No universal in singular

Saharon Shelah ${ }^{1,2}$

Received: 2 August 2019 / Accepted: 30 April 2020 / Published online: 18 June 2020
© Unione Matematica Italiana 2020

Abstract

An old question is whether there is a countable complete first order theory T such that T has a universal model of cardinality $\lambda>\aleph_{0}$ iff $\lambda=2^{<\lambda}>\aleph_{0}$. We solve it here for the class singular cardinals.

Mathematics Subject Classification 03C45 - 03C55

1 Introduction

The following question was asked in $[7, \S 4]$; so is by now quite old.
Question 1.1 Does there exist a countable complete first order T which has a universal model in a cardinal λ iff $\lambda=2^{<\lambda}>\aleph_{0}$?

This essentially says that the existence results of Jonsson (for universal theories with JEP and amalgamation under embeddings) and Morley-Vaught (for complete first order T with elementary embeddings) are best possible. The parallel problem for universal-homogeneous and saturated was answered long ago, in [8, Ch.III]:

Theorem 1.2 For a complete f.o. theory T and cardinal $\lambda>|T|$ the following conditions are equivalent:
(a) the theory T has a saturated model of cardinality λ
(b) $\lambda^{<\lambda}=\lambda$ or T is stable in λ

The author thanks Alice Leonhardt for the beautiful typing. References like [4, Th0.2=Ly5] means the label of Th. 0.2 is y 5 . The reader should note that the version in my website is usually more updated than the one in the mathematical archive. First typed May 10, 2019. Supported by ISF 1838/19 (The Israel Science Foundation) and by ERC (European Research Council) grant 338821. Paper 1162 on author's list. The author states that there is no conflict of interest.

Saharon Shelah
shelah@math.huji.ac.il
http://shelah.logic.at
1 Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

2 Department of Mathematics, Hill Center, Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
(c) at least one of the following hold:
(α) $\lambda=\lambda^{<\lambda}$
(β) T is a stable unsuperstable theory (so $\aleph_{0}<\kappa(T) \leq|T|^{+}$), and $\lambda=\lambda^{<\kappa(T)} \geq$ $|\mathbf{D}(T)|+2^{\aleph_{0}}$
(γ) T is superstable, $\lambda \geq|\mathbf{D}(T)|+2^{\aleph_{0}}$ and $|\mathbf{S}(A, M)| \leq \lambda$ for every M a model of T and countable $A \subseteq M$

By Kojman-Shelah [2] for many cardinals λ (such that $\lambda<2^{<\lambda}$) the answer is yes, even for the theory of dense linear order. Here we finish one of the main cases left: λ singular, see the survey [3] and new one [5]. The theory is quite simple to define. Note that for 1.1 it is enough to deal separately with each of finitely (or even countably many) cases, because e.g. for any complete theories T_{1}, T_{2} there is a complete T such that for any $\lambda \geq\left|T_{1}\right|+\left|T_{2}\right|$ we have $\operatorname{univ}(\lambda, T)=\max \left\{\operatorname{univ}\left(\lambda, T_{1}\right)+\operatorname{univ}\left(\lambda, T_{2}\right)\right\}$. On subsequent work see [6].

We thank Shimoni Garti and the referee for helping to improve readability.

2 Preliminaries

Recall that
Definition 2.1 (1) For a complete first order T, we let $\operatorname{univ}(\lambda, T)$ be the minimal cardinal μ such that there is a sequence $\left\langle M_{i}: i<\mu\right\rangle$ of models of T of cardinality λ which is λ-universal; this mean that every model of T of cardinality λ can be elementarily embedded in some M_{i}.
(2) If T is not complete, we use usual embedding.
(3) If above $\mu=1$ then we say that M_{0} is universal for T.

3 The singular case

Our example is $T_{\text {elo }}^{0}$, a universal theory which has a finite relational vocabulary, has amalgamation and JEP hence a model completion called $T_{\text {elo }}$ with elimination of quantifiers. For $M \models T_{\text {elo }},<_{M}$ is a linear order, for $\ell=1,2$ we have R_{ℓ}^{M} is a three-place relation such that for each $c, R_{\ell, c}^{M}=\left\{(a, b):(a, b, c) \in R_{\ell}^{M}\right\}$ is (essentially) a convex equivalence relation on some subset $\operatorname{Dom}\left(R_{\ell, c}^{M}\right)$ of $\left\{d: d<_{M} c\right\}$; also $\operatorname{Dom}\left(R_{1, c}^{M}\right), \operatorname{Dom}\left(R_{2, c}^{M}\right)$ are disjoint. Formally

Definition 3.1 (1) Let $T_{1-t r}^{0}$ be the universal theory of trees, i.e. with vocabulary $\{<\}$ with $<$ a two-place relation such that $M \models T_{1-\mathrm{tr}}^{0} \underline{\text { iff }}<_{M}$ is a partial order satisfying $M \models$ " $a<$ $c \wedge b<c^{\prime \prime}$ implies $M \models " a=b \vee a<b \vee b<a^{\prime \prime}$.
(2) Let $T_{\text {elo }}^{0}$ be the universal theory with vocabulary $\left\{<, R_{0}, R_{1}\right\}$ where $<$ is a two-place predicate and R_{0}, R_{1} are 3-place predicates such that:
(*) $M \models T_{\text {elo }}^{0}$ iff (for $\ell=0,1$):
(a) $\left(|M|,<_{M}\right)$ is a linear order
(b) ℓ if $(a, b, c) \in R_{\ell}^{M}$ then $a \leq_{M} b<_{M} c$
(c) ℓ if $(a, b, c) \in R_{\ell}^{M}$ and $a \leq_{M} a^{\prime} \leq_{M} b^{\prime} \leq_{M} b$ then $\left(a^{\prime}, b^{\prime}, c\right) \in R_{\ell}^{M}$
(d) if $\left(a_{1}, a_{2}, c\right),\left(a_{2}, a_{3}, c\right) \in R_{\ell}^{M}$ then $\left(a_{1}, a_{3}, c\right) \in R_{\ell}^{M}$
(e) if $\left(a_{\ell}, b_{\ell}, c\right) \in R_{\ell}^{M}$ for $\ell=0,1$ then $b_{0}<_{M} a_{1}$ or $b_{1}<_{M} a_{0}$.
(3) Let $T_{\text {elo }}$ be the model completion of $T_{\text {elo }}^{0}$, see below.

Definition 3.2 For a cardinal μ and regular $\kappa \leq \mu$ let:

- $\operatorname{trp}_{\kappa}^{+}(\mu)=\min \left\{\lambda\right.$: there is no sub-tree \mathscr{T} of $\left({ }^{\kappa>} \mu, \triangleleft\right)$ of cardinality μ such that $\lim _{\kappa}(\mathscr{T})=\left\{\eta \in{ }^{\kappa} \mu:(\forall i<\kappa)(\eta \upharpoonright i \in \mathscr{T})\right\}$ has cardinality $\left.\geq \lambda\right\}$
- $\operatorname{trp}_{\kappa}(\mu)=\sup \left\{\lambda: \lambda<\operatorname{trp}_{\kappa}^{+}(\mu)\right\}$.

Remark 3.3 (1) Considering embeddings we may use positive formulas only.
(2) In [11], $\operatorname{trp}_{\kappa}(\mu)$ was called $\mu^{\kappa, \operatorname{tr}}$ or $\mu^{\langle\kappa\rangle}$.
(3) We intend to reconsider the oak property introduced in Dzamonja-Shelah [1], see more [12].

Claim 3.4 (1) The theory $T_{\text {elo }}^{0}$ has the disjoint JEP and disjoint amalgamation, is universal with predicates only and with a finite vocabulary, hence $T_{\text {elo }}$ is well defined and $\mathbf{D}\left(T_{\text {elo }}\right)$ is countable and $T_{\text {elo }}$ is even \aleph_{0}-categorical.
(2) So $T_{\text {elo }}$ have a universal and even a saturated countable model.

Proof 3.4 Should be clear.
We shall use (we can use linear orders or trees, it does not matter):
Claim 3.5 Assume M is a tree, not necessarily well founded (in the model theoretic sense, that is $<_{M}$ is a partial order and $\left\{b \in M: b<_{M} c\right\}$ is linearly ordered for every $c \in M$) and M has universe μ.
(1) If $\kappa=\operatorname{cf}(\kappa) \leq \mu$ and $\operatorname{trp}_{\kappa}^{+}(\mu)=\chi$, see Definition 3.2, then M has $<\chi$ initial segments of branches (not necessarily proper) which are of cofinality κ.
(2) If $\kappa=\operatorname{cf}(\kappa) \leq \mu$, then there is $\mathscr{P} \subseteq[\mu]^{\kappa}$ of cardinality $<\operatorname{trp}_{\kappa}^{+}(\mu)$, see Definition 3.2(2) such that:
(*)
(a) each $u \in \mathscr{P}$ has order type κ by the order of M
(b) for any subset u of M of order type κ there is $v \in \mathscr{P}$ and $a<_{M}$-increasing sequence $\left\langle a_{i}: i<\kappa\right\rangle$ such that $i<\kappa \Rightarrow a_{2 i} \in u \wedge a_{2 i+1} \in v$.
(3) If $\theta<\kappa \leq \mu$ where θ and κ are regular then there is \mathscr{P} such that:
(*)
(a) \mathscr{P} is a set of $\leq \mu$ initial segments of branches of M
(b) if $B \in \mathscr{P}$ then some $\left\langle\beta_{B, i}: i<\theta\right\rangle$ increasing by $<_{M}$ and by $<$, forms an $<_{M^{-}}$unbounded subset of B and for each $i<\theta$ we have $\left\{\beta_{B, j}: j \in(i, \theta)\right\}$ all realize the same cut over $\left\{\beta: \beta<\beta_{B, i}\right\}$ in M
(c) if $\left\langle a_{i}: i<\kappa\right\rangle$ is $<_{M}$-increasing then for some club E of κ we have:
\odot if $j \in E$ has cofinality θ then there is $B \in \mathscr{P}$ such that $\left\{c \in M:(\exists i<j)\left(c<_{M}\right.\right.$ $\left.\left.a_{i}\right)\right\}=\left\{c \in M:(\exists b \in B)\left(c<_{M} b\right)\right\}$.

Proof 3.51) By (2) and the definitions.
2) Recall that the set of elements of M is μ; without loss of generality $(\forall \alpha<\mu)(\exists \beta)(\alpha<$ $\left.\beta<\mu \wedge \alpha<_{M} \beta\right)$. Let $<_{M}^{*}=\{(\alpha, \beta): M \models " \alpha<\beta$ " and $\alpha<\beta\}$.

Now
$(*)_{1} M^{\prime}=\left(\mu,<_{M}^{*}\right)$ is a partial order with μ nodes
$(*)_{2}$ for each $\delta \leq \mu$ of cofinality κ
(a) choose an increasing continuous sequence $\bar{\alpha}_{\delta}=\left\langle\alpha_{\delta, i}: i\langle\kappa\rangle\right.$ of ordinals with limit δ such that $\alpha_{\delta, 0}=0$
(b) for $i<\kappa$ we define an equivalence relation:
(α) $E_{\delta, i}:=\left\{\left(\beta_{1}, \beta_{2}\right): \beta_{1}, \beta_{2} \in\left[\alpha_{\delta, i}, \delta\right)\right.$ and $\left(\forall \gamma<\alpha_{\delta, i}\right)\left[\gamma<_{M} \beta_{1} \equiv \gamma<_{M}\right.$ $\left.\left.\beta_{2}\right]\right\}$
(β) $A_{\delta, i}$ is the set of $\beta \in\left[\alpha_{\delta, i}, \alpha_{\delta, i+1}\right)$ such that: $\beta=\min \left(\beta / E_{\delta, i}\right)$
(c) let $A_{\delta}=\cup\left\{A_{\delta, i}: i<\kappa\right\}$
(d) define M_{δ}^{\prime} (or pedantically $M_{\delta, \bar{\alpha}_{\delta}}^{\prime}$) as the following partial order:
(α) the set of elements is A_{δ}
(β) $M_{\delta}^{\prime} \models$ " $\alpha<\beta^{\prime \prime}$ iff for some $i<j<\kappa$ we have $\alpha \in\left[\alpha_{\delta, i}, \alpha_{\delta, i+1}\right), \beta \in$ $\left[\alpha_{\delta, j}, \alpha_{\delta, j+1}\right)$ and $\alpha E_{\delta, i} \beta$

Now we investigate such M_{δ}^{\prime}, fixing δ for a while:
(*) ${ }_{3}$
(a) M_{δ}^{\prime} is a (well founded) tree with $\leq \kappa$ levels and $\leq|\delta| \leq \mu$ nodes
(b) if $i<\kappa$ and $\alpha \in \delta \cap M \backslash \alpha_{\delta, i}, \beta=\min \left(\alpha / E_{\delta, i}\right)<\delta$ then for some $j \in[i, \kappa)$ we have $\beta \in\left[\alpha_{\delta, j}, \alpha_{\delta, j+1}\right)$ and $\beta=\min \left(\beta / E_{\delta, j}\right)$.
[Why? Check the definition. Note that there may be holes, that is $\alpha \in A_{\delta, i}$, and $j<i$ such that there is no $\beta \in A_{\delta, j}, \beta \in \alpha / E_{\delta, j}$.]
$(*)_{4}$ if B is an $<_{M}$-initial segment of a branch of $M \upharpoonright \delta$, then at least one of the following occurs:
(a) there is $\gamma<\delta$ such that $B \cap \gamma$ is cofinal in B under $<_{M}$
(b) there is a $<_{M}^{*}$-increasing sequence $\left\langle\beta_{i}: i<\delta\right\rangle$ of ordinals from B with limit δ which is cofinal in $\left(B,<_{M}\right)$.

[Why? Should be clear.]

$(*)_{5} \mathscr{P}_{\delta}$, the set of κ-branches of M_{δ}^{\prime}, is a subset of $[\delta]^{\kappa}$ of cardinality $<\operatorname{trp}_{\kappa}^{+}(|\delta|) \leq$ $\operatorname{trp}_{\kappa}^{+}(\mu)=\chi$.
[Why $(*)_{5}$ holds? By $(*)_{3}$ and the definition of $\operatorname{trp}_{\kappa}^{+}(-)$.]
$(*)_{6}$ if $B \subseteq M$ is $<_{M}$-linearly ordered of order type κ, then
(a) $B^{+}=\left\{a \in M:(\exists b \in B)\left(a<_{M} b\right)\right\}$, necessarily linearly ordered (by $\left.<_{M}\right)$, is $<_{M}$-downward closed, and is of cofinality κ
(b) let $\delta=\delta_{B} \leq \mu$ be minimal such that $\left(\exists^{\kappa} b \in B\right)\left(\exists c \in B^{+}\right)\left(c<\delta \wedge b<_{M} c\right)$ hence δ has cofinality κ, clearly well defined
(c) for $i<\kappa$, let $\beta_{i}=\beta_{B, i} \in B^{+} \cap \delta$ be minimal such that $\left(\forall \gamma \in B^{+} \cap \alpha_{\delta, i}\right)\left[\gamma<_{M}\right.$ β_{i}], well defined by the choice of δ
(d) if $i<j<\kappa$ then:
$(\alpha)\left(\forall \gamma<\beta_{i}\right)\left[\left(\gamma<_{M} \beta_{i}\right) \equiv\left(\gamma \in B^{+} \cap \beta_{i}^{+}\right)\right]$
(β) $\beta_{i} \leq \beta_{j}$
$(\gamma) \beta_{j} \in \beta_{i} / E_{\delta, i}$
(e)
(α) the sequence $\left\langle\beta_{B, i}: i\langle\kappa\rangle\right.$ is \leq-increasing not eventually constant
(β) there is $u=u_{B} \in \mathscr{P}_{\delta}$ such that:
if $\left.\alpha \in u \cap\left[\alpha_{\delta, i}, \alpha_{\delta, i+1}\right)\right]$ and $j \geq i$ then $\alpha E_{\delta, i} \beta_{B, j}$.
Hence
$(*)_{7}$ if B_{1}, B_{2} are linearly ordered subsets of M of order type κ and $\left(\delta_{B_{1}}, u_{B_{1}}\right)=$ $\left(\delta_{B_{2}}, u_{B_{2}}\right)$ then $B_{1}^{+}=B_{2}^{+}$.
This clearly suffices for part (2).
3) We rely on the proof of part (2); note that there $(*)_{5}$ do not apply, hence also $(*)_{6}(e)(\beta)$ and $(*)_{7}$.

For $\delta \leq \mu$ of cofinality θ we define \mathscr{P}_{δ}^{*} by:
$\oplus_{\delta}^{1} B \in \mathscr{P}_{\delta}^{*}$ iff some α_{*} witnesses this which means:
(a) B is an initial segment of some branch of M of cofinality θ
(b) $B \cap \delta \backslash \alpha$ is $<_{M}$-cofinal in B but $B \cap \alpha$ is not, for every $\alpha<\delta$
(c) $\alpha_{*} \in[\delta, \mu)$
(d) for every $\beta<\delta$ for some $b \in B$ all members of $\left\{a \in B: b<_{M} a\right\}$ realize the same cut of $\{\gamma: \gamma<\beta\}$ in M as α_{*} does.

Note
\oplus_{2} in \oplus_{δ}^{1}, B is uniquely determined by the pair (α_{*}, δ).
[Why? Just read \oplus_{δ}^{1}.]
Now
\oplus_{3} let $\mathscr{P}=\bigcup\left\{\mathscr{P}_{\delta}^{*}: \delta\right.$ be a limit ordinal $\left.\leq \mu\right\}$
Obviously (by $\oplus_{2}+\oplus_{3}$)
$\oplus_{4} \mathscr{P}$ has cardinality $\leq \mu$ is a set of initial segments of branches of M of cofinality θ.
It suffice to prove that \mathscr{P} is as required, Now clauses (a), (b) (of 3.5(3)) are clear by the choice of \mathscr{P}, but we have to prove also clause (c). So assume we are given $\left\langle a_{i}: i<\kappa\right\rangle$, a $<_{M}$-increasing sequence and let $B_{\bullet}=\left\{a \in M:(\exists i<\kappa)\left[a<_{M} a_{i}\right]\right\}$, and let δ be the minimal ordinal $\leq \mu$ such that $B_{\bullet} \cap \delta$ is cofinal in $\left(B_{\bullet},<_{M}\right)$. Necessarily $\operatorname{cf}(\delta)=\kappa$ and let $\left\langle\alpha_{\delta, i}: i<\delta\right\rangle$ be an $<$-increasing sequence of ordinals $<\delta$ with limit δ. Let $E=\{i<\kappa: i$ is a limit ordinal and $(\forall j<i)\left(\exists b \in B_{\bullet} \cap \alpha_{\delta, i}\right)\left[a_{j}<_{M} b\right]$ and $\left(\forall b \in B_{\bullet} \cap \alpha_{\delta, i}\right)(\exists j<i)\left[b<_{M}\right.$ $\left.\left.a_{j}\right]\right\}$.

Now clearly E is a club of κ. Lastly

- for every $i \in E$ of cofinality θ the set B belongs to \mathscr{P} where:
$B=\left\{b \in B_{\bullet}: b<_{M} a_{j}\right.$ for some $\left.j<i\right\}$
[Why $B \in \mathscr{P}$? because B is as required in \oplus_{δ}^{1} with the pair ($\alpha_{\delta, i}, a_{i}$) here standing for (δ, α_{*}) there.]

Theorem 3.6 If λ is a singular cardinal satisfying $\lambda<2^{<\lambda}$, then $T=T_{\text {elo }}$ (and equivalently $T_{\text {elo }}^{0}$) has no universal model of cardinality λ; moreover, $\operatorname{univ}_{T_{\text {elo }}}(\lambda, T) \geq 2^{<\lambda}$.

Proof It suffices to prove it for $T=T_{\text {elo }}^{0}$, so for embedding rather than elementary embeddings; toward contradiction assume:
(*) ${ }_{1}$
(a) $\xi_{*}<2^{<\lambda}$
(b) $\bar{M}^{*}=\left\langle M_{\xi}^{*}: \xi<\xi_{*}\right\rangle$
(c) M_{ξ}^{*} a model of T with universe λ
(d) \bar{M}^{*} is universal, i.e. if $M \models T$ has cardinality λ, then M can be embedded into M_{ξ}^{*} for some $\xi<\xi_{*}$.

Next
$(*)_{2}$ choose κ, μ satisfying:
(a) $\kappa<\mu<\lambda$ are regular
(b) $\lambda<2^{\kappa}$ and $\xi_{*}<2^{\kappa}$
(c) $\operatorname{cf}(\lambda)<\mu$.
[Why? Recall that $\lambda<2^{<\lambda}$ and $\xi_{*}+\lambda<2^{<\lambda}=\Sigma\left\{2^{\theta}: \theta<\lambda\right\}$ hence for some $\theta<\lambda$ we have $\xi_{*}+\lambda<2^{\theta}$ and let $\kappa=\theta^{+}, \mu=\operatorname{cf}(\lambda)^{+}+\theta^{++}$.]
(*) 3
(a) let $\mathscr{P} \subseteq \mathscr{P}(\lambda)$ be $\cup\left\{\mathscr{P}_{\xi}: \xi<\xi_{*}\right\}$ where \mathscr{P}_{ξ} is as in 3.5(3) with $\left(\lambda, \mu^{+}, \kappa, M_{\xi}\right)$ here standing for (μ, κ, θ, M) there
(b) so \mathscr{P} is of cardinality $\leq \lambda+\left|\xi_{*}\right|<2^{\kappa}$
(c) let $\bar{C}^{1}=\left\langle C_{\alpha}^{1}: \alpha \in S_{1}^{+}\right\rangle$be such that:
(α) $S_{1}^{+} \subseteq \mu^{+}$and $\alpha, \beta \in S_{1}^{+} \wedge \alpha<\beta \Rightarrow \alpha+\omega \leq \beta$
(β) C_{δ}^{1} is a closed subset ${ }^{1}$ of some $\delta^{\prime} \leq \delta$ of order type $\leq \kappa$
(γ) $\alpha \in C_{\beta}^{1} \Rightarrow C_{\alpha}^{1}=C_{\beta}^{1} \cap \alpha$
(() $S_{1}:=\left\{\delta \in S_{1}^{+}: \operatorname{otp}\left(C_{\delta}^{1}\right)=\kappa\right\}$ is stationary
(ع) $\bar{C}^{1} \upharpoonright S_{1}$ guesses clubs.
(d) let $\bar{C}^{2}=\left\langle C_{\delta}^{2}: \delta \in S_{2}^{+}\right\rangle, S_{2}$ be as in clause (c) with $\left(\mu^{+3}, \mu^{+}\right)$here standing for (μ^{+}, κ) there, so $S_{2}=\left\{\delta \in S_{2}^{+}: \operatorname{otp}\left(C_{\delta}\right)=\mu^{+}\right\}$
(e) let $\bar{g}^{2}=\left\langle g_{\alpha}^{2}: \alpha \in S_{2}^{+}\right\rangle, g_{\alpha}^{2}$ be an increasing function from $\operatorname{otp}\left(C_{\alpha}^{2}\right)$ onto C_{α}^{2} hence $\alpha \in C_{\beta}^{2} \Rightarrow g_{\alpha}^{2} \subseteq g_{\beta}^{2}$.
(f) let $\bar{g}^{1}=\left\langle g_{\alpha}^{1}: \alpha \in S_{1}^{+}\right\rangle, g_{\alpha}^{1}$ be an increasing function from $\operatorname{otp}\left(C_{\alpha}^{1}\right)$ onto C_{α}^{1} hence $\alpha \in C_{\beta}^{1} \Rightarrow g_{\alpha}^{1} \subseteq g_{\beta}^{1}$.
(g) Choose $\left\langle\bar{\alpha}_{\delta}: \delta \leq \mu^{+3}, \operatorname{cf}(\delta)=\mu^{+}\right\rangle$such that $\bar{\alpha}_{\delta}=\left\langle\alpha_{\delta, i}: i<\mu^{+}\right\rangle$is increasing continuous with limit δ.
'[Why does such objects exists? First for clause (a) use $(*)_{1}(c), 3.5(3)+(*)_{2}(b)$. Second clause (b) follows from clause (a). Third clauses (c),(d) hold by [9, §1] (for club guessing we can use [10, Ch.III]). Fourth clauses (e),(f) follows. Lastly choose the sequences as in clause (g).]
$(*)_{4}$ for any $v \subseteq \kappa$ we define a model $M=M_{v}$ of $T_{\text {elo }}^{0}$ as follows:
(a) its universe is μ^{+3}

[^0](b) $<_{M}$ is the standard order on the ordinals so M is linearly ordered
(c) for $\ell<2$ let R_{ℓ}^{M} be the following set: $\left\{(\alpha, \beta, \delta)\right.$: for some $\delta_{2} \in S_{2}$ and $\delta_{1} \in S_{1}$ we have $\delta=g_{\delta_{2}}^{2}\left(\delta_{1}\right)$ and $\alpha \leq \beta<\delta$ and for some pair (ε, γ) we have $\varepsilon<\kappa, \varepsilon \in$ $v \Leftrightarrow \ell=1, \gamma \in C_{\delta}^{1}, \operatorname{otp}\left(C_{\delta}^{1} \cap \gamma\right)=\varepsilon+1$ and $\sup \left(g_{\delta_{2}}^{\prime \prime}\left(C_{\delta_{1}}^{1}\right) \cap g_{\delta_{2}}(\gamma)\right)<\alpha \leq$ $\left.\beta<g_{\delta_{2}}^{2}(\gamma)\right\}$
[Why? Note that it is easy to check that M_{v} is well defined and indeed a model of $T_{\text {elo }}^{0}$.]
By our assumption toward contradiction:
$(*)_{5}$ for every $v \subseteq \kappa$ there are $\xi_{v}=\xi(v), f_{v}^{2}$ and $u_{v}, \bar{\alpha}_{v}, \delta_{v}^{2}=\delta_{2}(v), \gamma_{v}$ such that:
(a) $\xi_{v}<\xi_{*}$
(b) f_{v}^{2} is an embedding of M_{v} into $M_{\xi_{v}}^{*}$ so a function from μ^{+3} into λ
(c)
($\alpha) E_{v}^{2}$ is a club of μ^{+3} as in 3.5(3)(c) with $\left(\left\langle f_{v}^{2}(i): i<\mu^{+3}\right\rangle, M_{\xi_{v}}^{*}\right)$ here standing for $\left(\left\langle a_{i}: i<\kappa\right\rangle, M\right)$ there
(β) $\delta_{v}^{2} \in E_{v}^{2} \cap S_{2}$, moreover $C_{\delta_{2}(v)}^{2} \subseteq E_{v}^{2}$, note that $\operatorname{cf}\left(\delta_{v}^{2}\right)=\mu^{+}$and $\delta_{v}^{2}<\mu^{+3}$
$(\gamma) u_{v} \in \mathscr{P}$, so $u_{v} \subseteq \lambda$ has order type μ^{+}under $<_{M}$
($\delta) u_{v} \in \mathscr{P}$ is as in $3.5(3)(\mathrm{c})$ for δ_{v}^{2}, i.e. for the sequence $\left\langle f_{v}^{2}(i): i<\delta_{v}^{2}\right\rangle$ with δ_{v}^{2} playing the role of j there
(ε) let $f_{v}=f_{v}^{1}=f_{v}^{2} \circ g_{\delta_{2}(v)}^{2}$, so $f_{v}^{1}: \mu^{+} \rightarrow \lambda$
(弓) $\alpha_{v}=\left\langle\alpha_{v, i}: i\left\langle\mu^{+}\right\rangle\right.$is equal to $\bar{\alpha}_{\delta_{2}(v)}$, see $(*)_{3}(\mathrm{~g})$
(d) E_{v}^{1} satisfy: E_{v}^{1} is the set of limit ordinals $i<\mu^{+}$such that:
$\left(\forall j_{1}<i\right)\left(\exists j_{2}\right)\left(j_{1}<j_{2}<i \wedge f_{v}^{1}\left(j_{1}\right)<_{M_{\xi}^{*}(v)} \alpha_{v, j_{2}} \wedge \alpha_{v, j_{1}}<f_{v}^{1}\left(j_{2}\right)\right)$
(e) $\delta_{v}^{1}=\delta_{1}(v), \gamma_{v}$ satisfy
(α) $\delta_{v}^{1} \in E_{v}^{1}$ satisfies $C_{\delta_{1}(v)}^{1} \subseteq E_{v}^{1}$ note that $\delta_{v}^{1}<\mu^{+}, \operatorname{cf}\left(\delta_{v}^{1}\right)=\kappa$
(β) $\gamma_{v}=f_{v}^{1}\left(\delta_{v}^{1}\right)<\lambda$
[Why? First, for clauses (a),(b) use the choice of \bar{M}^{*} in $(*)_{1}$.
Second, for clause (c) we use the choice of \mathscr{P}, i.e. $(*)_{3}(a)$ and so $3.5(3)$ (c); that is, we apply the choice of $\mathscr{P}_{\xi} \subseteq \mathscr{P}$ to the sequence $\left\langle f_{v}^{2}(\alpha): \alpha<\mu^{+3}\right\rangle$ (and the linear order (hence a tree) $M_{\xi(v)}^{*}$; so apply $3.5(3)(\mathrm{c})$, giving us a club E_{v}^{2} such that clause (c)(α) holds. Next, as as $S_{2} \subseteq \mu^{+}$is stationary we can choose $\delta_{v}^{2} \in E_{v}^{2} \cap S_{2}$ such that $C_{\delta_{1}(v)}^{2} \subseteq E_{v}^{2}$, note that necessarily $\operatorname{cf}\left(\delta_{v}^{2}\right)=\mu^{+}$. Now by the choice of $E_{v}^{2}, \delta_{v}^{2}$ there is a set $u=u_{v}$ as promised in clauses $(c)(\gamma),(\delta)$. Lastly clause $(c)(\varepsilon)$ is straightforward.

Third, for clause (d) use clause (c)
Lastly, for clause (e) recall $(*)_{3}(c)(\varepsilon)$.]
$(*)_{6}$ there are $\xi_{* *}, u_{*}, \gamma_{*}, \delta_{*}$ such that \mathscr{V} has cardinality $>\lambda+\left|\xi_{*}\right|$ where \mathscr{V} is the set of $v \subseteq \kappa$ such that:
(a) $\xi_{v}=\xi_{* *}<\xi_{*}$
(b) $u_{v}=u_{*} \in \mathscr{P}$
(c) $\gamma_{v}=\gamma_{*}<\lambda$
(d) $\delta_{v}^{2}=\delta_{2}(*) \in S_{2}$ and $\delta_{v}^{1}=\delta_{1}(*) \in S_{1}$

Let $v_{1} \neq v_{2}$ be from \mathscr{V}. As $v_{1} \neq v_{2}$ there are $\varepsilon_{*}, \beta_{*}$ such that:
(*) ${ }_{7}$
(a) $\varepsilon_{*}<\kappa$ and $\varepsilon_{*} \in v_{1} \Leftrightarrow \varepsilon_{*} \notin v_{2}$
(b) $\beta_{*} \in C_{\delta_{1}(*)}^{1} \subseteq \mu^{+} \operatorname{satisfies~otp}\left(C_{\delta_{1}(*)}^{1} \cap \beta_{*}\right)=\varepsilon_{*}+1$.
(c) $\beta_{* *}=g_{\delta_{1}(*)}^{1}\left(\beta_{*}\right)<\mu^{+3}$

Now easily
$(*)_{8}$ for $\ell \in\{1,2\}$ we have:
(a) in $M_{v_{\ell}}$, for some $\beta_{\ell}^{*}<\beta_{* *}$ we have: if $\beta_{\ell}^{*}<\beta_{1}<\beta_{2}<\beta_{* *}$ then $M_{v_{\ell}} \models$ $R_{\ell}\left(\beta_{1}, \beta_{2}, \gamma_{*}\right)$ iff ℓ is the truth value of $\varepsilon_{*} \in v_{\ell}$.
[Why? By the choice of $M_{v_{\ell}}$, see $(*)_{2}$, in particular, clause (c) there.]
(b) in $M_{\xi_{* *}}$, for some unbounded subset B_{ℓ} of $B_{*}:=\left\{\beta<\alpha_{\delta_{2}(*), \beta_{* *}}: M_{\xi_{* *}} \models\right.$ " $\beta<$ $\left.\gamma_{*}^{\prime \prime}\right\}$ we have:

- if $\beta_{1}<\beta_{2}$ are from B_{ℓ} then $M_{\xi_{* *}}^{*} \models R_{\ell}\left(\beta_{1}, \beta_{2}, \gamma_{*}\right)$
[Why? Clearly " $\beta_{\ell}^{*}<\beta_{1}<\beta_{2}<\beta_{* *}$ implies $M_{\xi_{* *}}^{*} \models R_{\ell}\left(f_{v_{\ell}}^{2} \beta_{1}\right), f_{v_{k} l}^{2}\left(\beta_{2}\right)$, $\left.\gamma_{*}\right)^{\prime \prime}$, hence $B_{2}=\left\{f_{v_{\ell}}^{2}(\beta): \beta \in\left(\beta_{\ell}^{*}, \beta_{*}\right)\right\}$ is as required.
(c) B_{*} is linearly ordered in $M_{\xi_{* *}}^{*}$ (with no last element) and does not depend on ℓ [Why? Obvious]
(d) in $M_{\xi_{*}}$, for some end-segment B_{ℓ}^{\prime} of B_{*} we have: if $\beta_{1} \leq \beta_{2}$ are from B_{ℓ}^{\prime}, then $M_{\xi_{* *}}^{*} \models R_{\ell}\left(\beta_{1}, \beta_{2}, \gamma_{*}\right)$
[Why? the convex hull of B_{ℓ} is as required becuase B_{ℓ} is unbounded in B_{*} recalling clause (b) and the definition of $T_{\text {elo }}^{0}$.]
Note that
$(*)_{9}$ the statement in $(*)_{8}(d)$ does not depend on ℓ.
Now by $(*)_{7},(*)_{8}(d),(*)_{9}$ we get a contradiction.

References

1. Džamonja, M., Shelah, Saharon: On properties of theories which preclude the existence of universal models. Ann. Pure Appl. Logic 139(1-3), 280-302 (2006). arXiv: math/0009078
2. Kojman, M., Shelah, S.: Nonexistence of universal orders in many cardinals. J. Symbolic Logic 57(3), 875-891 (1992). arXiv: math/9209201
3. Mirna, D.: Club guessing and the universal models. Notre Dame J. Formal Logic 46, 283-300 (2005)
4. Shelah, S.: Dependent dreams: recounting types, arXiv: 1202.5795
5. Shelah, S.: Divide and Conquer: Dividing lines on universality. Theoria (to appear, special volume)
6. Shelah, S.: Universals between strong limit singular and its power, no. 1175
7. Shelah, S.: Independence results. J. Symbolic Logic 45(3), 563-573 (1980)
8. Shelah, S.: Classification theory and the number of nonisomorphic models, second ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, (1990)
9. Shelah, S.: Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, (1993) arXiv: 0708.1979, pp. 355-383
10. Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides, vol. 29. The Clarendon Press, Oxford University Press, New York (1994)
11. Shelah, S.: Applications of PCF theory. J. Symbolic Logic 65(4), 1624-1674 (2000). arXiv: math/9804155
12. Shelah, S.: Universal structures. Notre Dame J. Form. Log. 58(2), 159-177 (2017). arXiv: math/0405159

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: ${ }^{1}$ Here the case $\delta^{\prime} \neq \delta$ is not really needed, but in some other versions, it is helpful.

