COMMENTS TO UNIVERSAL CLASSES

 E54Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

Abstract. We add improvements and give details on some points in [Sh:h].

I would like to thank Alice Leonhardt for the beautiful typing.
First Typed - 06/May/8
Latest Revision - 07/Oct/23

Verification of [Sh 300a, 1.13], Case 4:
$(*)_{1} M \models \psi\left[\bar{a}_{\alpha}^{\prime}, \bar{b}_{\beta}^{\prime}\right]$ iff $M \models \varphi\left(a_{1+\alpha}, \bar{b}_{1+\beta}\right) \equiv \varphi\left[a_{0}, \bar{b}_{1+\beta}\right]$
$(*)_{2} M \models \varphi\left[\bar{a}_{0}, \bar{b}_{1+\beta}\right]$ as $0<1+\beta$
$(*)_{3} M \models \psi\left[\bar{a}_{\alpha}^{\prime}, \bar{b}_{\beta}^{\prime}\right]$ iff $M \models \varphi\left[\bar{a}_{1+\alpha}, \bar{b}_{1+\beta}\right]$ iff $1+\alpha<1+\beta$ iff $\alpha<\beta$.
Comments on [Sh 300a, §1] end Here?:
1.1 Exercise: We call I a (λ, χ)-candidate when for some \bar{s}, the pair (I, \bar{s}) is a (λ, χ)-candidate which means
(a) I is a linear order
(b) $\bar{s}=\left\langle s_{\alpha}^{\ell}: \alpha<\lambda, \ell<3\right\rangle$ such that there is no repetition
(c) $s_{\alpha}^{0}<_{I} s_{\alpha}^{1}<_{I} s_{\alpha}^{2}$
(d) $s_{\alpha}^{0}, s_{\alpha}^{1}, s_{\alpha}^{2}$ induce the same cut of $\left\{s_{\beta}^{\ell}: \beta<\alpha, \ell<3\right\}$
(e) in I there is no increasing sequence of length χ.

1) Assume $M=I, \varphi(x, y)=[x<y], \psi(x, \bar{y})=\left[\varphi\left(x, y_{1}\right) \equiv \varphi\left(x, y_{2}\right)\right]$ letting $\bar{y}=$ $\left\langle y_{1}, y_{2}\right\rangle$ and I is a (λ, χ)-candidate. Then
(α) M has the $(\varphi(x, y), \chi)$-non-order property
(β) M has the $(\psi(x, \bar{y}), \lambda)$-order property
$(\gamma) \psi(x, \bar{y}) \in\{\varphi(x, y)\}^{\mathrm{es}}$.
2) There is a candidate (I, \bar{s}) as assumed in (1), in fact with no increasing ω sequence.
[Hint: use the inverse of a well ordering of order type χ]
3) If there is a χ^{+}-Aronszajn tree then for Specker order I defined from it, not only is a $\left(\chi^{+}, \chi^{+}\right)$-candidate but in it there is no monotonic sequence of length $\theta:=\chi^{+}$, so we can add in part (1)
(δ) M has the $\left(\{\varphi(x, y)\}^{i, r}, \chi^{+}\right)$-non-order property.
4) Assume I^{*} is a linear order of cardinality λ with neither decreasing nor increasing sequence of length χ^{+}, e.g. has density $\leq \chi$ (an example is the order of the reals). Then there is a linear order I which is a $\left(\lambda, \chi^{+}\right)$-candidate with no monotonic sequence of length χ^{+}(so in part (1) we have also clause (δ)).
[Hint: use $I^{*} \times\{0,1,2\}$ ordered lexicographically.]
1.2 Exercise: In Lemma [Sh 300a, 2.9tex] we can replace $\leq_{\mathrm{qf}, \mu, \chi}^{\aleph_{0}}$ by $\leq_{\mathrm{qf},<\mu, \chi}^{\aleph_{0}}$ and then get $\operatorname{LS}\left(\mathfrak{K} \leq \mu\left(=: 2^{2^{x}}\right)\right.$. For this we need other changes. [Saharon: more?]

By [Sh 300a, 1.15] we know that: $A \subseteq M,|A| \leq \mu \Rightarrow\left|\mathbf{S}_{\Delta}^{<\kappa}(A, M)\right| \leq \mu^{<\kappa}=\mu$. We try to choose $M_{\alpha}, \bar{c}_{\alpha}$ by induction on $\alpha<\mu^{+}$such that:
$\circledast(a) \quad A \subseteq M_{\alpha} \subseteq N$
(b) $\left\|M_{\alpha}\right\|=\mu$
(c) $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle$ is \subseteq-increasing continuous
(d) $\bar{c}_{\alpha} \in{ }^{\kappa>} M$ exemplifies $\neg\left(M_{\alpha} \leq_{\Delta, \mu, \chi}^{\kappa}\right)$.
1.3 Question: 1) Is the cardinal bound in [Sh 300a, 5.1] optimal? 2) Similarly in [Sh 300a, $5.3=5.2$ tex].
2.1 Question: Can we allow $\langle A\rangle_{M}^{\mathrm{gn}}$ to be partial?

Discussion: 1) It seemed that if we check the proof in [Sh:h, II], we do not really use $\langle A\rangle_{M}^{\mathrm{gn}}$ is well defined for every $A \subseteq M$, but only under restricted circumstances, a first try is
(B0) if $B:=\langle A\rangle_{M}^{\mathrm{gn}}$ is well defined then $A \subseteq B \subseteq M$
(B1) if $B=\langle A\rangle_{M}^{\mathrm{gn}}$ then $\langle B\rangle_{M}^{\mathrm{gn}}=B$
(B2) if $A \subseteq M \leq_{\mathfrak{s}} N$ then $\langle A\rangle_{M}^{\mathrm{gn}}$ is well defined iff $\langle A\rangle_{N}^{\mathrm{gn}}$ is well defined and if so then they are equal
(B3) if $\operatorname{NF}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ then $\left\langle M_{1} \cup M_{2}\right\rangle_{M_{3}}^{\mathrm{gn}}$ is well defined and $\leq_{\mathfrak{s}} M_{\mathfrak{s}}$ (B4) ??.
2) Or should we use $\left\langle\left\{B_{t}: t \in I\right\}\right\rangle_{N}^{\mathrm{gn}}$ and it depends on the history?
2.2 Observation.: $\mathrm{Ax}(\mathrm{A} 3)$ follows from $\mathrm{Ax}(\mathrm{C} 1),(\mathrm{C} 3(\mathrm{a}),(\mathrm{b}))$ and (A2).

Remark. This is [Sh 300b, 1.7=1.4.7tex](2).

Proof. Assume $M_{0} \subseteq M_{1}$ and $M_{\ell} \leq_{\mathfrak{s}} N$ for $\ell=1,2$. By $\operatorname{Ax}(\mathrm{C} 2)$ we can find $M_{\ell}^{*}(\ell \leq 3)$ and f_{1}, f_{2} such that:
(a) $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}^{*}, M_{1}^{*}, M_{2}^{*}, M_{3}^{*}\right)$
(b) $M_{0}=M_{0}^{*}$
(c) f_{1}, f_{2} is an isomorphism from N, M_{0} onto M_{1}^{*}, M_{2}^{*} respectively
(d) $F_{\ell} \supseteq \operatorname{id}_{M_{0}}$.

By renaming $f_{1}=\operatorname{id}_{N}$ so $M_{2}^{*}=N$ (and of course $M_{1}^{*}=M_{0}$) so $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{0}, N, M_{3}^{*}\right)$.
By $\operatorname{Ax}(\mathrm{C} 3)(\mathrm{a})$ we have $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{0}, M_{0}, M_{3}^{*}\right)$. Now $M_{1} \leq_{\mathfrak{s}} N \leq_{\mathfrak{s}} M_{3}^{*}$ hence by $\operatorname{Ax}(\mathrm{A} 2)$ we have $M_{1} \leq_{\mathfrak{s}} M_{3}^{*}$ and of course $M_{0} \cup M_{0} \subseteq M_{1}$. Now apply $\mathrm{Ax}(\mathrm{C} 3)(\mathrm{c})$ with $M_{0}, M_{0}, M_{0}, M_{3}^{*}, M_{1}$ here standing for $M_{0}, M_{1}, M_{2}, M_{3}, M^{*}$ there, its assumptions hold by the previous sentence. The conclusion of $\mathrm{Ax}(\mathrm{C} 3)(\mathrm{c})$ gives $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{0}, M_{0}, M_{1}\right)$ which by $\mathrm{Ax}(\mathrm{C} 1)$ gives $M_{0} \leq_{\mathfrak{s}} M_{1}$, as required.
2.3 Question: In [Sh 300b, 2.3], use indiscernible sequence of cardinality $\mu=2^{2^{x}}$ or χ^{+}, enough?

We can give more details on [Sh 300b, 2.3tex], the (D, x)-sequence-homogeneous. We may give details to uniqueness of (D, λ)-prime.
2.4 Discussion: $\mathrm{Ax}(\mathrm{D} 2)$ for [Sh 300b, 2.18=2.3Ctex] Give details for:
(a) for (D, x)-primary we have uniqueness,
(b) for primes (nec?)

$\S 3$ On $[\mathrm{Sh} 300 \mathrm{c}]$

We can give details of $(<\mu)$-stably constructible from [Sh 300c, §4] as in [Sh 300d, $\S 5]$. Saharon: prepare for quoting in [Sh 300f, $\S 4, \S 5]$ where $\operatorname{Ax}(\mathrm{A} 4)$ we replaced by $\operatorname{Ax}(\mathrm{C} 2)^{+},(\mathrm{A} 4)_{<\theta}^{*}$.

In particular the uniqueness of "anti-prime".
3.1 Claim. Assume $\lambda \leq|A|+\operatorname{LS}(\mathfrak{s})$ and $\lambda \geq \mu=c \ell(\mu)>\operatorname{LS}(\mathfrak{s})$. There is an isomorphism from $A_{\ell g\left(\mathscr{A}_{1}\right)}^{\mathscr{A}_{1}}$ onto $A_{\ell g\left(\mathscr{A}_{2}\right)}^{\mathscr{A}_{2}}$ over A when for $\ell=1,2$ we have:
$\circledast_{\mathscr{A}_{\ell}}$ (a) \mathscr{A} is a $(<\mu)$-stable construction inside N
(b) $A^{\mathscr{A}_{\ell}}=A$
(c) $\quad B_{*} \leq_{\mathfrak{s}} A$ has cardinality $<\mu$ and $u \subseteq \ell g\left(\mathscr{A}_{\ell}\right)$ is closed of cardinality $<\mu$ and $A_{u}^{\mathscr{A}_{\ell}} \cap A \subseteq B_{*}, B^{\prime}=\left\langle B_{u} \cup B_{*}\right\rangle_{N}^{\mathrm{gn}}$ so $B^{\prime} \leq_{\mathfrak{s}} A_{\ell g\left(\mathscr{A}_{\ell}\right)}^{\mathscr{L}_{\ell}}$ and $B^{\prime} \leq_{\mathfrak{s}} B$ and B is of cardinality $<\mu$ then for λ-oridnal α we have:
(α) $\sup (u)<\alpha<\ell g\left(\mathscr{A}_{\ell}\right)$
(β) $w_{\alpha}^{\mathscr{Q}_{\ell}}=u$
$(\gamma) \quad B_{\alpha}^{\mathscr{L}_{\ell}}$ is isomorphic to B over B^{\prime}.
(4A) Details:
We give details on [Sh 300d, 2.12=2.9tex], [Sh 300d, 3.17=3.15tex]. See [Sh $300 \mathrm{~d}, 2.9=2.6$ tex $]+[$ Sh 300d, $2.11=2.8$ tex $](2)$, expand? Refer to
(4B) On [Sh 300d] for quoting in [Sh 300e, 4.6]
4.1 Claim. Assume $\left\langle M_{\alpha}: \alpha<\delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing continuous, $\left\langle N_{\alpha}: \alpha \leq \delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasin continuous $\alpha \leq \delta \Rightarrow M_{\alpha} \leq_{\mathfrak{s}} N_{\alpha}$ and $p \upharpoonright M_{\delta} \in \mathscr{S}_{c}<\infty\left(M_{\delta}\right)$.

1) If $p \in \mathscr{S}^{<\alpha}\left(N_{\delta}\right), p \upharpoonright N_{\alpha}$ does not fork over M_{α} for every $\alpha<\delta$, then p does not fork over M_{δ}.
2) If $M_{\delta} \leq_{s} M_{\delta+1}$ and $M_{\alpha}, N_{\alpha}, M_{\delta+1}$ are in stable amalgamation for $\alpha<\delta$ then $M_{\delta}, N_{\delta}, M_{\delta+1}$ are in stable amalgamation.

Proof. By [Sh 300c, 1.10](1)=1.0tex(1), [Sh 300d, 3.11](2), recalling Definition [Sh 300d, 3.3,3.5].

Remark. 1) Already exists?
2) Used in [Sh 300e, 4.6].

(4C) Comments On $C^{\text {eq }}$

We give the model $\mathfrak{C}^{\text {eq }}$ where equivalence classes can be represented as elements. It is good for superstable \mathfrak{s}, where each $p \in \mathscr{S}^{1}(M)$ has a canonical base consisting of a singleton, etc.
Generally, see remark [Sh 300d, 7.5] or below (?).
4.2 Definition. 1) Let

$$
\begin{gathered}
\mathbf{E}_{\chi}=\{\mathscr{E}: \mathscr{E} \text { is an equivalence relation on } \chi|\mathfrak{C}|, \\
\\
\text { preserved by automorphism of } \mathfrak{C}\} .
\end{gathered}
$$

2) For $\bar{a} \in{ }^{\chi}|C|, E \in \mathscr{E}_{\chi}$ we say \bar{a} / E is A-invariant where A is a subset of \mathfrak{C} if every automorphism h of $\mathfrak{C}, h \upharpoonright A=\operatorname{id}_{A}$, maps \bar{a} / E into itself.
3) We say \bar{a} / E (where $\bar{a} \in{ }^{\chi}|\mathfrak{C}|, E \in \mathscr{E}_{\chi}$) is finitary when:

$$
\text { if } M \leq_{\mathfrak{s}} \mathfrak{C}, \bar{a} / E \text { is } M \text {-invariant and } M=\bigcup_{\alpha<\delta} M_{\alpha},\left\langle M_{\alpha}: \alpha<\delta\right\rangle
$$

is $\leq_{\mathfrak{s}}$-increasing then for some $\alpha<\delta, \bar{a} / E$ is M_{α} invariant.
4) We say $E \in \mathscr{E}_{\chi}$ is finitary if every $\bar{a} / E \quad(\bar{a} \in \chi|\mathfrak{C}|)$ is finitary.
5) We say \bar{a} / E has a base (a χ-base) if it is invariant over some $A,|A|<\|C\|$, $(|A|<\chi)$.
6) We say $E \in \mathscr{E}_{\chi}$ has base [μ-base] if every equivalence class has a base [μ-base].
7) Let \mathscr{E}_{χ}^{*} be the family of finitary $E \in \mathscr{E}_{\chi}$ which has a base.
4.3 Claim. 1) If $\bar{a} \in{ }^{\omega>} \mathfrak{C}$ (or even $\bar{a} \in \chi \geq \mathfrak{C}$), \bar{a} / E has base and is finitary then it has a base $M<_{\mathfrak{s}} \mathfrak{C}$ such that $\|M\| \leq \chi$.
2) The number of $E \in \mathscr{E}_{\chi}$ is $\leq 2^{2^{\chi+|\tau(s)|}}$.
3) If $\chi \geq \chi_{\mathfrak{s}}$ then $E \in \mathscr{E}_{\chi}^{*}$ iff $E \in \mathscr{E}_{\chi}$ is finitary and has $\chi_{\mathfrak{s}}$-base.
4.4 Claim. Suppose $\chi(0)<\chi(1)$ and $E_{1} \in \mathscr{E}_{\chi(1)}$ and every \bar{a} / E_{1} has a $\chi(0)$-base. Then we can find $E_{0} \in \mathscr{E}_{\chi(0)}$ and functions h from the set of E_{1}-sequence classes onto the set of E_{0}-equivalence classes [of ordinals $<\|\mathfrak{C}\|^{\chi(1)}$] such that:
$(*) \bar{a} / E_{1}$ has base A iff $h\left(\bar{a} / E_{1}\right)$ has base A.

Proof. Fill.
4.5 Definition. 1) We let for any $M<_{\mathfrak{s}} \mathfrak{C}, M^{\text {eq }}$ be a model with universe

$$
|M| \cup\left\{\bar{a} / E: a \in{ }^{\chi(\mathfrak{s})>}|M|, E \in E_{\chi(\mathfrak{s})}^{*}\right\}
$$

relations and functions:

those of \mathfrak{C}

$$
P_{E}=\{\bar{a} / E: a \in \chi(\mathfrak{s}) \geq M\}
$$

F_{E} the partial function $F(\bar{a})=\bar{a} / E$
2) $K^{\text {eq }}$ is the class of models isomorphic to some $M^{\text {eq }}$ (using equivalence class \mathfrak{C} as a class).
3) Next we define $\leq^{\text {eq }}$:

$$
M^{*} \leq_{\mathfrak{s}}^{\mathrm{eq}} N^{*} \text { iff there are } M \leq_{\mathfrak{s}} N<_{\mathfrak{s}} \mathfrak{C},\left(N^{\mathrm{eq}}, M^{\mathrm{eq}}\right) \cong\left(N^{*}, M^{*}\right)
$$

4) $\mathrm{NF}^{\mathrm{eq}}$ is the class of $\left(M_{1}^{*}, M_{2}^{*}, M_{3}^{*}, M_{4}^{*}\right)$ such that for some $M_{\ell}<_{\mathfrak{s}} \mathfrak{C}$ for $\ell \leq 3$ we have $M_{\ell}^{*}=M_{\ell}^{\text {eq }}$ for $\ell \leq 3$ and $\operatorname{NF}\left(M_{1}, M_{2}, M_{3}, M_{4}\right)$.

$\S 5$ On [Sh 300e]

(5A) Details on X : [Sh 300e, 4.2=4.1.7tex]

Proof of [Sh 300e, 4.1.7](3). Check with [Sh 300, $5.3=5.3 \mathrm{tex}](6)$.
First, the implication $(a) \Rightarrow(b)$ is trivial.
Second, assume (b) and let $\bar{b} \in{ }^{\beta} \mathfrak{C}$ such that $\boldsymbol{t p}(\bar{b}, A)$ does not fork over M. Let $\lambda=\|M\|+|\ell g(\bar{b})|+\chi_{\mathfrak{s}}$ and N be $\left(\mathbb{D}_{\mathfrak{s}}, \lambda^{+}\right)$-homogeneous such that $M \leq_{\mathfrak{s}} N$. Continue as in the proof of [Sh 300e, $4.8=4.6 \mathrm{tex}](2)$ below.

About (c) see xxxx.

Proof of [Sh 300e, 4.2]. 1) For $\underset{\mathrm{wk}}{\perp}$, i.e. Definition [Sh 300e, 4.1](1), [Sh 300d, 4.1] they say the same as in [Sh 300d, 4.1], we can find N_{1}, N_{2} realizing p_{1}, p_{2} respectively such that M, N_{1}, N_{2} is in stable amalgamation.
2) For \perp, i.e. Definition [Sh 300e, 4.1](2), [Sh 300d, 4.3](2), the equivalence holds the definition of "stationarization" are compatible.
3) For $p \perp B$, i.e. Definition [Sh 300e, 4.1](4), [Sh 300d, 4.5](1), we are assuming $p \in \mathscr{S}^{<\infty}(N)$, again we use the equivalence of the definition of "stationarization" are compatible (and (b), i.e. the definitions of \perp are compatible.
4) For $p \underset{\mathrm{a}}{\perp} M$ assume $M \leq_{\mathfrak{s}} N, p \in \mathscr{S}_{c}^{<\infty}(N)$, there seemingly is a difference: in [Sh 300d, 4.5](2), we demand $q \in \mathscr{S}_{c}^{<\infty}(M) \Rightarrow p \perp q$ and in [Sh 300e, 4.1](3) $q \in$ $\mathscr{S}^{<\infty}(M) \Rightarrow p \perp q$, so in the second version the demand is seemingly strongly: we have more q. Butif the first version holds, let $q=\boldsymbol{t p}(\bar{a}, M) \in \mathscr{S}^{<\infty}(M)$, let $M \cup \bar{a} \subseteq M_{1}<_{\mathfrak{s}} \mathfrak{C}$, and \bar{c} list $M_{1}, \bar{a} \unlhd \bar{c}$ so $q_{1}:=\operatorname{tp}(\bar{c}, M) \in \mathscr{S}_{c}^{<\infty}(M)$ hence $q_{1} \perp p$. But if $N \leq_{\mathfrak{s}} N_{1}$ and $p_{1}=\boldsymbol{t p}\left(\bar{b}, N_{1}\right)$ is a stationarization of p and $\operatorname{tp}\left(\bar{a}_{1}, N_{1}\right)$ is a stationarization of q then we can find \bar{c}_{1} such that $\boldsymbol{t p}\left(\bar{c}_{1}, N_{1}\right)$ is a stationarization of q_{1} and $\bar{a}_{1} \unlhd \bar{c}_{1}$, and we easily finish.

Remark. See 4.1, intended for quoting in [Sh 300e, 4.6].
(5B) Details on x: [Sh 300e, 4.8=4.6tex]

Proof of [Sh 300e, 4.8=4.6tex](2).
(Canibalize for [Sh 300e, 4.3](3)=4.1.7(3) revise) but see [Sh 300e, 5.3=5.3tex](6).
2) Let $M_{\delta}:=\cup\left\{M_{i}: i<\delta\right\}$ and $N_{\delta}:=\cup\left\{N_{i}: i<\delta\right\}$, hence $M_{\delta} \leq_{\mathfrak{s}} N_{\delta}<_{\mathfrak{s}} \mathfrak{C}$. Assume $\bar{b} \in{ }^{\alpha} \mathfrak{C}$ and $\operatorname{tp}\left(\bar{b}, M_{\delta} \cup C\right)$ does not fork over M_{δ}, and we should prove
that it is weakly orthogonal to $\boldsymbol{\operatorname { t p }}\left(N_{\delta}, M_{\delta} \cup C\right)$. For this it suffices to prove that $\operatorname{tp}\left(\bar{b}, N_{\delta}\right)$ does not fork over M_{δ}.

Let $M_{\delta+1}$ be such that $M_{\delta} \cup \bar{b} \subseteq M_{\delta+1}<_{\mathfrak{s}} \mathfrak{C}$ and let \bar{b}^{+}list the members of $M_{\delta+1}$ such that $\bar{b}=\bar{b}^{+} \upharpoonright \alpha$. There is \bar{b}^{\prime} realizing $\mathbf{t p}\left(\bar{b}^{+}, M_{\delta}\right)$ such that $\mathbf{t p}\left(\bar{b}^{+}, N_{\delta}\right)$ does not fork over M_{δ}. So $\mathbf{t p}\left(\bar{b}^{\prime} \upharpoonright \alpha, M_{\delta}\right)=\mathbf{t p}\left(\bar{b}^{+} \upharpoonright \alpha, M_{\delta}\right)=\mathbf{t p}\left(\bar{b}, M_{\delta}\right)$ and $\operatorname{tp}\left(\bar{b}^{\prime} \upharpoonright \alpha, N_{\delta}\right)$ does not fork over M_{δ} hence $\operatorname{tp}\left(\bar{b}^{\prime} \upharpoonright \alpha, M_{\delta} \cup C\right)$ does not fork over M_{δ}.

As also $\boldsymbol{t p}\left(\bar{b}, M_{\delta} \cup C\right)$ does not fork over M_{δ} and $\mathbf{t p}\left(\bar{b}, M_{\delta}\right)=\boldsymbol{t p}\left(\bar{b}^{\prime} \upharpoonright \alpha, M_{\delta}\right)$ is stationary so follows that $\mathbf{t p}\left(\bar{b}, M_{\delta} \cup C\right)=\mathbf{t p}\left(\bar{b}^{\prime} \upharpoonright \alpha, M_{\delta} \cup C\right)$.

Hence by [Sh 300e, 2.5](6) it suffices to prove that $\mathbf{t p}\left(\bar{b}^{\prime}, M_{\delta} \cup C\right)$ is weakly orthogonal to $\boldsymbol{\operatorname { p }}\left(N_{\delta}, M_{\delta} \cup C\right)$. So let $\bar{b}^{\prime \prime}$ realize $\mathbf{t p}\left(\bar{b}^{\prime}, M_{\delta} \cup C\right)$ and let $M_{\delta+1}^{\prime \prime}=\mathfrak{C} \upharpoonright$ Rang $\left(\bar{b}^{\prime \prime}\right)$. So $M_{\delta} \leq_{\mathfrak{s}} M_{\delta+1}^{\prime \prime}<_{\mathfrak{s}} \mathfrak{C}$ and $\operatorname{tp}\left(M_{\delta+1}^{\prime \prime}, M_{\delta} \cup C\right)$ does not fork over M_{δ} and it suffices to prove that $\mathbf{t p}\left(M_{\delta+1}^{\prime \prime}, N_{\delta}\right)$ does not fork over M_{δ}.

By symmetry [Sh 300e, $2.10=2.9 \operatorname{tex}]$ we have $\mathbf{t p}\left(C, M_{\delta+1}^{\prime \prime}\right)$ does not fork over M_{δ}. But $\mathbf{t p}\left(C, M_{\delta}\right)$ does not fork over M_{0} hence by transitivity [Sh 300e, 2.5](4),2.4(2) we have $\boldsymbol{\operatorname { t p }}\left(C, M_{\delta+1}^{\prime \prime}\right)$ does not fork over M_{0}. For each $i<\delta, \operatorname{tp}\left(C, M_{\delta+1}^{\prime \prime}\right)$ does not fork over M_{i} (by monotonicity) [Sh 300e, 2.5](1) but $\mathbf{t p}\left(N_{i}, M_{i} \cup C\right) \perp \underset{\mathrm{a}}{ } M_{i}$ hence $\operatorname{tp}\left(N_{i}, M_{\delta+1}^{\prime \prime}\right)$ does not fork over M_{i}. By symmetry [Sh 300e, 2.5](4),2.4(2) we have $\operatorname{tp}\left(M_{\delta=1}^{\prime \prime}, N_{i}\right)$ does not fork over M_{i} hence by continuity ([Sh 300d, 3.11](2) recalling Definition [Sh 300d, 3.3,3.5] we have $\mathbf{t p}\left(M_{\delta+1}^{\prime \prime}, N_{\delta}\right)$ does not fork over M_{δ}, which as said above, suffice.
(5x) Everybody is nice
On nice types we can improve the result on being nice eliminating the superstability so this improves [Sh $300 \mathrm{e}, 6.3=6.3 \mathrm{tex}$].
5.1 Claim. If $M<_{\mathfrak{s}} \mathfrak{C}$ and $\bar{c} \in{ }^{\alpha} \mathfrak{C}$ and $\bar{c} \in{ }^{\alpha} \mathfrak{C}$ then there are M^{*}, N^{*} such that
(a) $M^{*} \leq_{\mathfrak{s}} N^{*}$ and $\bar{c} \in{ }^{\omega>}\left(N^{*}\right), M^{*} \leq_{\mathfrak{s}} M$
(b) $\left\|N^{*}\right\| \leq \lambda, \chi_{\mathfrak{s}}+|\ell g(\bar{c})|$
(c) $\boldsymbol{\operatorname { t p }}(\bar{c}, M)$ does not fork over M^{*}
(d) $\boldsymbol{\operatorname { t p }}\left(N^{*}, M^{*} \cup \bar{c}\right)$ is weakly orthogonal to $\boldsymbol{\operatorname { t p }}\left(M, M^{*} \cup \bar{c}\right)$.

Proof. 1) We assume that such M^{*}, N^{*} does not exist and will eventually derive a contradiction. We choose $M_{i}, N_{i}\left(i<\lambda^{+}\right), f_{i}\left(i<\lambda^{+}\right)$by induction on $i<\lambda^{+}$such that:
\square (a) $M_{i} \leq_{\mathfrak{s}} M$ is $\leq_{\mathfrak{s}}$-increasing, $\mathbf{t p}(\bar{c}, M)$ does not fork over M_{0}
(b) $\bar{c} \in N_{i},\left\|N_{i}\right\| \leq \lambda$ and $j<i \Rightarrow N_{j} \leq_{\mathfrak{s}} N_{i}$
(c) f_{i} is a $\leq_{\mathfrak{s}}$-embedding of N_{i} into M_{i} increasing with i
(d) f_{i} is the identity on $M_{0} \cup \bar{c}$
(e) $\boldsymbol{\operatorname { t p }}\left(N_{i}, f_{i}\left(M_{i+1}\right)\right)$ forks over M_{i}
$(f) \quad$ for i limit, $M_{i}=\bigcup_{j<i} M_{j}, N_{i}=\bigcup_{j<i} N_{j}$.

Construction:.

Case 1:. $i=0$
Choose (as \mathfrak{s} is $\chi_{\mathfrak{s}}$-based), $N_{0}<_{\mathfrak{s}} \mathfrak{C}$ such that $\bar{c} \subseteq N_{0}$ and $N_{0} \cap M, N_{0}, M$ is in stable amalgamation and $\left\|N_{0}\right\| \leq \lambda$. Let $M_{0}=N_{0} \cap M$ and $f_{0}=\operatorname{id}_{M_{0}}$.
Clearly clause (b) holds as well as " $M_{0} \leq_{\mathfrak{s}} M$ " from clause (a), clause (c) is trivial and the other conditions are inapplicable.

Case 2: $i=j+1$.
So N_{j}, M_{j} are defined (and are as required) and let g_{j} be an automorphism of $\mathfrak{C}_{g_{j}}$ extending f_{j} so $g_{j} \supseteq \operatorname{id}_{M_{0} \cup \bar{c}}$. Consider $g_{j}\left(N_{j}\right), M_{j}$ as candidates for N^{*}, M^{*} in the conclusion of $5.1(1)$, so they should fail some demand. As $\left\|M_{j}\right\| \leq\left\|N_{j}\right\| \leq \lambda$, $M_{j} \leq_{\mathfrak{s}} M, M_{j} \leq_{\mathfrak{s}} g_{j}^{-1}\left(N_{j}\right)<_{\mathfrak{s}} \mathfrak{C}$ and $\bar{c} \in g^{-1}\left(N_{j}\right)$ necessarily $\operatorname{tp}\left(g_{j}^{-1}\left(N_{j}\right), M_{j} \cup \bar{c}\right)$ is not weakly orthogonal to $\operatorname{tp}\left(M, M_{j} \cup \bar{c}\right)$. So there is $N_{j}^{\prime}<_{\mathfrak{s}} \mathfrak{C}$ isomorphic to $g_{j}^{-1}\left(N_{j}\right)$ over $M_{j} \cup \bar{c}$, say by the isomorphism h_{j}, such that:

$$
\operatorname{tp}\left(N_{j}^{\prime}, M\right) \text { forks over } M_{j} .
$$

Then we can find $N_{i}^{\prime \prime}<_{\mathfrak{s}} \mathfrak{C},\left\|N_{i}^{\prime \prime}\right\| \leq \lambda$ such that $N_{j}^{\prime} \subseteq N_{i}^{\prime \prime}$ and $N_{i}^{\prime \prime} \cap M, N_{i}^{\prime \prime}, M$ are in stable amalgamation (exists as \mathfrak{s} is λ-based). We let $M_{i}=: M \cap N_{i}^{\prime \prime}$ and let h_{j}^{+} be an automorphism of \mathfrak{C} extending h_{j} and satisfying $f_{i}^{+}=g_{j} \circ h_{j}^{+}, N_{i}=f_{j}^{+}\left(N_{i}^{\prime \prime}\right)$ and $f_{i}=f_{j}^{+} \upharpoonright M_{i}$. Note $h_{j}^{+} \upharpoonright\left(M_{0} \cup \bar{c}\right) \subseteq h_{j}^{+} \upharpoonright\left(M_{j} \cup \bar{c}\right)=\operatorname{id}_{M_{j} \cup \bar{c}}$ hence $h_{j}^{+} \upharpoonright\left(M_{0} \cup \bar{c}\right)=\operatorname{id}_{M_{0} \cup \bar{c}}$ and $g_{j} \upharpoonright\left(M_{0} \cup \bar{c}\right)=f_{j} \upharpoonright\left(M_{0} \cup \bar{c}\right)=\operatorname{id}_{M_{0} \cup \bar{c}}$ so together $f_{i}^{+} \upharpoonright\left(M_{0} \cup \bar{c}\right)=\left(g_{j} \circ h_{j}^{+}\right) \upharpoonright\left(M_{0} \cup \bar{c}\right)=\operatorname{id}_{M_{0} \cup \bar{c}}$; i.e. clause (d) holds.

Recall $N_{i}:=f_{i}^{+}\left(N_{i}^{\prime}\right)$, now $M_{i} \leq_{\mathfrak{s}} N_{i}^{\prime \prime}$ hence $f_{i}\left(M_{i}\right)=f_{i}^{+}\left(M_{i}\right) \leq_{\mathfrak{s}} f_{i}^{+}\left(N_{i}^{\prime \prime}\right)=N_{i}$; so clause (c) holds, too; also $N_{j}^{\prime} \leq_{s} N_{i}^{\prime \prime}$ hence $f_{i}^{+}\left(N_{j}^{\prime}\right) \leq_{\mathfrak{s}} f_{i}^{+}\left(N_{i}^{\prime \prime}\right)=N_{i}$ but $f_{i}^{+}\left(N_{1}^{\prime}\right)=g_{j}\left(h_{j}^{+}\left(N_{j}^{\prime}\right)\right)=g_{j}^{0}\left(g_{j}^{-1}\left(N_{j}\right)=N_{j}\right.$. Together $N_{j} \leq_{\mathfrak{s}} N_{i}$, i.e. clause (b) holds. Clause (a) holds trivially and clause (f) is irrelevant. Clause (e) holds as $\operatorname{tp}\left(N_{j}^{\prime}, N_{i}^{\prime \prime}\right)$ forks over M_{j} by the choices of $N_{j}^{\prime}, N_{i}^{\prime \prime}$ and f_{i}^{+}preserves this.

So we are done with case 2 .

Case 3. $i=\delta$ is a limit ordinal.

Let $M_{\delta}=\bigcup_{\beta<\delta} M_{\beta}$ and $N_{\delta}=\bigcup_{\beta<\delta} N_{\beta}$ and $f_{\delta}=\bigcup_{\beta<\delta} f_{\beta}$.
So we have finished the construction, we can choose $M_{\lambda^{+}}, N_{\lambda^{+}},\left\langle f_{\lambda^{+}, i}: i<\lambda^{+}\right\rangle$ such that the relevant demands in $\square(a)-(f)$ hold. But then $\left\langle f_{i}\left(M_{i}\right), f\left(N_{i}\right): i<\right.$ $\left.\lambda^{+}\right\rangle$contradict " \mathfrak{s} is $\chi_{\mathfrak{s}}$-based" (see [Sh 300c, 2.8]).
2) Left to the reader (use $[\mathrm{Sh} 300 \mathrm{e}, 5.4=5.4 \mathrm{tex}](4)$).
5.2 Remark. If $\bar{c} \subseteq N$ and $|\ell g(\bar{c})|=\lambda$, then $\operatorname{tp}(N, M \cup \bar{c})$ has character ($=$ localness) $\leq \lambda+\chi_{\mathfrak{s}}$ as \mathfrak{s} is $\left(\lambda+\chi_{\mathfrak{s}}\right)$-based.
5.3 Conclusion. 1) Every $p \in \mathscr{S}^{\infty>}(N)$, (such that $N<_{\mathfrak{s}} \mathfrak{C}, m<\omega$) is prenice. 2) If $\lambda \geq \chi_{\mathfrak{s}}, M<_{\mathfrak{s}} \mathfrak{C}$ is $\left(\mathbb{D}_{\mathfrak{s}}, \lambda^{+}\right)$-homogeneous and $\bar{c} \in^{\lambda^{+}} \mathfrak{C}$ then $\boldsymbol{\operatorname { t p }}(\bar{c}, M)$ is nice. 3) In $[\mathrm{Sh} 300 \mathrm{e}, \S 6, \S 7]$ we can waive "superstable" in all the claims except [Sh 300e, $7.12=7.9$ tex] and can weaken "regular $p \in \mathscr{S}^{<\omega}(M)$ " to "regular $p \in \mathscr{S}^{<\infty}(M)$ ".

Proof. 1) By (2).
2) By 5.1.
3) Check.

$$
\S 6 \mathrm{On}[\mathrm{Sh} 300 \mathrm{~F}]
$$

(A) On the n-place indiscernibility - FILL
(C) "Strengthening the order $\leq_{\mathfrak{s}}$ " revisited

Concerning [Sh 300f, 3.2]
6.1 Claim. Assume [Sh 300f, 3.1], i.e. fill.

Then \mathfrak{s} is $\left(\Lambda_{\mathfrak{s}}, \lambda\right)$-stable when $\chi \in\left[\chi_{\mathfrak{s}}, \theta^{*}\right), \lambda=\lambda^{\chi}=\beth_{\ell}(\chi)$ when $\ell=2$. Check.

Proof. We combine the proofs of [Sh 300f, 2.10.7], [Sh 300a, 1.10]. Fill. (070523) What does $\ell=2$ mean?
6.2 Question: Where is [Sh 300f], $\mathrm{Ax}(\mathrm{C} 10)$, rigidity, is used?
6.3 Question: Concerning [Sh 300f, $3.19=3.13$ tex], it is proved for $x=i($ and $x=j$ is O.K.) what about $\lambda=\mathrm{nc}$?

The following answer Question ?-6.3. That is, we try to eliminate the use of the
scite $\{\mathrm{f} 3.2 \mathrm{~F}\}$ undefined
rigidity axiom, paying a low price on cardinalities which does not affect the Main conclusion ?, [Sh 300f, 3.32=3.15tex].
scite\{3.15\} undefined
First concerning [Sh 300f, 3.13=3.10tex].
We use freely

6.4 Definition.

$\circledast_{\bar{N}, \bar{M}}^{j, \lambda, \chi}$ mean as in $[$ Sh 300 f, $3.11=3.8 .21 \mathrm{tex}]$.
6.5 Claim. Suppose $x=i, \chi_{\mathfrak{s}} \leq \chi<\lambda=2^{\chi}<\theta^{*}$; if $\mathrm{NF}_{\lambda, \chi}^{i}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ then $\left\langle M_{1} \cup M_{3}\right\rangle_{\mathbb{C}}^{\mathrm{gn}} \leq_{\chi, \chi}^{x} M_{3}$.
[Hint: We assume that this fails and to prove the $\left(\Lambda_{\lambda}, \beth_{2}(\lambda)\right.$-order property. First, without loss of generality $\left\|M_{\ell}\right\| \leq \lambda$. Second, let $\alpha(*)$ be an ordinal, R a twoplace relation on $\alpha(*)$ such that $\alpha R_{\beta} \Rightarrow(\alpha$ even $\wedge \beta$ odd). We now can define
$M_{R}^{\alpha(*)}, M_{\{\alpha\}}(\alpha<\alpha(\delta)) M_{\{\alpha, \beta\}}($ for $(\alpha, \beta) \in R)$ as in $?$ with $M_{0}, M_{1}, M_{2}, M_{3}$ here
$\rightarrow \quad$ scite\{2.12\} undefined
standing for $M_{0}, M_{0}^{1}, M_{0}^{2}, M_{0,0}^{3}$ there. Now we like to prove them $M_{\{\alpha\}} \leq_{\chi, \chi}^{x} M_{R}^{\alpha(*)}$ when $\alpha<\alpha(*)$ and $M_{\{\alpha, \beta\}} \leq_{\chi, \chi}^{x} M_{R}^{\alpha(*)}$ when $\alpha R \beta$ and for $\alpha<\beta$ we have

$$
\left\langle M_{\{\alpha\}} \cup M_{\{\beta\}}\right\rangle_{M_{R}^{\alpha(*)}}^{\mathrm{gn}} \leq_{\chi, \chi}^{x} M_{R}^{\alpha(*)} \Leftrightarrow \alpha R \beta
$$

Thus we prove first for the case $(\forall \alpha, \beta)\left[\alpha R \beta \Rightarrow \beta=\beta_{t}\right]$ to which ? apply. Then the $\rightarrow \quad$ scite $\{3.13\}$ undefined general case is done applying? and the previous sentence.
$\rightarrow \quad$ scite $\{3.13\}$ undefined
Recall that? does not depend on $A x(C 10)$.
$\rightarrow \quad$ scite\{3.13\} undefined
For 6.8, instead of using $\S 1$ (the original idea) we use the following exercise. We get $\left\langle N_{u}: u \in[\lambda]\right\rangle$ independent 2_{2} by finding many independent realizations of $\operatorname{tp}\left(N_{\{i-j\}}, N_{\{i\}} \cup N_{\{j\}}\right.$.
6.6 Claim. Assume $\chi_{\mathfrak{s}} \leq \chi<\lambda=\lambda^{\chi}, \chi<\theta^{*}$. Assume $M_{1} \leq_{\lambda, \lambda}^{j} M_{2}$ and $\bar{e} \in$ $\chi \geq\left(M_{2}\right)$ and for every $N \leq_{5} M_{1}$ of cardinality $\leq 2^{\chi}$ there is $\bar{e}^{\prime} \in{ }^{\ell g(\bar{e})}\left(M_{1}\right)$ realizing $t p_{\mathfrak{s}, \Lambda_{\chi}}(\bar{c}, N)$ such that $M_{2} \models(\exists \bar{x})\left(\varphi\left(\bar{x}, \bar{e}^{\prime}, \bar{c}^{\prime}\right)\right.$.

Then we can find N_{ℓ}^{*} for $\ell=0,1,2,3$ and
(a) $N_{\ell}^{*} \in K$ has cardinality $\leq \lambda$
(b) $N_{0}^{*} \leq_{\chi, \chi}^{\mathrm{nc}} N_{1}^{*} \leq_{\chi, \chi}^{\mathrm{nc}} M_{3}, N_{3}^{*} \leq_{\chi, \chi}^{\mathrm{nc}}$
(c) $N_{0}^{*} \leq_{\chi}^{j}, \chi N_{2}^{*} \leq_{\chi, \chi}^{\mathrm{nc}} N_{3}^{*} \leq_{\chi, \chi}^{\mathrm{nc}} M_{2}$
(d) $N_{2}^{*} \leq_{\chi, \chi}^{j} N_{3}^{*}$
(e) π is an isomorphism from N_{2}^{*} onto N_{1}^{*} over N_{0}^{*}
(f) $\bar{c} \subseteq N_{2}^{*}$
(g) if $N_{0}^{*} \leq_{\mathfrak{s}} N_{1}^{+} \leq_{\mathfrak{s} \times} M_{1}$ and $\left\|N_{1}^{+}\right\| \leq \lambda$ then there is $a \leq_{\mathfrak{s}}$-embedding (or even $\leq_{\mathfrak{s}}$-embedding) \varkappa of N_{2}^{*} into M_{1} over N_{0}^{*} such that:
(α) $\left\{\varkappa\left(N_{2}^{*}\right), N_{2}^{*}, N_{1}^{+}\right\}$is independent over N_{0}^{*} inside M_{3}
(β) $\quad M_{2} \models(\exists \bar{x})(\bar{x}, \kappa(\bar{c}), \bar{e})$.
6.7 Claim. A relative of [Sh 300f, 1.6=1.4tex] but is
(A) price: we assume no $\left(\Lambda_{<*}, \bar{\kappa}\right)$-order so we use, e.g. $\mathfrak{s}_{<\theta^{*},<\theta^{+}}^{\mathrm{nc}}$
(B) in the proof the $N_{\{i, j\}}$ part comes by having $\operatorname{dim}\left(\operatorname{tp}\left(N_{\{i, j\}},\left\langle N_{i} \cup N_{j}\right\rangle_{\mathfrak{C}}^{\mathrm{gn}}\right)\right.$ large
(C) (by first larger submodels then shrink, i.e. using $\leq_{\lambda, \chi}^{\mathrm{nc}}$-submodels (or $\leq_{\lambda, *}^{i}$) so have the stronger result.

Concerning [Sh 300f, 3.17=3.11tex]
6.8 Claim. [Weak symmetry] Suppose $x=j$ and $\mathrm{NF}_{\lambda, \lambda}^{x}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ and $M_{3}=\left\langle M_{1} \cup M_{2}\right\rangle_{M_{3}}^{\mathrm{gn}}$ then $\mathrm{NF}_{\chi, \chi}^{x}\left(M_{0}, M_{2}, M_{1}, M_{3}\right)$ when
(a) $\mathrm{NF}_{\lambda, \lambda}^{j}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$
(b) $\chi_{\mathfrak{s}} \leq \chi<\lambda=\beth_{3}($ chi $)<\theta^{*}$

Proof. Part (A):

Let $\chi_{\ell}=\beth_{\ell}(c h i)$. Assume that the desired conclusion fails hence there is \bar{N} such that $\circledast \bar{N}, \bar{M}$ (Saharon: define) $\left\|N_{\ell}\right\|=\chi_{\ell}$ and there is no $\leq_{\mathfrak{s}}$-embedding f of N_{3} into M_{0} over N_{1} mapping N_{2} into M_{0}. For the other direction there is a mapping so we can apply?.
$\rightarrow \quad$ scite $\{\mathrm{f} 3.9 \mathrm{X}\}$ undefined
Part (B): Let \bar{a}_{ℓ} list N_{ℓ} for $\ell \leq 3, \operatorname{Rang}\left(\bar{a}_{\ell}\right) \subseteq \operatorname{Rang}\left(a_{\ell}\right) \subseteq \operatorname{Rang}\left(\bar{a}_{2}\right)$ and $\varphi\left(\bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}, \bar{x}_{0}\right)=\varphi_{N}\left(\bar{x}_{3}, \bar{x}_{2}, \bar{x}_{1}, \bar{x}_{0}\right)$ so $M_{3} \models \varphi_{i}\left(\bar{a}_{3}, \bar{a}_{2}, \bar{a}_{2}, \bar{a}_{0}\right)$.

Let $\bar{N}^{1}=\left\langle N_{\ell}^{1}: \ell \leq 3\right\rangle$ be such that $\circledast \bar{N}^{1}, \bar{M}$ and $N_{\ell} \leq_{\mathfrak{s}} N_{\ell}^{\ell}$ for $\ell \leq 3$ and $N_{\ell}^{1} \subseteq_{\chi, \chi}^{\mathfrak{s}} M_{\ell}$ (or little more).
Part (C):
We use 6.7 instead of ?
$\rightarrow \quad$ scite $\{\mathrm{f} 3.9 \mathrm{X}\}$ undefined

Concerning [\backslash Sh: 300f=3.11tex]
Claim. Suppose $\lambda=i, \chi_{\mathfrak{s}} \leq \chi \leq \lambda=2^{\chi}$ and rm $N F_{\lambda, \chi}^{x}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ and $M_{0} \leq_{\lambda, \lambda}^{x} \leq M_{0}^{*} \leq_{\lambda, \lambda}^{x} M_{1}$ where $M_{0}^{*}=\left\langle M_{0}^{*} \cup M_{2}\right\rangle_{M_{3}}^{\mathrm{gn}}$. Then $\mathrm{NF}_{\chi, \chi}^{x}\left(M_{0}^{*}, M_{1}, M_{2}^{*}, M_{3}\right)$.
[Hint: We try to repeat the proof of?. First, when we apply? there we apply part (1)
$\rightarrow \quad$ scite $\{3.11\}$ undefined
$\rightarrow \quad$ scite $\{3.10\}$ undefined
here so $M_{2}^{*} \leq^{x} M_{3}$. Second, the proof $\mathrm{NF}_{\chi, \chi}^{j}\left(M_{0}^{*}, M_{1}, M_{2}^{*}, M_{3}\right)$ causes no problem.

Lastly, if $\neg \mathrm{NF}_{\chi, \chi}^{j}\left(M_{0}^{*}, M_{2}^{*}, M_{1}, M_{3}\right), f$ then in addition to the asymmetry we have a strange situation: given $\bar{a} \in \chi \geq\left(M_{2}^{*}\right), \bar{c} \in \chi \geq\left(M_{3}\right)$ for some $N_{\ell}(\ell \leq 3), N_{0}^{*}, N_{2}^{*}$, of cardinality $\leq \chi$ all is natural and $\bar{c} \subseteq N_{3}, \bar{a} \subseteq N_{\ell}$ so we can "reflect" N_{3} into M_{2}^{*} over N_{2}^{*}, say for ℓ but not such that $f\left(N_{1}\right) \subseteq M_{0}^{*}$.
(D) Revisiting: failure of $\operatorname{Ax}(\mathrm{A} 4)_{\aleph_{0}}$ implies non-structure.

Hypothesis. \mathfrak{s} is an AxFr_{1}^{-}and $\chi_{\mathfrak{s}}^{*}$ is well defined (or $\chi_{\mathfrak{s}}^{* * ?}$).
Discussion: Below we prefer to investigate AxFr_{1}^{-}, rather than rely on $\mathfrak{s}=\mathfrak{t}^{+}, \mathfrak{t}$ an AxFr.
6.9 Question: Give details to [Sh 300f, $4.5=4 \mathrm{n} .3 .9](2)$, i.e. $\left(<\aleph_{0}\right)$-stable constructions; give details.
6.10 Question: Assume in Definition [Sh 300f, $3.19=3.13$ tex], $t \in I \Rightarrow M_{t} \leq_{\mathfrak{s}(+)} N$ but $\left\langle\bigcup_{t \in I} M_{t}\right\rangle_{N}^{\mathrm{gn}} \not \mathbb{L}_{\mathfrak{s}} N$. Can we get a structure theory? Without loss of generality $|I|$ is minimal. $I=\kappa$, so without loss of generality κ is reular (putting blocks together). But this is $\S 5$, but maybe an easier case.

Was in the end of [Sh 300f, $\S 4]$:

6.11 Claim. If χ and $\bar{N}=\left\langle N_{n}: n<\omega\right\rangle$ are as in [Sh 300f, 4.9=4f.8tex]'s conclusion (about \bar{M}) for the case $\theta=\aleph_{0}$, then for some $\leq_{\mathfrak{s}(+)}$-increasing sequence $\bar{M}=\left\langle M_{n}: n<\omega\right\rangle$ of members of $K_{\chi}^{\mathfrak{s}(+)}$ we have $(\forall \alpha)(*)_{\bar{M}}^{\alpha}$ from [Sh 300f, $4.7=4 f .3 t e x]$ (5).

Remark. Proof copied January 2007 from [Sh 300f, 4.7tex], there is was moved to AP.

Proof. Let χ be as there and choose μ as 2^{χ}. So there is a sequence $\left\langle N_{n}: n<\omega\right\rangle$ be as there for μ and let $N=N_{\omega}:=\cup\left\{N_{n}: n<\omega\right\}$. As $\neg\left(N_{0} \leq_{\mathfrak{s}(+)} N\right)$, that is $\neg\left(N_{0} \leq{ }_{\chi, \chi}^{i} N\right)$ clearly we can find M_{0}, M such that
$(*)_{1}$ (a) $\quad M_{0} \leq_{\mathfrak{s}} M$ are from $K_{\chi}^{\mathfrak{s}}$
(b) $M_{0} \leq_{\mathfrak{s}} N_{0}$ and $M \leq_{\mathfrak{s}} N$
(c) there is no $\leq_{\mathfrak{s}}$-embedding of M into N_{0} over M_{0}.

By [Sh 300c, 3.7,3.8] without loss of generality
$(*)_{n} \quad M_{\eta}:=M \cap N_{n} \leq_{\mathfrak{s}} N_{n}$ for $n<\omega$.
Also
$(*)_{3}$ if $n<\omega$ then there is no $\leq_{\mathfrak{s}}$-embedding of M into N_{n} over M_{0}.
[Why? Because if f is such $\mathrm{a} \leq_{\mathfrak{s}}$-embedding then applying the definition of $M_{0} \leq_{\mu, \chi}^{i}$ M_{n} to the pair of models $\left(M_{0}, f(M)\right.$) getting an $\leq_{\mathfrak{s}}$-embedding g of $f(M)$ into N_{0} over M_{0}, so $g \circ f$ contradicts $(*)_{1}(c)$.]

Let $\bar{M}=\left\langle M_{n}: n<\omega\right\rangle$ and let $g_{n}=\operatorname{id}_{M_{n}}$.
Next
$(*)_{4}$ if $\alpha<\mu^{+}$and $n<\omega$ then $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \mu}\left(g_{n}, N_{n}\right) \geq \alpha$ moreover 1 there is a canonical $\left(\mathfrak{s}, \operatorname{des}_{\mu}(\alpha)\right)$-tree witnessing it (i.e. as in [Sh 300f, 4.7=4f.3](4)).
[Why $(*)_{4}$? We prove this by induction on $\alpha<\mu$ (for all $n<\omega$ simultaneously). For $\alpha=0$ this is trivial. Arriving to α, fix $n<\omega$. We first note that by the induction hypothesis, for every $\beta<\alpha$ we have $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \mu}\left(g_{n+1}, N_{n+1}\right) \geq \beta$ hence by [Sh 300f, 4n.5.4tex] applied to \mathfrak{s} there is a canonical tree $\left\langle N_{n+1, \beta}, N_{\eta}^{n+1, \beta}, f_{\eta}^{n+1}: \eta \in \operatorname{des}(\beta)\right\rangle$ for $\bar{M} \upharpoonright[n+1, \omega)$ such that $f_{<>}^{n+1, \beta}=g_{n+1}$ and $N_{n+1, \beta} \leq_{\mathfrak{s}} M_{n+1}$. Clearly there is $N_{\alpha}^{n+1} \leq_{\mathfrak{s}} N_{n+1}$ of cardinality $\leq \mu$ such that $\cup\left\{N_{n+1, \beta}: \beta<\alpha\right\} \subseteq N_{\alpha}^{n+1}$ (hence $N_{\eta}^{n+1, \beta} \subseteq N$ for $\left.\beta<\alpha, \eta \in \operatorname{des}(\beta)\right)$. As $N_{n} \leq_{\mu, \mu}^{i} N_{n+1}$ there is a $\leq_{\mathfrak{s}}$-embedding $h=h_{n, \alpha}$ of N_{α}^{n+1} into N_{n} over M_{n}.

Now we define $f_{\eta}^{\eta, \alpha}, N_{\eta}^{\eta, \alpha}$ for $\eta \in \operatorname{des}(\alpha)$ as follows $f_{<\gg}^{\eta, \alpha}=g_{n}, N_{<\gg}^{n, \alpha}=M_{n}$ and if $\eta=<\beta>^{\wedge} \nu, \beta<\alpha \cap \nu \in \operatorname{des}(\beta)$ then $f_{\eta}^{n, \alpha}=h \circ f_{\nu}^{n+1, \beta}\left(\right.$ and $N_{\eta}^{n, \alpha}=h\left(N_{\nu}^{n+1, \beta}\right)$. So the "moreover" holds by [Sh 300f, 4.7=4f.3](4) (or directly) we can deduce that $\mathrm{rk}_{\bar{M}}\left(g_{n}, N_{n}\right) \geq \alpha$. So we have carried the induction proving $(*)_{4}$.]

Now by $(*)_{4}$ as $\left\|M_{n}\right\|=\chi$ and $\mu=2^{\chi}=\left(2^{\chi}\right)^{\chi}=\mu^{\chi}$, by [Sh 300f, 4.7=4f.3tex](5) we get $(\forall \alpha \in \operatorname{Ord})\left[(*)_{\bar{\mu}}^{\alpha}\right]$, so we are done.
$\rightarrow \quad$ scite\{f4.3A\} undefined

Remark. Saharon: $6.12+$? were copied from [Sh 300f], the question is: can we $\rightarrow \quad$ scite\{4f.6\} undefined prove them in weak framework rather than prove it in \mathfrak{s}^{+}there, i.e.

[^0]6.12 Claim. Assume $\chi_{\mathfrak{s}}^{*}$ is well defined and $A x(A 6)$ holds (so \mathfrak{s} is μ-based). If $\bar{M}=\left\langle M_{n}: n\langle\omega\rangle\right.$ is $\leq_{\mathfrak{s}}$-increasing, then we can find an independent $(\mathfrak{s}, \operatorname{des}(\alpha))$ tree of models \mathbf{n} for \bar{M} with $N_{\mathbf{n}}=N^{*}$ and $f_{<>}^{\mathbf{n}}=f$ (hence by ? (2) $=$ [Sh 300f, $\rightarrow \quad$ scite\{f4.3\} undefined 4f.3](2)) a related canonical tree in fact $\left.\left\langle\bigcup_{\eta} N_{\eta}^{\mathbf{n}}\right\rangle_{N^{*}}^{\mathrm{gn}} \leq_{\mathfrak{s}} N^{*}\right)$ provided that
*) (a) $\bar{M}=\left\langle M_{n}: n<\omega\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing
(b) $\lambda>\chi \geq \chi_{\mathfrak{s}}^{*}+\Sigma\left\{\left\|M_{n}\right\|: n<\omega\right\}$
(c) $N^{+} \in K_{\mathfrak{s}}$
(d) f is $a \leq_{\mathfrak{s}}$-embedding of M_{0} into N^{*}
(e) $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \lambda}\left(f, N^{*} ; \mathfrak{s}\right) \geq \alpha$
(f) α is an ordinal $<\lambda^{+}$.

Proof. Let $\left\langle\eta_{\gamma}: \gamma<\gamma(*) \leq \lambda\right\rangle$ list $\operatorname{des}(\alpha)$ such that $\eta_{\gamma_{1}} \triangleleft \eta_{\gamma_{2}} \Rightarrow \gamma_{1}<\gamma_{2}$. Now we choose $\left\langle M_{\gamma}^{*}, f_{\eta_{\gamma}}\right)$ by induction on $\gamma<\gamma(*)$ such that
$(*)_{1}$ (a) $\quad M_{\gamma}^{*} \leq_{\mathfrak{s}} N^{*}$ is $\leq_{\mathfrak{s}}$-increasing continuous
(b) $\left\|M_{\gamma}^{*}\right\| \leq \chi+|\gamma|$
(c) $f_{\eta_{\gamma}}$ is a $\leq_{\mathfrak{s}}$-embedding of $M_{\ell g\left(\eta_{\gamma}\right)}$ into N^{*}
(d) if $\beta<\gamma$ then $\operatorname{Rang}\left(f_{\eta_{\gamma}}\right) \subseteq M_{\gamma}^{*}$
(e) if $\eta_{\beta} \triangleleft \eta_{\beta}$ then $f_{\eta_{\gamma}} \subseteq f_{\eta_{\beta}}$
(f) $f_{<\gg}=f$
$(g) \quad$ if $\gamma=\beta+1$ and $\eta_{\beta}=\eta_{\beta_{1}}{ }^{\wedge}\langle\varepsilon\rangle$ then $\mathrm{NF}_{\mathfrak{s}}\left(f_{\eta_{\beta_{1}}}\left(M_{\ell g\left(\eta_{\beta_{1}}\right)}\right), M_{\beta}^{*}, f_{\eta_{\beta}}\left(M_{\ell g\left(\eta_{\beta}\right)}, N^{*}\right)\right.$
(h) if $\gamma=\beta+1, \eta_{\beta}=\eta_{\beta}{ }^{\wedge}\langle\varepsilon\rangle$ then $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \lambda}\left(f_{\eta_{\beta}}, N^{*}\right) \geq \varepsilon$.

For $\gamma=0$ let $f_{\eta_{\gamma}}=f$ and $M_{0}^{*}=f_{\eta_{0}}\left(M_{0}\right)$. For γ limit use $\operatorname{Ax}(\mathrm{A} 6)$. The main point is to choose f_{γ} when $\eta_{\gamma}=\eta_{\beta}{ }^{\wedge}\langle\varepsilon\rangle$ and $\gamma=\beta+1$ and so M_{γ}^{*}, $f_{\eta_{\beta}}$ have already been chosen. Clearly $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \lambda}\left(f_{\eta_{\beta}}, N^{*}\right)>\varepsilon$ hence we can find a sequence $\bar{f}=\left\langle f_{\eta_{\gamma}, \zeta}: \zeta<\lambda\right\rangle$ such that
$(*)_{2}$ (a) $\quad f_{\eta_{\gamma}, \zeta}$ is a $\leq_{\mathfrak{s}}$-embedding of M_{n+1} into N^{*}
(b) $f_{\eta_{\gamma}, \zeta}$ extends $f_{\eta_{\beta}}$ and $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \lambda}\left(f_{\eta_{\gamma}, \zeta}, N^{*}\right) \geq \varepsilon$
(c) $\left\langle f_{\eta_{\gamma}, \zeta}\left(M_{n+1}\right): \zeta<\lambda\right\rangle$ is independent over $f_{\eta_{\beta}}\left(M_{n}\right)$ inside N^{*}.

Hence it suffices to find one $\zeta<\lambda$ such that $\mathrm{NF}_{\mathfrak{s}}\left(f_{\eta_{\beta}}\left(M_{\ell g\left(\eta_{\beta}\right)}, M_{\gamma}^{*}, f_{\eta_{\gamma}, \zeta}\left(M_{\ell g\left(\eta_{\beta}\right)+1}\right), N^{*}\right)\right.$ and let $f_{\eta_{\gamma}}=f_{\eta_{\gamma}, \zeta}$. Such ζ exists by " \mathfrak{s} is $(\chi+|\gamma|)$-based.
6.13 Claim. Assume \mathfrak{s} satisfies $A x(A 6)^{+}$and $\chi_{\mathfrak{s}}^{*}$ is well defined, θ regular and Ax (A4) ${ }_{\theta}^{*}$ fails.

Then
(a) $\theta<\operatorname{cf}\left(\chi_{\mathfrak{s}}^{*}\right)$
(b) [possibly decrease θ ?] failure is exemplified by models of cardinality $\leq 2^{\chi_{s}^{*}}$, i.e. there is an $\leq_{\mathfrak{s}}$-increasing continuous sequence $\left\langle M_{i}: i<\theta\right\rangle$ of members of $K_{\mathfrak{s}}$ of cardinality $\leq 2^{\chi_{\mathfrak{s}}^{*}}$ such that $i<\theta \Rightarrow M_{i} \not \mathbb{Z}_{\mathfrak{s}} M_{\theta}$ where $M_{\theta}:=$ $\cup\left\{M_{i}: i<\theta\right\}$.

Proof. Let $\mu=2^{\chi_{\mathfrak{s}}^{*}}$ by the definition of $\chi_{\mathfrak{s}}^{*}$ necessarily $\theta<\operatorname{cf}\left(\chi_{\mathfrak{s}}^{*}\right)$. Now without loss of generality θ is minimal. Choose as counter example $\left\langle M_{i}: i<\theta\right\rangle^{\wedge}\left\langle M_{\theta}\right\rangle$ to $\operatorname{Ax}(\mathrm{A} 4)_{\theta}^{*}$ with minimal $\lambda=\Sigma\left\{\left\|M_{i}\right\|: i<\theta\right\}$. If $\lambda \leq \mu$ then we are done.

So assume $\lambda>\mu$. For $i<\theta$ let $\left\{a_{\alpha, i}: i<\lambda\right\}$ list the members of M_{i}. We choose by induction on $\alpha<\lambda, n<\omega$ for every $u \in[\lambda]^{n}$ a sequence $\left\langle M_{u, i}: i<\theta\right\rangle$ such that:
$\circledast(a) \quad M_{u, i} \leq_{\mathfrak{s}} M_{i}$
(b) $\left\|M_{u, i}\right\| \leq \mu$
(c) $\quad M_{u, i}$ include $\cup\left\{M_{v, j}: v \subset u^{\wedge} j \leq i\right.$ or $\left.v=u \wedge j<i\right\} \cup\left\{a_{\beta, i}: \beta \in u\right\}$.

By the definition of $\chi_{\mathfrak{s}}^{*}$ clearly \mathfrak{s} satisfies LSP_{μ} hence we can carry the definition.
It is also clear that $u_{1} \subseteq u_{2} \in[\lambda]<\aleph_{0} \wedge i_{1} \leq i_{2} \Rightarrow M_{u_{1}, i_{1}} \leq_{\mathfrak{s}} M_{u_{2}, i_{2}}$. Let $M_{u, \theta}=\cup\left\{M_{u, i}: i<\theta\right\}$. As λ is minimal clearly $u \in[\lambda]<\aleph_{0} \wedge i<\theta \Rightarrow M_{u, i} \leq_{\mathfrak{s}} M_{u, \theta}$ (so $M_{u, \theta} \in K_{\mathfrak{s}}$).

Now for $u \subset v \in[\lambda]^{<\aleph_{0}}$ by $\operatorname{Ax}(\mathrm{A} 4)_{\geq \chi_{s}^{*}}^{*}$ applied to $\left\langle M_{u, i}: u \in[\lambda]^{<\aleph_{0}}, i<\theta\right\rangle, M_{\theta}$ we get that $M_{u, i} \leq_{\mathfrak{s}} M_{\theta}$ so $M_{\theta} \in K_{\mathfrak{s}}$. By $\operatorname{Ax}(\mathrm{A} 6)^{+}$applied to $\left\langle M_{u, i}: u \in[\lambda]^{<\aleph_{0}}\right\rangle$ and M_{θ} we get $\cup\left\{M_{u, i}: u \in[\lambda]^{<\aleph_{0}}\right\} \leq_{\mathfrak{s}} M_{\theta}$, i.e. $M_{i} \leq_{\mathfrak{s}} M_{\theta}$.
6.14 Claim. If χ and $\bar{N}=\left\langle N_{n}: n\langle\omega\rangle\right.$ are as in?'s (or see [Sh 300f, §4])
scite\{f4.5.3\} undefined
 $n<\omega\rangle$ of members of $K_{\chi}^{\mathfrak{s}(+)}$ we have $(\forall \alpha)(*)_{M}^{\alpha}$ from [Sh 300f, 4.7=4f.3tex](5). But the proof repeats?!
$\rightarrow \quad$ scite $\{4.3 A\}$ undefined

Remark. The proof repeats ??
$\rightarrow \quad$ scite\{f4.3A\} undefined

Proof. Let χ be as there and choose μ as 2^{χ}. So there is a sequence $\left\langle N_{n}: n<\omega\right\rangle$ be as there for μ and let $N=N_{\omega}:=\cup\left\{N_{n}: n<\omega\right\}$. As $\neg\left(N_{0} \leq_{\mathfrak{s}(+)} N\right)$, that is $\neg\left(N_{0} \leq_{\chi, \chi}^{i} N\right)$ clearly we can find M_{0}, M such that
$(*)_{1}(a) \quad M_{0} \leq_{\mathfrak{s}} M$ are from $K_{\chi}^{\mathfrak{s}}$
(b) $\quad M_{0} \leq_{\mathfrak{s}} N_{0}$ and $M \leq_{\mathfrak{s}} N$
(c) there is no $\leq_{\mathfrak{s}}$-embedding of M into N_{0} over M_{0}.

By [Sh 300c, 3.7,3.8] without loss of generality

$$
(*)_{n} \quad M_{\eta}:=M \cap N_{n} \leq_{\mathfrak{s}} N_{n} \text { for } n<\omega .
$$

Also
$(*)_{3}$ if $n<\omega$ then there is no $\leq_{\mathfrak{s}}$-embedding of M into N_{n} over M_{0}.
[Why? Because if f is such a $\leq_{\mathfrak{s}}$-embedding then applying the definition of $M_{0} \leq_{\mu, \chi}^{i}$ M_{n} to the pair of models $\left(M_{0}, f(M)\right)$ getting an $\leq_{\mathfrak{s}}$-embedding g of $f(M)$ into N_{0} over M_{0}, so $g \circ f$ contradicts $(*)_{1}(c)$.]

Let $\bar{M}=\left\langle M_{n}: n<\omega\right\rangle$ and let $g_{n}=\operatorname{id}_{M_{n}}$.
Next
$(*)_{4}$ if $\alpha<\mu^{+}$and $n<\omega$ then $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \mu}\left(g_{n}, N_{n}\right) \geq \alpha$ moreover ${ }^{2}$ there is a canonical $\left(\mathfrak{s}, \operatorname{des}_{\mu}(\alpha)\right)$-tree witnessing it (i.e. as in [Sh 300f, $\left.\left.4.7=4 \mathrm{f} .3 \mathrm{tex}\right](4)\right)$.
[Why $(*)_{4}$? We prove this by induction on $\alpha<\mu$ (for all $n<\omega$ simultaneously). For $\alpha=0$ this is trivial. Arriving to α, fix $n<\omega$. We first note that by the induction hypothesis, for every $\beta<\alpha$ we have $\operatorname{rk}_{\bar{M}}^{\mathrm{emb}, \mu}\left(g_{n+1}, N_{n+1}\right) \geq \beta$ hence by 6.12 applied to \mathfrak{s} there is a canonical tree $\left\langle N_{n+1, \beta}, N_{\eta}^{n+1, \beta}, f_{\eta}^{n+1}: \eta \in \operatorname{des}(\beta)\right\rangle$ for $\bar{M} \upharpoonright[n+1, \omega)$ such that $f_{<>}^{n+1, \beta}=g_{n+1}$ and $N_{n+1, \beta} \leq_{\mathfrak{s}} M_{n+1}$. Clearly there is $N_{\alpha}^{n+1} \leq_{\mathfrak{s}} N_{n+1}$ of cardinality $\leq \mu$ such that $\cup\left\{N_{n+1, \beta}: \beta<\alpha\right\} \subseteq N_{\alpha}^{n+1}$ (hence $N_{\eta}^{n+1, \beta} \subseteq N$ for $\left.\beta<\alpha, \eta \in \operatorname{des}(\beta)\right)$. As $N_{n} \leq_{\mu, \mu}^{i} N_{n+1}$ there is a $\leq_{\mathfrak{s}}$-embedding $h=h_{n, \alpha}$ of N_{α}^{n+1} into N_{n} over M_{n}.

Now we define $f_{\eta}^{\eta, \alpha}, N_{\eta}^{\eta, \alpha}$ for $\eta \in \operatorname{des}(\alpha)$ as follows $f_{<\gg}^{\eta, \alpha}=g_{n}, N_{<\gg}^{n, \alpha}=M_{n}$ and if $\eta=<\beta>^{\wedge} \nu, \beta<\alpha \cap \nu \in \operatorname{des}(\beta)$ then $f_{\eta}^{n, \alpha}=h \circ f_{\nu}^{n+1, \beta}\left(\right.$ and $N_{\eta}^{n, \alpha}=h\left(N_{\nu}^{n+1, \beta}\right)$. So the "moreover" holds by [Sh 300f, 4.3tex](4) (or directly) we can deduce that $\mathrm{rk}_{\bar{M}}\left(g_{n}, N_{n}\right) \geq \alpha$. So we have carried the induction proving $(*)_{4}$.]

Now by $(*)_{4}$ as $\left\|M_{n}\right\|=\chi$ and $\mu=2^{\chi}=\left(2^{\chi}\right)^{\chi}=\mu^{\chi}$, by [Sh 300f, 4.3tex](5) we get $(\forall \alpha \in \operatorname{Ord})\left[(*)_{\bar{\mu}}^{\alpha}\right]$, so we are done.

[^1]
End copying!

(E) Failure of $\operatorname{Ax}(\mathrm{A} 4)_{\theta}$ implies non-structure We now pay a Debt from [Sh 300f, §5]:

Giving details to the proof of [Sh 300f, 5.12=5f.5.29].

6.15 Hypothesis. \mathfrak{s} satisfies AxFr_{1}^{-}.

We define $\mu_{\theta}(\mathfrak{s}), \theta(\mathfrak{s})$ as in [Sh 300f, $\left.5.2=5.1 \mathrm{tex}\right]$ and $\mathbf{T}_{\theta} \leq_{\mathbf{T}_{\theta}}, \mathbf{T}_{\theta}^{\mathrm{nc}}, \mathbf{T}_{\theta}^{\gamma}$, see $[\mathrm{Sh}$ $300 f, 5.4-5.9=5 f .0-5 f .3 .7]$.

We can define $\mathbf{N}_{\theta}, \leq_{\mathbf{N}_{\theta}}$ as there, which rely on the choice of $\left\langle M_{\varepsilon}^{*}: \varepsilon<\theta\right\rangle$, a counterexample to $\operatorname{Ax}(\mathrm{A} 4)_{\theta}^{*}$. But what we prove here does not depend on this, so we prefer
6.16 Definition. [Revise!] 1) \mathbf{T}_{θ} is the class $\mathscr{T}=(\mathscr{T},<)$ which satisfies:
(a) $(\mathscr{T},<)$ is a partial order with a minimal element
(b) $(\mathscr{T},<)$ is a normal well founded tree, that is: for every $t \in \mathscr{T}, \mathscr{T}_{<t}=\{s$: $\left.s<_{I} t\right\}$ is well ordered (so in particular linearly ordered) and if it has no last element then x is its unique least upper bound in \mathscr{T}.
(c) For $t \in \mathscr{T}, \operatorname{otp}\left\{s: s<_{I} t\right\}$ is $<\theta$ and we call it $\operatorname{lev} \mathscr{T}(x)$ moreover
(d) there is $<_{T}$-increasing sequence of length θ of members of \mathscr{T}.
2) $\mathscr{T}_{1} \leq \mathbf{T}_{\theta} T_{2}$ (or T_{2} extends \mathscr{T}_{1}) when $\mathscr{T}_{1} \subseteq \mathscr{T}_{2}$ are from \mathbf{T}_{θ} and $s<\mathscr{T}_{2} t \in \mathscr{T}_{1} \Rightarrow$ $s \in T_{1}$.
3) $\mathscr{T}_{1} \leq_{\mathbf{T}_{\theta}}^{c \ell} \mathscr{T}_{2}$ or when $\mathscr{T}_{1} \leq \mathbf{T}_{\theta} \mathscr{T}_{2}$ and if $t \in \mathscr{T}_{2}$ and $\operatorname{lev}_{I_{2}}(t)$ is a limit ordinal then $(\forall s)\left(s<_{I_{2}} t \rightarrow s \in T_{1}\right) \Rightarrow t \in I_{1}$.
6.17 Observation. [(1) copied [Sh 300f, 5f.4.8]] 1) $\leq_{\mathbf{N}_{\theta}^{\mathrm{gn}}}$ partially ordered $\mathbf{N}_{\theta}^{\mathrm{gn}}$.
2) Assume $\left\{M_{t}: t \in I\right\}$ is locally independent over M inside N. If we let $N^{\prime}:=$ $\cup\left\{\left\langle\bigcup_{t \in J} M_{t}\right\rangle_{N}^{\mathrm{gn}}: J \subseteq I\right.$ is finite $\}$ then $M, N^{\prime},\left\langle M_{t}: t \in I\right\rangle$ are as in Definition [Sh $300 f, 3 \cdot 20=3.13$ Atex].
6.18 Claim. 1) If $\mathscr{T} \in \mathbf{T}_{\theta}^{\mathrm{nc}}$ then there is a canonical \mathscr{T}-tree \mathbf{n} of models. Moreover, it is unique, i.e. if $\mathbf{n}_{1}, \mathbf{n}_{2}$ are \mathscr{T}-trees of models then there is an isomorphism f from $N_{\mathbf{n}_{1}}$ onto $N_{\mathbf{n}_{2}}$ such that $\eta \in \mathscr{T} \Rightarrow f \circ f_{\eta}^{\mathbf{n}_{1}}=f_{\eta}^{\mathbf{n}_{2}}$.
2) If $\mathscr{T}_{1} \leq \mathbf{T}_{\theta} \mathscr{T}_{2} \in \mathscr{T}_{\theta}^{\mathrm{nc}}$ and \mathbf{m} is a \mathscr{T}_{1}-tree of models then there is $\mathbf{n} \in \mathbf{N}_{\theta}$ such that $\mathbf{m} \leq \mathbf{N}_{\theta} \mathbf{n}$. Moreover, \mathbf{n} is unique, i.e. if \mathbf{n}_{ℓ} are \mathscr{T}_{ℓ}-trees of models and $\mathbf{m} \leq \mathbf{n}_{\ell}$
for $\ell=1,2$ then there is an isomorphism f from $N_{\mathbf{n}_{1}}$ onto $N_{\mathbf{n}_{2}}$ over $N_{\mathbf{m}}$ such that $\eta \in \mathscr{T} \Rightarrow f \circ f_{\eta}^{\mathbf{n}_{1}}=f^{\mathbf{n}_{2}}$.

Remark. This just copies [Sh 300f, 5f.5.7tex].
6.19 Claim. (Copied from [Sh 300f, 5f.5.29])

Assume that $\mathscr{T}_{*} \in \mathbf{T}_{\theta}^{\mathrm{nc}}$ and \mathbf{n}_{*} is a canonical \mathscr{T}_{*}-tree of models for \bar{M}.

1) If $\mathscr{T} \leq \mathbf{T}_{\theta} \mathscr{T}_{*}$ then for some canonical \mathscr{T}-tree \mathbf{n} we have $\mathbf{n}_{*} \leq_{\mathbf{N}_{\theta}} \mathbf{n}$.
2) In part (1), \mathbf{n} is unique and $N_{\mathbf{n}}=\left\langle\cup\left\{N_{\eta}^{\mathbf{n}_{*}}: \eta \in \mathscr{T}\right\}\right\rangle_{N_{\mathbf{n}_{*}}}^{\mathrm{gn}}$.
3) Assume $\mathscr{T}_{\ell} \leq \mathbf{T}_{\theta} \mathscr{T}_{*}$ for $\ell=0,1,2$ and $\mathscr{T}_{1} \cap \mathscr{T}_{2}=\mathscr{T}_{0}$ and $\mathbf{n}_{\ell} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{*}$ is a canonical \mathscr{T}_{ℓ}-tree for $\ell=0,1,2$. Then $\mathrm{NF}_{\mathfrak{s}}\left(N_{\mathbf{n}_{0}}, N_{\mathbf{n}_{1}}, N_{\mathbf{n}_{1}}, N_{\mathbf{n}_{*}}\right)$ and $\mathscr{T}_{1} \cup \mathscr{T}_{2}=$ $\mathscr{T} \Rightarrow N_{\mathbf{n}_{*}}=\left\langle N_{\mathbf{n}_{1}} \cup N_{\mathbf{n}_{2}}\right\rangle_{N_{\mathbf{n}_{*}}}^{\mathrm{gn}}$.
4) If $\left\langle\mathscr{T}_{\varepsilon}: \varepsilon \leq \alpha\right\rangle$ is $\leq \mathbf{T}_{\theta}$-increasing continuous and $\mathscr{T}_{\alpha} \leq \mathbf{T}_{\theta} \mathscr{T}_{*}$ and $\varepsilon \leq \alpha \Rightarrow \mathbf{n}_{\varepsilon}=$ $\mathbf{n} \upharpoonright \mathscr{T}_{\varepsilon}$ then $\left\langle\mathbf{n}_{\varepsilon}: \varepsilon \leq \alpha\right\rangle$ is $\leq_{\mathbf{N}_{\theta}}$-continuous.
5) If $A \subseteq \mathscr{T}_{*}$ is a maximal set of pairwise $<\mathscr{T}_{*}$-incomparable members of \mathscr{T}_{*} and $\mathbf{n}=\mathbf{n}_{*} \upharpoonright\left(\mathscr{T}_{*}\right)_{\leq A}$ and $\mathbf{n}_{\eta}:=\mathbf{n}_{*} \upharpoonright\left(T^{[\eta]} \cup\left(\mathscr{T}_{*}\right)_{\leq A}\right)$ for $\eta \in A$ then $\left\langle N_{\mathbf{n}_{\eta}}: \eta \in A\right\rangle$ is independent in $N_{\mathbf{n}_{*}}$.

Remark. This copies [Sh 300f, 5f.5.29tex]. Recheck the proof.

Proof. We prove by induction on the ordinal γ that all parts of 6.18 holds when $6.18 \mathscr{T}, \mathscr{T}_{\ell} \in \mathbf{T}_{\theta}^{\leq \gamma}$ and all parts of ? hold when $\mathscr{T}_{*} \in \mathbf{T}_{\theta}^{\gamma}$.
$\rightarrow \quad$ scite\{f5.5.29\} undefined
Case 1: $\gamma=0$.
This is trivial as:
\circledast if $\mathscr{T}_{1}, \mathscr{T}_{2} \leq_{\mathbf{T}_{\theta}} \mathscr{T}_{*}$ then $\mathscr{T}_{1} \leq_{\mathbf{T}_{\theta}} T_{2}$ or $\mathscr{T}_{2} \leq_{\mathbf{T}_{\theta}} \mathscr{T}_{1}$.
Case 2: γ a limit ordinal.
Nothing to prove.
Case 3:
For $\eta \in A_{*}$ we let $\mathscr{T}_{\eta}^{*}=\mathscr{T}_{*}^{[\eta]} \cup\left(\mathscr{T}_{*}\right)_{\leq A}$ then by the choice of $A_{*}, \mathscr{T}_{\eta}^{*} \in \mathbf{T}_{\theta}^{<\partial}$ and there is a canonical \mathscr{T}_{η}^{*}-tree \mathbf{n}_{η} of models and a canonical $\left(\mathscr{T}_{*}\right)_{\leq A}$-tree \mathbf{n}_{\emptyset} of models such that $\mathbf{n}_{\emptyset} \leq \mathbf{N}_{\theta} \mathbf{n}_{\eta} \leq \mathbf{N}_{\theta} \mathbf{n}_{*}$ for $\eta \in A_{*}$ and $\left\langle N_{\mathbf{n}_{\eta}}: \eta \in A\right\rangle$ is independent over $N_{\mathbf{n}_{\emptyset}}$ in $N_{\mathbf{n}_{*}}$ and $N_{\mathbf{n}_{*}}=\left\langle\cup\left\{N_{\mathbf{n}_{\eta}}: \eta \in A_{*}\right\} \cup N_{\mathbf{n}_{\varnothing}}\right)_{N_{\mathbf{n}_{*}}}^{\text {gn }}$.

Now we prove each of the parts:

Part (1) of ?:

Without loss of generality assume $\mathscr{T} \leq_{\mathbf{T}_{\theta}} \mathscr{T}_{*}$ and let $\mathscr{T}_{\emptyset}^{\prime}=\mathscr{T} \cap\left(\mathscr{T}_{*}\right)_{\leq A}$ and $\mathscr{T}_{\eta}^{\prime}=\mathscr{T} \cap \mathscr{T}_{\eta}^{*}$ and $\mathscr{T}_{\eta}^{\prime \prime}=\mathscr{T}_{\eta}^{\prime} \cup \mathscr{T}$.

As $\mathscr{T}_{\emptyset}^{\prime} \in \mathbf{T}_{\theta}^{<\gamma}$ by the induction hypothesis there is a unique $\mathbf{n}_{\emptyset}^{\prime}=\mathbf{n}_{\emptyset} \upharpoonright \mathscr{T}_{\emptyset}^{\prime}$ so $\mathbf{n}_{\emptyset}^{\prime} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{\emptyset}$ such that $\mathscr{T}_{\mathbf{n}_{\emptyset}^{\prime}}=\mathscr{T}_{\emptyset}^{\prime}$.

As $\mathscr{T}_{\varepsilon}=\mathbf{T}_{\varepsilon}^{*} \in \mathbf{T}_{\theta}^{<\gamma}$ by the induction hypothesis also $\mathbf{n}_{\varepsilon}^{\prime}=\mathbf{n}_{\varepsilon} \upharpoonright \mathscr{T}_{\varepsilon}^{\prime}, \mathbf{n}_{\varepsilon}^{\prime \prime} \upharpoonright \mathscr{T}_{\varepsilon}^{\prime \prime}$ are well defined as in $\mathscr{T}_{\varepsilon}^{\prime} \cap \mathscr{T}_{\emptyset}^{\prime}$ it follows that $\mathrm{NF}_{\mathfrak{s}}\left(N_{\mathbf{n}_{\emptyset}^{\prime}}, N_{\mathbf{n}_{\emptyset}}, N_{\mathbf{n}_{\varepsilon}^{\prime}}, N_{\mathbf{n}_{\varepsilon}^{\prime \prime}}\right)$ holds.

By $\operatorname{Ax}(\mathrm{C} 2)^{+}$we know that there is $N^{* *} \leq_{\mathfrak{s}} N_{\mathbf{n}_{*}}$ such that $N^{* *}=\left\langle\cup\left\{N_{\mathbf{n}_{\eta}^{\prime \prime}}^{\prime}\right.\right.$: $\left.\left.\eta \in A_{*}\right\}\right\rangle_{N_{\mathbf{n}_{*}}}^{\mathrm{gn}}$ and $\left\langle N_{\mathbf{n}_{\eta}^{\prime \prime}}: \eta \in A_{*}\right\rangle$ is independent over $N_{\mathbf{n}_{\emptyset}}$ inside $N^{\prime \prime}$ so $\mathbf{n}^{\prime \prime \prime}=$ $\mathbf{n} \upharpoonright\left(\cup\left\{\mathbf{T}_{\eta}^{\prime \prime *}: \eta \in A_{*}\right\}\right)$ is well defined. Easily $\left.\left\langle N_{\mid b o l d n_{\eta}^{\prime}}: \eta \in A_{*}\right\}\right\rangle^{\wedge}\left\langle N_{\mathbf{n}_{\varnothing}}\right\rangle$ is independent over $N_{\mathbf{n}_{\varnothing}^{\prime}}$ inside $N^{\prime \prime}$ and $n^{\prime \prime}=\left\langle\cup\left\{N_{\eta_{\eta}^{\prime}}: \eta \in A_{*}^{\eta}\right\} \cup\left\{N_{\mathbf{n}_{\varnothing}}\right\}\right\rangle_{N^{\prime \prime}}^{g n}$. So again by $\operatorname{Ax}(\mathrm{C} 2)^{-}$there is $N^{\prime} \leq N^{\prime \prime}=N_{\mathbf{n}^{\prime \prime}}$ such that $N^{\prime}=\left\langle\cup\left\{N_{\mathbf{n}_{n}^{\prime}}: \eta \in A_{*}\right\}\right\rangle_{N^{\prime}}^{\mathrm{gn}}$ and so $\mathbf{n}^{\prime}=\mathbf{n}_{*} \upharpoonright\left(\cup\left\{\mathscr{T}_{\eta}^{\prime}: \eta \in A_{*}\right\}\right)$ is well defined and $N_{\mathbf{n}^{\prime}}=N^{\prime}$, but $\mathscr{T}=\cup\left\{\mathscr{T}_{\eta}^{\prime}: \eta \in A_{*}\right\}$, as A_{*} is non-empty so we are done proving part (1) in Case 3.

Part (2):
As $\left|N_{\mathbf{n}}\right|$ is necessarily $\left.\left\langle\cup\left\{N_{\eta}^{\mathbf{n}_{*}}: \eta \in \mathscr{T}\right\rangle\right)\right)_{N_{\mathbf{n}}}^{\mathrm{gn}}$.
Part (3):
$(*)_{1}$ without loss of generality $\left(\mathscr{T}_{*}\right)_{\leq A_{*}} \cup \mathscr{T}_{1} \cup \mathscr{T}_{2}=\mathscr{T}_{*}$.
[Why? By part (1).]
$(*)_{2}$ without loss of generality $\mathscr{T}_{1} \cup \mathscr{T}_{2}=\mathscr{T}_{*}$.
[Why? As in the proof of part (1).]
$(*)_{3}$ if $\left(\mathscr{T}_{*}\right)_{\leq A}=\mathscr{T}_{0}$ the conclusion holds.
[Why? Let $\mathscr{T}_{\eta}^{\ell}=\mathscr{T}_{\ell} \cap \mathscr{T}_{\eta}^{*}$ for $\eta \in A_{*}$ for $\ell=1,2$. So $\mathbf{n}_{\eta}^{\ell}=\mathbf{n}_{*} \upharpoonright \mathscr{T}_{\eta}^{\ell}$ is well defined and we apply $\operatorname{Ax}(\mathrm{C} 2)^{+}(\alpha)$ to $\left\{N_{\mathbf{n}_{\eta}^{\ell}}:(\eta, \ell) \in A_{*} \times\{1,2\}\right.$ over $N_{\mathbf{n}_{\emptyset}}$ inside $\left.N_{\mathbf{n}_{*}}.\right]$
$(*)_{4}$ without loss of generality $\mathscr{T}_{0} \subseteq \mathscr{T}_{\emptyset}$.
[Why?]
$(*)_{5}$ without loss of generality $\mathscr{T}_{0}=\mathscr{T}_{\emptyset}$.
[Why? We change the "heart" to be \mathscr{T}_{0}.]
Together we are done.
Part (4):
Version 1: First deal $A \backslash(\mathscr{T})_{\leq A}$.

So without loss of generality $A \subseteq\left(\mathscr{T}_{*}\right)_{\leq A}$ and easy.
Version 2: Let $\left.\mathbf{n}_{\eta}^{\prime}=\mathbf{n} \upharpoonright\left(\mathscr{T}^{[\eta]} \operatorname{cup}\left(\mathscr{T}_{*}\right)_{\leq A}\right)\right), \mathbf{n}_{\emptyset}^{\prime}=\mathbf{n} \upharpoonright\left(\mathscr{T}_{*}\right)_{\leq A}$.
It is enough to prove that
$(*)$ for any $n<\omega$ and distinct $\eta_{0}, \ldots, \eta_{n-1} \in A$, the sequence $\left\langle N_{\mathbf{n}_{n_{\ell}}^{\prime}}: \ell<n\right\rangle$ is independent over $N_{\mathbf{n}^{\prime}}$.

But (*) can be proved easily by part (3) (compare with case ?).
Part (5):
Add \mathscr{T} to $\mathbf{T}_{\mathbf{n}_{\varepsilon}}$, etc. See Case 4.
Part (1), (2) of 6.18:
Straight.
Case 4: $\alpha=\beta+1, \beta$ a limit ordinal so $\operatorname{cf}(\delta)<\theta$; so without loss of generality $\delta<\theta$.
Let $\mathbf{n}_{\varepsilon}^{*}=\mathbf{n}_{\varepsilon} \upharpoonright \mathscr{T}_{\varepsilon}$ for $\varepsilon<\delta$.
Part (1):
If $\mathscr{T} \subseteq \mathbf{T}_{\varepsilon}$ for some $\varepsilon<\delta$ this is obvious. In general, let $\mathscr{T}_{\varepsilon}^{\prime}=\mathscr{T} \cap \mathscr{T}_{0}$, so $\mathbf{n}_{\varepsilon}^{\prime}=\mathbf{n}_{*} \upharpoonright \mathscr{T}_{\varepsilon} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{*}$ is well defined and is $\leq_{\mathbf{N}_{\theta}}$-increasing continuous.

Hence by $\operatorname{Ax}(\mathrm{A} 4)_{<\theta}^{*}$ the model $N_{\delta}^{\prime}=\cup\left\{N_{\mathbf{n}_{\varepsilon}^{\prime}}: \varepsilon<\delta\right\rangle$ belongs to $K_{\mathfrak{s}}$ and $\varepsilon<\delta \Rightarrow$ $N_{\mathbf{n}_{\varepsilon}^{\prime}} \leq_{\mathfrak{s}} N_{\delta}^{\prime}$. Clearly $\left\langle N_{\mathbf{n}_{\varepsilon}}: \varepsilon \leq \delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing continuous, $\left\langle N_{\mathbf{n}_{\varepsilon}^{\prime}}: \varepsilon<\delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing continuous and $\varepsilon<\zeta<\delta \Rightarrow$? and by $\operatorname{Ax}(\mathrm{A} 4)_{<\theta}^{*}$, as $\operatorname{cf}(\delta)<\theta$ also $\left\langle N_{\mathbf{n}_{\varepsilon}^{\prime}}: \varepsilon<\delta\right\rangle^{\wedge}\left\langle N_{\delta}^{\prime}\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing continuous.

Also $\varepsilon<\zeta<\delta \Rightarrow \mathrm{NF}_{\mathfrak{s}}\left(N_{\mathbf{n}_{\varepsilon}^{\prime}}, N_{\mathbf{n}_{\varepsilon}}, N_{\mathbf{n}_{\zeta}^{\prime}}, N_{\mathbf{n}_{\zeta}}\right)$. As $\mathrm{Ax}(\mathrm{A} 4)_{<\theta}^{*}$ holds by [Sh 300b, 1.6=1.4tex] $=\left[\right.$ Sh:F822, 1b.5] we know that $N_{\delta}^{\prime} \leq_{s} N_{\mathbf{n}_{*}}$ and $\varepsilon<\delta \Rightarrow$ $\mathrm{NF}\left(N_{\mathbf{n}_{\varepsilon}^{\prime}}, N_{\mathbf{n}_{\varepsilon}}, N_{\delta}^{\prime}, N_{\mathbf{n}_{\delta}}\right)$.

Clearly we are done.
Part (2):
Should be clear.
Part (3):
By part (1) without loss of generality $\mathscr{T}_{1} \cup \mathscr{T}_{2}=\mathscr{T}_{*}$ and $\mathbf{n}_{\ell}:=\mathbf{n} \upharpoonright \mathbf{T}_{\ell}$ is well defined. For $\ell=0,1,2$ let $\mathscr{T}_{\varepsilon}^{\ell}=\mathscr{T}_{\ell}^{\prime} \cap \mathscr{T}_{\varepsilon}^{*}$ and $\mathbf{n}_{\varepsilon}^{\ell}=\mathbf{n}_{*} \upharpoonright \mathscr{T}_{\varepsilon}^{\ell}$.

As in the proof of part (1) we have $\varepsilon<\zeta \leq \delta \Rightarrow \mathrm{NF}_{\mathfrak{s}}\left(N_{\mathbf{n}_{\varepsilon}^{0}}, N_{\mathbf{n}_{\varepsilon}^{\ell}}, N_{\mathbf{n}_{\varepsilon}^{0}}, N_{\mathbf{n}_{\zeta}^{\ell}}\right)$. For $\varepsilon \leq \zeta \leq \delta$ let $\mathbf{n}_{\varepsilon, z \eta}^{\ell}=\mathbf{n}_{*} \upharpoonright\left(\left(\mathscr{T}_{0} \cap \mathscr{T}_{\zeta}^{*}\right) \cup\left(\mathscr{T}_{\ell} \cap \mathscr{T}_{\varepsilon}^{*}\right)\right)$.

Clearly for $\varepsilon<\zeta \leq \delta$ we have $\mathbf{n}_{\varepsilon, \zeta}^{\ell} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{*}$. Hence by [Sh 300c, 1.7=1.4Atex] $=$ [Sh:F822, 1h.4A] we have $\left\langle N_{\mathbf{n}_{\varepsilon, \delta}^{\ell}}: \varepsilon \leq \delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing continuous.

FILL.

Part (4):

For $\eta \in A$ let $\mathbf{n}_{\emptyset}^{\prime}=\mathbf{n} \upharpoonright\left(\mathscr{T}_{*}\right)_{\leq A}$ and $\mathbf{n}_{\eta}^{\prime}=\mathbf{n}_{*} \upharpoonright \mathscr{\mathscr { F }}_{*}^{[\eta]}$, so $\mathbf{n}_{\emptyset}^{\prime} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{*}$ and $\mathbf{n}_{\eta}^{\prime} \leq \mathbf{n}_{*}$ and $\mathscr{T}_{*}^{[\eta]} \in \mathbf{T}_{\theta}^{\gamma}$. By $\operatorname{Ax}(\mathrm{C} 2)^{+}(\alpha)$ it suffices to prove that:
(*) for every $n<\omega$ and distinct $\eta_{0}, \ldots, \eta_{n-1} \in A,\left\langle N_{\mathbf{n}_{n_{\ell}}^{\prime}}: \ell<n\right\rangle$ is independent over N_{n}.

But this we can prove by induction on n by using part (3).

Part (5):

Let $\left\langle\mathscr{T}_{\varepsilon}: \varepsilon \leq \delta\right\rangle$ be gien (not necessary $\delta<\theta$!). So $\mathbf{n}_{\varepsilon}=\mathbf{n} \upharpoonright \mathscr{T}_{\varepsilon} \leq_{\mathbf{N}_{\theta}} \mathbf{n}_{*}$ is well defined by part (1), so $N_{\mathbf{n}_{\varepsilon}} \leq_{\mathfrak{s}} N_{\mathbf{n}_{*}}$ and clearly by $\operatorname{Ax}(\mathrm{B})\left\langle\mathbf{n}_{\varepsilon}: \varepsilon \leq \delta\right\rangle$ is \subseteq-increasing continuous. Hence it is $\leq_{\mathfrak{s}}$-increasing continuous so we are done.
Part (6), (7):
Should be clear.
$\square_{6.18}, \square_{\mathbf{?}}$
scite\{f5.5.29\} undefined
Case 5: $\alpha=\beta+1, \beta$ odd.
Easy.

Saharon: Also details for [Sh 300f, 5f.7].

§7 On [Sh 300g]

Concerning [Sh 300g, 1.4=1f.4tex]
7.1 Claim. Assume $\mathfrak{s}_{\alpha} \in \mathfrak{S}$ is increasing for $\alpha<\delta$ and we define $\mathfrak{s}_{\delta}=\cup\left\{\mathfrak{s}_{\alpha}: \alpha<\right.$ $\delta\}$ as in [Sh 300g, 1.3=1f.3].

1) \mathfrak{s}_{δ} belongs to \mathfrak{S}.
2) For each of the following axioms, if \mathfrak{s}_{α} satisfies it then so does \mathfrak{s}_{δ} : ($A 4$), $(A 4)_{*},(A 4)_{\theta},(C 3),(C 4),(C 6),(C 7)$.
3) For each of the following sets of axioms, if \mathfrak{s}_{α} satisfies each member of the set then so does \mathfrak{s}_{δ}
(a) (C2) $+\left(C 4\right.$); $\left[\right.$ also (C2) meaning in (C2) we add $\left.M=\left\langle M_{1}^{*} \cup M_{2}^{*}\right\rangle_{M}^{\mathrm{gn}}\right]$
(b) (C5) $+(C 4)$; [also strength (C5) as in [Sh 300c, §1]].

Proof. Fill.

Discussion: Unfortunately in Theorem [Sh 300g, 1.7] we assume "the existence of stationary sets $\subseteq S_{\theta}^{\mu^{+}}$non-reflecting in any $\delta \in S_{<\operatorname{cf}\left(\chi_{s}^{*}\right.}^{\mu^{+}}$".

To avoid this we can try to develop " \mathfrak{s} satisfied $\operatorname{AxFr}_{1}^{-}$and $\chi_{\mathfrak{s}}^{*}$ well defined + $(\mathrm{A} 4)_{*}$
(A) we have stable constructions
(B) we can get non-structure from non-superstability (so it says $\left\langle M_{i}: i \leq\right.$ $\theta+1\rangle, a \in M_{\theta+1} \backslash M_{\theta}$, the type $\operatorname{tp}\left(a, M_{\theta}, M_{\theta+1}\right)$ forks over $\left.M_{i}\right)$ for every $i<\theta$. Have to recheck everything.

REFERENCES.

[Sh:F822] Saharon Shelah. Closure frames revisited.
[Sh 300a] Saharon Shelah. Stability theory for a model. Chapter V (A), in series Studies in Logic, vol. 20, College Publications.
[Sh 300c] Saharon Shelah. Universal Classes: A frame is not smooth or not χ-based. Chapter V (C).
[Sh 300b] Saharon Shelah. Universal Classes: Axiomatic Framework [Sh:h]. Chapter $\mathrm{V}(\mathrm{B})$.
[Sh 300g] Saharon Shelah. Universal Classes: Changing the framework. Chapter V (G).
[Sh 300d] Saharon Shelah. Universal Classes: Non-Forking and Prime Modes. Chapter V (D).
[Sh 300f] Saharon Shelah. Universal Classes: the heart of the matter. Chapter V (F).
[Sh 300e] Saharon Shelah. Universal Classes: Types of finite sequences. Chapter V (E).
[Sh 300] Saharon Shelah. Universal classes. In Classification theory (Chicago, IL, 1985), volume 1292 of Lecture Notes in Mathematics, pages 264-418. Springer, Berlin, 1987. Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.
[Sh:h] Saharon Shelah. Classification Theory for Abstract Elementary Classes, volume 18 of Studies in Logic: Mathematical logic and foundations. College Publications, 2009.

[^0]: ${ }^{1}$ we can waive it here, but use trees as in [Sh 300f, $\left.4.7=4 \mathrm{f} .3\right](4)$; however then we have to apply [Sh 300f, xxx-4n.5.4] proving (*) 4

[^1]: ${ }^{2}$ we can waive it here, but use trees as in [Sh 300f, $\left.4.7=4 \mathrm{f} .3 \mathrm{tex}\right](4)$; however then we have to apply 6.12 proving (*) 4

