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APPENDIX 2 [Sh 345b)

ENTANGLED ORDERS AND NARROW BOOLEAN
ALGEBRAS

On works on far linear orders see Galvin Shelah [GISh23] and earlier
works of Sierpinski [Sr]. On entangled linear orders see Bonnet [Bo], Abra-
ham Shelah [AbSh106], Abraham Rubin Shelah [ARS153]; Bonnet Shelah
[BSh210] proved their existence in cf (2%0) (and more general in cf(2*) if
2<X < X or more generally there is a linear order of cardinality < A\ with 2X
Dedekind cuts). The aim was to show the existence of narrow Boolean alge-
bras, in fact ordered ones (as befitted a work done during the Oberwolfach
Conference on Boolean Algebra). Todorcevic [To| independently proved
this for another application: a Boolean algebra may satisfy the cf(2*)-c.c.
whereas its square fails this. This applies to topologies too, but if you want
to apply it to non-productivity of cellularity you need cf (2“0) being suc-
Cessor.

For the generalization to (u, x)-entangled, the parallel for Ens and more
see [Sh462| and subsequently Rostanowski Shelah [RoSh534].

Definition 2.1 (1) Ens(), p, k) means: there are linear orderings (Z,, :
a < k) such that:

(a) Z, is a linear order of power A
b)ifn<w, a <---<a, <&k wC{l,..,n} t‘é € I,, for ( < pu,
£=1,..,nand [(; # (2= tgl #* t‘éz], then for some { < £ < u:

(6 e w=tf <t

1<e<nAl¢w=tl>tf

(2) Ens(\, u, k) is defined similarly but n < k.
(3) If we omit u, this means A = p.

(4) A linear order T is (u,n)-entangled if: (Z has cardinality > u and) for
every pairwise distinct tf €Z(1 <££<n,{ < u) such that té < t% <
- <tfand w C {1, ...,n}, there are ¢ < £ < p such that:

(x) 1<t<n=[lcwet<tf

(5) We omit p if |Z| = p; we omit n if it holds for all n < w.
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Fact 2.2 (1) (Z) witnesses Ens(\, u,1) iff Z is a linear order of power ),
with no monotonic sequence of length pu.

(2) (Z,J) witnesses Ens(), u, 2) iff Z, J are linear orders of power \, with
no monotonic sequence of length u, and Z,J are u-far i.e. have no
isomorphic subsets of power u and Z, J* are u-far where J* is the
reverse order on 7.

(3) If Z has density < p, p = cfy, then in the definition (2.1(4),(5)) of “Z
is py-entangled” we can add:

(%) e <tgth, th<tilfore=1,.,n—1.

(4) If n > 2, T is (u, n)-entangled, then Z has density < p.

(5) If T is p-entangled, |Z| = A then Ens(\, p, |Z]).

(6) If T is p-entangled, x = AT or at least there are A; € [\]* for i < ¥,
[i # j = |Ai N A;j| < A] then Ens(, p, X).

Proof: (1), (2) Check.
(3) Let J € [Z]<* be dense in Z. Suppose that

((t‘é 0=1,..,n): Z<u)

is as in 2.1(4), (5). For each ¢ € {1,...,n}, té < tﬁ'“, and so there exists

sf. € J such that té < sg < té‘” (and at least one inequality is strict).
Define functions hg, h; on pu by:

ho(¢) =: (sc’ ’Sg )

hi(¢) =: (< TV(té = sf.), TV(tf;."'1 = si-) >:£=1,..,n)

(where TV(-) is the truth value of -).

Now Dom(hg) = p and |Rang(ho)| < |J|™! < p. Similarly for h;. Since
cf(u) = p, there exists A € [u|* such that hg|A and h;i[A are constant.
That’s to say, for some s!,...,s" 1 in J,VL € {1,..,n— 1}, V( € A,

£ £ __ ¢ £+1

Since the té are given as pairwise distinct, using h;[A, one finds that

te < st <ttt

Without loss of generality A = u (relabelling); now applying 2.1(4), there
exist (< é<psuchthat 1l </l<n=>[lewe tf- < té], and in addition,
for/=1,..,n—-1,
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t€<s€=se=s§<t§+1

and
t§<s§=se=s€2<t€~+1

so that (%)’ holds.

(4) W.lo.g. n=2.

Suppose that Z has density at least u. By induction on { < u, choose

tg, t7 such that:

o 41 12

(f) tr <t

(if) tg, ¢2 & {tg,tE: € < (3

(iii) (V€ < ¢)(Ve € {1,2})(t; < tf & 17 < t§).
Continue to define for as long as possible.
There are two possible outcomes.

Outcome (a): One gets stuck at some ¢ < . Define J =: {t,17 : £ < (}.
So (Vt! < 2 € T\J)(3s € J)(—t' < s & t2 < s). Since t, t? ¢ T, it
follows that t! < s At2 > sort! > sAt? <s.So J is dense in Z and is of

power 2|¢| < p-a contradiction.
Outcome (b): one can define t}, t3 for every ¢ < p. Then (t3,t2 : ¢ < p),

w = {1, 2} constitute an easy counterexample to the (u,2)-entangledness
of Z.

(5) Z has X pairwise disjoint subsets each of power A, say (Z; : i < A), we
shall prove that this sequence witness Ens(], y, |Z]); for suppose n < w,
11, ..., 0, < A are distinct and let tf;. € Z;, for ( < p be distinct. For each
¢ < p define a linear order <¢ on {1,...,n} : £ < m iff tf} <t (they are
distinct as the Z]s are pairwise disjoint). As there are only finitely many
such linear order without loss of generality <.=<g, so by renaming without
loss of generality té < ... < ¢ for each ¢. Now apply “Z is p-entangled”.

(6) Similar to the proof of part (5). Oo.2

Fact 2.3 For a linear order Z and regular uncountable cardinal p, the

following are equivalent:

(a) T is p-entangled.

(b) B = BAjpter(Z) (the interval Boolean algebra) is u-narrow; i.e. with
no y pairwise incomparable elements.

Proof: 3%: (a) = (b).
By 2.2(4) Z has density < p.
Let (¢ : ¢ < p) be distinct elements of B. We know that for each ¢

there are: an even n(¢) < w and t; < --- < t?(o in 7 such that 7 =

35A reader who is happy to have the proof should thank O. Kolman for asking for it.
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"(O/ 2 [t2e 1,12¢) (more exactly without loss of generality Z has a first

element and we allow tc(o = 00). As cfu > Ny, without loss of generality
n(¢) = n(x); now by 2.1(4) and 2.2(3) (and the A—system lemma) for some
(<§ forl=1,..,n(x)/2, tC -1 <t§e 1 <t§e<t hence B |= 7 C 7¢ as
required.

[(b) = (a):] Note that Z has density < p. 36

So let Zy C T be a dense subset of T of cardinality < p. For J C 7 and
s <t from J, welet (s,t)g ={reJ:s<r<t}
Let 7={t€Z:if Il=s <t then|(s,t)z|] = p and if T}=t < s then

(¢, 5)z| = /1'}-
Clearly
(*)1 |T\T| <pandif s<tarein J then {re J:s<r <t} =
[why?

(a) if |[Z\TJ| = p, let t; € I\J be distinct for { < p, so for each ¢
¢
there is s¢ € Z such that

s¢ <t¢ & |(s¢,te)zl < port <s¢ & |(te,s¢)zl < pe

We can replace {t¢ : ( < p} by any subset of the same cardinality
so without loss of generality s, < t¢ & so < tp. By symmetry
assume sp < to otherwise look at Z*. For each (, as Zy is a
dense subset of Z there is ¢ € Zp such that s¢ < r¢ < t¢. As
|Zo| < p = cfp without loss of generality r, = r for each ¢. So
for { <

[Intelz | < (se te)zl +2 < p

hence for each { < u,
€ <m:te <t <lretell < p
Clearly there is h(¢) < u such that:
[ <u&é>h() =t <t

and
C={£:&<p (Y <ER(Q) <&}

is a club of u, so (t¢ : ( € C) is strictly increasing, contradicting
“T has density < p.”

367 has no well ordered subset of power x nor an inverse well ordered subset of power
p. So if T has density > u, then there are disjoint close-open intervals Ty, Z1 with density
> p. Now for each Z,, we choose by induction on { < density(Il,) elements a'g‘ < bg’
from Z,, such that [a.g‘,b’cn] is disjoint from {ag‘,bg‘ 1€ <(CtSoé< (> [a,g',bg‘] V4

[ag*, b7*]. Now ([a2, b2) U (Z1 \ [a},b;)) : ¢ < p) shows B is not p-narrow.
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(b) s <t arein J = |(s,t)7| = p because t € J implies
p=|(s0)z] < (s, )]+ [Z\T ],

but [Z\J| < 0 = [(s,£) 7]
(x)2 there is a dense subset Jp of J of cardinality < u [even easier].

Now let té € 7 be distinct for { < p, £=1,...,nand w C {1,...,n} and
we should find ¢ < £ such that:

[Lew=tf <tf], [£e{l,..n \w=t&>tf].

We, of course, can replace {(té, -1¢) : ¢ < p} by any subset of cardi-
nality p. So without loss of generality

(¥)3 no t is first or last, and every t isin J (as |Z\J| < ).

The rest is easy, too, though tiring. So for each { we can find
’T‘é )T? + e Jo

such that

1 1 2 2 n+1
7”<<t<<7”<<tc<"‘<t?<7"c ;

As |J| < p = cf(u) without loss of generality ri = r, for every £.
Let for each { < pu,

U =: {Z:Ze{l ..,n} and t<<tc+1}

u¢ has < 2™ possible values. Without loss of generality u, = u* for every
¢ < p.
Note
[e¢UC&e€{1 ,n}¢t2c>t2q+1]
(as the # ec+1) For each ¢ < p, £ € {1,...,n} there is p} € Jo such that

C p( < t2¢ 41 O t2< 41 < pc < tzc +1- Without loss of generality pf- = D¢
and the inequalities are strict.
Now we deﬁne by induction on ¢ < pu, for every £ = {1, ...,n}, members

qg 1 qu, q§3, qa 4 of J such that:
(i) if £ € uc (ie. 5 2¢ < t§<+1) then
(i) if £ ¢ u¢ (but £ € {1,...,n}, i.e. t5. > 5., ;) then

£,
Te < qc 1 g<+1 < qc < De < q(; < t2c+1 < q‘: < Te41
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(iii) qé’m(m € {1,2,3,4}) does not belong to

{qi_f’i €< ked{l,..,n}ie{l, ...,4}}U{t§ €< (el ...,n}}.
There are no problems by (x);. It is still possible that for some ¢ < &,
0#{gt™:£=1,.,nand m=1,2,3,4}n{tf : £=1,...,n}

for each { there are at most 4n such ¢’s, so there is h1(¢) < p such that

hi(Q) &< p= Np M qg’m # t’g. So without loss of generality

(%)4 the sets {qf’m, té :£=1,..,nand m = 1,2,3,4} for {( < u are pairwise
disjoint.

Now we define for every ¢ < u, a sequence (sg : £ =1,...,4n) by defining

323_3’ Sge_z’ Sge—3’ 322—4 for each £ € {1,...,n} as follows:

Case 1: L e w, L € u*
( 4¢-3 _4e-2 _4¢—1 48y — (¢ 62 63 e )

c ;ce ¢’3c g’sc* 15¢ 2¢:9¢ »9¢ 2 b2cal-

ase z: w cu
403 40-2 401 4y _ (b1 40 40 4y
(8¢ "hsg Thse a8e) = (4¢ tagrtag1r ¢ )-

Case 3: éEw,efgéu:e . o
4 —3 4 —2 —1 ) ?
(5¢ 2 s¢ % s¢ 7 st) = (e s theqn the a0
Case 4: £ & w, £ & u* o 23
3 40-3 _ae— 2 L
(s¢ %8¢ s o) = (thean 402 4 tac)
Clearly for ¢ < p, s} < --- < s¢™ and the s{ are pairwise distinct (by
(*)4) and

Tk r1<sé<sg<p1<sg<s‘é< r2<sf’;<sg<p2<sz<sg<r3<- .-
Now for each ¢ we define an element z, of the Boolean algebra BA(Z) :

2n

Te = U [sge_l, sge).
=1

Note
(x)s for £=1,...,n:
(a) ¢ N[re,pe) = [s‘ée_je, s‘ée_2
-1
(b) z¢ N (peyres1) = [s¢” 5 5¢9)-

So (z¢ : ¢ < p) is a sequence of p members of the Boolean algebra
BA(Z). By the assumption (we are proving (b) = (a) in fact 2.3 for some
¢ < € < p. x¢, T¢ are comparable members of BA(Z); i.e. z¢ C x¢ or
z¢ C z¢. We derived our desired conclusion according to the case.
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CASE A: z, C Te.

In this case we shall prove that 2¢ + 1, 26 + 1 are the ordinals we are
looking for; i.e. conditions (a), (8), (7) below holds, and we shall check
those thus finishing this case.

Condition o : 2¢ + 1 < 26 + 1.

[Trivial by ¢ < €].
Condition 3 : if £ € w then t ae41 < t2§+1

Possibility 81 : £ € u
Then tgc 1= SC , t2€+1 = sge (by Case 1 in the definition of the s’s),
now by (x)s(b) :

40—-1

¢ N [pe, Tev1) = [3 ,Sge)

hence (by Case 1 above)

x¢ N [PeyTe41) = [q(; , 15 2¢+1)

and
[ 342 1

Te N [peyTe41) = , 56

hence (by Case 1 above)

¢ N [pe, Te41) = [qg b §+1)

But as we are in CASE A, z¢ C z¢ hence x¢ N [pg, re4+1) C e N [Pe, Te41)
which means by the previous sentence [q§’3,tgc +1) € [qé’g’,tgE +1) Which
implies q§’3 < q§3 and t2C+1 < tng. But tgc+1 # th_H (as ¢ # €) so
t5c41 < the 41 as required.
Possibility 82 : £ ¢ u*

40-2

Then t2C 1 = s‘ée 2 t2§ +1 =8¢ (by Case 3 in the definition of the
s’s) now by (*)5(a):

ze N [re, pe) = [s4e 3 s‘ée_ )

hence (by Case 3 above)

x¢ N [re, pe) = [QC 't ¢+1)

and

Le N [Te,PE) - [34e 3’ sge 2

hence (by Case 3 above)
e N [rg,pe) = [‘15 , b g+1)

But as we are in CASE A, z¢ C ¢ hence z¢ N [re, pe) C ¢ N [re, pe) which
means by the previous sentence [qf’l,tgc +1) € [qg’l,tgg +1) Which implies
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g1
@ and the; Sthe ) Butthe,, #theyy (as(#E) soth,, < thes1
as requ1red
Condition v : If £ ¢ w (but £ € {1,...,n} then ¢§.,, > thes1-

Possibility v1: £ € u*
Then tzc 41 = 401 t2§ 41 = s‘ée ! (by Case 2 in the definition of the
s’s). Now by (*)5(b3

40-1

s¢ N [peyresr) = [s¢71, 58

hence (by Case 2 above)

2,4
z¢ N [pe;Tet1) = [tg<;+1’<1¢ )

and

[342 1

Te N [pe, Te+1) = 73);-‘ )

hence (by Case 2 above)

) 2,4
Te N [Pe,"‘2+1) = [t2§+1,q€ )

But as we are in CASE A, z¢ C z¢ hence z¢ N [pg,rc_H) C z¢ ﬂ [pe,'r‘e+1)
which means by the prev1ous sentence [t2<; +1’qc Y ¢ [t25 10 q,E *) which

2,4
implies t2¢+1 > t5e,, and q,;- > qc . But t2¢+1 # t2§+1 (as ¢ # €) so
t5e41 > theyy 88 required.

Possibility "Y2 : L ¢ u*
Then t2<; 41 = sce 3 t2£ 41 = sge 3 (by Case 4 in the definition of the
s’s) now by (*)s(a):

¢ N [re,pe) = [s¢°%,5¢°72)

hence (by Case 4 above)

02
¢ N [re,pe) = [they1 40"

and

¢ N [re,pe) = [sg° 2, 55" %)

hence (by Case 4 above)
£,2
Te N [re, pe) = [tg£+1’q§ ).

But as we are in CASE A, z¢ C z¢ hence .’IIC N [re,pe) C CL‘g N [re, pe) which
means by the previous sentence [t2<+1,qc ) C [t2€+1,q§ ) which implies
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¢ 0 62 _ 0,2 e
toes1 < toeqq and @0 < g% But 5., # 65, (as ( #€) sotheyy <th.y,
as required.

CASE B: z¢ C z¢.
In this case we shall prove that 2¢, 2£ are a pair of ordinals we are

looking for; i.e. conditions (a), (83), (7) below holds and we shall check
those, thus finishing this case (hence the proof of 2.3).

Condition a: 2¢ < 2€.

[Trivial by ¢ < £].
Condition 3 : if £ € w then tgc < tgg.
Possibility g1: £ € u*.

Then tgc = s‘ée_?’, tgg = 322_3 (by Case 1 in the definition of the s’s);

now by (x)s(a): 46-3 _40-2
2¢O [re,pe) = [s¢ 8¢ 7)

hence (by Case 1 above)

£
z¢ N [re, pe) = [tgg,q¢’2)

and
z¢ N [res pe) = [543, 572)

hence (by Case 1 above)

Te N [T, De) = [tﬁg,q§’2)-

But as we are in CASE B, z¢ O z¢ hence z¢ N [re,pe) 2 ¢ N [re, pe)

which means by the previous sentence [tgc, qf’2) D) [tgg,qég) which implies
02 _ 4,2 .

t§< < tgg and ¢~ < ¢/”. But tgc # tgg (as ¢ # &), so tgc < tgg as required.

Possibility 82 : £ ¢ u* (but £ € {1,...,n}.

Then tgc = sée_l, tgE = sge_l (by Case 3 in the definition of the s’s);

now by (*)s(b): el 4z
z¢N [pe, Te41) = [s( Y )

hence (by Case 3 above)

2,4
¢ N [pe,Ter1) = [the,g¢™)

and

ze N [pe,res1) = [sg571, s¢9)

hence (by Case 3 above)

2,4
I¢ N [Pe,"'e+1) = [tgquc )
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But as we are in CASE B, z¢ 2 z¢ hence CL‘( N [pe,re+1) 2 x¢ N [pe, Tet1)
which means by the prev1ous sentence [tZC’ qc ) D) [tzg,qc ) which implies

the < t5, and q£ 1< qC . But t§, # 26 (as ¢ #€), s0 t5, < t2€ as required.
Condition v : if £ ¢ w (but £ € {1,...,n}) then tz > té 5¢
Possibility 41 : £ € u*.

Then tec = sée 2 tzg = sge 2 (by Case 2 in the definition of the s’s);
now by (x)s(a):

e N [re, pe) = [s72, s¢¢72)

hence (by Case 2 above)

I¢ N [Te,pe) = [QC ot ()

and
e N [re, pe) = 56572, 58°72)

hence (by Case 2 above)

Ze N [re, pe) = [Qg l,t g)

But as we are in CASE B, z¢ O x¢ hence ¢ N [re,pe) 2 z¢ N [re,pe)
which means by the previous sentence [qé’l, t ¢) 2 [qe’1 tgg) which implies
¢t < qé’l and t§, < tgc. But t5. # t5, (as { # £), so t5, < t§, as required.

Possibility :x 2: /¢ ¢ u*
Then t5, = s, t2€ = s¢t (by Case 4 in the definition of the s’s); now

by (x)s(b): "
S

T¢ N [Pe, Te41) = ,5¢0)

hence (by Case 4 above)

2,3
I N [Peﬂ'e+1) = [QC ’tg()

and
40—1

¢ N [pe,rer1) = [s51, s¢°)

hence (by Case 4 above)

Te N [P, Te41) = [Qg , the)-

But as we are in Case B, x¢ 2 x¢ hence ¢ N [pg,Tet+1) 2 Te N [Pe, Te41)

which means by the previous sentence [q§’3, t5.) 2 [qe’3 t5¢) which implies

qé’3 < q§’3 and tgg < th. But te 5 (as ( #€), so t2€ <th a¢ s required.
So we finish the proof of 2.3
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Theorem 2.4 (1) There is an entangled linear order A C R of power
cf (2%0).

(2) Generalization to higher cardinals: if there is a linear order of power 2*
and density X (for example X strong limit), then there is an entangled
linear order of power cf(2*) and density .

Proof: Done independently by Bonnet Shelah [BSh210], Todorcevic [To].
As its use in the book is marginal we do not include a proof.



