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Decomposing Baire class 1 functions into
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and Juris S t e p r ā n s (North York, Ont.)

Abstract. It is shown to be consistent that every function of first Baire class can be
decomposed into ℵ1 continuous functions yet the least cardinal of a dominating family in
ωω is ℵ2. The model used in the one obtained by adding ω2 Miller reals to a model of the
Continuum Hypothesis.

1. Introduction. In [1] the authors consider the following question:
What is the least cardinal κ such that every function of first Baire class can
be decomposed into κ continuous functions? This cardinal κ will be denoted
by dec. The authors of [1] were able to show that cov(K) ≤ dec ≤ d and
asked whether these inequalities could, consistently, be strict. By cov(K) is
meant the least number of closed nowhere dense sets required to cover the
real line and d denotes the least cardinal of a dominating family in ωω. In
[5] it was shown that it is consistent that cov(K) 6= dec. In this paper it
will be shown that the second inequality can also be made strict. The model
where dec is different from d is the one obtained by adding ω2 Miller—
sometimes known as super-perfect or rational-perfect—reals to a model of
the Continuum Hypothesis. It is somewhat surprising that the model used
to establish the consistency of the other inequality, cov(K) 6= dec, is a slight
modification of the iteration of super-perfect forcing.

By ω̂
ω we denote

⋃
n∈ω{nω : n ∈ ω}. As usual, a tree will be defined

to mean an initial subset of ω̂
ω under ⊆. So if T is a tree and t ∈ T then

t¹k ∈ T for each k ∈ ω. Also, T 〈t〉 will be defined to be {s ∈ T : s ⊆ t
or t ⊆ s}. If t and s are both finite sequences then s ∧ t is defined by
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172 S. Shelah and J. Steprāns

declaring that dom(s ∧ t) = |dom(t)|+ |dom(s)| and

s ∧ t(i) =
{
s(i) if i ∈ dom(s),
t(i− |dom(s)|) if i 6∈ dom(s).

If t ∈ T ⊆ ω̂
ω and i ∈ ω then t ∧ i is defined to be t ∧ {(0, i)} and i ∧ t is

defined to be {(0, i)} ∧ t. Finally, T = {f ∈ ωω : (∀n ∈ ω)(f¹n ∈ T )} and
closure in other spaces is denoted similarly.

Definition 1.1. If T ⊆ ω̂
ω is a tree then β(T ) is defined to be the set of

all t ∈ T such that |{n ∈ ω : t ∧ n ∈ T}| = ℵ0. A tree T ⊆ ω̂
ω is said to be

super-perfect if for each t ∈ T there is some s ∈ β(T ) such that t ⊆ s and if
|{n ∈ ω : t ∧ n ∈ T}| ∈ {1,ℵ0} for each t ∈ T . The set of all super-perfect
trees will be denoted by S.

For each T ∈ S there is a natural way to assign a mapping θT : ω̂
ω →

β(T ) such that:

• θT is one-to-one and onto β(T ),
• s ⊆ t if and only if θ(s) ⊆ θ(t),
• s ≤Lex t if and only if θ(s) ≤Lex θ(t).

Notice that θT (∅) is the root of T . Using the mapping θT , it is possible
to define a refinement of the ordering on S.

Definition 1.2. Define T ≺n S if both S and T are in S, T ⊆ S and
θT ¹nω = θS¹nω.

It should be clear that the ordering ≺n satisfies Axiom A. The proof
of the main result of this paper will use a fusion based on a sequence of
the orderings ≺n. Notice that while ≺n can be used in the same way as the
analogous ordering for Sacks reals in the case of adding a single real, it is not
as easy to deal with in the context of iterations. The chief difficulty is that
≺n requires deciding an infinite amount of information because branching is
infinite. This conflicts with the usual goal of fusion arguments which decide
only a finite amount of information at a time.

2. Iterated super-perfect reals. It will be shown that iterating ω2

times the partial orders S with countable support over a ground model where
2ℵ0 = ℵ1 yields a model where d = ℵ2 and dec = ℵ1. The fact that d = ℵ2

is well known [3]. The fact that dec = ℵ1 is an immediate consequence of
the following result.

Lemma 2.1. Suppose that ξ ∈ ω2 + 1, Sξ is the iteration with countable
support of the partial orders S and G is Sξ-generic over V . Then for any
x ∈ [0, 1] in V [G] and any Borel function H : [0, 1]→ [0, 1] in V [G] there is
a Borel set X ∈ V such that x ∈ X and H¹X is continuous.
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Decomposing Baire class 1 functions 173

Saying that X ∈ V means, of course, that the real coding the Borel set
X belongs to the model V . In order to prove Lemma 2.1 it will be useful to
employ a different interpretation of iterated super-perfect forcing. The next
sequence of definitions will be used in doing this. If G is Sξ-generic over some
model M then there is a natural way to assign a mapping Γ : ξ ∩M→ ωω
such that M[G] = M[Γ ]. On the other hand, given Γ : M ∩ ξ → ωω we
define GΓ (M) to be the set

{q ∈M ∩ Sξ :

(∀k ∈ ω)(∀A ∈ [M ∩ ξ]<ℵ0)(∃p ≤ q)(∀α ∈ A)(p¹α °Sα “Γ (α)¹k ∈ p(α)”)}
and we say that Γ is Sξ-generic over M if and only if GΓ is Sξ-generic
over M. Note that if G is Sξ-generic over M and Γ : M ∩ ξ → ωω is
its associated function then GΓ (M) = G. This will be used without fur-
ther comment to identify Sξ-generic sets over M with elements of (ωω)M∩ξ.
Whenever a topology on (ωω)X is mentioned, the product topology is in-
tended.

Definition 2.1. If p ∈ Sξ and Λ ∈ [ξ]≤ℵ0 then define S(Λ, p) to be the
set of all functions Γ : Λ → ωω such that for all k ∈ ω and for all finite
subsets A ⊆ Λ there is q ≤ p such that q °Sξ “Γ (α)¹k ∈ q(α)” for all α ∈ A.

Definition 2.2. Given a countable elementary submodel M≺H((2ℵ0)+)
and p ∈ Sξ define p to be strongly Sξ-generic over M if and only if

• each Γ ∈ S(M ∩ ξ, p) is Sξ-generic over M,
• if ψ is a statement of the Sξ-forcing language using only parameters

from M, then {Γ ∈ S(M∩ ξ, p) : M[Γ ] ² ψ} is a clopen set in S(M∩ ξ, p).
A set X ⊆ (ωω)α will be defined to be large by induction on α.

Definition 2.3. If α = 1 then X is large if X is a super-perfect tree. If
α is a limit then X is large if the projection of X to (ωω)β is large for every
β ∈ α. If α = β + 1 then X is large if there is a large set Y ⊆ (ωω)β such
that X =

⋃
y∈Y {y} ×Xy and each Xy is a large subset of ωω.

From large closed sets it is possible to obtain, in a natural way, conditions
in Sξ.

Definition 2.4. If X ⊆ (ωω)α is a large closed set then define pX ∈
Sα by letting pX(η) be the Sη name for the subset T ⊆ ωω such that if
Γ : α→ ωω is Sα-generic then

T = {f ∈ ωω : (∃h)(Γ ¹η ∪ {(η, f)} ∪ h ∈ X)}
Observe that, if X ⊆ (ωω)α is large and closed, it follows that pX ∈ Sα.

The following result provides a partial converse to this observation.
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174 S. Shelah and J. Steprāns

Lemma 2.2. If p ∈ Sξ and M ≺ H((2ℵ0)+) is a countable elementary
submodel containing p then there is q ≤ p such that q is strongly Sξ-generic
over M.

P r o o f. The proof consists of merely repeating the proof that the count-
able support iteration of proper partial orders is proper and checking the
assertions in this special case. Only a sketch will be given and the reader
should consult [4] for details.

The proof is by induction on ξ. If ξ = 1 then a standard fusion argument
applied to an enumeration {Dn : n ∈ ω} of all dense subsets of S provides the
result. In particular, there is a sequence {Ti : i ∈ ω} such that Ti+1 ≺i Ti,
T0 = T and Ti〈θTi(σ)〉 ∈ Di−1 for each σ : i → ω. The condition Tω =⋂
i∈ω Ti has the desired property. The fact that if ψ is a statement of the

Sξ-forcing language using only parameters from M, then {Γ ∈ S(M, Tω) :
M[Γ ] ² ψ} is a clopen set is obvious because S(1, Tω) = Tω.

If ξ = µ + 1 then use the induction hypothesis to find q′ ≤ p¹ξ such
that q′ is strongly Sµ-generic over M. Then, in particular, q′ is Sµ-generic
over M and so, if G contains q′ and is Sµ-generic over V , it is also generic
over M. Therefore M[G] is an elementary submodel in V [G] and it is pos-
sible to choose an enumeration {Dn : n ∈ ω} of all dense subsets of S which
are members of M[G]. It is therefore possible to choose, in M[G], as in
the case ξ = 1, a sequence {Ti : i ∈ ω} such that Ti+1 ≺i Ti and that
Ti〈θTi(σ)〉 ∈ Di−1 for each σ : i → ω. The condition Tω =

⋂
i∈ω Ti is then

strongly S-generic over M[G]. Notice that, while Tω does not itself have a
name in M, each Tn does have a name and so there are enough objects in
M[G] to construct Tω.

In order to see that q = q′ ∗ Tω is strongly Sξ-generic over M suppose
that Γ ∈ S(M ∩ ξ, q). Obviously Γ ¹µ ∈ S(M ∩ µ, q′) and therefore M[Γ ]
is an elementary submodel. Hence, by genericity, Ti+1 ≺i Ti, T0 = T and
Ti〈θTi(σ)〉 ∈ Di−1 and so it follows that

⋂{Ti : i ∈ ω} is a strongly S-
generic condition over M[G]. Hence Γ (ξ) is S-generic over M[G] and so Γ
is Sξ-generic over M.

Just as in the case ξ = 1, it is easy to use the induction hypothesis to
see that if ψ is a statement of the Sξ-forcing language using only parameters
from M, then {Γ ∈ S(M ∩ ξ, q) : M[Γ ] ² ψ} is a clopen set.

Finally, suppose that ξ is a limit ordinal. If it has uncountable cofinality
then there is nothing to do because of the countable support of the iteration.
So assume that {µn : n ∈ ω} is an increasing sequence of ordinals cofinal
in ξ. Let {Dn : n ∈ ω} enumerate all dense subsets of M and choose a
sequence of conditions {pi : i ∈ ω} such that

• pi¹µi is strongly Sµi -generic over M,
• p¹µi °Sµi “pi¹(ξ \ µi) ∈ Di/G” (this is an abbreviation for the more
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Decomposing Baire class 1 functions 175

precise statement

p¹µi °Sµi “(∃q ∈ G ∩ Sµi)(q ∗ pi¹(ξ \ µi) ∈ Di)”

and will be used later as well),
• pi¹(ξ \ µi) belongs to M,
• p¹µi °Sµi “pi+1¹(µi+1 \ µi) is Sµi+1\µi -generic over M[G]”,
• pi+1 ≤ pi.
Notice that the statement that pi¹(ξ \ µi) ∈ Di/G can be expressed in

M and so if Γ ∈ S(M ∩ Sµi , pi¹µi) then pi¹(ξ \ µi) ∈ Di/Γ . From this
it easily follows that letting pω = limn∈ω pn yields a strongly Sξ-generic
condition over M.

To see that if ψ is a statement of the Sξ-forcing language using only
parameters from M, then {Γ ∈ S(M ∩ ξ, pω) : M[Γ ] ² ψ} is a clopen
set, observe that to any such ψ there corresponds the dense subset of Sξ
consisting of all conditions which decide ψ. Any such dense set is therefore
Dn for some n ∈ ω. It follows that if Γ ∈ S(M∩ξ, pω) then the interpretation
of pn¹(ξ \ µn) in M[Γ ¹µn] decides the truth value of ψ because pn¹µn is
strongly Sµn-generic over M. From the induction hypothesis it follows that
there is a clopen set U ⊆ S(M ∩ µn, pn¹µn) such that for each Γ ′ ∈ U
the model M[Γ ′] is such that the interpretation of pn¹(ξ \ µn) in M[Γ ¹µn]
decides the truth value of ψ. Let U∗ be the lifting of U to S(M∩ ξ, pω)—in
other words, Γ ∈ U∗ if and only if Γ ¹µn ∈ U . Since the interpretation of
pω¹(ξ \ µn) in M[Γ ¹µn] is a stronger condition than the interpretation of
pn¹(ξ \ µn) in M[Γ ¹µn], it follows that U∗ ⊆ S(M ∩ ξ, pω) is the desired
clopen set.

Definition 2.5. A subset X ⊆ nω is said to be a full subset if X 6= ∅
and for each x ∈ X and i ∈ n there is A ∈ [ω]ℵ0 such that for all m ∈ A
there is xm ∈ X such that xm¹i = x¹i and xm(i) = m.

Lemma 2.3. If F : nω → [0, 1] is a one-to-one function then there is a
full subset T ⊆ nω such that the image of T under F is discrete.

P r o o f. Proceed by induction on n to prove the following stronger as-
sertion: If F : nω → [0, 1] is one-to-one then there is a full subset T ⊆ nω,
there is f ∈ ωω and there is x ∈ [0, 1] such that

A. for any descending sequence {Ui : i ∈ ω} of neighbourhoods of x
such that diam(Un+1) · f(d1/diam(Un)e) < 1 and for each X ∈ [ω]ℵ0 the set
{t ∈ T : F (t) ∈ ⋃i∈X(Ui \ U i+1)} is a full subset.

The case n = 1 is easy. Choose A ∈ [ω]ℵ0 such that {F (∅ ∧ i) : i ∈ A}
converges to x ∈ [0, 1]. Let f ∈ ωω be any increasing function such that for
each m ∈ ω there is some j ∈ A such that 1/m > |F (∅ ∧ j)| > 1/f(m). Let
T = {∅ ∧ i : i ∈ A}.
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176 S. Shelah and J. Steprāns

Now let F : n+1ω → [0, 1] be one-to-one. Use the induction hypothesis
to find, for each m ∈ ω, full subsets Tm ⊆ nω such that the image of F
restricted to

{x ∈ n+1ω : (∃t ∈ Tm)(x = ∅ ∧m ∧ t)}
is a discrete family and Condition A is witnessed by fm ∈ ωω and xm ∈
[0, 1]. There are two cases to consider depending on whether or not there is
Z ∈ [ω]ℵ0 such that {xm : m ∈ Z} are all distinct.

C a s e 1. Assume that there is Z ∈ [ω]ℵ0 such that {xm : m ∈ Z}
are all distinct. It is then possible to assume that there is some x ∈ [0, 1]
such that limm∈Z xm = x and that, without loss of generality, xm > xm+1

> x. As in the case n = 1, it is possible to find f ∈ ωω such that for
any descending sequence {Ui : i ∈ ω} of neighbourhoods of x such that
diam(Un+1) · f(d1/diam(Un)e) < 1 and for each X ∈ [ω]ℵ0 the set {m ∈ ω :
xm ∈

⋃
i∈X(Ui \ U i+1)} is infinite. Notice that each Ui \ U i+1 is open, so

it follows from Condition A that {t ∈ Tm : F (m ∧ t) ∈ Ui \ U i+1} is a full
subset provided that xm ∈ Ui \ U i+1. Hence,

⋃
{{t ∈ Tm : F (〈m〉 ∧ t) ∈ Ui \ U i+1} : xm ∈ Ui \ U i+1}

is a full subset provided that diam(Un+1) · f(d1/diam(Un)e) < 1 and
X ∈ [ω]ℵ0 . Let T = {t ∈ n+1ω : (∃t′ ∈ Tt(0))(t = t(0) ∧ t′)}. Then T , f
and x satisfy Condition A.

C a s e 2. In this case there exists x ∈ [0, 1] such that xm = x for all but
finitely many m ∈ ω. Let f ∈ ωω be such that f ≥∗ fm for all m ∈ ω. Let

T = {t ∈ n+1ω : (∃t′ ∈ Tt(0))(t = t(0) ∧ t′ and xt(0) = x)}.
To see that this works, suppose that {Ui : i ∈ ω} is a descending sequence
of neighbourhoods of x such that diam(Ui+1) · f(d1/diam(Ui)e) < 1 and
suppose that X ∈ [ω]ℵ0 .

Let X =
⋃
j∈ωXj be a partition of X into infinite subsets. It may be

assumed that f(i) ≥ fm(i) for all i ∈ Xm. By the induction hypothesis it
follows that {t ∈ Tm : F (t) ∈ ⋃i∈Xm(Ui \ U i+1)} is a full subset of nω for
each m ∈ ω because f ≥∗ fm. Hence {t ∈ T : F (t) ∈ ⋃i∈X(Ui \ U i+1)} is a
full subset of n+1ω.

Although this fact will not be used, it should be noted that Lemma 2.3
can be generalized to arbitrary well founded trees.

If X ⊆ (ωω)α is large then for each e : β → ωω let Xe represent the set
of all f : α \ β → ωω such that e ∪ f ∈ X. Note that if h ∈ X then for
every β ∈ α, Xh¹β is a large subset of (ωω)α\β . Moreover, the projection
Xh¹β to (ωω)δ\β is large provided that β ∈ δ. This set will be denoted
by πδ(Xf¹β). Note that πβ+1(Xf¹β) is the closure of a super-perfect tree
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Decomposing Baire class 1 functions 177

TX,f,β , and so θTX,f,β : ω̂
ω → TX,f,β is an isomorphism. This induces a

natural isomorphism from α̂( ω̂ω) to the open sets ofX, which will be denoted
by ΦX .

Lemma 2.4. Suppose α ∈ ω1, M is a countable elementary submodel ,
q ∈ Sα and F : S(M ∩ α, q)→ R is continuous and satisfies

B. for each β ∈ α and each e ∈ (ωω)β , if S(M ∩ α, q)e 6= ∅, then the
range of F restricted to S(M ∩ α, q)e is uncountable.

Then there is a large closed set X ⊆ S(M ∩ α, q) such that F ¹X is
one-to-one and , moreover , F ¹X is a homeomorphism onto its range.

P r o o f. For τ, τ ′ ∈ α̂( ω̂ω) define τ ≤ τ ′ if and only if τ(σ) ⊆ τ ′(σ) for
each σ in the domain of τ , and define τ1 and τ2 to be incompatible if there
is no τ ′ such that τ1 ≤ τ ′ and τ2 ≤ τ ′. To begin, let {τi : i ∈ ω} enumerate
a subset of α̂( ω̂ω) which forms a tree base for S(M∩α, q)—in other words,
if i and j are in ω then either τi < τj , τj < τi or τi and τj are incompatible;
moreover, {ΦS(M∩α,q)(τi) : i ∈ ω} is a base for S(M ∩ α, q). It may also be
assumed that if τi < τj then i ≤ j and that for each k ∈ ω there is a unique
% and some i ∈ k such that τk(µ) = τi(µ) if µ 6= % and τk(%) = τi(%)∧W for
some integer W . Let X0 = S(M∩α, q). Construct by induction a sequence
{(Xk, {Ui : i ∈ k} : k ∈ ω} such that:

(a) Xk is a large and closed subset of (ωω)α,
(b) each Ui is an open subset of R,
(c) F (ΦXk(τi)) ⊆ Ui,
(d) ΦXk+1(τi) = ΦXk(τi) ∩Xk+1 if i < k,
(e) U i ∩ U j = ∅ if τi and τj are incompatible,
(f) Ui ⊆ Uj if τj < τi,
(g) if τi < τj then U j ∩ F (ΦXk(τi) \ ΦXk(τj)) = ∅,
(h) Xk satisfies Condition B for each k ∈ ω.

If this can be accomplished then let X =
⋂
k∈ωXk. It follows that X

is large and closed because, by (d), branching is eventually preserved at
each node. Moreover, F ¹X is also one-to-one because of the choice of the
Ui satisfying (e) for each i ∈ ω. To see that F is a homeomorphism onto
its range suppose that V ⊆ X is an open set and that z belongs to the
image of V under F . This means that there is some i ∈ ω and z′ such
that z′ ∈ ΦX(τi) ⊆ V and F (z′) = z. It follows that z ∈ Ui ∩ F (X) and
so it suffices to show that Ui ∩ F (X) = F (ΦX(τi)). Clearly, (c) implies
that Ui ∩ F (X) ⊇ F (ΦX(τi)). On the other hand, if w ∈ Ui ∩ F (X) then
there is some w′ ∈ X such that F (w′) = w. Since w ∈ Ui it follows that
w′ ∈ ΦXk(τi) for each k ≥ i because {ΦXk(τj) : j ∈ ω} is a tree base. Hence
w ∈ F (ΦX(τi)).
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178 S. Shelah and J. Steprāns

To perform the induction, use the hypothesis on {τi : i ∈ k} to choose a
maximal τi below τk. Hence there is a unique % such that τk(µ) = τi(µ) if µ 6=
% and τk(%) = τi(%)∧W for some integer W . The open set Uk will be chosen
so that Uk ⊆ Ui and this will guarantee that if τj is incompatible with τi then
Uk∩U j = ∅. The hypothesis on {τi : i ∈ k} also implies that there is no j ∈ k
such that τk < τj . Moreover, if τi < τj then F (ΦXk(τi) \ ΦXk(τj))∩U j = ∅.

To satisfy Condition (g), let {δm : m ∈ a} enumerate, in increasing order,
the domain of τi together with the unique ordinal % and define H : aω → R
as follows. Choose ys ∈ α(ωω) so that for each s ∈ aω:

• ys ∈ ΦXk(τi∧s) where, in this context, τi∧s is defined by (τi∧s)(δm) =
τi(δm) ∧ s(m),
• if s¹j = s′¹j then ys¹δj = ys′¹δj ,
• if s 6= s′ then F (ys) 6= F (ys′).

This is easily done using Condition B to satisfy the last two conditions.
Finally, define H(s) = F (ys) and observe that this is one-to-one.

Now use Lemma 2.3 to find a full subset T ⊆ aω such that H¹T has
discrete image, and furthermore, this is witnessed by {Vt : t ∈ T}. Shrinking
T by a finite amount, if necessary, it may be assumed that

ΦXk(τj) ∩ ΦXk(τi ∧ s) = ∅ for all s ∈ T and j ∈ k
because a ≥ 1. Let

Xk+1 = (Xk\ΦXk(τi))∪
(⋃
{ΦXk(τi∧s) : s ∈ T}

)
∪
(⋃
{ΦXk(τj) : τi≤τj}

)

and define Uk = Vt̄ ∩ Ui where t ∈ T is lexicographically the first element
of T . It is an easy matter to verify that all of the induction hypotheses are
satisfied.

To finish the proof of Lemma 2.1 suppose that ξ ∈ ω2 + 1 and Sξ is the
iteration with countable support of the partial orders S. Suppose also that
p °Sξ “x ∈ [0, 1]” and

p °Sξ “H : [0, 1]→ [0, 1] is a Borel function”.

Let η ∈ ω2 be such that x occurs for the first time in the model V [G∩Sη]. Let
M be a countable elementary submodel of H((2ℵ0)

+
) containing p and the

names x and H. It follows from Lemma 2.2 that it is possible to find q ≤ p
which is strongly Pη-generic over M. Let F : S(M∩ξ, q)→ [0, 1] be defined
by F (Γ ) = xΓ or, in other words, F (Γ ) is the interpretation of x in M[Γ ].
It follows from the second clause of Definition 2.2 that F is a continuous
function. Moreover, because it is assumed that x does not belong to any
model M[G ∩ Sµ] where µ ∈ η, it follows that Condition B of Lemma 2.4
is satisfied by F . Using this lemma, and the fact that η ∩M has countable
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order type, it is possible to find q′ ≤ q such that dom(q) = dom(q′) and
F ¹S(M ∩ η, q′) is a homeomorphism onto its range.

Now let X be the image of S(M ∩ η, q′) under the mapping F . An
inspection of the definition of S(M ∩ η, q′) reveals it to be a Borel set.
Since F ¹S(M ∩ η, q′) is one-to-one, it follows that X is also Borel. Ob-
viously q′ °Sω2

“x ∈ X”. Because the name H belongs to M and F
is one-to-one on X, it is possible to define a mapping H ′ : X → [0, 1]
by letting H ′(z) be the interpretation of H(x) in M[F−1(z)]. Obviously
q′ °Sω2

“H(x) = H ′(x)”.
All that remains to be shown is that H ′ is continuous. To see this, let

z ∈ X. Then there is some Γ ∈ S(M ∩ η, q′′) such that z = F (Γ ) = xΓ .
For any interval with rational end-points, (p, q), the statement ψp,q which
asserts that H(x) ∈ (p, q) has all of its parameters in M. Moreover, M[Γ ] ²
H(x) = H(xΓ ) = H ′(z). For each interval with rational end-points contain-
ing H ′(z), (p, q), there is therefore an open neighbourood Up,q of Γ such that
M[Γ ′] ² ψp,q for each Γ ′ ∈ Up,q. Since F ¹S(M∩η, q′′) is a homeomorphism,
it follows that the image of any Up,q under F is an open neighbourhood U∗p,q
of z. Now, if z ∈ U∗p,q then z = xΓ ′ for some Γ ′ ∈ Up,q, and therefore
M[Γ ′] ² ψp,q. This means that the interpretation of H(x) in M[Γ ′] belongs
to (p, q). Hence the image of U∗p,q under H ′ is contained in (p, q) and so H ′

is continuous.

3. Remarks. The proof presented here can also be generalized, without
difficulty, to apply to the iteration of ω2 Laver reals as well super-perfect
reals. The notion of a large set has its obvious analogue which can be used
to deal with the iteration. In the single step case use the proof that a Laver
real is minimal [2]. The only difference is that, for a Laver condition T , the
“frontiers” of [2] should be used in place of the images of θT ¹nω. In fact,
the proof of the preceding section can be viewed as a generalization of the
fact that adding super-perfect real adds a minimal real in the sense that the
structure of the iterated model is shown to depend very predictably on the
generic reals added.

References

[1] J. Cichoń, M. Morayne, J. Pawl ikowski, and S. So leck i, Decomposing Baire
functions, J. Symbolic Logic 56 (1991), 1273–1283.

[2] M. Groszek, Combinatorics on ideals and forcing with trees, ibid. 52 (1987),
582–593.

[3] A. Mi l l e r, Rational perfect set forcing, in: Axiomatic Set Theory, D. A. Martin,
J. Baumgartner and S. Shelah (eds.), Contemp. Math. 31, Amer. Math. Soc., Prov-
idence, R.I., 1984, 143–159.

[4] S. She lah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.

Sh:510



180 S. Shelah and J. Steprāns
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