a singleton, etc.
Generally, see remark [Sh 300d, 7.5] or below (?).

4.2 Definition. 1) Let

Eχ = {E :E is an equivalence relation on χ|C|,
preserved by automorphism of C}.

2) For ā ∈ χ|C|, E ∈ Eχ we say ā/E is A-invariant where A is a subset of C if every
automorphism h of C, h � A = idA, maps ā/E into itself.
3) We say ā/E (where ā ∈ χ|C|, E ∈ Eχ) is finitary when:

if M ≤s C, ā/E is M -invariant and M =
⋃
α<δ

Mα, 〈Mα : α < δ〉

is ≤s-increasing then for some α < δ, ā/E is Mα invariant.
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8 SAHARON SHELAH

4) We say E ∈ Eχ is finitary if every ā/E (ā ∈ χ|C|) is finitary.
5) We say ā/E has a base (a χ-base) if it is invariant over some A, |A| < ‖C‖,
(|A| < χ).
6) We say E ∈ Eχ has base [µ-base] if every equivalence class has a base [µ-base].
7) Let E ∗χ be the family of finitary E ∈ Eχ which has a base.

4.3 Claim. 1) If ā ∈ ω>C (or even ā ∈ χ≥C), ā/E has base and is finitary then it
has a base M <s C such that ‖M‖ ≤ χ.

2) The number of E ∈ Eχ is ≤ 22χ+|τ(s)|
.

3) If χ ≥ χs then E ∈ E ∗χ iff E ∈ Eχ is finitary and has χs-base.

4.4 Claim. Suppose χ(0) < χ(1) and E1 ∈ Eχ(1) and every ā/E1 has a χ(0)-base.
Then we can find E0 ∈ Eχ(0) and functions h from the set of E1-sequence classes

onto the set of E0-equivalence classes [of ordinals < ‖C‖χ(1)] such that:

(∗) ā/E1 has base A iff h(ā/E1) has base A.

Proof. Fill.

4.5 Definition. 1) We let for any M <s C,M
eq be a model with universe

|M | ∪
{
ā/E : a ∈ χ(s)>|M |, E ∈ E∗χ(s)

}
relations and functions:

those of C

PE = {ā/E : a ∈ χ(s)≥M}
FE the partial function F (ā) = ā/E

2) Keq is the class of models isomorphic to some M eq (using equivalence class C as
a class).
3) Next we define ≤eq:

M∗ ≤eq
s N∗ iff there are M ≤s N <s C, (N

eq,M eq) ∼= (N∗,M∗).

4) NFeq is the class of (M∗1 ,M
∗
2 ,M

∗
3 ,M

∗
4 ) such that for some

M` <s C for ` ≤ 3 we have M∗` = M eq
` for ` ≤ 3 and NF(M1,M2,M3,M4).
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§5 On [Sh 300e]

(5A) Details on X: [Sh 300e, 4.2=4.1.7tex]

Proof of [Sh 300e, 4.1.7](3). Check with [Sh 300, 5.3=5.3tex](6).
First, the implication (a)⇒ (b) is trivial.
Second, assume (b) and let b̄ ∈ βC such that tp(b̄, A) does not fork over M .

Let λ = ‖M‖ + |`g(b̄)| + χs and N be (Ds, λ
+)-homogeneous such that M ≤s N .

Continue as in the proof of [Sh 300e, 4.8=4.6tex](2) below.
About (c) see xxxx.

Proof of [Sh 300e, 4.2]. 1) For ⊥
wk

, i.e. Definition [Sh 300e, 4.1](1), [Sh 300d,

4.1] they say the same as in [Sh 300d, 4.1], we can find N1, N2 realizing p1, p2

respectively such that M,N1, N2 is in stable amalgamation.
2) For ⊥, i.e. Definition [Sh 300e, 4.1](2), [Sh 300d, 4.3](2), the equivalence holds
the definition of “stationarization” are compatible.
3) For p⊥B, i.e. Definition [Sh 300e, 4.1](4), [Sh 300d, 4.5](1), we are assuming
p ∈ S <∞(N), again we use the equivalence of the definition of “stationarization”
are compatible (and (b), i.e. the definitions of ⊥ are compatible.
4) For p⊥

a
M assume M ≤s N, p ∈ S <∞

c (N), there seemingly is a difference: in

[Sh 300d, 4.5](2), we demand q ∈ S <∞
c (M) ⇒ p⊥q and in [Sh 300e, 4.1](3) q ∈

S <∞(M) ⇒ p⊥q, so in the second version the demand is seemingly strongly: we
have more q. Butif the first version holds, let q = tp(ā,M) ∈ S <∞(M), let
M ∪ ā ⊆M1 <s C, and c̄ list M1, ā E c̄ so q1 := tp(c̄,M) ∈ S <∞

c (M) hence q1⊥p.
But if N ≤s N1 and p1 = tp(b̄, N1) is a stationarization of p and tp(ā1, N1) is a
stationarization of q then we can find c̄1 such that tp(c̄1, N1) is a stationarization
of q1 and ā1 E c̄1, and we easily finish.

Remark. See 4.1, intended for quoting in [Sh 300e, 4.6].

(5B) Details on x: [Sh 300e, 4.8=4.6tex]

Proof of [Sh 300e, 4.8=4.6tex](2).

(Canibalize for [Sh 300e, 4.3](3)=4.1.7(3) revise) but see [Sh 300e, 5.3=5.3tex](6).
2) Let Mδ := ∪{Mi : i < δ} and Nδ := ∪{Ni : i < δ}, hence Mδ ≤s Nδ <s C.
Assume b̄ ∈ αC and tp(b̄,Mδ ∪ C) does not fork over Mδ, and we should prove
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10 SAHARON SHELAH

that it is weakly orthogonal to tp(Nδ,Mδ ∪ C). For this it suffices to prove that
tp(b̄, Nδ) does not fork over Mδ.

Let Mδ+1 be such that Mδ∪ b̄ ⊆Mδ+1 <s C and let b̄+ list the members of Mδ+1

such that b̄ = b̄+ � α. There is b̄′ realizing tp(b̄+,Mδ) such that tp(b̄+, Nδ) does not
fork over Mδ. So tp(b̄′ � α,Mδ) = tp(b̄+ � α,Mδ) = tp(b̄,Mδ) and tp(b̄′ � α,Nδ)
does not fork over Mδhence tp(b̄′ � α,Mδ ∪ C) does not fork over Mδ.

As also tp(b̄,Mδ ∪ C) does not fork over Mδ and tp(b̄,Mδ) = tp(b̄′ � α,Mδ) is
stationary so follows that tp(b̄,Mδ ∪ C) = tp(b̄′ � α,Mδ ∪ C).

Hence by [Sh 300e, 2.5](6) it suffices to prove that tp(b̄′,Mδ ∪ C) is weakly
orthogonal to tp(Nδ,Mδ ∪C). So let b̄′′ realize tp(b̄′,Mδ ∪C) and let M ′′δ+1 = C �
Rang(b̄′′). So Mδ ≤s M

′′
δ+1 <s C and tp(M ′′δ+1,Mδ ∪ C) does not fork over Mδ

and it suffices to prove that tp(M ′′δ+1, Nδ) does not fork over Mδ.
By symmetry [Sh 300e, 2.10=2.9tex] we have tp(C,M ′′δ+1) does not fork over Mδ.

But tp(C,Mδ) does not fork over M0 hence by transitivity [Sh 300e, 2.5](4),2.4(2)
we have tp(C,M ′′δ+1) does not fork over M0. For each i < δ, tp(C,M ′′δ+1) does not
fork over Mi (by monotonicity) [Sh 300e, 2.5](1) but tp(Ni,Mi ∪ C)⊥

a
Mi hence

tp(Ni,M
′′
δ+1) does not fork over Mi. By symmetry [Sh 300e, 2.5](4),2.4(2) we have

tp(M ′′δ=1, Ni) does not fork over Mi hence by continuity ([Sh 300d, 3.11](2) recalling
Definition [Sh 300d, 3.3,3.5] we have tp(M ′′δ+1, Nδ) does not fork over Mδ, which
as said above, suffice.

(5x) Everybody is nice
On nice types we can improve the result on being nice eliminating the supersta-

bility so this improves [Sh 300e, 6.3=6.3tex].

5.1 Claim. If M <s C and c̄ ∈ αC and c̄ ∈ αC then there are M∗, N∗ such that

(a) M∗ ≤s N
∗ and c̄ ∈ ω>(N∗),M∗ ≤s M

(b) ‖N∗‖ ≤ λ, χs + |`g(c̄)|
(c) tp(c̄,M) does not fork over M∗

(d) tp(N∗,M∗ ∪ c̄) is weakly orthogonal to tp(M,M∗ ∪ c̄).

Proof. 1) We assume that such M∗, N∗ does not exist and will eventually derive a
contradiction. We choose Mi, Ni(i < λ+), fi(i < λ+) by induction on i < λ+ such
that:

� (a) Mi ≤s M is ≤s-increasing, tp(c̄,M) does not fork over M0

(b) c̄ ∈ Ni, ‖Ni‖ ≤ λ and j < i⇒ Nj ≤s Ni

(c) fi is a ≤s-embedding of Ni into Mi increasing with i

Paper Sh:E54, version 2007-10-23 10. See https://shelah.logic.at/papers/E54/ for possible updates.
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(d) fi is the identity on M0 ∪ c̄
(e) tp(Ni, fi(Mi+1)) forks over Mi

(f) for i limit, Mi =
⋃
j<i

Mj , Ni =
⋃
j<i

Nj .

Construction:.

Case 1:. i = 0
Choose (as s is χs-based), N0 <s C such that c̄ ⊆ N0 and N0 ∩M , N0, M is in

stable amalgamation and ‖N0‖ ≤ λ. Let M0 = N0 ∩M and f0 = idM0 .
Clearly clause (b) holds as well as “M0 ≤s M” from clause (a), clause (c) is trivial
and the other conditions are inapplicable.

Case 2:. i = j + 1.
So Nj ,Mj are defined (and are as required) and let gj be an automorphism of

Cgj extending fj so gj ⊇ idM0∪c̄. Consider gj(Nj),Mj as candidates for N∗, M∗ in
the conclusion of 5.1(1), so they should fail some demand. As ‖Mj‖ ≤ ‖Nj‖ ≤ λ,

Mj ≤s M,Mj ≤s g
−1
j (Nj) <s C and c̄ ∈ g−1(Nj) necessarily tp(g−1

j (Nj),Mj ∪ c̄)
is not weakly orthogonal to tp(M,Mj ∪ c̄). So there is N ′j <s C isomorphic to

g−1
j (Nj) over Mj ∪ c̄, say by the isomorphism hj , such that:

tp(N ′j ,M) forks over Mj .

Then we can find N ′′i <s C, ‖N ′′i ‖ ≤ λ such that N ′j ⊆ N ′′i and N ′′i ∩M,N ′′i ,M are

in stable amalgamation (exists as s is λ-based). We let Mi =: M ∩N ′′i and let h+
j

be an automorphism of C extending hj and satisfying f+
i = gj ◦ h+

j , Ni = f+
j (N ′′i )

and fi = f+
j � Mi. Note h+

j � (M0 ∪ c̄) ⊆ h+
j � (Mj ∪ c̄) = idMj∪c̄ hence

h+
j � (M0 ∪ c̄) = idM0∪c̄ and gj � (M0 ∪ c̄) = fj � (M0 ∪ c̄) = idM0∪c̄ so together

f+
i � (M0 ∪ c̄) = (gj ◦ h+

j ) � (M0 ∪ c̄) = idM0∪c̄; i.e. clause (d) holds.

Recall Ni := f+
i (N ′i), now Mi ≤s N

′′
i hence fi(Mi) = f+

i (Mi) ≤s f
+
i (N ′′i ) = Ni;

so clause (c) holds, too; also N ′j ≤s N ′′i hence f+
i (N ′j) ≤s f+

i (N ′′i ) = Ni but

f+
i (N ′1) = gj(h

+
j (N ′j)) = g0

j (g−1
j (Nj) = Nj . Together Nj ≤s Ni, i.e. clause (b)

holds. Clause (a) holds trivially and clause (f) is irrelevant. Clause (e) holds as
tp(N ′j , N

′′
i ) forks over Mj by the choices of N ′j , N

′′
i and f+

i preserves this.
So we are done with case 2.

Case 3. i = δ is a limit ordinal.
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12 SAHARON SHELAH

Let Mδ =
⋃
β<δ

Mβ and Nδ =
⋃
β<δ

Nβ and fδ =
⋃
β<δ

fβ .

So we have finished the construction, we can choose Mλ+ , Nλ+ , 〈fλ+,i : i < λ+〉
such that the relevant demands in �(a) − (f) hold. But then 〈fi(Mi), f(Ni) : i <
λ+〉 contradict “s is χs-based” (see [Sh 300c, 2.8]).
2) Left to the reader (use [Sh 300e, 5.4=5.4tex](4)). �5.1

5.2 Remark. If c̄ ⊆ N and |`g(c̄)| = λ, then tp(N,M∪c̄) has character (= localness)
≤ λ+ χs as s is (λ+ χs)-based.

5.3 Conclusion. 1) Every p ∈ S∞>(N), (such that N <s C,m < ω) is prenice.

2) If λ ≥ χs,M <s C is (Ds, λ
+)-homogeneous and c̄ ∈ λ+

C then tp(c̄,M) is nice.
3) In [Sh 300e, §6,§7] we can waive “superstable” in all the claims except [Sh 300e,
7.12=7.9tex] and can weaken “regular p ∈ S <ω(M)” to “regular p ∈ S <∞(M)”.

Proof. 1) By (2).
2) By 5.1.
3) Check. �5.3

Paper Sh:E54, version 2007-10-23 10. See https://shelah.logic.at/papers/E54/ for possible updates.
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§6 On [Sh 300f]

(A) On the n-place indiscernibility - FILL

(C) “Strengthening the order ≤s” revisited

Concerning [Sh 300f, 3.2]

6.1 Claim. Assume [Sh 300f, 3.1], i.e. fill.
Then s is (Λs, λ)-stable when χ ∈ [χs, θ

∗), λ = λχ = i`(χ) when ` = 2. Check.

Proof. We combine the proofs of [Sh 300f, 2.10.7], [Sh 300a, 1.10]. Fill. (070523)
What does ` = 2 mean?

∗ ∗ ∗

6.2 Question: Where is [Sh 300f], Ax(C10), rigidity, is used?

6.3 Question: Concerning [Sh 300f, 3.19=3.13tex], it is proved for x = i (and x = j
is O.K.) what about λ = nc?

The following answer Question ?-6.3. That is, we try to eliminate the use of the
—> scite{f3.2F} undefined

rigidity axiom, paying a low price on cardinalities which does not affect the Main
conclusion ?, [Sh 300f, 3.32=3.15tex].

—> scite{3.15} undefined
First concerning [Sh 300f, 3.13=3.10tex].

We use freely

6.4 Definition.

~j,λ,χ
N̄,M̄

mean as in [Sh 300f, 3.11=3.8.21tex].

6.5 Claim. Suppose x = i, χs ≤ χ < λ = 2χ < θ∗; if NFiλ,χ(M0,M1,M2,M3) then

〈M1 ∪M3〉gn
C ≤xχ,χ M3.

[Hint: We assume that this fails and to prove the (Λλ,i2(λ))-order property. First,
without loss of generality ‖M`‖ ≤ λ. Second, let α(∗) be an ordinal, R a two-
place relation on α(∗) such that αRβ ⇒ (α even ∧β odd). We now can define
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14 SAHARON SHELAH

M
α(∗)
R ,M{α}(α < α(δ))M{α,β} (for (α, β) ∈ R) as in ? with M0,M1,M2,M3 here

—> scite{2.12} undefined

standing for M0,M
1
0 ,M

2
0 ,M

3
0,0 there. Now we like to prove them M{α} ≤xχ,χ M

α(∗)
R

when α < α(∗) and M{α,β} ≤xχ,χ M
α(∗)
R when αRβ and for α < β we have

〈M{α} ∪M{β}〉gn

M
α(∗)
R

≤xχ,χ M
α(∗)
R ⇔ αRβ.

Thus we prove first for the case (∀α, β)[αRβ ⇒ β = βt] to which ? apply. Then the
—> scite{3.13} undefined

general case is done applying ? and the previous sentence.
—> scite{3.13} undefined

Recall that ? does not depend on Ax(C10).]
—> scite{3.13} undefined

For 6.8, instead of using §1 (the original idea) we use the following exercise.
We get 〈Nu : u ∈ [λ]〉 independent2 by finding many independent realizations of
tp(N{i−j}, N{i} ∪N{j}.

6.6 Claim. Assume χs ≤ χ < λ = λχ, χ < θ∗. Assume M1 ≤jλ,λ M2 and ē ∈
χ≥(M2) and for every N ≤s M1 of cardinality ≤ 2χ there is ē′ ∈ `g(ē)(M1) realizing
tps,Λχ(c̄, N) such that M2 |= (∃x̄)(ϕ(x̄, ē′, c̄′).

Then we can find N∗` for ` = 0, 1, 2, 3 and

(a) N∗` ∈ K has cardinality ≤ λ
(b) N∗0 ≤nc

χ,χ N
∗
1 ≤nc

χ,χ M3, N
∗
3 ≤nc

χ,χ

(c) N∗0 ≤jχ,χ N∗2 ≤nc
χ,χ N

∗
3 ≤nc

χ,χ M2

(d) N∗2 ≤jχ,χ N∗3
(e) π is an isomorphism from N∗2 onto N∗1 over N∗0

(f) c̄ ⊆ N∗2
(g) if N∗0 ≤s N

+
1 ≤sχ M1 and ‖N+

1 ‖ ≤ λ then there is a ≤s-embedding (or even
≤s-embedding) κ of N∗2 into M1 over N∗0 such that:

(α) {κ(N∗2 ), N∗2 , N
+
1 } is independent over N∗0 inside M3

(β) M2 |= (∃x̄)(x̄, κ(c̄), ē).
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6.7 Claim. A relative of [Sh 300f, 1.6=1.4tex] but is

(A) price: we assume no (Λ<∗, κ̄)-order so we use, e.g. snc
<θ∗,<θ+

(B) in the proof the N{i,j} part comes by having dim(tp(N{i,j}, 〈Ni ∪ Nj〉gn
C )

large

(C) (by first larger submodels then shrink, i.e. using ≤nc
λ,χ-submodels (or ≤iλ,∗)

so have the stronger result.

Concerning [Sh 300f, 3.17=3.11tex]

6.8 Claim. [Weak symmetry] Suppose x = j and NFxλ,λ(M0,M1,M2,M3) and

M3 = 〈M1 ∪M2〉gn
M3

then NFxχ,χ(M0,M2,M1,M3) when

(a) NFjλ,λ(M0,M1,M2,M3)

(b) χs ≤ χ < λ = i3(chi) < θ∗

Proof. Part (A):
Let χ` = i`(chi). Assume that the desired conclusion fails hence there is N̄ such

that ~N̄,M̄ (Saharon: define) ‖N`‖ = χ` and there is no ≤s-embedding f of N3

into M0 over N1 mapping N2 into M0. For the other direction there is a mapping
so we can apply ?.

—> scite{f3.9X} undefined

Part (B): Let ā` list N` for ` ≤ 3, Rang(ā`) ⊆ Rang(a`) ⊆ Rang(ā2) and
ϕ(x̄3, x̄2, x̄1, x̄0) = ϕN (x̄3, x̄2, x̄1, x̄0) so M3 |= ϕi(ā3, ā2, ā2, ā0).

Let N̄1 = 〈N1
` : ` ≤ 3〉 be such that ~N̄1,M̄ and N` ≤s N `

` for ` ≤ 3 and

N1
` ⊆s

χ,χ M` (or little more).

Part (C):
We use 6.7 instead of ?.

—> scite{f3.9X} undefined

Concerning [\Sh:300f=3.11tex ]

Claim. Suppose λ = i, χs ≤ χ ≤ λ = 2χ and rm NFxλ,χ(M0,M1,M2,M3) and

M0 ≤xλ,λ≤M∗0 ≤xλ,λ M1 where M∗0 = 〈M∗0∪M2〉gn
M3

. Then NFxχ,χ(M∗0 ,M1,M
∗
2 ,M3).

[Hint: We try to repeat the proof of ?. First, when we apply ? there we apply part (1)
—> scite{3.11} undefined
—> scite{3.10} undefined

here so M∗2 ≤x M3. Second, the proof NFjχ,χ(M∗0 ,M1,M
∗
2 ,M3) causes no problem.
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16 SAHARON SHELAH

Lastly, if ¬NFjχ,χ(M∗0 ,M
∗
2 ,M1,M3), f then in addition to the asymmetry we have

a strange situation: given ā ∈ χ≥(M∗2 ), c̄ ∈ χ≥(M3) for some N` (` ≤ 3), N∗0 , N
∗
2 , of

cardinality ≤ χ all is natural and c̄ ⊆ N3, ā ⊆ N` so we can “reflect” N3 into M∗2
over N∗2 , say for ` but not such that f(N1) ⊆M∗0 .

(D) Revisiting: failure of Ax(A4)ℵ0 implies non-structure.

Hypothesis. s is an AxFr−1 and χ∗s is well defined (or χ∗∗s ?).

Discussion: Below we prefer to investigate AxFr−1 , rather than rely on s = t+, t an
AxFr.

6.9 Question: Give details to [Sh 300f, 4.5=4n.3.9](2), i.e. (< ℵ0)-stable construc-
tions; give details.

6.10 Question: Assume in Definition [Sh 300f, 3.19=3.13tex], t ∈ I ⇒Mt ≤s(+) N

but 〈
⋃
t∈I

Mt〉gn
N �s N . Can we get a structure theory? Without loss of generality

|I| is minimal. I = κ, so without loss of generality κ is reular (putting blocks
together). But this is §5, but maybe an easier case.

Was in the end of [Sh 300f, §4]:

6.11 Claim. If χ and N̄ = 〈Nn : n < ω〉 are as in [Sh 300f, 4.9=4f.8tex]’s
conclusion (about M̄) for the case θ = ℵ0, then for some ≤s(+)-increasing se-

quence M̄ = 〈Mn : n < ω〉 of members of K
s(+)
χ we have (∀α)(∗)α

M̄
from [Sh 300f,

4.7=4f.3tex](5).

Remark. Proof copied January 2007 from [Sh 300f, 4.7tex], there is was moved to
AP.

Proof. Let χ be as there and choose µ as 2χ. So there is a sequence 〈Nn : n < ω〉
be as there for µ and let N = Nω := ∪{Nn : n < ω}. As ¬(N0 ≤s(+) N), that is

¬(N0 ≤iχ,χ N) clearly we can find M0,M such that

(∗)1 (a) M0 ≤s M are from Ks
χ

(b) M0 ≤s N0 and M ≤s N

(c) there is no ≤s-embedding of M into N0 over M0.
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By [Sh 300c, 3.7,3.8] without loss of generality

(∗)n Mη := M ∩Nn ≤s Nn for n < ω.

Also

(∗)3 if n < ω then there is no ≤s-embedding of M into Nn over M0.

[Why? Because if f is such a ≤s-embedding then applying the definition of M0 ≤iµ,χ
Mn to the pair of models (M0, f(M)) getting an ≤s-embedding g of f(M) into N0

over M0, so g ◦ f contradicts (∗)1(c).]

Let M̄ = 〈Mn : n < ω〉 and let gn = idMn .
Next

(∗)4 if α < µ+ and n < ω then rkemb,µ
M̄

(gn, Nn) ≥ α moreover1 there is a canon-
ical (s,desµ(α))-tree witnessing it (i.e. as in [Sh 300f, 4.7=4f.3](4)).

[Why (∗)4? We prove this by induction on α < µ (for all n < ω simultaneously). For
α = 0 this is trivial. Arriving to α, fix n < ω. We first note that by the induction

hypothesis, for every β < α we have rkemb,µ

M̄
(gn+1, Nn+1) ≥ β hence by [Sh 300f,

4n.5.4tex] applied to s there is a canonical tree 〈Nn+1,β , N
n+1,β
η , fn+1

η : η ∈ des(β)〉
for M̄ � [n + 1, ω) such that fn+1,β

<> = gn+1 and Nn+1,β ≤s Mn+1. Clearly there
is Nn+1

α ≤s Nn+1 of cardinality ≤ µ such that ∪{Nn+1,β : β < α} ⊆ Nn+1
α (hence

Nn+1,β
η ⊆ N for β < α, η ∈ des(β)). As Nn ≤iµ,µ Nn+1 there is a ≤s-embedding

h = hn,α of Nn+1
α into Nn over Mn.

Now we define fη,αη , Nη,α
η for η ∈ des(α) as follows fη,α<> = gn, N

n,α
<> = Mn and if

η =< β > ˆν, β < α ∩ ν ∈ des(β) then fn,αη = h ◦ fn+1,β
ν (and Nn,α

η = h(Nn+1,β
ν ).

So the “moreover” holds by [Sh 300f, 4.7=4f.3](4) (or directly) we can deduce that
rkM̄ (gn, Nn) ≥ α. So we have carried the induction proving (∗)4.]

Now by (∗)4 as ‖Mn‖ = χ and µ = 2χ = (2χ)χ = µχ, by [Sh 300f, 4.7=4f.3tex](5)
we get (∀α ∈ Ord)[(∗)αµ̄ ], so we are done. �?

—> scite{f4.3A} undefined

Remark. Saharon: 6.12 + ? were copied from [Sh 300f], the question is: can we
—> scite{4f.6} undefined

prove them in weak framework rather than prove it in s+ there, i.e.

1we can waive it here, but use trees as in [Sh 300f, 4.7=4f.3](4); however then we have to apply

[Sh 300f, xxx-4n.5.4] proving (∗)4
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18 SAHARON SHELAH

6.12 Claim. Assume χ∗s is well defined and Ax(A6) holds (so s is µ-based). If
M̄ = 〈Mn : n < ω〉 is ≤s-increasing, then we can find an independent (s,des(α))-
tree of models n for M̄ with Nn = N∗ and fn<> = f (hence by ?(2) = [Sh 300f,

—> scite{f4.3} undefined

4f.3](2)) a related canonical tree in fact 〈
⋃
η

Nn
η 〉

gn
N∗ ≤s N

∗) provided that

~) (a) M̄ = 〈Mn : n < ω〉 is ≤s-increasing

(b) λ > χ ≥ χ∗s + Σ{‖Mn‖ : n < ω}
(c) N+ ∈ Ks

(d) f is a ≤s-embedding of M0 into N∗

(e) rkemb,λ

M̄
(f,N∗; s) ≥ α

(f) α is an ordinal < λ+.

Proof. Let 〈ηγ : γ < γ(∗) ≤ λ〉 list des(α) such that ηγ1 / ηγ2 ⇒ γ1 < γ2. Now we
choose 〈M∗γ , fηγ ) by induction on γ < γ(∗) such that

(∗)1 (a) M∗γ ≤s N
∗ is ≤s-increasing continuous

(b) ‖M∗γ‖ ≤ χ+ |γ|
(c) fηγ is a ≤s-embedding of M`g(ηγ) into N∗

(d) if β < γ then Rang(fηγ ) ⊆M∗γ
(e) if ηβ / ηβ then fηγ ⊆ fηβ
(f) f<> = f

(g) if γ = β+1 and ηβ = ηβ1ˆ〈ε〉 then NFs(fηβ1 (M`g(ηβ1 )),M
∗
β , fηβ (M`g(ηβ), N

∗)

(h) if γ = β + 1, ηβ = ηβˆ〈ε〉 then rkemb,λ
M̄

(fηβ , N
∗) ≥ ε.

For γ = 0 let fηγ = f and M∗0 = fη0(M0). For γ limit use Ax(A6). The main
point is to choose fγ when ηγ = ηβˆ〈ε〉 and γ = β + 1 and so M∗γ , fηβ have

already been chosen. Clearly rkemb,λ
M̄

(fηβ , N
∗) > ε hence we can find a sequence

f̄ = 〈fηγ ,ζ : ζ < λ〉 such that

(∗)2 (a) fηγ ,ζ is a ≤s-embedding of Mn+1 into N∗

(b) fηγ ,ζ extends fηβ and rkemb,λ

M̄
(fηγ ,ζ , N

∗) ≥ ε
(c) 〈fηγ ,ζ(Mn+1) : ζ < λ〉 is independent over fηβ (Mn) inside N∗.

Hence it suffices to find one ζ < λ such that NFs(fηβ (M`g(ηβ),M
∗
γ , fηγ ,ζ(M`g(ηβ)+1), N∗)

and let fηγ = fηγ ,ζ . Such ζ exists by “s is (χ+ |γ|)-based. �6.12
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6.13 Claim. Assume s satisfies Ax(A6)+ and χ∗s is well defined, θ regular and
Ax(A4)∗θ fails.

Then

(a) θ < cf(χ∗s)

(b) [possibly decrease θ?] failure is exemplified by models of cardinality ≤ 2χ
∗
s ,

i.e. there is an ≤s-increasing continuous sequence 〈Mi : i < θ〉 of members
of Ks of cardinality ≤ 2χ

∗
s such that i < θ ⇒ Mi �s Mθ where Mθ :=

∪{Mi : i < θ}.

Proof. Let µ = 2χ
∗
s by the definition of χ∗s necessarily θ < cf(χ∗s). Now without loss of generality θ

is minimal. Choose as counter example 〈Mi : i < θ〉ˆ〈Mθ〉 to Ax(A4)∗θ with minimal
λ = Σ{‖Mi‖ : i < θ}. If λ ≤ µ then we are done.

So assume λ > µ. For i < θ let {aα,i : i < λ} list the members of Mi. We choose
by induction on α < λ, n < ω for every u ∈ [λ]n a sequence 〈Mu,i : i < θ〉 such
that:

~ (a) Mu,i ≤s Mi

(b) ‖Mu,i‖ ≤ µ
(c) Mu,i include ∪{Mv,j : v ⊂ uˆj ≤ i or v = u ∧ j < i} ∪ {aβ,i : β ∈ u}.

By the definition of χ∗s clearly s satisfies LSPµ hence we can carry the definition.

It is also clear that u1 ⊆ u2 ∈ [λ]<ℵ0 ∧ i1 ≤ i2 ⇒ Mu1,i1 ≤s Mu2,i2 . Let
Mu,θ = ∪{Mu,i : i < θ}. As λ is minimal clearly u ∈ [λ]<ℵ0∧i < θ ⇒Mu,i ≤s Mu,θ

(so Mu,θ ∈ Ks).

Now for u ⊂ v ∈ [λ]<ℵ0 by Ax(A4)∗≥χ∗s applied to 〈Mu,i : u ∈ [λ]<ℵ0 , i < θ〉,Mθ

we get that Mu,i ≤s Mθ so Mθ ∈ Ks. By Ax(A6)+ applied to 〈Mu,i : u ∈ [λ]<ℵ0〉
and Mθ we get ∪{Mu,i : u ∈ [λ]<ℵ0} ≤s Mθ, i.e. Mi ≤s Mθ.

6.14 Claim. If χ and N̄ = 〈Nn : n < ω〉 are as in ?’s (or see [Sh 300f, §4])
—> scite{f4.5.3} undefined

conclusion for the case θ = ℵ0, then for some ≤s(+)-increasing sequence M̄ = 〈Mn :

n < ω〉 of members of K
s(+)
χ we have (∀α)(∗)α

M̄
from [Sh 300f, 4.7=4f.3tex](5). But

the proof repeats ?!
—> scite{f4.3A} undefined

Remark. The proof repeats ??
—> scite{f4.3A} undefined
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Proof. Let χ be as there and choose µ as 2χ. So there is a sequence 〈Nn : n < ω〉
be as there for µ and let N = Nω := ∪{Nn : n < ω}. As ¬(N0 ≤s(+) N), that is

¬(N0 ≤iχ,χ N) clearly we can find M0,M such that

(∗)1 (a) M0 ≤s M are from Ks
χ

(b) M0 ≤s N0 and M ≤s N

(c) there is no ≤s-embedding of M into N0 over M0.

By [Sh 300c, 3.7,3.8] without loss of generality

(∗)n Mη := M ∩Nn ≤s Nn for n < ω.

Also

(∗)3 if n < ω then there is no ≤s-embedding of M into Nn over M0.

[Why? Because if f is such a ≤s-embedding then applying the definition of M0 ≤iµ,χ
Mn to the pair of models (M0, f(M)) getting an ≤s-embedding g of f(M) into N0

over M0, so g ◦ f contradicts (∗)1(c).]
Let M̄ = 〈Mn : n < ω〉 and let gn = idMn

.
Next

(∗)4 if α < µ+ and n < ω then rkemb,µ
M̄

(gn, Nn) ≥ α moreover2 there is a canon-
ical (s,desµ(α))-tree witnessing it (i.e. as in [Sh 300f, 4.7=4f.3tex](4)).

[Why (∗)4? We prove this by induction on α < µ (for all n < ω simultaneously).
For α = 0 this is trivial. Arriving to α, fix n < ω. We first note that by the

induction hypothesis, for every β < α we have rkemb,µ
M̄

(gn+1, Nn+1) ≥ β hence by

6.12 applied to s there is a canonical tree 〈Nn+1,β , N
n+1,β
η , fn+1

η : η ∈ des(β)〉 for

M̄ � [n + 1, ω) such that fn+1,β
<> = gn+1 and Nn+1,β ≤s Mn+1. Clearly there is

Nn+1
α ≤s Nn+1 of cardinality ≤ µ such that ∪{Nn+1,β : β < α} ⊆ Nn+1

α (hence
Nn+1,β
η ⊆ N for β < α, η ∈ des(β)). As Nn ≤iµ,µ Nn+1 there is a ≤s-embedding

h = hn,α of Nn+1
α into Nn over Mn.

Now we define fη,αη , Nη,α
η for η ∈ des(α) as follows fη,α<> = gn, N

n,α
<> = Mn and if

η =< β > ˆν, β < α ∩ ν ∈ des(β) then fn,αη = h ◦ fn+1,β
ν (and Nn,α

η = h(Nn+1,β
ν ).

So the “moreover” holds by [Sh 300f, 4.3tex](4) (or directly) we can deduce that
rkM̄ (gn, Nn) ≥ α. So we have carried the induction proving (∗)4.]

Now by (∗)4 as ‖Mn‖ = χ and µ = 2χ = (2χ)χ = µχ, by [Sh 300f, 4.3tex](5) we
get (∀α ∈ Ord)[(∗)αµ̄ ], so we are done. �6.14

2we can waive it here, but use trees as in [Sh 300f, 4.7=4f.3tex](4); however then we have to

apply 6.12 proving (∗)4
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End copying!

(E) Failure of Ax(A4)θ implies non-structure We now pay a
Debt from [Sh 300f, §5]:

Giving details to the proof of [Sh 300f, 5.12=5f.5.29].

6.15 Hypothesis. s satisfies AxFr−1 .
We define µθ(s), θ(s) as in [Sh 300f, 5.2=5.1tex] and Tθ ≤Tθ ,T

nc
θ ,T

γ
θ , see [Sh

300f, 5.4-5.9=5f.0-5f.3.7].

We can define Nθ,≤Nθ
as there, which rely on the choice of 〈M∗ε : ε < θ〉, a

counterexample to Ax(A4)∗θ. But what we prove here does not depend on this, so
we prefer

6.16 Definition. [Revise!] 1) Tθ is the class T = (T , <) which satisfies:

(a) (T , <) is a partial order with a minimal element

(b) (T , <) is a normal well founded tree, that is: for every t ∈ T ,T<t = {s :
s <I t} is well ordered (so in particular linearly ordered) and if it has no
last element then x is its unique least upper bound in T .

(c) For t ∈ T , otp{s : s <I t} is < θ and we call it levT (x)
moreover

(d) there is <T -increasing sequence of length θ of members of T .

2) T1 ≤Tθ T2 (or T2 extends T1) when T1 ⊆ T2 are from Tθ and s <T2
t ∈ T1 ⇒

s ∈ T1.
3) T1 ≤c`Tθ T2 or when T1 ≤Tθ T2 and if t ∈ T2 and levI2(t) is a limit ordinal then
(∀s)(s <I2 t→ s ∈ T1)⇒ t ∈ I1.

6.17 Observation. [(1) copied [Sh 300f, 5f.4.8]] 1) ≤Ngn
θ

partially ordered Ngn
θ .

2) Assume {Mt : t ∈ I} is locally independent over M inside N . If we let N ′ :=

∪{〈
⋃
t∈J

Mt〉gn
N : J ⊆ I is finite} then M,N ′, 〈Mt : t ∈ I〉 are as in Definition [Sh

300f, 3.20=3.13Atex].

6.18 Claim. 1) If T ∈ Tnc
θ then there is a canonical T -tree n of models. More-

over, it is unique, i.e. if n1,n2 are T -trees of models then there is an isomorphism
f from Nn1

onto Nn2
such that η ∈ T ⇒ f ◦ fn1

η = fn2
η .

2) If T1 ≤Tθ T2 ∈ T nc
θ and m is a T1-tree of models then there is n ∈ Nθ such

that m ≤Nθ
n. Moreover, n is unique, i.e. if n` are T`-trees of models and m ≤ n`
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for ` = 1, 2 then there is an isomorphism f from Nn1
onto Nn2

over Nm such that
η ∈ T ⇒ f ◦ fn1

η = fn2 .

Remark. This just copies [Sh 300f, 5f.5.7tex].

6.19 Claim. (Copied from [Sh 300f, 5f.5.29])
Assume that T∗ ∈ Tnc

θ and n∗ is a canonical T∗-tree of models for M̄ .
1) If T ≤Tθ T∗ then for some canonical T -tree n we have n∗ ≤Nθ

n.
2) In part (1), n is unique and Nn = 〈∪{Nn∗

η : η ∈ T }〉gn
Nn∗

.

3) Assume T` ≤Tθ T∗ for ` = 0, 1, 2 and T1 ∩ T2 = T0 and n` ≤Nθ
n∗ is a

canonical T`-tree for ` = 0, 1, 2. Then NFs(Nn0 , Nn1 , Nn1 , Nn∗) and T1 ∪ T2 =
T ⇒ Nn∗ = 〈Nn1

∪Nn2
〉gn
Nn∗

.

4) If 〈Tε : ε ≤ α〉 is ≤Tθ -increasing continuous and Tα ≤Tθ T∗ and ε ≤ α⇒ nε =
n � Tε then 〈nε : ε ≤ α〉 is ≤Nθ

-continuous.
5) If A ⊆ T∗ is a maximal set of pairwise <T∗-incomparable members of T∗ and
n = n∗ � (T∗)≤A and nη := n∗ � (T [η] ∪ (T∗)≤A) for η ∈ A then 〈Nnη : η ∈ A〉 is
independent in Nn∗ .

Remark. This copies [Sh 300f, 5f.5.29tex]. Recheck the proof.

Proof. We prove by induction on the ordinal γ that all parts of 6.18 holds when

6.18 T ,T` ∈ T≤γθ and all parts of ? hold when T∗ ∈ Tγ
θ .

—> scite{f5.5.29} undefined

Case 1: γ = 0.
This is trivial as:

~ if T1,T2 ≤Tθ T∗ then T1 ≤Tθ T2 or T2 ≤Tθ T1.

Case 2: γ a limit ordinal.
Nothing to prove.

Case 3:

For η ∈ A∗ we let T ∗η = T
[η]
∗ ∪ (T∗)≤A then by the choice of A∗,T ∗η ∈ T<∂

θ

and there is a canonical T ∗η -tree nη of models and a canonical (T∗)≤A-tree n∅ of
models such that n∅ ≤Nθ

nη ≤Nθ
n∗ for η ∈ A∗ and 〈Nnη : η ∈ A〉 is independent

over Nn∅ in Nn∗ and Nn∗ = 〈∪{Nnη : η ∈ A∗} ∪Nn∅〉
gn
Nn∗

.

Now we prove each of the parts:
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Part (1) of ?:
Without loss of generality assume T ≤Tθ T∗ and let T ′∅ = T ∩ (T∗)≤A and

T ′η = T ∩T ∗η and T ′′η = T ′η ∪T∅.

As T ′∅ ∈ T<γ
θ by the induction hypothesis there is a unique n′∅ = n∅ � T ′∅ so

n′∅ ≤Nθ
n∅ such that Tn′∅

= T ′∅ .

As Tnε = T∗ε ∈ T<γ
θ by the induction hypothesis also n′ε = nε � T ′ε ,n

′′
ε � T ′′ε

are well defined as in T ′ε ∩T ′∅ it follows that NFs(Nn′∅
, Nn∅ , Nn′ε , Nn′′ε ) holds.

By Ax(C2)+ we know that there is N∗∗ ≤s Nn∗ such that N∗∗ = 〈∪{N ′n′′η :

η ∈ A∗}〉gn
Nn∗

and 〈Nn′′η : η ∈ A∗〉 is independent over Nn∅ inside N ′′ so n′′ =

n � (∪{T′′η : η ∈ A∗}) is well defined. Easily 〈N|boldn′η : η ∈ A∗}〉ˆ〈Nn∅〉 is

independent over Nn′∅
inside N ′′ and n′′ = 〈∪{Nη′η : η ∈ A∗}∪{Nn∅}〉

gn
N ′′ . So again

by Ax(C2)− there is N ′ ≤ N ′′ = Nn′′ such that N ′ = 〈∪{Nn′η : η ∈ A∗}〉gn
N ′ and so

n′ = n∗ � (∪{T ′η : η ∈ A∗}) is well defined and Nn′ = N ′, but T = ∪{T ′η : η ∈ A∗},
as A∗ is non-empty so we are done proving part (1) in Case 3.

Part (2):
As |Nn| is necessarily 〈∪{Nn∗

η : η ∈ T 〉))gn
Nn

.

Part (3):

(∗)1 without loss of generality (T∗)≤A∗ ∪T1 ∪T2 = T∗.

[Why? By part (1).]

(∗)2 without loss of generality T1 ∪T2 = T∗.

[Why? As in the proof of part (1).]

(∗)3 if (T∗)≤A = T0 the conclusion holds.

[Why? Let T `
η = T` ∩T ∗η for η ∈ A∗ for ` = 1, 2. So n`η = n∗ � T `

η is well defined

and we apply Ax(C2)+(α) to {Nn`η
: (η, `) ∈ A∗ × {1, 2} over Nn∅ inside Nn∗ .]

(∗)4 without loss of generality T0 ⊆ T∅.

[Why? ]

(∗)5 without loss of generality T0 = T∅.

[Why? We change the “heart” to be T0.]
Together we are done.

Part (4):

Version 1: First deal A\(T )≤A.
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So without loss of generalityA ⊆ (T∗)≤A and easy.

Version 2: Let n′η = n � (T [η] cup(T∗)≤A)),n′∅ = n � (T∗)≤A.
It is enough to prove that

(∗) for any n < ω and distinct η0, . . . , ηn−1 ∈ A, the sequence 〈Nn′η`
: ` < n〉 is

independent over Nn′∅
.

But (∗) can be proved easily by part (3) (compare with case ?).

Part (5):
Add T∅ to Tnε , etc. See Case 4.

Part (1),(2) of 6.18:
Straight.

Case 4: α = β+1, β a limit ordinal so cf(δ) < θ; so without loss of generality δ < θ.
Let n∗ε = nε � Tε for ε < δ.

Part (1):
If T ⊆ Tε for some ε < δ this is obvious. In general, let T ′ε = T ∩ T0, so

n′ε = n∗ � Tε ≤Nθ
n∗ is well defined and is ≤Nθ

-increasing continuous.
Hence by Ax(A4)∗<θ the model N ′δ = ∪{Nn′ε : ε < δ〉 belongs to Ks and ε < δ ⇒

Nn′ε ≤s N
′
δ. Clearly 〈Nnε : ε ≤ δ〉 is ≤s-increasing continuous, 〈Nn′ε : ε < δ〉 is

≤s-increasing continuous and ε < ζ < δ ⇒? and by Ax(A4)∗<θ, as cf(δ) < θ also
〈Nn′ε : ε < δ〉ˆ〈N ′δ〉 is ≤s-increasing continuous.

Also ε < ζ < δ ⇒ NFs(Nn′ε , Nnε , Nn′ζ
, Nnζ ). As Ax(A4)∗<θ holds by [Sh

300b, 1.6=1.4tex] = [Sh:F822, 1b.5] we know that N ′δ ≤s Nn∗ and ε < δ ⇒
NF(Nn′ε , Nnε , N

′
δ, Nnδ).

Clearly we are done.

Part (2):
Should be clear.

Part (3):
By part (1) without loss of generality T1 ∪ T2 = T∗ and n` := n � T` is well

defined. For ` = 0, 1, 2 let T `
ε = T ′` ∩T ∗ε and n`ε = n∗ � T `

ε .
As in the proof of part (1) we have ε < ζ ≤ δ ⇒ NFs(Nn0

ε
, Nn`ε

, Nn0
ε
, Nn`ζ

). For

ε ≤ ζ ≤ δ let n`ε,zη = n∗ � ((T0 ∩T ∗ζ ) ∪ (T` ∩T ∗ε )).

Clearly for ε < ζ ≤ δ we have n`ε,ζ ≤Nθ
n∗. Hence by [Sh 300c, 1.7=1.4Atex] =

[Sh:F822, 1h.4A] we have 〈Nn`ε,δ
: ε ≤ δ〉 is ≤s-increasing continuous.

FILL.

Part (4):
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For η ∈ A let n′∅ = n � (T∗)≤A and n′η = n∗ � T
[η]
∗ , so n′∅ ≤Nθ

n∗ and n′η ≤ n∗

and T
[η]
∗ ∈ Tγ

θ . By Ax(C2)+(α) it suffices to prove that:

(∗) for every n < ω and distinct η0, . . . , ηn−1 ∈ A, 〈Nn′η`
: ` < n〉 is independent

over Nn.

But this we can prove by induction on n by using part (3).

Part (5):
Let 〈Tε : ε ≤ δ〉 be gien (not necessary δ < θ!). So nε = n � Tε ≤Nθ

n∗ is
well defined by part (1), so Nnε ≤s Nn∗ and clearly by Ax(B) 〈nε : ε ≤ δ〉 is
⊆-increasing continuous. Hence it is ≤s-increasing continuous so we are done.

Part (6),(7):
Should be clear. �6.18,�?

—> scite{f5.5.29} undefined

Case 5: α = β + 1, β odd.
Easy.

Saharon: Also details for [Sh 300f, 5f.7].
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§7 On [Sh 300g]

Concerning [Sh 300g, 1.4=1f.4tex]

7.1 Claim. Assume sα ∈ S is increasing for α < δ and we define sδ = ∪{sα : α <
δ} as in [Sh 300g, 1.3=1f.3].
1) sδ belongs to S.
2) For each of the following axioms, if sα satisfies it then so does sδ:
(A4),(A4)∗,(A4)θ,(C3),(C4),(C6),(C7).
3) For each of the following sets of axioms, if sα satisfies each member of the set
then so does sδ

(a) (C2) + (C4); [also (C2)′ meaning in (C2) we add M = 〈M∗1 ∪M∗2 〉
gn
M ]

(b) (C5) + (C4); [also strength (C5) as in [Sh 300c, §1]].

Proof. Fill.

∗ ∗ ∗

Discussion: Unfortunately in Theorem [Sh 300g, 1.7] we assume “the existence of

stationary sets ⊆ Sµ
+

θ non-reflecting in any δ ∈ Sµ
+

<cf(χ∗s
”.

To avoid this we can try to develop “s satisfied AxFr−1 and χ∗s well defined +
(A4)∗

(A) we have stable constructions

(B) we can get non-structure from non-superstability (so it says 〈Mi : i ≤
θ + 1〉, a ∈ Mθ+1\Mθ, the type tp(a,Mθ,Mθ+1) forks over Mi) for every
i < θ. Have to recheck everything.
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