FUNDAMENTA MATHEMATICAE 155 (1998)

A polarized partition relation and failure of GCH at singular strong limit

by

Saharon Shelah (Jerusalem and New Brunswick, N.J.)

Abstract. The main result is that for λ strong limit singular failing the continuum hypothesis (i.e. $2^{\lambda} > \lambda^{+}$), a polarized partition theorem holds.

1. Introduction. In the present paper we show a polarized partition theorem for strong limit singular cardinals λ failing the continuum hypothesis. Let us recall the following definition.

DEFINITION 1.1. For ordinal numbers α_1 , α_2 , β_1 , β_2 and a cardinal θ , the *polarized partition symbol*

$$\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \to \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}_{\theta}^{1,1}$$

means that if d is a function from $\alpha_1 \times \beta_1$ into θ then for some $A \subseteq \alpha_1$ of order type α_2 and $B \subseteq \beta_1$ of order type β_2 , the function $d \upharpoonright A \times B$ is constant.

We address the following problem of Erdős and Hajnal:

(*) if μ is strong limit singular of uncountable cofinality with $\theta < cf(\mu)$, does

$$\binom{\mu^+}{\mu} \to \binom{\mu}{\mu}_{\theta}^{1,1} ?$$

The particular case of this question for $\mu = \aleph_{\omega_1}$ and $\theta = 2$ was posed by Erdős, Hajnal and Rado (under the assumption of GCH) in [EHR, Problem 11, p. 183]). Hajnal said that the assumption of GCH in [EHR] was not crucial, and he added that the intention was to ask the question "in some, preferably nice, Set Theory".

¹⁹⁹¹ Mathematics Subject Classification: Primary 03E05, 04A20, 04A30.

Research partially supported by "Basic Research Foundation" administered by The Israel Academy of Sciences and Humanities. Publication 586.

^[153]

Baumgartner and Hajnal have proved that if μ is weakly compact then the answer to (*) is "yes" (see [BH]), also if μ is strong limit of cofinality \aleph_0 . But for a weakly compact μ we do not know if for every $\alpha < \mu^+$:

$$\binom{\mu^+}{\mu} \to \binom{\alpha}{\mu}_{\theta}^{1,1}.$$

The first time I heard the problem (around 1990) I noted that (*) holds when μ is a singular limit of measurable cardinals. This result is presented in Theorem 2.2. It seemed likely that we could combine this with suitable collapses, to get "small" such μ (like \aleph_{ω_1}) but there was no success in this direction.

In September 1994, Hajnal reasked me the question putting great stress on it. Here we answer the problem (*) using methods of [Sh:g]. But instead of the assumption of GCH (postulated in [EHR]) we assume $2^{\mu} > \mu^+$. The proof seems quite flexible but we did not find out what else it is good for. This is a good example of the major theme of [Sh:g]:

THESIS 1.2. Whereas CH and GCH are good (helpful, strategic) assumptions having many consequences, and, say, $\neg CH$ is not, the negation of GCH at singular cardinals (i.e. for μ strong limit singular $2^{\mu} > \mu^+$, or the really strong hypothesis: $cf(\mu) < \mu \Rightarrow pp(\mu) > \mu^+$) is a good (helpful, strategic) assumption.

Foreman pointed out that the result presented in Theorem 1.2 below is preserved by μ^+ -closed forcing notions. Therefore, if

$$V \models \begin{pmatrix} \lambda^+ \\ \lambda \end{pmatrix} \to \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}_{\theta}^{1,1}$$

then

$$V^{\text{Levy}(\lambda^+,2^{\lambda})} \models \begin{pmatrix} \lambda^+ \\ \lambda \end{pmatrix} \to \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}_{\theta}^{1,1}.$$

Consequently, the result is consistent with $2^{\lambda} = \lambda^+ \& \lambda$ is small. (Note that although our final model may satisfy the Singular Cardinals Hypothesis, the intermediate model still violates SCH at λ , hence needs large cardinals, see [J].) For λ not small we can use Theorem 2.2.

Before we move to the main theorem, let us recall an open problem important for our methods:

PROBLEM 1.3. (1) Let $\kappa = \operatorname{cf}(\mu) > \aleph_0$, $\mu > 2^{\kappa}$ and $\lambda = \operatorname{cf}(\lambda) \in (\mu, \operatorname{pp}^+(\mu))$. Can we find $\theta < \mu$ and $\mathfrak{a} \in [\mu \cap \operatorname{Reg}]^{\theta}$ such that $\lambda \in \operatorname{pcf}(\mathfrak{a})$, $\mathfrak{a} = \bigcup_{i < \kappa} \mathfrak{a}_i$, \mathfrak{a}_i bounded in μ and $\sigma \in \mathfrak{a}_i \Rightarrow \bigwedge_{\alpha < \sigma} |\alpha|^{\theta} < \sigma$? For this it is enough to show:

Sh:586

(2) If $\mu = \operatorname{cf}(\mu) > 2^{<\theta}$ but $\bigvee_{\alpha < \mu} |\alpha|^{<\theta} \ge \mu$ then we can find $\mathfrak{a} \in [\mu \cap \operatorname{Reg}]^{<\theta}$ such that $\lambda \in \operatorname{pcf}(\mathfrak{a})$. (In fact, it suffices to prove it for the case $\theta = \aleph_1$.)

As shown in [Sh:g] we have

THEOREM 1.4. If μ is strong limit singular of cofinality $\kappa > \aleph_0$ and $2^{\mu} > \lambda = \operatorname{cf}(\lambda) > \mu$ then for some strictly increasing sequence $\langle \lambda_i : i < \kappa \rangle$ of regulars with limit μ , $\prod_{i < \kappa} \lambda_i / J_{\kappa}^{\operatorname{bd}}$ has true cofinality λ . If $\kappa = \aleph_0$, this still holds for $\lambda = \mu^{++}$.

[More fully, by [Sh:g, II, §5], we know $pp(\mu) =^+ 2^{\mu}$ and by [Sh:g, VIII, 1.6(2)], we know $pp^+(\mu) = pp^+_{J^{bd}_{\kappa}}(\mu)$. Note that for $\kappa = \aleph_0$ we should replace J^{bd}_{κ} by a possibly larger ideal, using [Sh 430, 1.1, 6.5] but there is no need here.]

REMARK 1.5. Note that the problem is a pp = cov problem (see more in [Sh 430, §1]); so if $\kappa = \aleph_0$ and $\lambda < \mu^{+\omega_1}$ the conclusion of 1.4 holds; we allow J_{κ}^{bd} to be increased, even "there are $< \mu^+$ fixed points $< \lambda^+$ " suffices.

2. Main result

THEOREM 2.1. Suppose μ is strong limit singular satisfying $2^{\mu} > \mu^+$. Then:

(1)
$$\binom{\mu^+}{\mu} \to \binom{\mu+1}{\mu}_{\theta}^{1,1}$$
 for any $\theta < \operatorname{cf}(\mu)$.

(2) If d is a function from $\mu^+ \times \mu$ to θ and $\theta < \mu$ then for some sets $A \subseteq \mu^+$ and $B \subseteq \mu$ we have $\operatorname{otp}(A) = \mu + 1$, $\operatorname{otp}(B) = \mu$ and the restriction $d \upharpoonright A \times B$ does not depend on the first coordinate.

Proof. (1) This follows from part (2) (since if $d(\alpha, \beta) = d'(\beta)$ for $\alpha \in A$, $\beta \in B$, where $d' : B \to \theta$, and $|B| = \mu$, $\theta < cf(\mu)$ then there is $B' \subseteq B$ with $|B'| = \mu$ such that $d' \upharpoonright B$ is constant and hence $d \upharpoonright A \times B'$ is constant as required).

(2) Let $d : \mu^+ \times \mu \to \theta$. Let $\kappa = cf(\mu)$ and $\overline{\mu} = \langle \mu_i : i < \kappa \rangle$ be a continuous strictly increasing sequence such that $\mu = \sum_{i < \kappa} \mu_i, \mu_0 > \kappa + \theta$. We can find a sequence $\overline{C} = \langle C_{\alpha} : \alpha < \mu^+ \rangle$ such that:

- (A) $C_{\alpha} \subseteq \alpha$ is closed, $\operatorname{otp}(C_{\alpha}) < \mu$,
- (B) $\beta \in \operatorname{nacc}(C_{\alpha}) \Rightarrow C_{\beta} = C_{\alpha} \cap \beta,$
- (C) if C_{α} has no last element then $\alpha = \sup(C_{\alpha})$ (so α is a limit ordinal) and any member of $\operatorname{nacc}(C_{\alpha})$ is a successor ordinal,
- (D) if $\sigma = cf(\sigma) < \mu$ then the set

$$S_{\sigma} := \{ \delta < \mu^+ : \mathrm{cf}(\delta) = \sigma \& \delta = \sup(C_{\delta}) \& \mathrm{otp}(C_{\delta}) = \sigma \}$$

is stationary

(possible by [Sh 420, $\S1$]); we could have added

(E) for every $\sigma \in \operatorname{Reg} \cap \mu^+$ and a club E of μ^+ , for stationary many $\delta \in S_{\sigma}$, E separates any two successive members of C_{δ} .

Let c be a symmetric two-place function from μ^+ to κ such that for each $i < \kappa$ and $\beta < \mu^+$ the set

$$a_i^{\beta} := \{ \alpha < \beta : c(\alpha, \beta) \le i \}$$

has cardinality $\leq \mu_i$ and $\alpha < \beta < \gamma \Rightarrow c(\alpha, \gamma) \leq \max\{c(\alpha, \beta), c(\beta, \gamma)\}$ and

$$\alpha \in C_{\beta} \& \mu_i \ge |C_{\beta}| \Rightarrow c(\alpha, \beta) \le i$$

(as in [Sh 108], easily constructed by induction on β).

Let $\overline{\lambda} = \langle \lambda_i : i < \kappa \rangle$ be a strictly increasing sequence of regular cardinals with limit μ such that $\prod_{i < \kappa} \lambda_i / J_{\kappa}^{\text{bd}}$ has true cofinality μ^{++} (exists by 1.4 with $\lambda = \mu^{++} \leq 2^{\mu}$). As we can replace $\overline{\lambda}$ by any subsequence of length κ , without loss of generality ($\forall i < \kappa$)($\lambda_i > 2^{\mu_i^+}$). Lastly, let $\chi = \beth_8(\mu)^+$ and $<^*_{\chi}$ be a well ordering of $\mathcal{H}(\chi)$ (:= {x : the transitive closure of x is of cardinality $< \chi$ }).

Now we choose by induction on $\alpha < \mu^+$ sequences $\overline{M}_{\alpha} = \langle M_{\alpha,i} : i < \kappa \rangle$ such that:

(i) $M_{\alpha,i} \prec (\mathcal{H}(\chi), \in, <^*_{\chi}),$

(ii) $||M_{\alpha,i}|| = 2^{\mu_i^+}$ and $^{\mu_i^+}(M_{\alpha,i}) \subseteq M_{\alpha,i}$ and $2^{\mu_i^+} + 1 \subseteq M_{\alpha,i}$,

(iii) $d, c, \overline{C}, \overline{\lambda}, \overline{\mu}, \alpha \in M_{\alpha,i}, \langle M_{\beta,j} : \beta < \alpha, j < \kappa \rangle \in M_{\alpha,i}, \bigcup_{\beta \in a_i^{\alpha}} M_{\beta,i} \subseteq M_{\alpha,i}$ and $\langle M_{\alpha,j} : j < i \rangle \in M_{\alpha,i}, \bigcup_{j < i} M_{\alpha,j} \subseteq M_{\alpha,i},$

(iv) $\langle M_{\beta,i} : \beta \in a_i^{\alpha} \rangle$ belongs to $M_{\alpha,i}$.

There is no problem to carry out the construction. Note that actually clause (iv) follows from (i)–(iii), as a_i^{α} is defined from c, α, i . Our demands imply that

$$[\beta \in a_i^{\alpha} \Rightarrow M_{\beta,i} \prec M_{\alpha,i}] \quad \text{and} \quad [j < i \Rightarrow M_{\alpha,j} \prec M_{\alpha,i}]$$

and $a_i^{\alpha} \subseteq M_{\alpha,i}$, hence $\alpha \subseteq \bigcup_{i < \kappa} M_{\alpha,i}$.

For $\alpha < \mu^+$ let $f_\alpha \in \prod_{i < \kappa} \lambda_i$ be defined by $f_\alpha(i) = \sup(\lambda_i \cap M_{\alpha,i})$. Note that $f_\alpha(i) < \lambda_i$ as $\lambda_i = \operatorname{cf}(\lambda_i) > 2^{\mu_i^+} = ||M_{\alpha,i}||$. Also, if $\beta < \alpha$ then for every $i \in [c(\beta, \alpha), \kappa)$ we have $\beta \in M_{\alpha,i}$ and hence $\overline{M}_\beta \in M_{\alpha,i}$. Therefore, as also $\overline{\lambda} \in M_{\alpha,i}$, we have $f_\beta \in M_{\alpha,i}$ and $f_\beta(i) \in M_{\alpha,i} \cap \lambda_i$. Consequently,

$$(\forall i \in [c(\beta, \alpha), \kappa))(f_{\beta}(i) < f_{\alpha}(i)) \quad \text{and thus} \quad f_{\beta} <_{J_{\kappa}^{\mathrm{bd}}} f_{\alpha}.$$

Since $\{f_{\alpha} : \alpha < \mu^+\} \subseteq \prod_{i < \kappa} \lambda_i$ has cardinality μ^+ and $\prod_{i < \kappa} \lambda_i / J_{\kappa}^{\mathrm{bd}}$ is μ^{++} -directed, there is $f^* \in \prod_{i < \kappa} \lambda_i$ such that

$$(*)_1 \quad (\forall \alpha < \mu^+)(f_\alpha <_{J_\kappa^{\mathrm{bd}}} f^*).$$

156

Let, for $\alpha < \mu^+$, $g_\alpha \in {}^{\kappa}\theta$ be defined by $g_\alpha(i) = d(\alpha, f^*(i))$. Since $|{}^{\kappa}\theta| < \mu < \mu^+ = \operatorname{cf}(\mu^+)$, there is a function $g^* \in {}^{\kappa}\theta$ such that

 $(*)_2$ the set $A^* = \{ \alpha < \mu^+ : g_\alpha = g^* \}$ is unbounded in μ^+ .

Now choose, by induction on $\zeta < \mu^+$, models N_{ζ} such that:

- (a) $N_{\zeta} \prec (\mathcal{H}(\chi), \in, <^*_{\chi}),$
- (b) the sequence $\langle N_{\zeta} : \zeta < \mu^+ \rangle$ is increasing continuous,
- (c) $||N_{\zeta}|| = \mu$ and $\kappa^{>}(N_{\zeta}) \subseteq N_{\zeta}$ if ζ is not a limit ordinal,
- (d) $\langle N_{\xi} : \xi \leq \zeta \rangle \in N_{\zeta+1},$

(e) $\mu + 1 \subseteq N_{\zeta}, \bigcup_{\alpha < \zeta, i < \kappa} M_{\alpha,i} \subseteq N_{\zeta} \text{ and } \langle M_{\alpha,i} : \alpha < \mu^+, i < \kappa \rangle, \langle f_{\alpha} : \alpha < \mu^+ \rangle, g^*, A^* \text{ and } d \text{ belong to the first model } N_0.$

Let $E := \{\zeta < \mu^+ : N_{\zeta} \cap \mu^+ = \zeta\}$. Clearly, E is a club of μ^+ , and thus we can find an increasing sequence $\langle \delta_i : i < \kappa \rangle$ such that

(*)₃ $\delta_i \in S_{\mu_i^+} \cap \operatorname{acc}(E) \ (\subseteq \mu^+)$ (see clause (D) at the beginning of the proof).

For each $i < \kappa$ choose a successor ordinal $\alpha_i^* \in \operatorname{nacc}(C_{\delta_i}) \setminus \bigcup \{\delta_j + 1 : j < i\}$. Take any $\alpha^* \in A^* \setminus \bigcup_{i < \kappa} \delta_i$.

We choose by induction on $i < \kappa$ an ordinal j_i and sets A_i , B_i such that:

- (α) $j_i < \kappa$ and $\mu_{j_i} > \lambda_i$ (so $j_i > i$) and j_i strictly increasing in i,
- $(\beta) \ f_{\delta_i} \upharpoonright [j_i, \kappa) < f_{\alpha_{i+1}^*} \upharpoonright [j_i, \kappa) < f_{\alpha^*} \upharpoonright [j_i, \kappa) < f^* \upharpoonright [j_i, \kappa),$

 (γ) for each $i_0 < i_1$ we have $c(\delta_{i_0}, \alpha^*_{i_1}) < j_{i_1}, c(\alpha^*_{i_0}, \alpha^*_{i_1}) < j_{i_1}, c(\alpha^*_{i_1}, \alpha^*) < j_{i_1}$ and $c(\delta_{i_1}, \alpha^*) < j_{i_1}$,

- $(\delta) A_i \subseteq A^* \cap (\alpha_i^*, \delta_i),$
- $(\varepsilon) \operatorname{otp}(A_i) = \mu_i^+,$
- $(\zeta) A_i \in M_{\delta_i, j_i},$
- $(\eta) B_i \subseteq \lambda_{j_i},$
- $(\theta) \operatorname{otp}(B_i) = \lambda_{j_i},$
- (ι) $B_{\varepsilon} \in M_{\alpha_i^*, j_i}$ for $\varepsilon < i$,

(κ) for every $\alpha \in \bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup \{\alpha^*\}$ and $\zeta \leq i$ and $\beta \in B_{\zeta} \cup \{f^*(j_{\zeta})\}$ we have $d(\alpha, \beta) = g^*(j_{\zeta})$.

If we succeed then $A = \bigcup_{\varepsilon < \kappa} A_{\varepsilon} \cup \{\alpha^*\}$ and $B = \bigcup_{\zeta < \kappa} B_{\zeta}$ are as required. During the induction at stage *i* concerning (ι) , if $\varepsilon + 1 = i$ then for some $j < \kappa, B_{\varepsilon} \cap M_{\alpha_i^*, j}$ has cardinality $\lambda_{j_{\varepsilon}}$, hence we can replace B_{ε} by a subset of the same cardinality which belongs to the model $M_{\alpha_i^*, j}$ if *j* is large enough such that $\mu_j > \lambda_i$; if $\varepsilon + 1 < i$ then by the demand for $\varepsilon + 1$, we have $\bigvee_{j < \kappa} B_{\varepsilon} \in M_{\alpha_i^*, j}$. So assume that the sequence $\langle (j_{\varepsilon}, A_{\varepsilon}, B_{\varepsilon}) : \varepsilon < i \rangle$ has already been defined.

We can find $j_i(0) < \kappa$ satisfying requirements (α) , (β) , (γ) and (ι) and such that $\bigwedge_{\varepsilon < i} \lambda_{j_{\varepsilon}} < \mu_{j_i(0)}$. Then for each $\varepsilon < i$ we have $\delta_{\varepsilon} \in a_{j_i(0)}^{\alpha_i^*}$ and

hence $M_{\delta_{\varepsilon},j_{\varepsilon}} \prec M_{\alpha_{i}^{*},j_{i}(0)}$ (for $\varepsilon < i$). But $A_{\varepsilon} \in M_{\delta_{\varepsilon},j_{\varepsilon}}$ (by clause (ζ)) and $B_{\varepsilon} \in M_{\alpha_{i}^{*},j_{i}(0)}$ (for $\varepsilon < i$), so $\{A_{\varepsilon},B_{\varepsilon}:\varepsilon < i\} \subseteq M_{\alpha_{i}^{*},j_{i}(0)}$. Since ${}^{\kappa>}(M_{\alpha_{i}^{*},j_{i}(0)}) \subseteq M_{\alpha_{i}^{*},j_{i}(0)}$ (see (ii)), the sequence $\langle (A_{\varepsilon},B_{\varepsilon}):\varepsilon < i \rangle$ belongs to $M_{\alpha_{i}^{*},j_{i}(0)}$. We know that for $\gamma_{1} < \gamma_{2}$ in $\operatorname{nacc}(C_{\delta_{i}})$ we have $c(\gamma_{1},\gamma_{2}) \leq i$ (remember clause (B) and the choice of c). As $j_{i}(0) > i$ and so $\mu_{j_{i}(0)} \geq \mu_{i}^{+}$, the sequence

$$\overline{M}^* := \langle M_{\alpha, j_i(0)} : \alpha \in \operatorname{nacc}(C_{\delta_i}) \rangle$$

is \prec -increasing and $\overline{M}^* \upharpoonright \alpha \in M_{\alpha,j_i(0)}$ for $\alpha \in \operatorname{nacc}(C_{\delta_i})$ and $M_{\alpha_i^*,j_i(0)}$ appears in it. Also, as $\delta_i \in \operatorname{acc}(E)$, there is an increasing sequence $\langle \gamma_{\xi} : \xi < \mu_i^+ \rangle$ of members of $\operatorname{nacc}(C_{\delta_i})$ such that $\gamma_0 = \alpha_i^*$ and $(\gamma_{\xi}, \gamma_{\xi+1}) \cap E \neq \emptyset$, say $\beta_{\xi} \in (\gamma_{\xi}, \gamma_{\xi+1}) \cap E$. Each element of $\operatorname{nacc}(C_{\delta})$ is a successor ordinal, so every γ_{ξ} is a successor ordinal. Each model $M_{\gamma_{\xi},j_i(0)}$ is closed under sequences of length $\leq \mu_i^+$, and hence $\langle \gamma_{\zeta} : \zeta < \xi \rangle \in M_{\gamma_{\xi},j_i(0)}$ (by choosing the right \overline{C} and δ_i 's we could have managed to have $\alpha_i^* = \min(C_{\delta_i})$, $\{\gamma_{\xi} : \xi < \mu_i^+\} = \operatorname{nacc}(C_{\delta})$, without using this amount of closure).

For each $\xi < \mu_i^+$, we know that

$$(\mathcal{H}(\chi), \in, <^*_{\chi}) \models "(\exists x \in A^*)[x > \gamma_{\xi} \& (\forall \varepsilon < i)(\forall y \in B_{\varepsilon})(d(x, y) = g^*(j_{\varepsilon}))]"$$

because $x = \alpha^*$ satisfies it. As all the parameters, i.e. A^* , γ_{ξ} , d, g^* and $\langle B_{\varepsilon} : \varepsilon < i \rangle$, belong to $N_{\beta_{\xi}}$ (remember clauses (e) and (c); note that $B_{\varepsilon} \in M_{\alpha_i^*, j_i(0)}, \alpha_i^* < \beta_{\xi}$), there is an ordinal $\beta_{\xi}^* \in (\gamma_{\xi}, \beta_{\xi}) \subseteq (\gamma_{\xi}, \gamma_{\xi+1})$ satisfying the demands on x. Now, necessarily for some $j_i(1,\xi) \in (j_i(0),\kappa)$ we have $\beta_{\xi}^* \in M_{\gamma_{\xi+1}, j_i(1,\xi)}$. Hence for some $j_i < \kappa$ the set

$$A_i := \{\beta_{\xi}^* : \xi < \mu_i^+ \& j_i(1,\xi) = j_i\}$$

has cardinality μ_i^+ . Clearly $A_i \subseteq A^*$ (as each $\beta_{\xi}^* \in A^*$). Now, the sequence $\langle M_{\gamma_{\xi},j_i} : \xi < \mu_i^+ \rangle \widehat{\ } \langle M_{\delta_i,j_i} \rangle$ is \prec -increasing, and hence $A_i \subseteq M_{\delta_i,j_i}$. Since $\mu_{j_i}^+ > \mu_i^+ = |A_i|$ we have $A_i \in M_{\delta_i,j_i}$. Note that at the moment we know that the set A_i satisfies the demands $(\delta)-(\zeta)$. By the choice of $j_i(0)$, as $j_i > j_i(0)$, clearly $M_{\delta_i,j_i} \prec M_{\alpha^*,j_i}$, and hence $A_i \in M_{\alpha^*,j_i}$. Similarly, $\langle A_{\varepsilon} : \varepsilon \leq i \rangle \in M_{\alpha^*,j_i}, \alpha^* \in M_{\alpha^*,j_i}$ and

$$\sup(M_{\alpha^*, j_i} \cap \lambda_{j_i}) = f_{\alpha^*}(j_i) < f^*(j_i).$$

Consequently, $\bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup \{\alpha^*\} \subseteq M_{\alpha^*, j_i}$ (by the induction hypothesis or the above) and it belongs to M_{α^*, j_i} . Since $\bigcup_{\varepsilon < i} A_{\varepsilon} \cup \{\alpha^*\} \subseteq A^*$, clearly

$$(\mathcal{H}(\chi), \in, <^*_{\chi}) \models ``(\forall x \in \bigcup_{\varepsilon \le i} A_{\varepsilon} \cup \{\alpha^*\})(d(x, f^*(j_i)) = g^*(j_i))"$$

Note that

 $\bigcup_{\varepsilon \le i} A_{\varepsilon} \cup \{\alpha^*\}, g^*(j_i), d, \lambda_{j_i} \in M_{\alpha^*, j_i} \quad \text{and} \quad f^*(j_i) \in \lambda_{j_i} \setminus \sup(M_{\alpha^*, j_i} \cap \lambda_{j_i}).$

158

Sh:586

Polarized partition relation

Hence the set

$$B_i := \left\{ y < \lambda_{j_i} : \left(\forall x \in \bigcup_{\varepsilon \le i} A_{\varepsilon} \cup \{\alpha^*\} \right) (d(x, y) = g^*(j_i)) \right\}$$

has to be unbounded in λ_{j_i} . It is easy to check that j_i , A_i , B_i satisfy clauses $(\alpha)-(\kappa)$.

Thus we have carried out the induction step, finishing the proof of the theorem. $\blacksquare_{2.1}$

THEOREM 2.2. Suppose μ is a singular limit of measurable cardinals. Then

(1) $\binom{\mu^+}{\mu} \to \binom{\mu}{\mu}_{\theta}$ if $\theta = 2$ or at least $\theta < \operatorname{cf}(\mu)$. (2) Moreover, if $\alpha^* < \mu^+$ and $\theta < \operatorname{cf}(\mu)$ then $\binom{\mu^+}{\mu} \to \binom{\alpha^*}{\mu}_{a}$.

(3) If $\theta < \mu$, $\alpha^* < \mu^+$ and d is a function from $\mu^+ \times \mu$ to θ then for some $A \subseteq \mu^+$, $\operatorname{otp}(A) = \alpha^*$, and $B = \bigcup_{i < \operatorname{cf}(\mu)} B_i \subseteq \mu$, $d \upharpoonright A \times B_i$ is constant for each $i < \operatorname{cf}(\mu)$.

Proof. Clearly $(3) \Rightarrow (2) \Rightarrow (1)$, so we shall prove part (3).

Let $d: \mu^+ \times \mu \to \theta$. Let $\kappa := \operatorname{cf}(\mu)$. Choose sequences $\langle \lambda_i : i < \kappa \rangle$ and $\langle \mu_i : i < \kappa \rangle$ such that $\langle \mu_i : i < \kappa \rangle$ is increasing continuous, $\mu = \sum_{i < \kappa} \mu_i$, $\mu_0 > \kappa + \theta$, each λ_i is measurable and $\mu_i < \lambda_i < \mu_{i+1}$ (for $i < \kappa$). Let D_i be a λ_i -complete uniform ultrafilter on λ_i . For $\alpha < \mu^+$ define $g_\alpha \in {}^{\kappa}\theta$ by $g_\alpha(i) = \gamma$ iff $\{\beta < \lambda_i : d(\alpha, \beta) = \gamma\} \in D$ (as $\theta < \lambda_i$ it exists). The number of such functions is $\theta^{\kappa} < \mu$ (as μ is necessarily strong limit), so for some $g^* \in {}^{\kappa}\theta$ the set $A := \{\alpha < \mu^+ : g_\alpha = g^*\}$ is unbounded in μ^+ . For each $i < \kappa$ we define an equivalence relation e_i on μ^+ :

$$\alpha e_i \beta$$
 iff $(\forall \gamma < \lambda_i) [d(\alpha, \gamma) = d(\beta, \gamma)].$

So the number of e_i -equivalence classes is $\leq \lambda_i \theta < \mu$. Hence we can find an increasing continuous sequence $\langle \alpha_{\zeta} : \zeta < \mu^+ \rangle$ of ordinals $\langle \mu^+ \rangle$ such that:

(*) for each $i < \kappa$ and e_i -equivalence class X, either $X \cap A \subseteq \alpha_0$, or for every $\zeta < \mu^+$, $(\alpha_{\zeta}, \alpha_{\zeta+1}) \cap X \cap A$ has cardinality μ .

Let $\alpha^* = \bigcup_{i < \kappa} a_i$, $|a_i| = \mu_i$, $\langle a_i : i < \kappa \rangle$ pairwise disjoint. Now, by induction on $i < \kappa$, we choose A_i , B_i such that:

(a) $A_i \subseteq \bigcup \{ (\alpha_{\zeta}, \alpha_{\zeta+1}) : \zeta \in a_i \} \cap A$ and each $A_i \cap (\alpha_{\zeta}, \alpha_{\zeta+1})$ is a singleton,

(b) $B_i \in D_i$,

(c) if $\alpha \in A_i$, $\beta \in B_j$, $j \leq i$ then $d(\alpha, \beta) = g^*(j)$.

Now, at stage i, $\langle (A_{\varepsilon}, B_{\varepsilon}) : \varepsilon < i \rangle$ are already chosen. Let us choose A_{ε} . For each $\zeta \in a_i$ choose $\beta_{\zeta} \in (\alpha_{\zeta}, \alpha_{\zeta+1}) \cap A$ such that if i > 0 then for some

 $\beta' \in A_0, \ \beta_{\zeta} e_i \beta'$, and let $A_i = \{\beta_{\zeta} : \zeta \in a_i\}$. Now clause (a) is immediate, and the relevant part of clause (c), i.e. j < i, is O.K. Next, as $\bigcup_{j \leq i} A_j \subseteq A$, the set

$$B_i := \bigcap_{j \le i} \bigcap_{\beta \in A_j} \{ \gamma < \lambda_i : d(\beta, \gamma) = g^*(i) \}$$

is the intersection of $\leq \mu_i < \lambda_i$ sets from D_i and hence $B_i \in D_i$. Clearly clause (b) and the remaining part of clause (c) (i.e. j = i) holds. So we can carry out the induction and hence finish the proof. $\bullet_{2,2}$

References

- [EHR] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93–196.
- [BH] J. Baumgartner and A. Hajnal, *Polarized partition relations*, preprint, 1995.
 [J] T. Jech, *Set Theory*, Academic Press, New York, 1978.
- [Sh:g] S. Shelah, *Cardinal Arithmetic*, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
- [Sh 430] —, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61–114.
- [Sh 420] —, Advances in cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer Acad. Publ., 1993, 355–383.
- [Sh 108] —, On successors of singular cardinals, in: Logic Colloquium '78 (Mons, 1978), Stud. Logic Found. Math. 97, North-Holland, Amsterdam, 1979, 357–380.

Institute of Mathematics The Hebrew University 91 904 Jerusalem, Israel E-mail: shelah@math.huji.ac.il Department of Mathematics Rutgers University New Brunswick, New Jersey 08903 U.S.A.

Received 4 November 1995; in revised form 18 October 1996

160