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Covering of the null ideal may have countable cofinality

by

Saharon She l ah (Jerusalem and New Brunswick, NJ)

Abstract. We prove that it is consistent that the covering number of the ideal of
measure zero sets has countable cofinality.

0. Introduction. In the present paper we show that it is consistent
that the covering of the null ideal has countable cofinality. Recall that the
covering number of the null ideal (i.e. the ideal of measure zero sets) is
defined as

cov(null) = min
{
|P| : P ⊆ null and

⋃
A∈P

A = R (= ω2)
}

.

The question whether the cofinality of cov(null) is uncountable has been
raised by D. Fremlin and has been around since the late seventies. It appears
in Fremlin’s list of problems, [Fe94], as problem CO. Recall that for the
ideal of meagre sets the answer is positive: A. Miller [Mi82] proved that
the cofinality of the covering of category is uncountable. T. Bartoszyński
[Ba88] saw that b < ℵω is necessary (see [BaJu95, Ch. 5] for more results
related to this problem). It should be noted that most people thought
cf(cov(null)) = ℵ0 was impossible.

The main result of this paper is the following:

Theorem 0.1. Con(cov(null) = ℵω + MAℵn
) for each n < ω.

The presentation of the proof of 0.1 sacrifices generality for hopeful trans-
parency. We finish by some further remarks, e.g. the exact cardinal assump-
tion for 0.1. We try to make the paper self-contained for readers with basic
knowledge of forcing.
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110 S. Shelah

In a subsequent paper, [Sh 619], we deal with the question: “can every
non-null set be partitioned into uncountably many non-null sets”, equiva-
lently: “can the ideal of null sets which are subsets of a non-null subset of
R be ℵ1-saturated”. P. Komjáth [Ko89] proved that it is consistent that
there is a non-meagre set A such that the ideal of meagre subsets of A is
ℵ1-saturated. The question whether a similar fact may hold for measure
dates back to Ulam; see also Prikry’s thesis. It appears as question EL(a)
on Fremlin’s list. In [Sh 619] we prove the following:

Theorem 1. It is consistent that there is a non-null set A ⊆ R such that
the ideal of null subsets of A is ℵ1-saturated (of course, provided that “ZFC
+∃ measurable” is consistent).

In [Sh 619] we also prove the following.

Theorem 2. It is consistent that :

(⊕) there is a non-null A ⊆ R such that for every f : A → R, the function
f as a subset of the plane R× R is null

provided that “ZFC + there is a measurable cardinal” is consistent.

Notation 0.2. We denote:

• natural numbers by k, l, m, n and also i, j,
• ordinals by α, β, γ, δ, ζ, ξ (δ always limit),
• cardinals by λ, κ, χ, µ,
• reals by a, b and positive reals (normally small) by ε,
• subsets of ω or ω≥2 or Ord by A, B, C, X, Y , Z but B is a Borel

function,
• finitely additive measures by Ξ,
• sequences of natural numbers or ordinals by η, ν, %,

s is used for various things, T is as in Definition 2.9, t is a member of T .
We denote

• forcing notions by P , Q,
• forcing conditions by p, q

and use r to denote members of Random (see below) except in Definition 2.2.
Leb is the Lebesgue measure (on ω2), and Random will be the family

{r ⊆ ω>2 : r is a subtree of (ω>2,C) (i.e. non-empty subset of ω>2
closed under initial segments) with no C-maximal element
(so lim(r) := {η ∈ ω2 : (∀n ∈ ω)(η�n ∈ t)} is a closed subset
of ω2) and Leb(lim(r)) > 0}

ordered by inverse inclusion. We may sometimes use instead

{B : B is a Borel non-null subset of ω2}.
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Covering of the null ideal 111

For η ∈ ω>2 and A ⊆ ω≥2 let

A[η] = {ν ∈ A : ν E η ∨ η E ν}.
Let H(χ) denote the family of sets with transitive closure of cardinality

< χ, and let <∗
χ denote a well ordering of H(χ).

We thank Tomek Bartoszyński and Mariusz Rabus for reading and com-
menting and correcting.

1. Preliminaries. We review various facts on finitely additive measures.

Definition 1.1. (1) M is the set of functions Ξ from some Boolean
subalgebra P of P(ω) including the finite sets to [0, 1]R such that:

• Ξ(∅) = 0, Ξ(ω) = 1,
• if Y, Z ∈ P are disjoint, then Ξ(Y ∪ Z) = Ξ(Y ) + Ξ(Z),
• Ξ({n}) = 0 for n ∈ ω.

(2) Mfull is the set of Ξ ∈M with domain P(ω) and members are called
finitely additive measures (on ω).

(3) We say A has Ξ-measure a (or > a, or whatever) if A ∈ dom(Ξ) and
Ξ(A) is a (or > a, or whatever).

Proposition 1.2. Let aα, bα (α < α∗) be reals, 0 ≤ aα ≤ bα ≤ 1, and
let Aα ⊆ ω (α < α∗) be given. The following conditions are equivalent :

(A) There exists Ξ ∈M which satisfies Ξ(Aα) ∈ [aα, bα] for α < α∗.
(B) For every ε > 0,m < ω and n < ω, and α0 < α1 < . . . < αn−1 < α∗

we can find a finite, non-empty u ⊆ [m,ω) such that for l < n,

aαl
− ε ≤ |Aαl

∩ u|/|u| ≤ bαl
+ ε.

(C) For every real ε > 0, n < ω and α0 < α1 < . . . < αn−1 < α∗ there
are cl ∈ [aαl

− ε, bαl
+ ε] such that in the vector space Rn, 〈c0, . . . , cn−1〉

is in the convex hull of {% ∈ n{0, 1} : for infinitely many m ∈ ω we have
(∀l < n)[%(l) = 1 ⇔ m ∈ Aαl

]}.
(D) Like part (A) with Ξ ∈Mfull.
(E) Like part (B) demanding u ⊆ ω, |u| ≥ m.

P r o o f. Straightforward (in fact, in clause (E) we can omit “u⊆ [m,ω)”).
On (C) see 2.17.

Proposition 1.3. (1) Assume that Ξ0 ∈ M and for α < α∗, Aα ⊆ ω
and 0 ≤ aα ≤ bα ≤ 1, aα, bα reals. The following are equivalent :

(A) There is Ξ ∈ Mfull extending Ξ0 such that α < α∗ ⇒ Ξ(Aα) ∈
[aα, bα].

(B) For every partition 〈B0, . . . , Bm−1〉 of ω with Bi ∈ dom(Ξ0) and
ε > 0, n < ω and α0 < . . . < αn−1 < α∗ we can find a finite set u ⊆ ω such
that Ξ(Bi)−ε ≤ |u∩Bi|/|u| ≤ Ξ(Bi)+ε and aαl

−ε ≤ |u∩Aαl
|/|u| ≤ bαl

+ε.
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112 S. Shelah

(C) For every partition 〈B0, . . . , Bm−1〉 of ω with Bi ∈ dom(Ξ0) and
ε > 0, n < ω and α0 < . . . < αn−1 < α∗ we can find cl,k ∈ [0, 1]R for
l < n, k < m such that :

(a)
∑

k<m cl,k ∈ (aαl
− ε, bαl

+ ε),
(b) for each k < m and s < ω we can find u ⊆ Bk with ≥ s members

such that

l < n ⇒ cl,k − ε < (|u ∩Al ∩Bk|/|u|)Ξ(Bk) < cl,k + ε.

(D) for every partition 〈B0, . . . , Bm−1〉 of ω with Bi ∈ dom(Ξ0), ε > 0,
n < ω, and α0, . . . , αn−1 < α∗ we can find cl,k ∈ [0, 1]R for l < n, k < m
such that :

(a)
∑

k<m cl,k ∈ [aαl
− ε, bαl

+ ε],
(b) 〈cl,k : l < n〉 is in the convex hull of

{% ∈ n{0, 1} : for infinitely many i ∈ Bk, we have
(∀l < n)[%(l) = 1 ⇔ i ∈ Aαl

]}.

(2) The following are sufficient conditions for (A)–(D) above:

(E) For every ε > 0, A∗ ∈ dom(Ξ0) such that Ξ0(A∗) > 0, n < ω,
α0 < . . . < αn−1 < α∗, we can find a finite, non-empty u ⊆ A∗ such that
aαl

− ε ≤ |Aαl
∩ u|/|u| ≤ bαl

+ ε for l < n.
(F) For every ε > 0, n < ω, α0 < α1 < . . . < αn−1 < α∗ and A∗ ∈

dom(Ξ0) such that Ξ0(A∗) > 0, the set
∏

l<n[aαl
− ε, bαl

+ ε] ⊆ Rn is not
disjoint from the convex hull of

{% ∈ n{0, 1} : for infinitely many m ∈ A∗ we have
(∀l < n)[%(l) = 1 ⇔ m ∈ Aαl

]}.
(3) If in addition bα = 1 for α < α∗ then a sufficient condition for

(A)–(E) above is

(G) if A∗ ∈ dom(Ξ0) and Ξ(A∗) > 0 and n < ω and α0 < . . . < αn−1 <
α∗ then A∗ ∩

⋂
l<n Aαl

6= ∅.

P r o o f. Straightforward.

Definition 1.4. (1) For Ξ ∈ Mfull and a sequence ā = 〈al : l < ω〉 of
reals in [0, 1]R (or just supl<ω |al| < ∞), define AvΞ(ā) to be

sup
{ ∑

k<k∗

Ξ(Ak) inf{al : l ∈ Ak} : 〈Ak : k < k∗〉 is a partition of ω
}

= inf
{ ∑

k<k∗

Ξ(Ak) sup{al : l ∈ Ak} : 〈Ak : k < k∗〉 is a partition of ω
}

.

(Easily proved that they are equal.)
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Covering of the null ideal 113

(2) For Ξ ∈M and A ⊆ ω such that Ξ(A) > 0 we define

ΞA(B) = Ξ(A ∩B)/Ξ(A).

Clearly ΞA ∈M with the same domain, ΞA(A) = 1. If B ⊆ ω and Ξ(B) > 0
then we let

AvΞ�B(〈ak : k ∈ B〉) = AvΞ(〈a′k : k < ω〉)/Ξ(B)

where

a′k =
{

ak if k ∈ B,

0 if k 6∈ B.

Proposition 1.5. Assume Ξ ∈ Mfull and ai
l ∈ [0, 1]R for i < i∗ < ω,

l < ω, B ⊆ ω, Ξ(B) > 0 and AvΞB
(〈ai

l : l < ω〉) = bi for i < i∗, m∗ < ω
and lastly ε > 0. Then for some finite u ⊆ B \m∗ we have: if i < i∗, then
bi − ε <

∑
{ai

l : l ∈ u}/|u| < bi + ε.

P r o o f. Let B =
⋃

j<j∗ Bj be a partition of B with j∗ < ω such that
for every i < i∗ we have∑

j<j∗

sup{ai
l : l ∈ Bj}Ξ(Bj)−

∑
j<j∗

inf{ai
l : l ∈ Bj}Ξ(Bj) < ε/2.

Now choose k∗ large enough such that there are kj satisfying k∗ =
∑

j<j∗ kj

and |kj/k∗ − Ξ(Bj)/Ξ(B)| < ε/(2j∗) for j < j∗. Let uj ⊆ Bj \ m∗ with
|uj | = kj for j < j∗, and let u =

⋃
j<j∗ uj . Now calculate:∑

l∈u

ai
l/|u| =

∑
j<j∗

∑
{ai

l : l ∈ uj}/|u| ≤
∑
j<j∗

sup{ai
l : l ∈ Bj}kj/k∗

≤
∑
j<j∗

sup{ai
l : l ∈ Bj}(Ξ(Bj)/Ξ(B) + ε/(2j∗))

≤ bi + ε/2 + ε/2 = bi + ε,∑
l∈u

ai
l/|u| =

∑
j<j∗

∑
{ai

l : l ∈ uj}/|u| ≥
∑
j<j∗

inf{ai
l : l ∈ Bj}kj/k∗

≥
∑
j<j∗

inf{ai
l : l ∈ Bj}(Ξ(Bj)/Ξ(B)− ε/(2j∗)) > bi − ε.

Claim 1.6. Suppose Q1, Q2 are forcing notions, Ξ0 ∈ Mfull in V , and
for l = 1, 2,

Ql
“˜Ξ l is a finitely additive measure extending Ξ0”.

Then

Q1×Q2 “there is a finitely additive measure extending ˜Ξ1 and ˜Ξ2

(hence Ξ0)”.
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114 S. Shelah

P r o o f. Straightforward by 1.2 as

(∗) if Ql
“˜Al ⊆ ω” and Q1×Q2 “˜A1 ∩ ˜A2 is finite” then

Q1×Q2 “for some m and A ⊆ ω, A ∈ V we have

˜A1 \m ⊆ A, (˜A2 \m) ∩A = ∅”.
Fact 1.7. Assume Ξ is a partial finitely additive measure, and āα =

〈aα
k : k < ω〉 a sequence of reals for α < α∗ such that lim supk |aα

k | < ∞ for
each α. Then (B)⇒(A) where

(A) there is Ξ∗ with Ξ ⊆ Ξ∗ ∈ Mfull such that AvΞ∗(āα) ≥ bα for
α < α∗,

(B) for every partition 〈B0, . . . , Bm∗−1〉 of ω with Bm ∈ dom(Ξ) and
ε > 0, k∗ > 0 and α0 < . . . < αn∗−1 < α∗, there is a finite u ⊆ ω \ k∗ such
that :

(i) Ξ(Bm)− ε < |u ∩Bm|/|u| < Ξ(Bm) + ε,
(ii) |u|−1

∑
k∈u aαl

k > bαl
− ε for l < n∗.

Remark 1.8. If in (A) we demand AvΞ(āα) = bα, then in (B)(ii) add
|u|−1

∑
k∈u aαl

k ≤ bαl
+ ε.

2. The iteration. Ignoring MA<κ (which anyhow was a side issue) a
quite natural approach in order to get 0.1 (i.e. cov(null) = λ, say λ = ℵω)
is to use finite support iteration, Q̄ = 〈Pα, Qα : α < α∗〉, add in the first λ
steps null sets Nα (the intention is that

⋃
α<λ Nα = ω2 in the final model),

and then iterate with Qα being RandomVP ′α where P ′
α <◦ Pα and |P ′

α| < λ.
Say, for some Aα ⊆ α,

P ′
α = {p ∈ Pα : dom(p) ⊆ Aα and this holds for the conditions

involved in the Pγ-name p(γ) for γ ∈ dom(p) etc.}
(so each Qα is a partial random; see Definition 2.2). If every set of < λ null
sets from VPα∗ is included in some VP ′

α , clearly VPα∗ |= cov(null) ≥ λ; but
we need the other inequality too. So we are using “non-transitive” memory,
i.e. α ∈ Aβ 6⇒ Aα ⊆ Aβ ; this makes our life hard.

The problem is: why does 〈Nα : α < λ〉 continue to cover? For Pλ+n such
that α ∈ [λ, λ+n) ⇒ Aα = α this is very clear (we get iteration of Random
forcing) and if α ∈ [λ, λ + n) ⇒ Aα ⊆ λ this is clear (we get product). But
necessarily we get a quite chaotic sequence 〈Aαm ∩ {αl : l < m} : m < m∗〉
for some α0 < . . . < αm∗−1. More concretely this is the problem of why
there are no perfect sets of random reals (see 2.7) or even just no dominating
reals. We need to “let the partial randoms whisper secrets to one another”,
in other words to pass information in some way. This is done by the finitely
additive measures ˜Ξt

α. We had tried with thinking of using ℵε-support (see
[Sh 538]), the idea is still clear in the proof of 3.3. In this proof we start
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Covering of the null ideal 115

with “no dominating reals” for which we can just use ultrafilters (rather
than finitely additive measures).

Let us start with a ground model V satisfying the following hypothesis:

Hypothesis 2.1. (a) λ =
∑

ζ<δ(∗) λζ , ℵ0 < κ = cf(κ), κ < λζ < λγ for
ζ < γ < δ(∗), 2κ = χ and ζ < δ(∗) ⇒ (λζ)ℵ0 < λ.

(b) We have one of the following (1):

(α) cf(χ) > λ, the length of the final iteration is χ,
(β) the length of the final iteration is χ×χ×λ+ and cf([χ]<λ,⊆) = χ.

We speak mainly on (α). In case (β) we should be careful to have no
repetitions in η̄ = 〈ηα : α < δ∗〉 (see below) or 〈ηα/≈κ : α < δ∗〉 with no
repetitions, where η ≈κ ν iff η, ν ∈ κ2 and |{i < κ : η(i) 6= ν(i)}| < κ.

The reader may choose to restrict himself and start with V satisfying:
GCH, λ = ℵω, δ(∗) = ω, λn = ℵn(∗)+n, κ = ℵn(∗) > ℵ1 and χ = ℵω+1.
Now add ℵω+1 generic subsets of κ, i.e., force with a product of χ copies of
(κ>2,C) with support < κ. This model satisfies the hypothesis.

We intend to define a forcing P such that

VP |= 2ℵ0 = χ + cov(null) = λ + MA<κ.

Definition 2.2. (1) K is the family of sequences

Q̄ = (Pα, ˜Qα, Aα, µα,
˜
τα : α < α∗)

satisfying:

(A) (Pα, ˜Qα : α < α∗) is a finite support iteration of c.c.c. forcing no-
tions, we set α∗ = lg(Q̄) (the length of Q̄), Pα∗ is the limit.

(B)
˜
τα ⊆ µα < κ is the generic of ˜Qα (i.e. over VPα from G˜Qα

we can
compute

˜
τα and vice versa).

(C) Aα ⊆ α (for proving Theorem 0.1 we use |Aα| < λ).
(D) ˜Qα is a Pα-name of a c.c.c. forcing notion but computable from

〈
˜
τγ [˜GPα ] : γ ∈ Aα〉; in particular it belongs to Vα = V[〈

˜
τγ [GPα ] : γ ∈ Aα〉].

(E) α∗ ≥ λ and for α < λ we have Qα = (ω>2,C) (the Cohen forcing)
and µα = ℵ0 (well, identifies ω>2 with ω).

(F) For each α < α∗ one of the following holds (and the case is deter-
mined in V, not just a Pα-name):

(α) |˜Qα| < κ, |Aα| < κ and (just for notational simplicity) the set
of elements of ˜Qα is µα < κ (but the order not necessarily the
order of the ordinals) and ˜Qα is separative (i.e. ζ  ξ ∈ G˜Qα ⇔

˜Qα |= ξ ≤ ζ).

In this case let
˜
τα = ˜G˜Qα

.

(1) Actually, any ordinal α∗ of cardinality χ, divisible by χ and of cofinality > λ is
O.K.
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116 S. Shelah

(β) Essentially ˜Qα = RandomVα (= {r ∈ Vα : r⊆ ω>2, perfect tree,
Leb(lim(r)) > 0}) and |Aα| ≥ κ; but for simplicity ˜Qα =
RandomAα,Q̄�α where for A ⊆ lg(Q̄),

RandomA,Q̄ = {p : there is (in V) a Borel function B = B(x0, x1, . . .),
with variables ranging on {true, false} and range per-
fect subtrees r of ω>2 with Leb(lim(r)) > 0 such that
(∀η ∈ r)[Leb(lim(r[η])) > 0] (recall r[η] = {ν ∈ r :
ν E η∨η E ν}), and there are pairs (γl, ζl) for l < ω,
with γl ∈ A and ζl < µγl

, such that p = B(. . . , truth
value(ζl ∈

˜
τγl

), . . .)l<ω}

(in other notation, p = B(truth value(ζl ∈
˜
τγl

) : l < ω)) and then we let
supp(p) = {γl : l < ω}. In this case µα = ω and

˜
τα is the random real, i.e.

˜
τα(n) = l ⇔ (∃η ∈ n2)[(ω>2)[η

_〈l〉] ∈ ˜GQα ].

(2) Let

P ′
α = {p ∈ Pα : for every γ ∈ dom(p), if |Aγ | < κ then p(γ) is an ordinal

< µγ (not just a Pγ-name) and if |Aγ | ≥ κ then p(γ)
has the form mentioned in clause (F)(β) above (and not
just a Pγ-name of such an object)}

(this is a dense subset of Pα).
(3) For A ⊆ α let

P ′
A = {p ∈ P ′

α : dom(p) ⊆ A and γ ∈ dom(p) ⇒ supp(p(γ)) ⊆ A}.

Fact 2.3. Suppose Q̄ ∈ K with lg(Q̄) = α∗.

(1) For α ≤ α∗, P ′
α is a dense subset of Pα and Pα satisfies the c.c.c.

(2) Suppose

(a) cf(α∗) > λ,
(b) for every A ⊆ α∗, if |A| < λ, then there is β < α∗ such that

A ⊆ Aβ (and |Aβ | ≥ κ).

Then, in the extension, ω2 is not the union of < λ null sets.
(3) In VPα , from

˜
τα[GQα ] we can reconstruct GQα and vice versa. From

〈
˜
τγ : γ < α〉[GPα ] we can reconstruct GPα and vice versa. So VPα = V[〈

˜
τβ :

β < α〉].
(4) If µ < λ, and ˜X is a Pα∗-name of a subset of µ, then there is a set

A ⊆ α∗ such that |A| ≤ µ and Pα∗ “˜X ∈ V[〈
˜
τγ : γ ∈ A〉]”. Moreover for

each ζ < µ there is in V a Borel function B(x0, . . . , xn, . . .)n<ω with domain
and range the set {true, false} and γl ∈ A, ζl < µγl

for l < ω such that

Pα∗ “ζ ∈ ˜X iff true = B(. . . , “truth value of ζl ∈
˜
τγl

[GQγl
]”, . . .)l<ω”.
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Covering of the null ideal 117

(5) For Q̄ ∈ K and A ⊆ α∗, every real in V[〈
˜
τγ : γ ∈ A〉] has the form

B(. . . , truth value(ζl ∈ τγl
), . . .)l<ω where γl < α∗, ζl < µγl

and B is a Borel
function (from V) from ω{true, false} to ω2 (the set of reals).

(6) If condition (c) below holds then VPα∗ |= MA<κ, where

(c) if ˜Q is a Pα∗-name of a c.c.c. forcing notion with set of elements
µ < κ then for some α < α∗, ˜Q is a Pα-name µα = µ and
Pα “˜Q = ˜Qα”.

(7) If |Aβ | ≥ κ and P ′
Aβ

<◦ Pβ then Qβ is actually RandomV
PAβ

.
(8) If |Aα| < λ then Pα “˜Qα < λ”, in fact |{p(α) : p ∈ P ′

α∗}| < λ.

P r o o f. (1) Easy, by induction on α.
(2) Easy using parts (3)–(7). Note that for any β < α∗ satisfying |Aβ | ≥

κ the null sets from V[〈
˜
τγ :γ∈Aβ〉] do not cover ω2 in VPα∗ as we have random

reals over V[〈
˜
τγ :γ∈Aβ〉]. So, by clause (b) of the assumption, it is enough to

note that if ˜y is a Pα∗ -name of a member of ω2, then there is a countable
A ⊆ α∗ such that ˜y[˜G] ∈ V[〈

˜
τβ : β ∈ A〉]. This follows by part (4).

(3) By induction on α.
(4) Let χ∗ be such that {Q̄, λ} ∈ H(χ∗), and let ζ < µ; let M be a count-

able elementary submodel of (H(χ∗),∈, <∗
χ∗) to which {Q̄, λ, κ, µ, ˜X, ζ} be-

longs, so Pα∗ “M [˜GPα∗ ] ∩ H(χ∗) = M”. Hence by 2.3(3) (i.e. as VPα =
V[〈

˜
τβ : β < α〉]) we have M [˜GPα∗ ] = M [〈

˜
τi : i ∈ α∗∩M〉] and the conclusion

should be clear.
(5) By 2.3(4).
(6) Straight.
(7) Easy (see more [Sh 619, §3]).
(8) By the definitions (and since (λζ)ℵ0 < λ and λ = sup{λζ : ζ < δ(∗)}

by 2.1).

Definition 2.4. (1) Suppose that ā = 〈al : l < ω〉 and 〈nl : l < ω〉 are
such that:

(a) al ⊆ nl2,
(b) nl < nl+1 < ω for l < ω,
(c) |al|/2nl > 1− 1/10l.

Let N [ā] =: {η ∈ ω2 : (∃∞l)(∀ν ∈ al)(ν 6C η)}.
(2) For ā as above and n ∈ ω, let

treen(ā) = {ν ∈ ω>2 : nl > n ⇒ ν�nl ∈ al}.
It is well known that for ā as above the set N [ā] is null (and N [ā] =

ω2 \
⋃

n<ω lim(treen(ā))).

Definition 2.5. For α < λ we identify Qα (the Cohen forcing) with

{〈(nl, al) : l < k〉 : k < ω, nl < nl+1 < ω, al ⊆ nl2, |al|/2nl > 1− 1/10l},
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ordered by end extension. If GQα is Qα-generic, let 〈(¯˜aα
l , ˜nα

l ) : l<ω〉[GQα ]
be the ω-sequence such that every p ∈ GQα is an initial segment of it. So
we have defined the Qα-name ¯˜aα = 〈˜aα

l : l < ω〉 and similarly 〈˜nα
l : l < ω〉.

Let ˜Nα = N [¯˜aα].

Our aim is to prove (∗)Q̄, where

Definition 2.6. For Q̄ ∈ K with α∗ = lg(Q̄) let

(∗)Q̄ 〈Nα : α < λ〉 cover ω2 in VPα∗ , where Pα∗ = Lim(Q̄).

We shall eventually prove it not for every Q̄, but for enough Q̄’s (basically
asking the Aα of cardinality ≥ κ to be closed enough).

Lemma 2.7. For Q̄ ∈ K with γ = lg(Q̄), a sufficient condition for (∗)Q̄ is:

(∗∗)Q̄ In VPγ , there is no perfect tree T ⊆ ω>2 and E ∈ [λ]κ
+

such that ,
for some n < ω, T ⊆ treen[āα] for all α ∈ E.

P r o o f. By induction on γ ≥ λ. For γ = λ, trivial by properties of the
Cohen forcing.

Suppose γ > λ is limit. Assume toward contradiction that

p Pγ
“˜η 6∈

⋃
α<λ

N [¯˜aα]”.

Without loss of generality,

p Pγ “˜η 6∈ VPβ ”

for every β < γ, hence by properties of FS iteration of c.c.c. forcing notions,
cf(γ) = ℵ0. So for each α < λ there are pα, mα such that

p ≤ pα ∈ Pγ , pα  “˜η ∈ lim(treemα(¯˜aα))”.

Note that (by properties of c.c.c. forcing notions) 〈{α < λ : pα ∈ Pβ} :
β < γ〉 is an increasing sequence of subsets of λ of length γ, so for some
γ1 < γ there is E ∈ [λ]κ

+
such that pα ∈ Pγ1 for every α ∈ E and we can

assume mα = m for α ∈ E. Note that for all but < κ+ of the ordinals α ∈ E
we have

pα  “|{β ∈ E : pβ ∈ GPγ1
}| = κ+”.

Fix such an α, and let GPγ1
be a Pγ1-generic (over V) subset of Pγ1 to which

pα belongs. Now in V[GPγ1
] let E′ = {β ∈ E : pβ ∈ GPγ1

} so |E′| = κ+.
Let T ∗ =

⋂
β∈E′ treem(āβ). Note that, in VPγ1 , T ∗ is a subtree of ω>2 and

by (∗∗)Q̄, T ∗ contains no perfect subtree. Hence lim(T ∗) is countable, so
absolute. But pα Pγ “˜η ∈ lim(˜T ∗)”, so pα  “˜η ∈ VPγ1 ”, a contradiction.

Assume now that γ = β + 1 > λ and work in VPβ . Choose p, pα ∈ Qβ

as before. By 2.3(7), Qβ has a dense subset of cardinality < λ, so there are
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q ∈ Qβ and m such that E = {α < λ : mα = n, pα ≤ q} has cardinality
≥ κ+. Continue as above.

As we have covered the cases γ = λ, γ > λ limit and γ > λ successor,
we have finished the proof.

Discussion 2.8. Note that by Lemma 2.7 and Fact 2.3 it is enough to
show that there is Q̄ ∈ K such that α∗ = lg(Q̄) (where α∗ is chosen as the
length of the final iteration from 2.1(b)), satisfying clauses (a)+(b)+(c) of
Fact 2.3(2)+(6) and (∗∗)Q̄. To prove the latter we need to impose more
restrictions on the iteration. Now when Haim Judah asked me on the prob-
lem, whereas 2.1–2.7 were quite immediate, arriving at 2.9–2.11 has taken
me many years and much effort.

Definition 2.9. T , the set of blueprints, is the set of tuples

t = (wt,nt,mt, η̄t, ht
0, h

t
1, h

t
2, n̄

t)

where:

(a) wt ∈ [κ]ℵ0 ,
(b) 0 < nt < ω, mt ≤ nt,
(c) η̄t = 〈ηt

n,k : n < nt, k < ω〉, ηt
n,k ∈ wt

2 for n < nt, k < ω,
(d) ht

0 is a partial function from [0,nt) to ωκ, its domain includes the set
{0, . . . ,mt− 1} (here we consider members of Qα for α < λ as integers (2)),

(e) ht
1 is a partial function from [0,nt) to (0, 1)Q (rationals), but for n ∈

[0,nt) \ dom(ht
1) we stipulate ht

1(n) = 0 and we assume
∑

n<nt

√
ht

1(n) <
1/10.

(f) ht
2 is a partial function from [0,nt) to ω>2,

(g) dom(ht
0), dom(ht

1) are disjoint with union [0,nt),
(h) dom(ht

2) = dom(ht
1),

(i) ηt
n1,k1

= ηt
n2,k2

⇒ n1 = n2,
(j) for each n < nt we have: 〈ηt

n,k : k < ω〉 is constant or with no
repetitions; if it is constant and n ∈ dom(ht

0) then ht
0(n) is constant,

(k) n̄t = 〈nt
k : k < ω〉 where nt

0 = 0, nt
k < nt

k+1 < ω and the sequence
〈nt

k+1−nt
k : k < ω〉 goes to infinity. For l < ω and such n̄ let kn̄(l) = k(l, n̄)

be the unique k such that nk ≤ l < nk+1.

Discussion 2.10. The definitions of a blueprint t ∈ T (in Definition 2.9)
and of iterations Q̄ ∈ K3 (defined in Definition 2.11(c) below; the reader may
first read it) contain the main idea of the proof, so though they have many
clauses, the reader is advised to try to understand them.

(2) Actually the case where each ht0(n) is a constant function from ω to κ suffices,
and so κ < λ suffices instead of κℵ0 < λ.
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In order to prove (∗∗)Q̄ we will show in VPα∗ that if E ∈ [λ]κ
+

and
n < ω, then

⋂
α∈E treen(¯˜aα) is a tree with finitely many branches. So let

p be given, let p ≤ pζ  “βζ ∈ ˜E” for ζ < κ+, βζ 6∈ {βξ : ξ < ζ}, we can
assume pζ is in some pregiven dense set, and 〈pζ : ζ < κ+〉 form a ∆-system
(with some more “thinning” demands), dom(pζ) = {αn,ζ : n < n∗}, αn,ζ is
increasing with n, and αn,ζ < λ iff n < m∗. Let p′ζ be pζ when pζ(αn,ζ) is
increased a little, as described below.

It suffices to find p∗ ≥ p such that p∗  “˜A := {ζ < ω : p′ζ ∈ ˜G} is large
enough such that

⋂
ζ∈˜A treem(āβζ ) has only finitely many branches”.

Because of “communication problems” the “large enough” is interpreted
as of ˜Ξt

α-measure (again defined in 2.11 below).
The natural numbers n < n∗ such that Qαn,ζ

is a forcing notion of
cardinality < κ do not cause problems, as ht

0(n) tells us exactly what the
condition pζ(αn,ζ) is. Still there are many cases of such 〈pζ : ζ < ω〉 which
fall into the same t; we possibly will get contradictory demands if αn1,ζ1 =
αn2,ζ2 , n1 6= n2. But the wt, η̄t are exactly built to make this case not to
happen. That is, we have to assume 2κ = χ (= |α∗|) in order to be able for
our iteration 〈Pα, ˜Qα : α < α∗〉 to choose 〈ηα : α < α∗〉, ηα ∈ κ2, with no
repetitions, so that if v ⊆ χ, |v| ≤ ℵ0 (e.g. v = {αn,ζ : n < nt, ζ < ω}) then
for some w = wt ∈ [κ]ℵ0 we have 〈ηα�w : α ∈ v〉 with no repetitions.

So the blueprint t describes such a situation, giving as much information
as possible, as long as the number of blueprints is not too large, κℵ0 = κ in
our case.

If Qαn,ζ
is a partial random, we may get many candidates for pζ(αn,ζ) ∈

Random and they are not all the same ones. We want them in many cases
to be in the generic set. Well, we can (using ht

1(n), ht
2(n)) know that in

some interval (ω2)[h
t
2(n)] the set lim(pζ(αn,ζ)) is large, say of relative measure

≥ 1− ht
1(n), and we could have chosen the pζ ’s such that 〈ht

1(n) : n < nt〉
is small enough, still the number of candidates is not bounded by 1/ht

1(n).
Here taking limit along ultrafilters is not good enough, but using finitely
additive measures is.

Well, we have explained wt, η̄t, ht
0, ht

1, ht
2, but what about the n̄t =

〈nt
k : k < ω〉? In the end (in §3) the specific demand on {ζ : p′ζ ∈ G} being

large, is that for infinitely many k < ω,

|{l : nt
k ≤ l < nt

k+1 and pl ∈ G}|/(nt
k+1 − nt

k)

is large, the nt
k will be chosen such that it is increasing fast enough and

〈p′l(βl) : l ∈ [nt
k, nt

k+1)〉 will be chosen such that for each ε > 0 for some
s < ω, for k large enough if the above fraction is ≥ ε then essentially
k2 ∩ {treem(āβl) : nt

k ≤ l < nt
k+1 and p′l ∈ G} has ≤ s members; this

suffices.
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What is our plan? We define K3, the class of suitable expanded iterations
Q̄ by choice of ηα (for α < lg(Q̄)) and names for finitely additive measures

˜Ξt
α satisfying the demands natural in this context. You may wonder why we

use Ξ-averages; this is like integral or expected value, and so they “behave
nicely” making the “probability computations” simpler. Then we show that
we can find Q̄ ∈ K3 in which all obligations toward “cov(null) ≥ λ” and
MA<κ hold.

The main point of §3 will be that we can carry out the argument of
“for some p∗ we have p∗  {l < ω : p′l ∈ G} is large” and why it gives
n < ω & E ∈ [χ]κ

+ ⇒
⋂

ζ∈A treen(āζ) has finitely many branches, thus
proving Theorem 0.1.

The reader may wonder how much the ˜Ξt
α are actually needed. As

explained above they are just a transparent way to express the property;
this will be utilized in [Sh 619].

Definition 2.11. K3 is the class of sequences

Q̄ = 〈Pα, ˜Qβ , Aβ , µβ ,
˜
τβ , ηβ , (˜Ξt

α)t∈T : α ≤ α∗, β < α∗〉

(we write α∗ = lg(Q̄)) such that:

(a) 〈Pα, ˜Qβ , Aβ , µβ ,
˜
τβ : α ≤ α∗, β < α∗〉 is in K,

(b) ηβ ∈ κ2 and (∀β < α < α∗)[ηα 6= ηβ ],
(c) T is from Definition 2.9, and ˜Ξt

α is a Pα-name of a finitely additive

measure on ω (in VPα , i.e. ∈ (Mfull)V
Pα ), increasing with α,

(d) we say that ᾱ = 〈αl : l < ω〉 satisfies (t,n) (for Q̄) if:

• 〈αl : l < ω〉 ∈ V (of course),
• t ∈ T , n < nt,
• αl ≤ αl+1 < α∗,
• n < mt ⇔ (∀l)(αl < λ) ⇔ (∃k)(αk < λ),
• ηt

n,l ⊆ ηαl
(as functions),

• if n ∈ dom(ht
0), then µαl

< κ and

Pαl
“|Qαl

| < κ and (ht
0(n))(l) ∈ ˜Qαl

, i.e. (ht
0(n))(l) < µαl

”,

• if n ∈ dom(ht
1), then µαl

≥ κ so Pαl
“Qαl

has cardinality ≥ κ”
(so it is a partial random),

• if 〈ηt
n,k : k ∈ ω〉 is constant, then (∀l)[αl = α0]; if 〈ηt

n,k : k < ω〉 is
not constant, then (∀l)[αl < αl+1],

(e) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄,
∧

l<ω(αl < αl+1), n ∈
dom(ht

0) then

Pα∗ “the following set has ˜Ξt
α∗ -measure 1:

{k < ω : if l ∈ [nt
k, nt

k+1) then (ht
0(n))(l) ∈ ˜GQαl

}”,
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(f) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄, n ∈ dom(ht
1), (∀l < ω)[αl <

αl+1], and r̄ = 〈˜rl : l < ω〉 where for l < ω, ˜rl is a Pαl
-name of a member of

˜Qαl
such that (it is forced that)

(∗) 1− ht
1(n) ≤ Leb({η ∈ ω2 : ht

2(n) C η ∈ lim(˜rl)})/2lg(ht
2(n)),

then for each ε > 0 we have

Pα∗ “the following set has ˜Ξt
α∗ -measure 1:

{k < ω : in the set {l ∈ [nt
k, nt

k+1) : ˜rl ∈ GQαl
} there are

at least (nt
k+1 − nt

k)(1− ht
1(n))(1− ε) elements}”,

(g) if ᾱ = 〈αl : l < ω〉 satisfies (t,n) for Q̄, n ∈ dom(ht
1), (∀l)[αl = α],

and ˜r,˜rl are P ′
Aα

-names of members of Qα satisfying (∗∗)Q̄

˜
r,〈

˜
rl:l<ω〉 (see below

for the definition of (∗∗)) then

Pα∗ “if ˜r ∈ ˜GQα then
1− ht

1(n) ≤ Av˜Ξt
α∗

(〈|{l ∈ [nt
k, nt

k+1) : ˜rl ∈ ˜GQα}|/(nt
k+1 − nt

k) : k < ω〉)”,

where

(∗∗)Q̄

˜
r,〈

˜
rl:l<ω〉 ˜r, ˜rl are P ′

Aα
-names of members of Qα, 〈˜rl : l < ω〉 ∈ V

and, in VPα , for every r′ ∈ Qα satisfying r ≤ r′ we have

AvΞt
α
(〈ak(r′) : k < ω〉) ≥ 1− ht

1(n)
where

ak(r′) = ak(r′, r̄) = ak(r′, r̄, n̄t)(�)

=
( ∑

l∈[nt
k,nt

k+1)

Leb(lim(r′) ∩ lim(rl))
Leb(lim(r′))

)
1

nt
k+1 − nt

k

(so ak(r′, r̄, n̄) ∈ [0, 1]R is well defined for k < ω, r̄ = 〈rl : l < ω〉, {r, rl} ⊆
Random, n̄ = 〈nl : l < ω〉, nl < nl+1 < ω),

(h) |Aα| ≥ κ ⇒ P ′
Aα

<◦ Pα, and (3) β ∈ Aα & |Aβ | < κ ⇒ Aβ ⊆ Aα,

(i) if Pα “|˜Qα| ≥ κ”, then ˜Ξt
α�P(ω)V

PAα is a PAα -name (4) for every
t ∈ T .

Definition 2.12. (1) For Q̄ ∈ K3 and for α∗ ≤ lg(Q̄) let

Q̄�α∗ = 〈Pα, ˜Qβ , Aβ , µβ ,
˜
τβ , ηβ , (Ξt

α)t∈T : α ≤ α∗, β < α∗〉.
(2) For Q̄1, Q̄2 ∈ K3 we say: Q̄1 ≤ Q̄2 if Q̄1 = Q̄2� lg(Q̄1).

Fact 2.13. (1) If Q̄ ∈ K3 and α ≤ lg(Q̄), then Q̄�α ∈ K3.
(2) (K3,≤) is a partial order.

(3) If we add “(∀α < κ)(|α|ℵ0 < κ)” to 2.1, we can simplify and assume α < α∗ ⇒
P ′Aα <◦ Pα.
(4) Here the secret was whispered.
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(3) If a sequence 〈Q̄β : β < δ〉 ⊆ K3 is increasing and cf(δ) > ℵ0,
then there is a unique Q̄ ∈ K3 which is the least upper bound , lg(Q̄) =⋃

β<δ lg(Q̄β) and Q̄β ≤ Q̄ for all β < δ.

P r o o f. Easy (recall that it is well known that (ω2)V
Pδ =

⋃
β<δ(

ω2)V
Pβ ,

so ˜Ξt
δ =

⋃
β<δ Ξt

β is a legal choice; this is the use of cf(δ) > ℵ0).

Lemma 2.14. Suppose that Q̄n ∈ K3, Q̄n < Q̄n+1, αn = lg(Q̄n), δ =
supn<ω αn. Then there is Q̄ ∈ K3 such that lg(Q̄) = δ and Q̄n ≤ Q̄ for
n ∈ ω.

P r o o f. Note that the only problem is to define ˜Ξt
δ for t ∈ T , i.e., we

have to extend
⋃

α<δ ˜Ξt
α so that the following two conditions are satisfied

(they correspond to clauses (f) and (e) of Definition 2.11).

(a) We are given (5) n < nt, n ∈ dom(ht
1), 〈αl : l < ω〉 (from V of

course) satisfies (t,n) for Q̄ and is strictly increasing with limit δ and we
are given 〈˜pl : l < ω〉 such that Pαl

“˜pl ∈ ˜Qαl
and 1 − ht

1(n) ≤ Leb({η ∈
ω2 : ht

2(n) C η ∈ lim(˜pl)})/2lg(ht
2(n))”. The demand is: for each ε > 0 we

have Pδ
“˜Ξt

δ(˜C) = 1”, where

˜C = {k < ω : in the set {l : l ∈ [nt
k, nt

k+1) and pl ∈ ˜GQαl
} there are

at least (nt
k+1 − nt

k)(1− ht
1(n))(1− ε) elements}.

(b) If (4) n < nt, n ∈ dom(ht
0), 〈αl : l < ω〉 satisfies (t,n) for Q̄ and is

strictly increasing with limit δ, and pl ∈ Qαl
satisfy pl = ht

0(n)(l) for l < ω
(an ordinal < µαl

), then Pδ
“˜Ξt

δ(˜C) = 1” where

˜C = {k < ω : for every l ∈ [nk, nk+1) we have pl ∈ ˜GQαl
}.

As
⋃

α<δ ˜Ξt
α is a (Pδ-name of a) member of M in VPδ , by 1.3(3) it

suffices to prove

(∗) Pδ
“if ˜B ∈

⋃
α<δ dom(˜Ξt

α) =
⋃

α<δ P(ω)V[Pα] and ˜Ξt
α(˜B) > 0

and j∗ < ω, and ˜Cj (for j < j∗) are from (a), (b) above then

˜B ∩
⋂

j<j∗ ˜Cj 6= ∅”.

Toward contradiction assume q ∈ Pδ force the negation, so possibly increas-
ing q we have: for some ˜B and for some j∗ < ω, for each j < j∗ we have the
εj > 0, and n(j) < nt, 〈αj

l : l < ω〉, 〈pj
l : l < ω〉 involved in the definition

of ˜Cj (in (a) or (b) above), q force: ˜B ∈
⋃

α<δ dom(˜Ξt
α) =

⋃
α<δ P(ω)V[Pα]

and (
⋃

α<δ ˜Ξt
α)(˜B)>0 and ˜Cj (for j <j∗) comes from (a) or (b) above, but

˜B ∩
⋂

j<j∗ ˜Cj = ∅; as we can decrease ε, without loss of generality εj = ε.
Again we can assume that for some α(∗) < δ, ˜B ∈ dom(˜Ξt

α(∗)) is a Pα(∗)-

name, and ˜Cj have the n(j) < nt, 〈αj
l : l < ω〉, 〈pj

l : l < ω〉 witnessing it is as

(5) In V, so 〈(αl, pl) : l < ω〉 ∈ V, of course.
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required in (a) or (b) above. Without loss of generality, q ∈ Pα(∗). Possibly
increasing q (inside Pα(∗) though) we can find k < ω such that q �“k ∈ ˜B”
and

∧
j<j∗

∧
l∈[nt

k,nt
k+1)

αj
l > α(∗) and moreover such that nt

k+1−nt
k is large

enough compared to 1/ε, j∗ (just let q ∈ GPα(∗) ⊆ Pα(∗), GPα(∗) generic
over V and think in V[GPα(∗) ]). Let {αj

l : j < j∗ and l ∈ [nt
k, nt

k+1)} be
listed as {βm : m < m∗}, in increasing order (so β0 > α(∗)) (possibly
α

j(1)
l(1) = α

j(2)
l(2) & (j(1), l(1)) 6= (j(2), l(2))). Now we choose by induction

on m ≤ m∗ a condition qm ∈ Pβm
above q, increasing with m, where we

stipulate βm∗ = δ.
During this definition we “throw a dice” and prove that the probability

of success (i.e. qm∗  “k ∈ ˜Cj” for j < j∗) is positive, so there is qm∗ as
desired and hence we get the desired contradiction.

Case A: m = 0. Let q0 = q.

Case B: m + 1, and for some n < nt, we have n ∈ dom(ht
0) and ζ and:

if j < j∗ and l < ω then αj
l = βm ⇒ n(j) = n & pj

l = ζ (= ht
0(n(j))(l)) ∈

Qβm). In this case dom(qm+1) = dom(qm) ∪ {βm}, and

qm+1(β) =
{

qm(β) if β < βm (so β ∈ dom(qm)),
ζ if β = βm.

Case C: m + 1 and for some n < nt, we have n ∈ dom(ht
1) and: αj

l =
βm ⇒ n(j) = n. Work first in V[GPβm

], qm ∈ GPβm
, GPβm

generic over V.
The sets

{lim(˜pj
l [GPβm

]) ∩ (ω2)[h
t
2(n)] : αj

l = βm (and l ∈ [nt
k, nt

k+1), j < j∗)}

are subsets of (ω2)[h
t
2(n)] = {η ∈ ω2 : ht

2(n) C η}, and we can define an
equivalence relation Em on (ω2)[h

t
2(n)]:

ν1Emν2 iff ν1 ∈ lim(˜pj
l [GPβm

]) ≡ ν2 ∈ lim(˜pj
l [GPβm

])

whenever αj
l = βm.

Clearly Em has finitely many equivalence classes, call them 〈Zm
i : i < i∗m〉;

all are Borel (sets of reals), hence measurable; without loss of generality,
Leb(Zm

i ) = 0 ⇔ i ∈ [i⊗m, i∗m), so clearly i⊗m > 0. For each i < i⊗m there is
r = rm,i ∈ ˜Qβm

[GPβm
] such that

lim(pj
l [GPβm

]) ⊇ Zm
i ⇒ r ≥ pj

l [GPβm
],

lim(pi
l[GPβm

]) ∩ Zm
i = ∅ ⇒ lim(r) ∩ lim(pi

l[GPβm
]) = ∅.

We can also find a rational am,i ∈ (0, 1)R such that

am,i < Leb(Zm
i )/2− lg(ht

2(n)) < am,i + ε/(2i∗m).
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We can find q′m ∈ GPβm
, qm ≤ q′m, such that q′m forces all this information

(so for ˜Zm
i , ˜rm,i we shall have Pβm -names, but am,i, i⊗m, i∗m are actual

objects). We can then find rationals bm,i ∈ (am,i, am,i + ε/2) such that∑
i<i⊗m

bm,i = 1.
Now we throw a dice choosing im < i⊗m with the probability of im = i

being bm,i and define qm+1 as:

dom(qm+1) = dom(q′m) ∪ {βm},

qm+1(β) =
{

q′m(β) if β < βm (so β ∈ dom(q′m)),

˜rm,im
if β = βm.

An important point is that this covers all cases (and in Case B the choice
of (j, l) is immaterial) as for each βm there is a unique n < nt and l such
that ηβm�wt = ηt

n,l (see Definitions 2.11(b) and 2.9(i)). Basic probability
computations (for nt

k+1 − nt
k independent experiments) show that for each

j coming from clause (a), by the law of large numbers, as k was chosen such
that nt

k+1 − nt
k is large enough compared to 1/ε and j∗, the probability of

successes is > 1− 1/j∗, successes meaning qm∗  “k ∈ ˜Cj” (remember that
if j comes from clause (b) we always succeed).

Remark 2.15. In the definition of t ∈ T (i.e. 2.9) we can add ηt
n,ω ∈ wt

2
(i.e. replace 〈ηt

n,l : l < ω〉 by 〈ηt
n,l : l ≤ ω〉) and demand

(l) if ζ ∈ wt then for every n < ω large enough, ηt
n,n(ζ) = ηt

n,ω(ζ),

and in Definition 2.11(d) use ᾱ = 〈αl : l < ω〉 but this does not help here.

Lemma 2.16. (1) Assume:

(a) Q̄ ∈ K3, Q̄ = 〈Pα, ˜Qβ , Aβ , µβ ,˜rβ , ηβ , (˜Ξt
α)t∈T : α ≤ α∗, β < α∗〉,

(b) A ⊆ α∗, κ ≤ |A| < λ,
(c) η ∈ (κ2)V \ {ηβ : β < α∗},
(d) (∀α ∈ A)[|Aα| < κ ⇒ Aα ⊆ A] and P ′

A <◦ Pα∗ , ˜Q = ˜QA,Q̄ is the
Pα∗-name from 2.2(F)(β) and if t ∈ T then ˜Ξt

α∗�V
P ′

A is a P ′
A-name.

Then there is

Q̄+ = 〈Pα, ˜Qβ , Aβ , µβ ,
˜
τβ , ηβ , (˜Ξt

α)t∈T : α ≤ α∗ + 1, β < α∗ + 1〉
from K3, extending Q̄, such that ˜Qα∗ = ˜Q, Aα∗ = A, ηα∗ = η.

(2) If clauses (a)+(b)+(c) of (1) hold then we can find A′ such that
A ⊆ A′ ⊆ α∗, |A′| ≤ (|A| + κ)ℵ0 (which is < λ by Hypothesis 2.1) and Q̄,
A′, η satisfy (a)+(b)+(c)+(d).

P r o o f. Part (2) is easy.
(1) As before the problem is to define ˜Ξt

α∗+1. We have to satisfy clause
(g) of Definition 2.11 for each fixed t ∈ T . Let n∗ be the unique n < nt

such that η�wt = ηt
n,l. If n∗ ∈ dom(ht

0) or 〈ηt
n∗,l : l < ω〉 is not constant or

there is no such n∗ then we have nothing to do. So assume that αl = α∗ and
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ηt
n∗,l = η�wt for l < ω. Let Γ (∈ V) be the set of all pairs (˜r, 〈˜rl : l < ω〉)

which satisfy the assumption (∗∗)Q̄

˜
r,〈

˜
rl:l<ω〉 of 2.11(g). In VPα∗+1 we have

to choose ˜Ξt
α∗+1 taking care of all these obligations. We work in VPα∗ .

By assumption (d) and Claim 1.6 it suffices to prove it for VP ′
A so Qα∗ is

RandomVP ′A (see 2.3(7)). By 1.7 it is enough to prove condition (B) of 1.7.
Suppose it fails. Then there are 〈Bm : m < m(∗)〉, a partition of ω from
VP ′

A , for simplicity Ξt
α∗(Bm) > 0 for m < m(∗), and (˜ri, 〈˜ri

l : l < ω〉) ∈ Γ
and n(i) = n∗ < nt for i < i∗ < ω and ε∗ > 0 and r ∈ Qα∗ which forces
the failure (of (B) of 1.7) for these parameters (the ε∗ comes from 1.7). We
can assume that r forces ˜ri ∈ ˜GQα∗ for i < i∗ (otherwise we can ignore such

˜ri as nothing is demanded on them in 2.11(g)). So r ≥ ri for i < i∗ (see
2.2(F)(β)).

By assumption, for each i < i∗ we have: for each r′ ≥ r (hence r′ ≥ ri

and r′ ∈ Random) and i < i∗ we have

AvΞt
α∗

(〈ai
k(r′) : k < ω〉) ≥ 1− ht

1(n
∗)

where (see 2.11(g)(�)) we let

ai
k(r′) = ak(˜r, 〈˜rl : l < ω〉, n̄t) =

1
nt

k+1 − nt
k

∑
l∈[nt

k,nt
k+1)

Leb(lim(r′) ∩ lim(ri
l))

Leb(lim(r′))
.

By 1.7 it suffices to prove

Lemma 2.17. Assume Ξ is a finitely additive measure, 〈B0, . . . , Bm∗−1〉
a partition of ω, Ξ(Bm) = am, i∗ < ω and r, ri

l ∈ Random for i < i∗, l < ω
and n̄∗ = 〈n∗i : i < ω〉, n∗i < n∗i+1 < ω, are such that

(∗) for every r′ ∈ Random, r′ ≥ r and i < i∗ we have AvΞ(〈ai
k(r′) : k <

ω〉) ≥ bi where

ai
k(r′) = ai

k(r′, 〈ri
l : l < ω〉, n̄∗)

=
1

n∗k+1 − n∗k

n∗k+1−1∑
l=n∗k

Leb(lim(r′) ∩ lim(ri
l))

Leb(lim(r′))
.

Then for each ε > 0 and k∗ < ω there are a finite u ⊆ ω \ k∗ and r′ ≥ r
such that :

(1) am − ε < |u ∩Bm|/|u| < am + ε for m < m∗,
(2) for each i < i∗ we have

1
|u|

∑
k∈u

|{l : n∗k ≤ l < n∗k+1 and r′ ≥ ri
l}|

n∗k+1 − n∗k
≥ bi − ε.
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P r o o f. For i < i∗, m < m∗ and r′ ≥ r (from Random) let

ci,m(r′) = AvΞ�Bm(〈ai
k(r′) : k ∈ Bm〉) ∈ [0, 1]R.

So clearly

(∗)1 for r′ ≥ r (in Random)
bi ≤ AvΞ(〈ai

k(r′) : k < ω〉)
=

∑
m<m∗

AvΞ�Bm
(〈ai

k(r′) : k ∈ Bm〉)Ξ(Bm) =
∑

m<m∗

ci,m(r′)am.

There are r∗ ≥ r and a sequence c̄ = 〈ci,m : i < i∗, m < m∗〉 such that:

(∗)2 (a) ci,m ∈ [0, 1]R,
(b)

∑
m<m∗ cm,iam ≥ bi,

(c) for every r′ ≥ r∗ there is r′′ ≥ r′ such that

(∀i < i∗)(∀m < m∗)[ci,m − ε < ci,m(r′′) < ci,m + ε].

[Why? Let k∗ < ω be such that 1/k∗ < ε/(10i∗m∗) (so k∗ > 0). Let
Γ = {c̄ : c̄ = 〈ci,m : i < i∗, m < m∗〉, ci,m ∈ [0, 1]R and k∗ci,m is an
integer and

∑
m<m∗ ci,mam ≥ bi} for i < i∗. Clearly Γ is finite and let us

list it as 〈c̄s : s < s∗〉. We try to choose by induction on s ≤ s∗ a condition
rs ∈ Random such that r0 = r, rs ≤ rs+1, and if c̄s satisfies (∗)2(a) + (b)
then for no r′′ ≥ rs+1 do we have

(∀i < i∗)(∀m < m∗)[cs
i,m − ε < ci,m(r′′) < cs

i,m + ε].

For s = 0 we have no problem. If we succeed in arriving at rs∗ , for i < i∗,
m < m∗ we can define c∗i,m ∈ {l/k∗ : l ∈ {0, . . . , k∗}} such that ci,m(rs∗) ≤
c∗i,m < ci,m(rs∗) + ε/(10i∗m∗). By (∗)1 we have bi ≤

∑
m<m∗ ci,m(r∗s∗)am.

Clearly ∑
m<m∗

cs
i,mam ≥

∑
m<m∗

ci,m(r∗s∗)am

so c̄∗ = 〈c∗i,m : i < i∗, m < m∗〉 satisfies (∗)2(a) + (b) and c̄∗ ∈ Γ , hence
c̄∗ = c̄s for some s < s∗. But then r∗ contradicts the choice of rs+1. Also
by the above Γ 6= ∅. So we are necessarily stuck at some s < s∗, i.e. cannot
find rs+1 as required. As c̄+ satisfies (∗)2(a) + (b), this means that rs, c̄

s as
needed in (∗)2, so r∗, c̄ as required exist.]

Let k∗ < ω be given. Now choose s∗ < ω large enough and try to
choose, by induction on s ≤ s∗, a condition rs ∈ Random and natural
numbers (ms, ks) (flipping coins along the way) such that:

(∗)3 (a) r0 = r∗,
(b) rs+1 ≥ rs,
(c) ci,m − ε < ci,m(rs) < ci,m + ε for i < i∗, m < m∗,
(d) ks > k∗, ks+1 > ks,
(e) ks ∈ Bms .
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In stage s, given rs, we define rs+1, is, ms, ks as follows: choose ms < m∗

randomly with the probability of ms = m being am. Next we can find a
finite set us ⊆ Bms with min(us) > max{k∗ + 1, ks1 + 1 : s1 < s} such that

(∗) if i < i∗ then ci,ms
− ε/2 <

1
|us|

∑
k∈us

ai
k(rs) < ci,ms + ε/2.

We define an equivalence relation es on lim(rs):

η1esη2 iff (∀i < i∗)(∀k ∈ us)(∀l∈ [n∗k, n∗k+1))[η1 ∈ lim(ri
l) ≡ η2 ∈ lim(ri

l)].

The number of es-equivalence classes is finite, and if Y ∈ lim(rs)/es satisfies
Leb(Y ) > 0 choose rs,Y ∈ Random such that lim(rs,Y ) ⊆ Y and rs,Y

satisfies clause (c) of (∗)3 (possible by clause (c) of (∗)2). Now choose rs+1

among {rs,Y : Y ∈ lim(rs)/es and Leb(Y ) > 0}, with the probability of
rs,Y being Leb(Y )/ Leb(lim(rs)). Lastly choose ks ∈ us, with all k ∈ us

having the same probability.
Now the expected value, assuming ms = m, of

1
n∗ks+1 − n∗ks

|{l : n∗ks
≤ l < n∗ks+1 and rs+1 ≥ ri

l}|

belongs to the interval (ci,m−ε/2, ci,m +ε/2), because the expected value of
1
|us|

∑
k∈us

1
n∗k+1 − n∗k

|{l : n∗k ≤ l < n∗k+1 and rs+1 ≥ ri
l}|

is in this interval (as∑
{Leb(Y ) : Y ∈ lim(rs)/es, rs,Y ≥ ri

l} =
Leb(lim(rs) ∩ lim(ri

l))
Leb(lim(rs))

and see the choice of ai
k(−)).

Let r′ = rs∗ , u = {ks : s ≤ s∗}. Hence the expected value of
1
|u|

∑
k∈u

1
n∗k+1 − n∗k

|{l : n∗k ≤ l < n∗k+1 and r′ ≥ ri
l}|

is ≥
∑

am(ci,m − ε/2) ≥ bi − ε/2.
As s∗ is large enough with high probability (though just positive prob-

ability suffices), (rs∗ , {ks : s < s∗}) are as required for (r′, u); note: we do
not know the variance but we have a bound for it not depending on s.

(2) Straightforward.

This completes the proof of Lemma 2.16.

The following is needed later to show that there are enough cases of the
definition of t with clause (g) of Definition 2.11 being non-trivial (i.e. (∗∗)
there holds).
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Lemma 2.18. Assume:

(a) Ξ is a finitely additive measure on ω and b ∈ (0, 1]R,
(b) n∗k < ω (for k < ω), n∗k < n∗k+1, and lim(n∗k+1 − n∗k) = ∞,
(c) r∗, rl ∈ Random are such that

(∗) (∀l < ω)[Leb(lim(r∗) ∩ lim(rl))/ Leb(lim(r∗)) ≥ b].

Then for some r⊗ ≥ r∗ we have:

⊗r⊗ for every r′ ≥ r⊗ we have AvΞ(〈a(r′, k) : k < ω〉) ≥ b where ak(r′) =
a(r′, k) = ak(lim r′) and for any Borel set X ⊆ ω2 we let

ak(X) =
1

n∗k+1 − n∗k

∑
l∈[n∗k,n∗k+1)

Leb(X ∩ lim(rl))
Leb(X)

.

P r o o f. Let
I = {r ∈ Random : r ≥ r∗ and AvΞ(〈ak(r′) : k < ω〉) < b}.

If I is not dense above r∗ there is r⊗ ≥ r∗ (in Random) such that for
every r ≥ r⊗, r 6∈ I so r⊗ is as required; so assume toward contradiction
that I is dense above r∗. There is a maximal antichain I1 = {si : i < i∗}
⊆ I (maximal among those ⊆ I); it is a maximal antichain above r∗ as
r ∈ I ⇒ r ≥ r∗ and by the previous sentence. Hence Leb(lim(r∗)) =∑

i<i∗ Leb(lim(si)); of course |i∗| ≤ ℵ0 as Random satisfies c.c.c. so we can
assume i∗ ≤ ω.

For any j < i∗ let sj =
⋃

i<j si. Note then lim(
⋃

m<i sm) =
⋃

m<i lim(sm)
and

ak(sj) = ak

( ⋃
m<i

sm

)
=

∑
i<j

Leb(si)
Leb(

⋃
m<j sm)

ak(si),

hence

AvΞ(〈ak(sj) : k < ω〉)

= AvΞ

(〈
ak

( ⋃
m<j

sm

)
: k < ω

〉)
=

∑
i<j

Leb(si)
Leb(

⋃
m<j sm)

AvΞ(〈ak(si) : k < ω〉)

≤ Leb(lim(s0))
Leb(lim(

⋃
i<j si))

(b− ε) +
∑

0<i<j

Leb(lim(si))
Leb(lim(

⋃
m<j sm))

b

= b− Leb(lim(s0))ε

where ε = b−AvΞ(〈ak(s0) : k < ω〉) so ε > 0.
Let j be large enough such that

Leb(lim(r∗) \ lim(sj))
Leb(lim(r∗))

< Leb(lim(s0))ε.
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So

AvΞ(〈ak(r∗) : k < ω〉)

=
Leb(lim(r∗) \ lim(sj))

Leb(lim(r∗))
AvΞ(〈ak(lim(r∗) \ lim(sj)) : k < ω〉)

+
Leb(lim(sj))
Leb(lim(r∗))

AvΞ(〈ak(sj) : k < ω〉)

≤ Leb(lim(r∗) \ lim(sj))
Leb(r∗)

1 +
Leb(lim(sj))
Leb(lim(r∗))

(b− Leb(lim(s0))ε)

< Leb(lim(s0))ε + (b− Leb(lim(s0))ε) = b,

contradicting assumption (c).

Claim 2.19. Assume:

(a) Q̄ ∈ K3, Q̄ = 〈Pα, ˜Qβ , Aβ , µβ ,˜rβ , ηβ , (˜Ξt
α)t∈T : α ≤ α∗, β < α∗〉,

(b) A ⊆ α∗ and (6) |A| < κ and µ < κ are such that β ∈ A & |Aβ | < κ
⇒ Aβ ⊆ A,

(c) η ∈ κ2 \ {ηβ : β < α∗},
(d) ˜Q is a Pα∗-name of a forcing notion with set of elements µ, and is

really definable in V[〈
˜
τα : α ∈ A〉] from 〈

˜
τα : α ∈ A〉 and parameters from V

(we can even assume the truth value of ζ1 <θ ζ2 for ζ1 < ζ2 is as in 2.3(5)).

Then there is

Q̄+ = 〈Pα, ˜Qα, Aβ , µβ ,
˜
τβ , ηβ , (˜Ξt

α)t∈T : α ≤ α∗ + 1, β < α∗ + 1〉
from K3 extending Q̄ such that ˜Qα∗ = ˜Q, Aα∗ = A, ηα∗ = η and µα∗ = µ.

P r o o f. Straight.

Remark 2.20. If Q is the Cohen forcing we can make one step toward
{A ⊆ ω : Ξt

α∗+1(A) = 1} being a selective filter, even simultaneously for all
ω-sequences of members, but not needed at present.

3. Continuation of the proof of Theorem 0.1. We need the follow-
ing lemma.

Lemma 3.1. Suppose that ε̄ = 〈εl : l < ω〉 is a sequence of positive reals
and Q̄ ∈ K3 has length α. The following set Iε̄ ⊆ Pα is dense:

Iε̄ = {p ∈ P ′
α : there are m and αl, νl (for l < m) such that

(a) dom(p) = {α0, . . . , αm−1}, α0 > α1 > . . . > αm−1,
(b) if |Aαl

| < κ, then p(αl) is an ordinal ,

(6) If “(∀α < κ)(|α|ℵ0 < κ)” is added to 2.1, it is natural to restrict ourselves to the
case P ′A <◦ Pα∗ as the parallel of 2.16(2) holds.
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(c) if Qαl
is a partial random, i.e. |Aαl

| ≥ κ, then Pαl

“p(αl) ⊆ (ω2)[νl] and Leb(lim(p(αl))) ≥ (1−εl)/2lg(νl)”}.
P r o o f. By induction on α for all possible ε̄.

Discussion 3.2. (1) By the previous sections it follows that it is enough
to prove that if Q̄ ∈ K3, Pα = Lim(Q̄), then in VPα the following sufficient
condition holds:

(∗∗)Q̄ In VPα , there is no perfect tree T ⊆ ω>2, m ∈ ω and E ∈ [λ]κ
+

such that T ⊆ treem[āα] for all α ∈ E.

(2) Note that if we just want to prove Pα “b ≤ κ” life is easier: ˜Ξt
α can

be chosen a zero-one measure (so essentially an ultrafilter) and for α < λ we
interpret the forcing notion Qα as (ω>ω,C) with generic real ˜ηα and replace
below (∗∗)Q̄ by

(∗∗)+
Q̄

in VPα , there is no η∗ ∈ ωω such that {α < λ : (∀l < ω)(˜ηα(l) ≤
η∗(l))} has cardinality ≥ κ+.

In the proof below, ˜T is replaced by ˜η, and p′ζ(αζ) is s∗_〈ζ〉.
(3) We can make the requirements on the ∆-system stronger: make

it indiscernible also over some A ⊆ α of cardinality < κ, where ˜T is a
P ′

A-name, p∗ ∈ P ′
A, and assume the heart is ⊆ A.

(4) Here the existence of ht
2 helps; we can use 3.1 with

∑
l<ω εl very

small.

Lemma 3.3. If Pα = Lim(Q̄), α = lg(Q̄) and Q̄ ∈ K3, then (∗∗)Q̄ from
2.7 holds.

P r o o f. Suppose p∗ Pα
“˜T , m, ˜E form a counterexample to (∗∗)Q̄”; we

can assume p∗ ∈ P ′
α. Let ε̄ = 〈εl : l < ω〉 be such that εl ∈ (0, 1)R and∑

l<ω

√
εl < 1/10. For each ζ < κ+ let pζ ≥ p∗ be such that pζ ∈ Iε̄ (⊆ P ′

α)
witnessed by 〈νζ

β : β ∈ dom(pζ) and |Aβ | ≥ κ〉 (on Iε̄ see 3.1) and

pζ Pα “αζ is the ζth element of ˜E”.

So clearly αζ < λ. By thinning out, we can assume that:

• dom(pζ) = {γζ
i : i < i∗} with γζ

i increasing with i; let vζ
0 = {i < i∗ :

|Aγζ
i
| < κ}; then vζ

0 = v0 is fixed for all ζ < κ+, and let v1 = i∗ \ v0,
• dom(pζ) (ζ < κ+) form a ∆-system with heart ∆, so ∆ ⊇ dom(p∗),
• αζ ∈ dom(pζ), αζ = γζ

z for a fixed z < i∗,
• (dom(pζ),∆,<) are pairwise isomorphic for ζ < κ+,
• if i ∈ v0, then pζ(γ

ζ
i ) = γi for ζ < κ+,

• if i ∈ v1, then νζ

γζ
i

= νi (recall that νζ

γζ
i

∈ ω>2 is given by the definition

of Iε̄),

Sh:592



132 S. Shelah

• pζ(αζ) = s∗ for ζ < κ+ with s∗ = 〈(nl, al) : l < m∗〉; we can assume
m∗ > m (where m is from the “counterexample to (∗∗)Q̄”) and m∗ > 10,

• for each i < i∗ the sequence 〈γζ
i : ζ < κ+〉 is constant or strictly

increasing,
• the sequence 〈αζ : ζ < κ+〉 is with no repetitions (since if pζ1 , pζ2 are

compatible and ζ1 < ζ2 < λ then αζ1 6= αζ2),

• if γ
ζ(1)
i(1) =γ

ζ(2)
i(2) then i(1)= i(2) (when ζ(1), ζ(2)<κ+

3 and i(1), i(2)<i∗).

Now we are interested only in the first ω conditions, i.e. we consider ζ <
ω. For every such ζ let p′ζ ≥ pζ be such that dom(p′ζ) = dom(pζ), p′ζ(γ) =
pζ(γ) except for γ = αζ in which case we extend pζ(αζ) = s∗ in the following
way. We put lg(p′ζ(αζ)) = lg(s∗)+1 = m∗+1, p′ζ(αζ) = s∗_〈(j0

ζ , aζ)〉. Before
we define j0

ζ , aζ choose an increasing sequence of integers s̄ = 〈sl : l < ω〉,
s0 = 0, such that sk+1 − sk = |[jk2]2

jk (1−8−m∗
)| (i.e. it is the number of

subsets of jk2 with 2jk(1 − 8−m∗
) elements), where j∗ = 3nm∗−1 + 1 (i.e.

we define j∗ from the first coordinate in the last pair in s∗) and we let
jk = j∗ + k!!, and j0

ζ = jk when ζ ∈ [sk, sk+1). Now for ζ ∈ [sk, sk+1) define
aζ such that

{aζ : ζ ∈ [sk, sk+1)} = [jk2]2
jk (1−8−m∗

)

(so necessarily without repetitions). For ε∗ > 0 we define a Pα-name by

˜Aε∗ = {k < ω : |{ζ ∈ [sk, sk+1) : p′ζ ∈ ˜GPα}|/(sk+1 − sk) > ε∗}.

For the proof of 3.3 we need:

Claim 3.4. There is a condition p⊗ ≥ p∗ which forces that for some
ε∗ > 0 the set ˜Aε∗ is infinite.

P r o o f. Choose ε∗ > 0 small enough. First we define a suitable blueprint
t ∈ T ,

t = (wt,nt,mt, η̄t, ht
0, h

t
1, h

t
2, n̄

t).

Let

wt = {min{β < κ : η
γ

ζ(1)
i(1)

(β) 6= η
γ

ζ(2)
i(2)

(β)} : ζ(1), ζ(2) < ω and

i(1), i(2) < i∗ and γ
ζ(1)
i(1) 6= γ

ζ(2)
i(2) }.

Let nt = i∗, dom(ht
0) = v0, dom(ht

1) = dom(ht
2) = v1 and nt

l = sl. If
n ∈ v0, then ht

0(n)(l) = γn and ηt
n,ζ = ηγζ

n
�wt. If n ∈ v1, then ht

1(n) = εn

and ht
2(n) = νn.

We now define a condition p⊗; it will be in Pα, dom(p⊗) = ∆, p∗ ≤ p⊗;
remember dom(p∗) ⊆ ∆ as for each ζ we have p∗ ≤ pζ . If γ ∈ ∆ then for
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some n < nt, we have
∧

ζ<ω γζ
n = γ. If n ∈ v0 we let p⊗(γ) = ht

0(n), so
trivially in VPγ ,

p⊗(γ) Qγ
“˜Ξt

γ+1({ζ < ω : ht
0(n) ∈ GQγ}) = 1 if n ∈ dom(ht

0) (= v0)”.

If n ∈ v1, then define a Pγ-name for a member of Qγ as follows. Consider

˜rn
ζ = ˜p′ζ(γ) for ζ < ω. Let ˜r be the member (ω2)[h

t
2(n)] of Qγ . If we work in

VP ′
Aα , by Lemma 2.18 there is ˜r∗γ ≥ ˜r from ˜Qγ such that for every r′ ≥ r∗γ

in Qγ we have

(∗∗)r′,ε AvΞt
α
(〈an

k (r′) : k < ω〉) ≥ 1− ht
1(n) = 1− εn where

an
k (r′) :=

1
nt

k+1 − nt
k

∑
l∈[nt

k,nt
k+1)

Leb(lim(r′) ∩ lim(rn
l ))

Leb(lim(r′))
.

Hence the assumption of condition (g) in Definition 2.11 holds, and so in
VPγ we have

r∗γ Qγ “AvΞt
γ+1

(〈|{l ∈ [nt
k+1 − nt

k) : pl(γ) ∈ ˜GQγ}|/(nt
k+1 − nt

k) : k ∈ ω〉)
≥ 1− εn”.

So there is a Pγ-name ˜r∗γ of such a condition. In this case let p⊗(γ) = ˜r∗γ ,
so we have finished defining p⊗; clearly it has the right domain.

Now suppose that n < nt with n ∈ v1 is such that γζ
n 6∈ ∆. Define

β̄ = 〈βζ : ζ < ω〉, βζ = γζ
n. Then β̄ satisfies (t,n) for Q̄. By our assumption

the assumption of clause (f) in Definition 2.11 is satisfied, hence in VPα , for
any ε > 0,

Pα
“˜Ξt

α

({
k :
|{l ∈ [nt

k, nt
k+1) : pl(γl

n) ∈ ˜GQ
γl

n
}|

nt
k+1 − nt

k

≥ (1− εn)(1− ε)
})

= 1”.

Now for each n ∈ v1, as

(1− εn)(1− ε) ≤ AvΞt
α

(〈 |{l : nt
k ≤ l < nt

k+1 and rn
l ∈ GPα}|

nt
k+1 − nt

k

: k < ω

〉)
and ε > 0 was arbitrary, clearly

(∗)n in VPα ,
√

2εn ≥ Ξt
α

({
k < ω : 1−

√
2εn ≥

|{l : nt
k ≤ l < nt

k+1 and rn
l ∈ GPα}|

nt
k+1 − nt

k

})
.

Let

˜A′
ε∗ = {k < ω : if ζ ∈ [sk, sk+1) and i ∈ v0 then pζ�{γζ

i } ∈ ˜GPα}.

Clearly Ξt
α(˜A′

ε∗) = 1. Let ε∗ < 1−
∑

n

√
2εn and ε∗ > 0, so
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˜Aε∗ ∪ (ω \A′
ε∗)

=
{
k < ω : ε∗ <

|
⋂

n∈v1
{l ∈ [nt

k, nt
k+1) and p′ζ(γ

ζ
n) ∈ GQγn

}|
nt

k+1 − nt
k

}

⊇
{
k < ω : if n ∈ v1 then

|{l : nt
k≤ l < nt

k+1 and rn
l ∈ GPα}|

nt
k+1 − nt

k

≥1−
√

2εn

}

= ω \
⋃

n∈v1

{
k < ω :

|{l : nt
k ≤ l < nt

k+1 and rn
l ∈ GPα}|

nt
k+1 − nt

k

< 1−
√

2εn

}
,

hence Ξt
α(˜Aε∗ ∪ (ω \ ˜A′

ε∗)) ≥ 1−
∑

n∈v

√
2εn ≥ ε∗ > 0; but

˜Ξt
α(ω \ ˜A′

ε∗) = 1− ˜Ξt
α(˜A′

ε∗) = 1− 1 = 0

and hence necessarily Aε∗ is infinite.
This suffices for 3.4.

Continuation of the proof of 3.3. Let p⊗ be as in Claim 3.4, let GPα
be

a generic subset of Pα to which p⊗ belongs and we shall work in V[GPα ].
So A = ˜Aε∗ [G] is infinite. For k ∈ A, let

bk = {ζ ∈ [sk, sk+1) : p′ζ ∈ GPα}.

We know that |bk| > (sk+1 − sk)ε∗. Note that if k ∈ A, then T ∩ jk2 ⊆⋂
ζ∈bk

aζ as lg(s∗) = m∗ > m. To reach a contradiction it is enough to show
that for infinitely many k ∈ A there is a bound on the size of ck = T ∩ jk2
which does not depend on k.

Now |bk|/(sk+1−sk) is at most the probability that if we choose a subset
of (jk)2 with 2jk(1− 8−m∗

) elements, it will include T ∩ (jk)2; now if k ∈ A
this probability has a lower bound ε∗ not depending on k, and this implies
a bound on |T ∩ (jk)2| not depending on k. More formally, for a fixed k < ω
we have

|bk| = |{aζ : ζ ∈ [sk, sk+1), ζ ∈ bk}|
≤ |{aζ : ζ ∈ [sk, sk+1), T ∩ (jk)2 ⊆ aζ}|
≤ |{a ⊆ (jk)2 : T ∩ (jk)2 ⊆ a and |a| = 2jk(1− 8−m∗

)}|
= |{a ⊆ (jk)2 \ (T ∩ (jk)2) : |a| = 2jk8−m∗

}|

=
(

2jk − |T ∩ (jk)2|
2jk8−m∗

)
.

Similarly

sk+1 − sk =
(

2jk

2jk8−m∗

)
.
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Let ik(∗) = min{|T ∩ (jk)2|, 2jk−3m∗}. Hence

|bk|/(sk+1 − sk) ≤
(

2jk − |T ∩ (jk)2|
2jk8−m∗

) / (
2jk

2jk8−m∗

)
≤

(
2jk − ik(∗)
2jk8−m∗

) / (
2jk

2jk8−m∗

)
=

∏
i<ik(∗)

(2jk − 2jk8−m∗
− i)/

∏
i<ik(∗)

(2jk − i)

=
∏

i<ik(∗)

(
1− 2jk8−m∗

2jk − i

)
.

So (recall k ∈ A)

ε∗ ≤ |bk|
sk+1 − sk

≤
∏

i<ik(∗)

(
1− 2jk8−m∗

2jk − i

)

≤
∏

i<ik(∗)

(
1− 2jk8−m∗

2jk

)
= (1− 8−m∗

)ik(∗).

So we can find a bound on ik(∗) not depending on k:

ik(∗) ≤ log(1/ε∗)/log(1/(1− 8−m∗
)),

remember m∗ > 10 so 1− 8−m∗ ∈ (0, 1)R. So for k large enough,

2jk−3m∗
< log(1/ε∗)/log(1/(1− 8−m∗

)),

hence if |T ∩ (jk)2| ≤ 2jk−3m∗
we are done. Otherwise, by the choice of ik(∗),

|T ∩ (jk)2| = ik(∗) ≤ log(1/ε∗)/log(1/(1− 8−m∗
)).

This finishes the proof.

Theorem 3.5. Under Hypothesis 2.1 there is Q̄ ∈ K3 with lg(Q̄) = χ
= δ∗ (if clause (α) of 2.1(b) holds) or lg(Q̄) = χ× χ× λ+ (if clause (β) of
2.1(b) holds) such that in VPlim Q̄ we have MA<κ + cov(null) = λ.

P r o o f. First assume clause (α) of 2.1(b). By 2.3(2) and 2.3(6) it suffices
to find an iteration

〈Pα, ˜Qβ , Aβ , µβ ,
˜
τβ , ηβ , (˜Ξt

α)t∈T : α ≤ χ, β < χ〉 ∈ K3

(see Definition 2.11) satisfying clauses (a)+(b)+(c) of 2.3(2)+(6) (as the
only property missing, cov(null) ≤ λ, holds by 2.7 + 3.3).

Let K−3 = {Q̄ ∈ K3 : lg(Q̄) < χ}.
Now choose Q̄ξ ∈ K−3 for ξ < χ increasing with ξ (see Definition 2.12)

by induction on χ. If cf(ξ) > ℵ0 use 2.13(3), and if cf(ξ) = ℵ0 use 2.14. So
we deal with ξ + 1. Bookkeeping gives us sometimes a case ˜Q of 2.3(6)(c)
as assignment; we can find suitable A ⊆ lg(Q̄ξ) by 2.3(4) and then apply
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2.19 to get Q̄ξ+1. For other ξ, bookkeeping gives us a case of 2.3(2)(b) as
assignment A ⊆ lg(Q̄ξ) such that |A| < λ. Now we apply 2.16(2) (with Q̄,
A there standing for Q̄ξ, A here) and get A′ as there. Now apply 2.16(1)
with Q̄′, A′ here standing for Q̄, A′ here standing for Q̄, A there (and η any
member of κ2 \ {ηβ : β < lg(Q̄′)}, possible as lg(Q̄′) < χ as Q̄′ ∈ K3) and
get Q̄ξ+1 (corresponding to Q̄+ there).

Second, assume clause (β) of (b). We just should be more careful in our
bookkeeping, particularly at the beginning let 〈ηα : α < χ × χ × λ+〉 be
an enumeration of κ2 with no repetition and note cf([χ]<λ,⊆) = χ suffices
instead of χ = χλ.
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