APPENDIX 2 [Sh 345b]

ENTANGLED ORDERS AND NARROW BOOLEAN ALGEBRAS

On works on far linear orders see Galvin Shelah [GlSh23] and earlier works of Sierpinski [Sr]. On entangled linear orders see Bonnet [Bo], Abraham Shelah [AbSh106], Abraham Rubin Shelah [ARS153]; Bonnet Shelah [BSh210] proved their existence in cf (2^{\aleph_0}) (and more general in cf (2^{λ}) if $2^{<\lambda} \leq \lambda$ or more generally there is a linear order of cardinality $\leq \lambda$ with 2^{λ} Dedekind cuts). The aim was to show the existence of narrow Boolean algebras, in fact ordered ones (as befitted a work done during the Oberwolfach Conference on Boolean Algebra). Todorcevic [To] independently proved this for another application: a Boolean algebra may satisfy the cf (2^{λ}) -c.c. whereas its square fails this. This applies to topologies too, but if you want to apply it to non-productivity of cellularity you need cf (2^{\aleph_0}) being successor.

For the generalization to (μ, κ) -entangled, the parallel for Ens and more see [Sh462] and subsequently Rosłanowski Shelah [RoSh534].

Definition 2.1 (1) Ens(λ, μ, κ) means: there are linear orderings $\langle \mathcal{I}_{\alpha} : \alpha < \kappa \rangle$ such that:

- (a) \mathcal{I}_{α} is a linear order of power λ
- (b) if $n < \omega$, $\alpha_1 < \cdots < \alpha_n < \kappa$, $w \subseteq \{1, ..., n\}$, $t_{\zeta}^{\ell} \in \mathcal{I}_{\alpha_{\ell}}$ for $\zeta < \mu$, $\ell = 1, ..., n$ and $[\zeta_1 \neq \zeta_2 \Rightarrow t_{\zeta_1}^{\ell} \neq t_{\zeta_2}^{\ell}]$, then for some $\zeta < \xi < \mu$:

$$[\ell \in w \Rightarrow t_\zeta^\ell < t_\xi^\ell]$$

$$[1 \leq \ell \leq n \land \ell \notin w \Rightarrow t_{\zeta}^{\ell} > t_{\xi}^{\ell}]$$

- (2) $\operatorname{Ens}(\lambda, \mu, k)$ is defined similarly but $n \leq k$.
- (3) If we omit μ , this means $\lambda = \mu$.
- (4) A linear order \mathcal{I} is (μ, n) -entangled if: (\mathcal{I} has cardinality $\geq \mu$ and) for every pairwise distinct $t_{\zeta}^{\ell} \in \mathcal{I}(1 \leq \ell \leq n, \zeta < \mu)$ such that $t_{\zeta}^{1} < t_{\zeta}^{2} < \cdots < t_{\zeta}^{n}$ and $w \subseteq \{1, ..., n\}$, there are $\zeta < \xi < \mu$ such that:

(*)
$$1 \le \ell \le n \Rightarrow [\ell \in w \Leftrightarrow t_{\zeta}^{\ell} < t_{\xi}^{\ell}].$$

(5) We omit μ if $|\mathcal{I}| = \mu$; we omit n if it holds for all $n < \omega$.

- Fact 2.2 (1) $\langle \mathcal{I} \rangle$ witnesses $\operatorname{Ens}(\lambda, \mu, 1)$ iff \mathcal{I} is a linear order of power λ , with no monotonic sequence of length μ .
- (2) $\langle \mathcal{I}, \mathcal{J} \rangle$ witnesses $\operatorname{Ens}(\lambda, \mu, 2)$ iff \mathcal{I}, \mathcal{J} are linear orders of power λ , with no monotonic sequence of length μ , and \mathcal{I}, \mathcal{J} are μ -far i.e. have no isomorphic subsets of power μ and $\mathcal{I}, \mathcal{J}^*$ are μ -far where \mathcal{J}^* is the reverse order on \mathcal{J} .
- (3) If \mathcal{I} has density $<\mu$, $\mu=\mathrm{cf}\,\mu$, then in the definition (2.1(4),(5)) of " \mathcal{I} is μ -entangled" we can add:

$$(*)'$$
 $t_{\zeta}^{\ell} < t_{\xi}^{\ell+1}, t_{\xi}^{\ell} < t_{\zeta}^{\ell+1} \text{ for } \ell = 1, ..., n-1.$

- (4) If $n \geq 2$, \mathcal{I} is (μ, n) -entangled, then \mathcal{I} has density $< \mu$.
- (5) If \mathcal{I} is μ -entangled, $|\mathcal{I}| = \lambda \text{ then } \operatorname{Ens}(\lambda, \mu, |\mathcal{I}|)$.
- (6) If \mathcal{I} is μ -entangled, $\chi = \lambda^+$ or at least there are $A_i \in [\lambda]^{\lambda}$ for $i < \chi$, $[i \neq j \Rightarrow |A_i \cap A_j| < \lambda]$ then $\operatorname{Ens}(\lambda, \mu, \chi)$.

Proof: (1), (2) Check.

(3) Let $\mathcal{J} \in [\mathcal{I}]^{<\mu}$ be dense in \mathcal{I} . Suppose that

$$\langle \langle t_{\zeta}^{\ell} : \ell = 1, ..., n \rangle : \ \ell < \mu \rangle$$

is as in 2.1(4), (5). For each $\ell \in \{1, ..., n\}$, $t_{\zeta}^{\ell} < t_{\zeta}^{\ell+1}$, and so there exists $s_{\zeta}^{\ell} \in \mathcal{J}$ such that $t_{\zeta}^{\ell} \leq s_{\zeta}^{\ell} \leq t_{\zeta}^{\ell+1}$ (and at least one inequality is strict). Define functions h_0 , h_1 on μ by:

$$h_0(\zeta) =: \langle s_{\zeta}^1, ..., s_{\zeta}^{n-1} \rangle$$

$$h_1(\zeta) =: \langle \langle TV(t_{\zeta}^{\ell} = s_{\zeta}^{\ell}), \, TV(t_{\zeta}^{\ell+1} = s_{\zeta}^{\ell}) >: \ell = 1, ..., n \rangle$$

(where TV(-) is the truth value of -).

Now $\mathrm{Dom}(h_0) = \mu$ and $|\mathrm{Rang}(h_0)| \leq |\mathcal{J}|^{n-1} < \mu$. Similarly for h_1 . Since $\mathrm{cf}(\mu) = \mu$, there exists $A \in [\mu]^{\mu}$ such that $h_0 \upharpoonright A$ and $h_1 \upharpoonright A$ are constant. That's to say, for some $s^1, ..., s^{n-1}$ in $\mathcal{J}, \forall \ell \in \{1, ..., n-1\}, \forall \zeta \in A$,

$$t_{\zeta}^{\ell} \leq s^{\ell} = s_{\zeta}^{\ell} \leq t_{\zeta}^{\ell+1}.$$

Since the t_{ζ}^{ℓ} are given as pairwise distinct, using $h_1 \upharpoonright A$, one finds that

$$t_\zeta^\ell < s^\ell < t_\zeta^{\ell+1}.$$

Without loss of generality $A = \mu$ (relabelling); now applying 2.1(4), there exist $\zeta < \xi < \mu$ such that $1 \le \ell \le n \Rightarrow [\ell \in w \Leftrightarrow t_{\zeta}^{\ell} < t_{\xi}^{\ell}]$, and in addition, for $\ell = 1, ..., n - 1$,

$$t_\zeta^\ell < s_\zeta^\ell = s^\ell = s_\xi^\ell < t_\xi^{\ell+1}$$

and

$$t_\xi^\ell < s_\xi^\ell = s^\ell = s_\zeta^\ell < t_\zeta^{\ell+1}$$

so that (*)' holds.

(4) W.l.o.g. n = 2.

Suppose that \mathcal{I} has density at least μ . By induction on $\zeta < \mu$, choose t_{ζ}^1 , t_{ζ}^2 such that:

- (i) $t_{\zeta}^{1} < t_{\zeta}^{2}$
- (ii) $t_{\zeta}^{1}, t_{\zeta}^{2} \notin \{t_{\xi}^{1}, t_{\xi}^{2} : \xi < \zeta\}$
- (iii) $(\forall \xi < \zeta)(\forall \ell \in \{1, 2\})(t^1_{\zeta} < t^{\ell}_{\xi} \Leftrightarrow t^2_{\zeta} < t^{\ell}_{\xi}).$

Continue to define for as long as possible.

There are two possible outcomes.

Outcome (a): One gets stuck at some $\zeta < \mu$. Define $\mathcal{J} =: \{t_{\xi}^1, t_{\xi}^2 : \xi < \zeta\}$. So $(\forall t^1 < t^2 \in \mathcal{I} \setminus \mathcal{J})(\exists s \in \mathcal{J})(\neg t^1 < s \Leftrightarrow t^2 < s)$. Since $t^1, t^2 \notin \mathcal{J}$; it follows that $t^1 < s \wedge t^2 > s$ or $t^1 > s \wedge t^2 < s$. So \mathcal{J} is dense in \mathcal{I} and is of power $2|\zeta| < \mu$ -a contradiction.

Outcome (b): one can define t_{ζ}^1 , t_{ζ}^2 for every $\zeta < \mu$. Then $\langle t_{\zeta}^1, t_{\zeta}^2 : \zeta < \mu \rangle$, $w = \{1, 2\}$ constitute an easy counterexample to the $(\mu, 2)$ -entangledness of \mathcal{I} .

- (5) \mathcal{I} has λ pairwise disjoint subsets each of power λ , say $\langle \mathcal{I}_i : i < \lambda \rangle$, we shall prove that this sequence witness $\operatorname{Ens}(\lambda,\mu,|\mathcal{I}|)$; for suppose $n < \omega$, $i_1,...,i_n < \lambda$ are distinct and let $t_{\zeta}^{\ell} \in \mathcal{I}_{i_{\ell}}$ for $\zeta < \mu$ be distinct. For each $\zeta < \mu$ define a linear order $<_{\zeta}$ on $\{1,...,n\} : \ell < m$ iff $t_{\zeta}^{\ell} < t_{\zeta}^{m}$ (they are distinct as the $\mathcal{I}_i's$ are pairwise disjoint). As there are only finitely many such linear order without loss of generality $<_{\zeta} = <_{0}$, so by renaming without loss of generality $t_{\zeta}^{1} < ... < t_{\zeta}^{n}$ for each ζ . Now apply " \mathcal{I} is μ -entangled".
- (6) Similar to the proof of part (5). $\square_{2.2}$

Fact 2.3 For a linear order \mathcal{I} and regular uncountable cardinal μ , the following are equivalent:

- (a) \mathcal{I} is μ -entangled.
- (b) $B = BA_{\text{inter}}(\mathcal{I})$ (the interval Boolean algebra) is μ -narrow; i.e. with no μ pairwise incomparable elements.

Proof: 35 : (a) \Rightarrow (b).

By 2.2(4) \mathcal{I} has density $< \mu$.

Let $\langle \tau_{\zeta} : \zeta < \mu \rangle$ be distinct elements of B. We know that for each ζ there are: an even $n(\zeta) < \omega$ and $t_{\zeta}^1 < \cdots < t_{\zeta}^{n(\zeta)}$ in \mathcal{I} such that $\tau_{\zeta} =$

³⁵A reader who is happy to have the proof should thank O. Kolman for asking for it.

 $\bigcup_{\ell=1}^{n(\zeta)/2} [t_\zeta^{2\ell-1}, t_\zeta^{2\ell}) \text{ (more exactly without loss of generality \mathcal{I} has a first element and we allow $t_\zeta^{n(\zeta)} = \infty$). As $\mathrm{cf}\,\mu > \aleph_0$, without loss of generality $n(\zeta) = n(*)$; now by 2.1(4) and 2.2(3) (and the Δ-system lemma) for some $\zeta < \xi$, for $\ell = 1, ..., $n(*)/2$, $t_\zeta^{2\ell-1} \le t_\xi^{2\ell-1} < t_\xi^{2\ell} \le t_\zeta^{2\ell}$, hence $B \models \tau_\xi \subseteq \tau_\zeta$ as required. }$

[(b) \Rightarrow (a):] Note that \mathcal{I} has density $< \mu$. ³⁶.

So let $\mathcal{I}_0 \subseteq \mathcal{I}$ be a dense subset of \mathcal{I} of cardinality $< \mu$. For $\mathcal{J} \subseteq \mathcal{I}$ and s < t from \mathcal{J} , we let $(s,t)_{\mathcal{J}} = \{r \in \mathcal{J} : s < r < t\}$.

Let
$$\mathcal{J} = \{t \in \mathcal{I} : if \ \mathcal{I} \models s < t \text{ then } |(s,t)_{\mathcal{I}}| = \mu \text{ and if } \mathcal{I} \models t < s \text{ then } |(t,s)_{\mathcal{I}}| = \mu\}.$$

Clearly

- $(*)_1 |\mathcal{I} \setminus \mathcal{J}| < \mu \text{ and if } s < t \text{ are in } \mathcal{J} \text{ then } |\{r \in \mathcal{J} : s < r < t\}| = \mu.$ [why?
 - (a) if $|\mathcal{I} \setminus \mathcal{J}| = \mu$, let $t_{\zeta} \in \mathcal{I} \setminus \mathcal{J}$ be distinct for $\zeta < \mu$, so for each ζ there is $s_{\zeta} \in \mathcal{I}$ such that

$$s_{\zeta} < t_{\zeta} \& |(s_{\zeta}, t_{\zeta})_{\mathcal{I}}| < \mu \text{ or } t < s_{\zeta} \& |(t_{\zeta}, s_{\zeta})_{\mathcal{I}}| < \mu.$$

We can replace $\{t_{\zeta}: \zeta < \mu\}$ by any subset of the same cardinality so without loss of generality $s_{\zeta} < t_{\zeta} \Leftrightarrow s_0 < t_0$. By symmetry assume $s_0 < t_0$ otherwise look at \mathcal{I}^* . For each ζ , as \mathcal{I}_0 is a dense subset of \mathcal{I} there is $r_{\zeta} \in \mathcal{I}_0$ such that $s_{\zeta} \leq r_{\zeta} \leq t_{\zeta}$. As $|\mathcal{I}_0| < \mu = \operatorname{cf} \mu$ without loss of generality $r_{\zeta} = r$ for each ζ . So for $\zeta < \mu$

$$|\left[r,t_{\zeta}\right]_{\mathcal{I}}| \leq |(s_{\zeta},t_{\zeta})_{\mathcal{I}}| + 2 < \mu$$

hence for each $\zeta < \mu$,

$$|\{\xi < \mu : t_{\xi} \le t_{\zeta}\}| \le |[r_{\zeta}, t_{\zeta}]| < \mu.$$

Clearly there is $h(\zeta) < \mu$ such that:

$$[\xi < \mu \& \xi \ge h(\zeta) \Rightarrow t_{\zeta} < t_{\xi}]$$

and

$$C = \{ \xi : \xi < \mu, (\forall \zeta < \xi)(h(\zeta) < \xi \}$$

is a club of μ , so $\langle t_{\zeta} : \zeta \in C \rangle$ is strictly increasing, contradicting " \mathcal{I} has density $\langle \mu$."

 $^{36}\mathcal{I}$ has no well ordered subset of power μ nor an inverse well ordered subset of power μ . So if \mathcal{I} has density $\geq \mu$, then there are disjoint close-open intervals \mathcal{I}_0 , \mathcal{I}_1 with density $\geq \mu$. Now for each \mathcal{I}_m we choose by induction on $\zeta < \text{density}(I_m)$ elements $a_{\zeta}^m < b_{\zeta}^m$ from \mathcal{I}_m such that $[a_{\zeta}^m, b_{\zeta}^m]$ is disjoint from $\{a_{\xi}^m, b_{\xi}^m : \xi < \zeta\}$. So $\xi < \zeta \Rightarrow [a_{\xi}^m, b_{\xi}^m] \not\subseteq [a_{\zeta}^m, b_{\zeta}^m]$. Now $\langle [a_{\zeta}^0, b_{\zeta}^0) \cup (\mathcal{I}_1 \setminus [a_{\zeta}^1, b_{\zeta}^1)) : \zeta < \mu \rangle$ shows B is not μ -narrow.

(b) s < t are in $\mathcal{J} \Rightarrow |(s,t)_{\mathcal{J}}| = \mu$ because $t \in \mathcal{J}$ implies

$$\mu \le |(s,t)_{\mathcal{I}}| \le |(s,t)_{\mathcal{I}}| + |\mathcal{I} \setminus \mathcal{I}|,$$

but
$$|\mathcal{I} \setminus \mathcal{J}| < \mu$$
 so $\mu = |(s, t)_{\mathcal{J}}|$.]

(*)₂ there is a dense subset \mathcal{J}_0 of \mathcal{J} of cardinality $<\mu$ [even easier].

Now let $t_{\zeta}^{\ell} \in \mathcal{I}$ be distinct for $\zeta < \mu$, $\ell = 1, ..., n$ and $w \subseteq \{1, ..., n\}$ and we should find $\zeta < \xi$ such that:

$$[\ell \in w \Rightarrow t_{\zeta}^{\ell} < t_{\xi}^{\ell}], \ [\ell \in \{1,...,n\} \backslash w \Rightarrow t_{\zeta}^{\ell} > t_{\xi}^{\ell}].$$

We, of course, can replace $\{(t_{\zeta}^1,...,t_{\zeta}^n): \zeta < \mu\}$ by any subset of cardinality μ . So without loss of generality

 $(*)_3$ no t_{ζ}^{ℓ} is first or last, and every t_{ζ}^{ℓ} is in \mathcal{J} (as $|\mathcal{I} \setminus \mathcal{J}| < \mu$).

The rest is easy, too, though tiring. So for each ζ we can find

$$r_{\zeta}^{1},...,r_{\zeta}^{n+1}\in\mathcal{J}_{0}$$

such that

$$r_{\zeta}^{1} < t_{\zeta}^{1} < r_{\zeta}^{2} < t_{\zeta}^{2} < \dots < t_{\zeta}^{n} < r_{\zeta}^{n+1}.$$

As $|\mathcal{J}_0| < \mu = \mathrm{cf}(\mu)$ without loss of generality $r_{\zeta}^{\ell} = r_{\ell}$ for every ℓ . Let for each $\zeta < \mu$,

$$u_{\zeta} =: \{\ell : \ell \in \{1, ..., n\} \text{ and } t_{2\zeta}^{\ell} < t_{2\zeta+1}^{\ell} \}$$

 u_{ζ} has $\leq 2^n$ possible values. Without loss of generality $u_{\zeta}=u^*$ for every $\zeta<\mu.$

Note

$$\left[\ell \notin u_{\zeta} \& \ell \in \{1,...,n\} \Rightarrow t_{2\zeta}^{\ell} > t_{2\zeta+1}^{\ell}\right]$$

(as $t_{2\zeta}^{\ell} \neq t_{2\zeta+1}^{\ell}$). For each $\zeta < \mu$, $\ell \in \{1,...,n\}$ there is $p_{\zeta}^{\ell} \in \mathcal{J}_0$ such that $t_{2\zeta}^{\ell} \leq p_{\zeta}^{\ell} \leq t_{2\zeta+1}^{\ell}$ or $t_{2\zeta+1}^{\ell} \leq p_{\zeta}^{\ell} \leq t_{2\zeta+1}^{\ell}$. Without loss of generality $p_{\zeta}^{\ell} = p_{\ell}$ and the inequalities are strict.

Now we define by induction on $\zeta < \mu$, for every $\ell = \{1, ..., n\}$, members $q_{\zeta}^{\ell,1}, q_{\zeta}^{\ell,2}, q_{\zeta}^{\ell,3}, q_{\zeta}^{\ell,4}$ of $\mathcal J$ such that:

(i) if $\ell \in u_{\zeta}$ (i.e. $t_{2\zeta}^{\ell} < t_{2\zeta+1}^{\ell}$) then

$$r_{\ell} < q_{\zeta}^{\ell,1} < t_{2\zeta}^{\ell} < q_{\zeta}^{\ell,2} < p_{\ell} < q_{\zeta}^{\ell,3} < t_{2\zeta+1}^{\ell} < q_{\zeta}^{\ell,4} < r_{\ell+1}$$

(ii) if $\ell \notin u_{\zeta}$ (but $\ell \in \{1,...,n\}$, i.e. $t_{2\zeta}^{\ell} > t_{2\zeta+1}^{\ell}$) then

$$r_{\ell} < q_{\zeta}^{\ell,1} < t_{2\zeta+1}^{\ell} < q_{\zeta}^{\ell,2} < p_{\ell} < q_{\zeta}^{\ell,3} < t_{2\zeta+1}^{\ell} < q_{\zeta}^{\ell,4} < r_{\ell+1}$$

(iii) $q_{\zeta}^{\ell,m}(m \in \{1,2,3,4\})$ does not belong to

$$\left\{q_{\xi}^{k,i}: \xi < \zeta, k \in \{1,...,n\}, i \in \{1,...,4\}\right\} \cup \left\{t_{\xi}^{\ell}: \xi < \zeta, \ell \in \{1,...,n\}\right\}.$$

There are no problems by $(*)_1$. It is still possible that for some $\zeta < \xi$,

$$\emptyset \neq \{q_{\zeta}^{\ell,m}: \ell=1,...,n \text{ and } m=1,2,3,4\} \cap \{t_{\xi}^{\ell}: \ell=1,...,n\}$$

for each ζ there are at most 4n such $\xi's$, so there is $h_1(\zeta) < \mu$ such that $h_1(\zeta) \leq \xi < \mu \Rightarrow \bigwedge_{\ell,m} \bigwedge_k q_{\zeta}^{\ell,m} \neq t_{\xi}^k$. So without loss of generality

(*)₄ the sets $\{q_{\zeta}^{\ell,m}, t_{\zeta}^{\ell} : \ell = 1, ..., n \text{ and } m = 1, 2, 3, 4\}$ for $\zeta < \mu$ are pairwise disjoint.

Now we define for every $\zeta < \mu$, a sequence $\langle s_{\zeta}^{\ell}: \ell=1,...,4n \rangle$ by defining $s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2}, s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-4}$ for each $\ell \in \{1,...,n\}$ as follows:

Case 1:
$$\ell \in w$$
, $\ell \in u^*$ $\langle s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2}, s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell} \rangle = \langle t_{2\zeta}^{\ell}, q_{\zeta}^{\ell,2}, q_{\zeta}^{\ell,3}, t_{2\zeta+1}^{\ell} \rangle$.

Case 2:
$$\ell \notin w$$
, $\ell \in u^*$

$$\langle s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2}, s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell} \rangle = \langle q_{\zeta}^{\ell,1}, t_{2\zeta}^{\ell}, t_{2\zeta+1}^{\ell}, q_{\zeta}^{\ell,4} \rangle.$$
Case 2: $\ell \notin w$, $\ell \in u^*$

Case 3:
$$\ell \in w$$
, $\ell \notin u^*$

$$\langle s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2}, s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell} \rangle = \langle q_{\zeta}^{\ell,1}, t_{2\zeta+1}^{\ell}, t_{2\zeta}^{\ell}, q_{\zeta}^{\ell,4} \rangle.$$
Case $\ell : \ell \notin w, \ell \notin u^*$

Case 4:
$$\ell \notin w$$
, $\ell \notin u^*$
 $\langle s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2}, s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell} \rangle = \langle t_{2\zeta+1}^{\ell}, q_{\zeta}^{\ell,2}, q_{\zeta}^{\ell,3}, t_{2\zeta}^{\ell} \rangle.$

Clearly for $\zeta < \mu$, $s_{\zeta}^1 < \cdots < s_{\zeta}^{4n}$ and the s_{ζ}^{ℓ} are pairwise distinct (by $(*)_4$) and

$$\mathcal{I} \models r_1 < s_{\zeta}^1 < s_{\zeta}^2 < p_1 < s_{\zeta}^3 < s_{\zeta}^4 < r_2 < s_{\zeta}^5 < s_{\zeta}^6 < p_2 < s_{\zeta}^7 < s_{\zeta}^8 < r_3 < \cdots$$

Now for each ζ we define an element x_{ζ} of the Boolean algebra $BA(\mathcal{I})$:

$$x_{\zeta} = \bigcup_{\ell=1}^{2n} [s_{\zeta}^{2\ell-1}, s_{\zeta}^{2\ell}).$$

Note

$$\begin{array}{ll} (*)_5 \ \ \text{for} \ \ell = 1, ..., n: \\ (a) \ \ x_{\zeta} \cap [r_{\ell}, p_{\ell}) = [s_{\zeta}^{4\ell - 3}, s_{\zeta}^{4\ell - 2}) \\ (b) \ \ x_{\zeta} \cap (p_{\ell}, r_{\ell + 1}) = [s_{\zeta}^{4\ell - 1}, s_{\zeta}^{4\ell}). \end{array}$$

So $\langle x_{\zeta} : \zeta < \mu \rangle$ is a sequence of μ members of the Boolean algebra $BA(\mathcal{I})$. By the assumption (we are proving (b) \Rightarrow (a) in fact 2.3 for some $\zeta < \xi < \mu$. x_{ζ} , x_{ξ} are comparable members of $BA(\mathcal{I})$; i.e. $x_{\zeta} \subseteq x_{\xi}$ or $x_{\xi} \subseteq x_{\zeta}$. We derived our desired conclusion according to the case.

Sh:345b

CASE A: $x_{\zeta} \subseteq x_{\xi}$.

In this case we shall prove that $2\zeta + 1$, $2\xi + 1$ are the ordinals we are looking for; i.e. conditions (α) , (β) , (γ) below holds, and we shall check those thus finishing this case.

Condition α : $2\zeta + 1 < 2\xi + 1$.

[Trivial by $\zeta < \xi$].

Condition β : if $\ell \in w$ then $t_{2\zeta+1}^{\ell} < t_{2\xi+1}^{\ell}$

Possibility $\beta 1$: $\ell \in u^*$.

Then $t_{2\zeta+1}^{\ell} = s_{\zeta}^{4\ell}$, $t_{2\xi+1}^{\ell} = s_{\xi}^{4\ell}$ (by Case 1 in the definition of the s's), now by $(*)_5(b)$:

$$x_\zeta\cap[p_\ell,r_{\ell+1})=[s_\zeta^{4\ell-1},s_\zeta^{4\ell})$$

hence (by Case 1 above)

$$x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) = [q_{\zeta}^{\ell,3}, t_{2\zeta+1}^{\ell})$$

and

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [s_{\xi}^{4\ell-1}, s_{\xi}^{4\ell})$$

hence (by Case 1 above)

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [q_{\xi}^{\ell,3}, t_{2\xi+1}^{\ell}).$$

But as we are in CASE A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) \subseteq x_{\xi} \cap [p_{\ell}, r_{\ell+1})$ which means by the previous sentence $[q_{\zeta}^{\ell,3}, t_{2\zeta+1}^{\ell}) \subseteq [q_{\xi}^{\ell,3}, t_{2\xi+1}^{\ell})$ which implies $q_{\xi}^{\ell,3} \leq q_{\zeta}^{\ell,3}$ and $t_{2\zeta+1}^{\ell} \leq t_{2\xi+1}^{\ell}$. But $t_{2\zeta+1}^{\ell} \neq t_{2\xi+1}^{\ell}$ (as $\zeta \neq \xi$) so $t_{2\zeta+1}^{\ell} < t_{2\xi+1}^{\ell}$ as required.

Possibility $\beta 2$: $\ell \notin u^*$. Then $t_{2\zeta+1}^{\ell} = s_{\zeta}^{4\ell-2}$, $t_{2\xi+1}^{\ell} = s_{\xi}^{4\ell-2}$ (by Case 3 in the definition of the s's) now by $(*)_5(a)$

$$x_\zeta\cap[r_\ell,p_\ell)=[s_\zeta^{4\ell-3},s_\zeta^{4\ell-2})$$

hence (by Case 3 above)

$$x_\zeta\cap[r_\ell,p_\ell)=[q_\zeta^{\ell,1},t_{2\zeta+1}^\ell)$$

and

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [s_{\xi}^{4\ell-3}, s_{\xi}^{4\ell-2})$$

hence (by Case 3 above)

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [q_{\xi}^{\ell, 1}, t_{2\xi+1}^{\ell}).$$

But as we are in CASE A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\zeta} \cap [r_{\ell}, p_{\ell}) \subseteq x_{\xi} \cap [r_{\ell}, p_{\ell})$ which means by the previous sentence $[q_{\zeta}^{\ell,1},t_{2\zeta+1}^{\ell})\subseteq [q_{\xi}^{\ell,1},t_{2\xi+1}^{\ell})$ which implies

 $q_{\zeta}^{\ell,1} \geq q_{\xi}^{\ell,1} \text{ and } t_{2\zeta+1}^{\ell} \leq t_{2\xi+1}^{\ell}. \text{ But } t_{2\zeta+1}^{\ell} \neq t_{2\xi+1}^{\ell} \text{ (as } \zeta \neq \xi) \text{ so } t_{2\zeta+1}^{\ell} < t_{2\xi+1}^{\ell}$ as required.

Condition γ : If $\ell \notin w$ (but $\ell \in \{1, ..., n\}$ then $t_{2\zeta+1}^{\ell} > t_{2\xi+1}^{\ell}$.

Possibility $\gamma 1$: $\ell \in u^*$

Then $t_{2\zeta+1}^\ell=s_\zeta^{4\ell-1},\ t_{2\xi+1}^\ell=s_\xi^{4\ell-1}$ (by Case 2 in the definition of the s's). Now by $(*)_5(b)$:

$$s_\zeta\cap[p_\ell,r_{\ell+1})=[s_\zeta^{4\ell-1},s_\zeta^{4\ell})$$

hence (by Case 2 above)

$$x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) = [t_{2\zeta+1}^{\ell}, q_{\zeta}^{\ell,4})$$

and

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [s_{\xi}^{4\ell-1}, s_{\xi}^{4\ell})$$

hence (by Case 2 above)

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [t_{2\xi+1}^{\ell}, q_{\xi}^{\ell, 4}).$$

But as we are in CASE A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\xi} \cap [p_{\ell}, r_{\zeta+1}) \subseteq x_{\xi} \cap [p_{\ell}, r_{\ell+1})$ which means by the previous sentence $[t_{2\zeta+1}^\ell,q_\zeta^{\ell,4})\subseteq [t_{2\xi+1}^\ell,q_\xi^{\ell,4})$ which implies $t_{2\zeta+1}^{\ell} \geq t_{2\xi+1}^{\ell}$ and $q_{\xi}^{\ell,4} \geq q_{\zeta}^{\ell,4}$. But $t_{2\zeta+1}^{\ell} \neq t_{2\xi+1}^{\ell}$ (as $\zeta \neq \xi$) so $t_{2\zeta+1}^{\ell} > t_{2\xi+1}^{\ell}$ as required.

Possibility $\gamma 2$: $\ell \notin u^*$. Then $t_{2\zeta+1}^{\ell} = s_{\zeta}^{4\ell-3}$, $t_{2\xi+1}^{\ell} = s_{\xi}^{4\ell-3}$ (by Case 4 in the definition of the s's) now by $(*)_5(a)$:

$$x_{\zeta} \cap [r_{\ell}, p_{\ell}) = [s_{\zeta}^{4\ell-3}, s_{\zeta}^{4\ell-2})$$

hence (by Case 4 above)

$$x_{\zeta}\cap [r_{\ell},p_{\ell})=[t_{2\zeta+1}^{\ell},q_{\zeta}^{\ell,2})$$

and

$$x_{\xi}\cap [r_{\ell},p_{\ell})=[s_{\xi}^{4\ell-3},s_{\xi}^{4\ell-2})$$

hence (by Case 4 above)

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [t_{2\xi+1}^{\ell}, q_{\xi}^{\ell,2}).$$

But as we are in CASE A, $x_{\zeta} \subseteq x_{\xi}$ hence $x_{\zeta} \cap [r_{\ell}, p_{\ell}) \subseteq x_{\xi} \cap [r_{\ell}, p_{\ell})$ which means by the previous sentence $[t_{2\zeta+1}^{\ell}, q_{\zeta}^{\ell,2}) \subseteq [t_{2\xi+1}^{\ell}, q_{\xi}^{\ell,2})$ which implies

 $t_{2\xi+1}^{\ell} \le t_{2\zeta+1}^{\ell}$ and $q_{\zeta}^{\ell,2} \le q_{\xi}^{\ell,2}$. But $t_{2\zeta+1}^{\ell} \ne t_{2\xi+1}^{\ell}$ (as $\zeta \ne \xi$) so $t_{2\xi+1}^{\ell} < t_{2\zeta+1}^{\ell}$ as required.

CASE B: $x_{\xi} \subseteq x_{\zeta}$.

In this case we shall prove that 2ζ , 2ξ are a pair of ordinals we are looking for; i.e. conditions (α) , (β) , (γ) below holds and we shall check those, thus finishing this case (hence the proof of 2.3).

Condition α : $2\zeta < 2\xi$.

[Trivial by $\zeta < \xi$].

Condition β : if $\ell \in w$ then $t_{2\zeta}^{\ell} < t_{2\xi}^{\ell}$.

Possibility $\beta 1$: $\ell \in u^*$. Then $t_{2\zeta}^{\ell} = s_{\zeta}^{4\ell-3}$, $t_{2\xi}^{\ell} = s_{\xi}^{4\ell-3}$ (by Case 1 in the definition of the s's); now by $(*)_5(a)$:

 $x_\zeta\cap[r_\ell,p_\ell)=[s_\zeta^{4\ell-3},s_\zeta^{4\ell-2})$

hence (by Case 1 above)

$$x_\zeta\cap[r_\ell,p_\ell)=[t_{2\zeta}^\ell,q_\zeta^{\ell,2})$$

and

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [s_{\xi}^{4\ell-3}, s_{\xi}^{4\ell-2})$$

hence (by Case 1 above)

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [t_{2\xi}^{\ell}, q_{\xi}^{\ell, 2}).$$

But as we are in CASE B, $x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [r_{\ell}, p_{\ell}) \supseteq x_{\xi} \cap [r_{\ell}, p_{\ell})$ which means by the previous sentence $[t_{2\zeta}^{\ell}, q_{\zeta}^{\ell,2}) \supseteq [t_{2\xi}^{\ell}, q_{\xi}^{\ell,2})$ which implies $t_{2\zeta}^{\ell} \leq t_{2\xi}^{\ell}$ and $q_{\xi}^{\ell,2} \leq q_{\zeta}^{\ell,2}$. But $t_{2\zeta}^{\ell} \neq t_{2\xi}^{\ell}$ (as $\zeta \neq \xi$), so $t_{2\zeta}^{\ell} < t_{2\xi}^{\ell}$ as required.

Possibility $\beta 2$: $\ell \notin u^*$ (but $\ell \in \{1, ..., n\}$. Then $t_{2\zeta}^{\ell} = s_{\zeta}^{4\ell-1}$, $t_{2\xi}^{\ell} = s_{\zeta}^{4\ell-1}$ (by Case 3 in the definition of the s's); now by $(*)_5(b)$:

$$x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) = [s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell})$$

hence (by Case 3 above)

$$x_\zeta\cap[p_\ell,r_{\ell+1})=[t_{2\zeta}^\ell,q_\xi^{\ell,4})$$

and

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [s_{\xi}^{4\ell-1}, s_{\xi}^{4\ell})$$

hence (by Case 3 above)

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [t_{2\xi}^{\ell}, q_{\zeta}^{\ell,4}).$$

But as we are in CASE $B, x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) \supseteq x_{\xi} \cap [p_{\ell}, r_{\ell+1})$ which means by the previous sentence $[t_{2\zeta}^{\ell}, q_{\zeta}^{\ell,4}) \supseteq [t_{2\xi}^{\ell}, q_{\zeta}^{\ell,4})$ which implies $t_{2\zeta}^{\ell} \le t_{2\xi}^{\ell}$ and $q_{\xi}^{\ell,4} \le q_{\zeta}^{\ell,4}$. But $t_{2\zeta}^{\ell} \ne t_{2\xi}^{\ell}$ (as $\zeta \ne \xi$), so $t_{2\zeta}^{\ell} < t_{2\xi}^{\ell}$ as required.

Condition γ : if $\ell \notin w$ (but $\ell \in \{1, ..., n\}$) then $t_{2\zeta}^{\ell} > t_{2\xi}^{\ell}$.

Possibility $\gamma 1 : \ell \in u^*$.

Then $t_{2\zeta}^{\ell}=s_{\zeta}^{4\ell-2},\ t_{2\xi}^{\ell}=s_{\zeta}^{4\ell-2}$ (by Case 2 in the definition of the s's); now by $(*)_5(a)$:

$$x_\zeta\cap[r_\ell,p_\ell)=[s_\zeta^{4\ell-3},s_\zeta^{4\ell-2})$$

hence (by Case 2 above)

$$x_\zeta\cap[r_\ell,p_\ell)=[q_\zeta^{\ell,1},t_{2\zeta}^\ell)$$

and

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [s_{\xi}^{4\ell-2}, s_{\xi}^{4\ell-2})$$

hence (by Case 2 above)

$$x_{\xi} \cap [r_{\ell}, p_{\ell}) = [q_{\xi}^{\ell, 1}, t_{2\xi}^{\ell}).$$

But as we are in CASE $B, x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [r_{\ell}, p_{\ell}) \supseteq x_{\xi} \cap [r_{\ell}, p_{\ell})$ which means by the previous sentence $[q_{\zeta}^{\ell,1}, t_{2\zeta}^{\ell}) \supseteq [q_{\xi}^{\ell,1}, t_{2\xi}^{\ell})$ which implies $q_{\zeta}^{\ell,1} \le q_{\xi}^{\ell,1}$ and $t_{2\xi}^{\ell} \le t_{2\zeta}^{\ell}$. But $t_{2\zeta}^{\ell} \ne t_{2\xi}^{\ell}$ (as $\zeta \ne \xi$), so $t_{2\xi}^{\ell} < t_{2\zeta}^{\ell}$ as required. Possibility $\gamma 2$: $\ell \notin u^*$.

Then $t_{2\zeta}^{\ell} = s_{\zeta}^{4\ell}$, $t_{2\xi}^{\ell} = s_{\zeta}^{4\ell}$ (by Case 4 in the definition of the s's); now by $(*)_5(b)$:

$$x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) = [s_{\zeta}^{4\ell-1}, s_{\zeta}^{4\ell})$$

hence (by Case 4 above)

$$x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) = [q_{\zeta}^{\ell,3}, t_{2\zeta}^{\ell})$$

and

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [s_{\xi}^{4\ell-1}, s_{\xi}^{4\ell})$$

hence (by Case 4 above)

$$x_{\xi} \cap [p_{\ell}, r_{\ell+1}) = [q_{\xi}^{\ell,3}, t_{2\xi}^{\ell}).$$

But as we are in Case $B, x_{\zeta} \supseteq x_{\xi}$ hence $x_{\zeta} \cap [p_{\ell}, r_{\ell+1}) \supseteq x_{\xi} \cap [p_{\ell}, r_{\ell+1})$ which means by the previous sentence $[q_{\zeta}^{\ell,3}, t_{2\zeta}^{\ell}) \supseteq [q_{\xi}^{\ell,3}, t_{2\xi}^{\ell})$ which implies $q_{\zeta}^{\ell,3} \le q_{\xi}^{\ell,3}$ and $t_{2\xi}^{\ell} \le t_{2\xi}^{\ell}$. But $t_{2\zeta}^{\ell} \ne t_{2\xi}^{\ell}$ (as $\zeta \ne \xi$), so $t_{2\xi}^{\ell} < t_{2\zeta}^{\ell}$ as required. So we finish the proof of 2.3.

Sh:345b

- **Theorem 2.4** (1) There is an entangled linear order $A \subseteq \mathbb{R}$ of power $cf(2^{\aleph_0})$.
- (2) Generalization to higher cardinals: if there is a linear order of power 2^{λ} and density λ (for example λ strong limit), then there is an entangled linear order of power $cf(2^{\lambda})$ and density λ .

Proof: Done independently by Bonnet Shelah [BSh210], Todorcevic [To]. As its use in the book is marginal we do not include a proof.