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I [Sh 345a]

BASIC: COFINALITIES OF SMALL REDUCED
PRODUCTS

§0 Introduction

The theme of this Chapter is that we should look not at the power 2*, but
at small products, say [], .. A: with & < A;; moreover, look at the cofinality
of such products (so we assume each \; regular). Now [], .. A; is naturally
only partially ordered, and though its cofinality is well defined (Definition
1.1(1)(e)) it is clearer to look at [],;. . A; divided by an ultrafilter (see
Definition 1.2(1)), and look at the set of cofinalities thus gotten named
pcf({A; : 1 < k}) (as k < A; = cf();), repetitions do not matter, so we use
simply any such set a).

The pcf first appeared in [Sh68], in an attempt to build Jonsson al-
gebras in for example N,41; they were obtained provided that for some
non-principal ultrafilter D on w, [],, .., Rn/D has cofinality R, 1; i.e. when
Ny+1 € pef({Ry, : n < w}). It appears lightly in [Sh71] and [Sh111] (as
some reduced products being A-like), but heavily in the proof of for exam-
ple R}° < Rppnoy+ in [Sh-b,XIII,85,86]. Some of the theorems proved here

were proved there under the additional assumption min a > 2/%l. It seems
to me the theorem has attracted some attention, but the pcf was generally
thought of as an artifact of the proof and not a meaningful important notion
per se; this book is trying to prove the opposite. We further investigate pcf
in [Sh282], probably the most interesting result is in §8 there; it says that,
for example if N, is strong limit, 281 > X,,,, then also for some § < ws
of cofinality Ng, Ns° is quite high. We return to this in [Sh345] because of
a desire to represent many regular cardinals as the (true) cofinality of the
reduced product by the simplest ideal: the ideal of the bounded subsets of
k. Our view changes, deciding it is important to, for example, investigate
what occurs below the continuum or even below min {) : 2* > 2R} where
conventional cardinal arithmetic sees nothing.

The first section shows we can find ideals J<x[a] on a, increasing con-
tinuous with X\, J<x[a] # J<a+[a] iff A € pef(a), and for an ultrafilter D on
a we have A = cf ([Ta/D) iff DN J y+[a] #0 and DN Jcp[a] = 0, pcf(a)
has a last element and pcf(a) is of cardinality < 2/%l. All this plays a large
role in the rest of the book.
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In tue second section we investigate when the description of J_y+[a]
over J.y[a] is simple: Joy+[a] = Jca[a] + b)[a] for some by [a] C a. Note:
[T16a[a]/J<r[a] has true cofinality ); i.e. there is an increasing cofinal se-
quence of this length.

Lastly, in the third section we investigate mainly when

(bx[a] : A € pef(a))

can be chosen “nicely”.

The ideal I[)A] used in §2 was introduced in [Sh108], concentrating on
A successor of strong limit singular (as under GCH the ideal is non-trivial
only for such A ’s, which earlier confused many, including the author). This
is re-represented in [Sh88a]. By [Sh-e,Ch.III,§6], [Sh351,84] represented here
in [Sh365], if A = pu*, p regular then {6 < A : cf(6) < u} € I[)]. See more in
[Sh420,81]. Lemma 2.6A is a representation of Lemma 14 of [Sh282]; which
improves earlier versions from [Sh68], [Sh71], [Sh111], [Sh-b,Ch.XIII §5].
See more in [Sh355,50].

§1  The basic properties of pcf(a)

This is a central section.

After giving the standard definition of cofinality of a partial order and
reduced products (of ordinals) (in Def 1.1) we present one of the book’s
main Definitions (1.2): for a set a of regular cardinals, pcf(a) is the set
of the cardinals 6 which has the form: 6 is the cofinality of [Ja/D, D an
ultrafilter on a. (Essentially a is always, after 1.4, a set of regular cardinals
> |a|, so we shall not always remember to state this).

A priori if for example 2% = X1, a = {X, : 1 < n < w}, any function
from the family of non-principal ultrafilters to the set of regular cardinals
k € (R, R%] may be realized as D ~ cf([Ja/D). But the truth is not
so chaotic. There is a natural sequence of ideals (J.x[a] : A\) increasing
with A such that cf(JTa/D) = min{\: DN J.y+[a] # 0}; (those natural
ideals will be central, too, in this book). In particular, the cardinality of
pcf(a) is not the number of ultrafilters on a, but at most 2!¢l. This, with
more detailed information is done in 1.5, 1.6, 1.8. A consequence of those
Lemmas is (1.9): pcf(a) necessarily has a maximal element, max pcf(a),
which will continue to play major role.

Lastly, 1.10, 1.11 tell us how cases of cf (][] a/D) are related when we
take a reduced product of reduced products, from which we conclude: if
b C pcf(a) then pcf(b) C pcf(a) (we here assume |b| < min b, |a] < min a
of course, but not necessarily |b| < min a).

Notation 1.0 Let a, b, ¢, ?, e denote sets of regular cardinals. I, J denote
ideals (usually on some a), D a filter.
For a set A of ordinals with no last element,
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J5¢ = {B C A:supB < sup A},

i.e. the ideal of bounded subsets.
* * *

Definition 1.1 (1) For a partial order P
(a) P is A-directed if: for every A C P, |A| < X there is ¢ € P such
that /\p€ 4P < g, and we say: q is an upper bound of A;
(b) P has true cofinality A if there is (p; : i < A\) cofinal in P, i.e.:
NicjPi < Pj
Vg € P[V,;q sz]
[and one writes tcf(P) = A for the minimal )]
(if P is linearly ordered it always has a true cofinality).
(c) Pisendlessif Yp € P3g € P < q] (so if P is endless, in (a), (b),
(d) we can replace < by <).
(d) ACPisacoverif: Vpe Page A <]
(e) cf(P) =min{|A|: A C P is a cover}.
(f) We say that , in P, p is a lub (least upper bound) of A C P if:
(a) p is an upper bound of A (see (a))
(B) if p’ is an upper bound of A then p < p'.
(2) If D is a filter on S, @, (for s € S) are ordinals, f,g € [],cg s, then:
f/D < g/D, f <p g and f < g mod D all mean

{se€S: f(s) <g(s)} eD.

Similarly for <, and we do not distinguish between a filter and the
dual ideal in such notions. So if J is an ideal on a and f, g € [] a,
then

f<gmod Jiff {fca:—f(f) <g(8)}eJ
Similarly if we replace the a,’s by partial orders.

(3) For f,g:S —Ordinals, f < g means A f(s) < g(s); similarly f < g.
sES

(4) If I is an ideal on &, F' C *Ord, we call g € *Ord an <; —eub (exact
upper bound) of F, or g an eub of F for I, if:
(a) g is an <y-upper bound of F' (in #Ord)
(B) if h € *Ord, h <y max{g,1} then for some f € F,

h < max{f,1} mod I.
(v) f AC k, A# 0 mod I and
[f e F= flA=1O4ie. {ic A: f(i) # 0} € I]

then g[A =7 O4.
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Remark: Note that ¢’ = max{g,1} means ¢’(i) = max{g(i), 1}; if there is
feF, {i<k: f(i) =0} €I we can use g in clause (8) and omit clause

(7))

Definition 1.2 (1) For a property I' of ultrafilters (if I is the empty con-
dition, we omit it):

pcfp(a) = {tcf (H a/D): D is an ultrafilter on a satisfying I‘}

(so a is a set of regular cardinals; note: as D is an ultrafilter, [[a/D
is linearly ordered).

(LA) More generally, for a property I' of ideals on a we let
pcfp(a) = {tcf([[a/J) : J is an ideal on a satisfying I’ such that
[Ta/J has true cofinality}.
(2) Jea[a] = {b C a: for no ultrafilter D on a to which b belongs,
is tef([T a/D) > A}
(3) Jaala] =J_,+[al.
(4) pef;(a) = {tcf([[a/D) : D an ultrafilter on a disjoint to I}.

Claim 1.3 (0) ([]a,<y), (][] a, <) are endless.
(1) min(pcf(a)) = min a.
(2) If a C b then pcf(a) C pcf(b); and for any b, ¢ we have:

pcf(c U b) = pef(c) Upcf(b) and
zeJabUcezCcUb&zNece ] &zNb e J\[b].
(3) (i) if b C a, b finite, then
pcf(b) = b and pcf(a)\b C pcf(a\b) C pcf(a)
(ii) in addition if 6 C {§ € a : |# N a] < Rg}; for example b = {min(a)}
then pcf(a\b) = pef(a)\b.

(4) (i) If a has no last element, J an ideal on a and J24 C J (equivalently:
6 €a=anft e J)then

(H a, <) is (sup a)-directed.

(ii) If in (i), supa is a singular cardinal, or at least a is not a stationary
subset of sup a or for some b € J, a\b is not stationary in sup a then
(ITa, <s) is (sup a)*-directed.
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(iii) If D is an ultrafilter on a such that for every 6 € a we have (a\67) €
D, then cf([Ja/D) > supa (and if equality holds, then supa is a
weakly inaccessible cardinal, D a weakly normal ultrafilter).
(5) Ifa has no last element, then:

there is A € pcf(a) such that supa < A

[also see the third possibility in (4)(ii)].
(6) If D is a filter on a set S and for s € S, a; is a limit ordinal then:
(ii) tef([[,es @s: <p) = th(HseS cf(as), <p)

= tef([ ] (es, <)/ D).

SES

In particular, if one of them is well defined, then so are the others.
This is true even if we replace as by linear orders, or even partial
orders with true cofinality.

(7) If D is an ultrafilter on a set S, As a regular cardinal (for s € S), then

0 =: tcf(H As, <p) is well defined and
seS

|S| < min{); : s € S} implies 6 € pcf({\s : s € S}).
(8) If D is a filter on a set S, for s € S, A, is a regular cardinal > ||,
a={)\:s5€Stand E=:{b:bCa and {s:A; €b} € D} then:
(i) E is afilter on a, and if D is an ultrafilter on S then F is an ultrafilter

on a.
(ii) a is a set of regular cardinals > |a|,

(iii) F = {f € [I,eg As : As = At = f(s) = f(t)} is a cover of l;[s)\s,
(iv) cf ([T,eg As/D) = cf([]a/E) and

tef (H As/D) = tcf(H a/E).

SES

(9) Assume I is an ideal on &, F' C *Ord, g € *Ord. If g is an eub of F' for
I then g is a <y —lub of F.

Proof: They are all very easy, but as this is the first claim in the book, we

shall prove some.
(0) We shall show ([]Ja, <) is endless (assuming, of course, that J is a
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proper ideal on a, a is a set of regular (hence infinite) cardinals). Let f
[Ia, then g =: f +1 (defined (f +1)(8) = f(6) +1) is in [] a too, as each
# € a being an infinite cardinal is a limit ordinal, and f < gmod J.

(1) For the given a, let #* = mina. D = {b C a: 6* € b} is an ultrafilter on a
(such ultrafilters are “degenerated”, usually called non-principal, still they
are ultrafilters). Now [] a/D is isomorphic to (6*, <) hence has cofinality
6*, so 8* € pcf(a) hence 6* > min(pcf(a)). On the other hand, [ a is 6*-
directed: (if F' C [[ a, |F| < 6* define g € [Ja by g(d) = | rer F(6) +1),
hence for every ultrafilter D on a, [ a/D is 8*-directed hence tcf (ITa/D) >
6*. As this holds for every such D, clearly [# € pcf(a) = 6 > 6*] hence
min(pcf(a)) > 6*.

9) Let us prove g is a <r-lub of F' in (*Ord, <j). As we can deal separately
with I+ A, I+(k\A), where A = {i : g(i) = 0}, and the later case is trivial,
we can assume A = (). So, assume g is not a lub, so there is an upper bound
g’ of F, but not g <7 ¢’. Define g” € *Ord :

men _ f 0 ifg(i) < g'(4)
g°(1) = {g'(z') if /(3) < g(i)

Clearly g"” <1 g. So, as g is an eub of F for I, there is f € F such that
9" <; max{f,1}, but B =: {i: ¢'(i) < g(i)} # Omod I (as “not g <1 g")
so ¢'IB = ¢""IB <; max{f,1}|B. But as ¢’ is an <;-upper bound of F' we
have: f <7 ¢, so f[B <r max{f,1}IB hence f|B =; Op hence ¢'|B =;
Op; as ¢’ is a <j-upper bound of F' we know [f’ € F = f'|B =1 Op|,
hence by (7) of Definition 1.1(4) g|B = Op, contradicting the assumption
A=0.

So we have proved clause (8) of Definition 1.1(1)(f); the other clause, (),
says “g is a <y-upper bound of F”, is obvious by clause (a) of Definition
1.1(4). Ovs

Claim 1.4
(1) J<a[a] is an ideal (of P(a))
(2) if A < p, then Jep[a] C Jc,[a]
(3) if X is singular, Jepla] = Joy+[a] = J<ia[a]
(4) if X ¢ pcf(a), then Jep[a] = J<i[a].

Lemma 1.5 If min(a) > |a|, X a cardinal > |a|, then ([Ta,<j_,[a]) i
A-directed.

Proof: By 1.3(3)(ii), without loss of generality |a|, |a|T ¢ a so min(a) >
|a|*, and without loss of generality A > min(a), so A > |a|t. Note: if
fellathen f < f+1€]]a, (ie. ([Ia,<y,(q)) is endless, where f + 1
is defined by (f +1)(0) = f(6) +1). Let F C []a, |F| < A, and we shall
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prove that for some g € [[a, (Vf € F)(f < g mod J<>‘[a]). The proof is
by induction on |F|. If |F| is finite, this is trivial. Also if |F| < min(a) it
is easy: let g € [[a be g(8) = sup{f(#) : f € F}. So, assume |F| = p,
min(a) < p < A, so let F = {f? : i < u}. By the induction hypothesis we
can choose by induction on i < p, f} € [] a such that:

(a) f2 < f} mod Jcala

(b) for j < i we have f; < f! mod Jc,[a].

If p is singular, there is C C y unbounded, |C| = cf(u) < p, and by
the induction hypothesis there is g € [] a such that for i € C, f} < g mod
Jeala]. Now g is as required: ff < fl < flm i) < 9 mod Jexa]. So,
without loss of generality, u is regular. Now we try to define by induction
on a < |alt, ga,ta = i(a) < u, (b : i < u) such that:

(i) ga €]

(ii) for B < a we have gg < go

(i) for i < plet b =: {f € a: f}(6) > ga(9)}

(iv) for each q, for every i € [iq41, p), b # bFHL.

We cannot carry out this definition: if we let i(x) = sup{iy : @ < |a|*}, then
i(x) < p, since g = cf(p), p > min a > |a|t. We know that bz(*) # bf‘(i')l
for a < |a|* (by (iv)) and b3,y C a (by (iii)) and [@ < 8 = bz(*) b2
(by (ii)), together a contradiction.

Now, for a = 0 let g, be f3 and i, = 0.

For a limit let go(6) = | gp(#) (note: g, € [Ja as a < |a|T < min a and
BLa
a is a set of regular cardinals) and let i, = 0.

For o. = 3+1, suppose that gg hence (b : i < ) are defined. If b? € J.zla]
for unboundedly many ¢ < u then gg is an upper bound for F' and the proof
is complete. So assume this fails, then there is a minimal i(a) < p such that

bf(a) ¢ Jcala]. As bf( o) & J<alal, by Definition 1.2(2) for some ultrafilter
Don a, biﬁ(a) € D and cf(J[Ta/D) > A\. Hence {f}/D : i < u} has a bound
he/D where hq € [] a. Let us define g, € [Ja:

9a(0) = max{gs(0), ha(6)}.

Now (i), (ii) hold trivially and b¢ is deﬁned by (iii). Why does (iv) hold
with i, := i(c)? Suppose i(a) < i < u. As z(a) < f} mod J.,[qa] clearly

bf( a) C b? mod Jy[a]. Moreover J.[a] is disjoint from D (by its choice)
SO bz(a) € D implies bf € D.
On the other hand, 6% is {6 € a: f1(#) > g.(0)} which is equal to

{o€a:f(6) > gp(6),ha(6)}
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which does not belong to D (hs was chosen such that f} < h, mod D).
We can conclude b$ ¢ D, whereas bf € D; so they are distinct.

Now we have said that we cannot carry out the definition for all a <
|a|*, so we are stuck at some o; by the above, a is a successor, say a = 8+1,
and gg is as required: it bounds F.

Uis

Lemma 1.6 Ifmina > |a|, D is an ultrafilter on a and

A= tcf(H a,<p),

then
for some b € D, (H b, <s..[a) has true cofinality A.

(So b € ng[a]\JO[a]).

Proof: Again without loss of generality min a > |a|*; and we know
A > min a.
Let (f;/D : i < X) be increasing unbounded in [Ja/D (so f; € [[a). By
1.5, without loss of generality (Y5 < i) (f; < f; mod Jcy[a]).
Now 1.6 follows from 1.7 below: its hypothesis clearly holds. If A,_, b; =0
mod D, (see (A) of 1.7) then (see (D) of 1.7) JN D = () hence (see (D) of
1.7) g/D contradict the choice of (f;/D : i < A). So for some i < \, b; € D;
by (C) of 1.7 we get the desired conclusion.

Die

Lemma 1.7 Suppose |a| < min(a), A > |a|*, fi € [Ta, fi < f; mod J<»[q]

for i < j < A, and there is no g € [[a such that for every i < A, f; <

g mod Jcy[a].

Then there are b; (i < \) such that:

(A) b; C a and for some i(x) < X:i(x) <i< = b; ¢ Jp\[q]

(B) i< j=b; Cb; mod J<>‘[a] (i.e. bi\bj € J<>\[a])

(C) for each i, (fj[b; : j < X) is cofinal in (I] bs, <J<A[a]) (better restrict
yourselves to i > i(x), see(A)); so necessarily b; € J<)[a].

(D) for some g € [Ta, A fi < g mod J where J = Jcy[a] +{b; : i < \};
<A
in fact
(D)t for every i < X\, we have f; < g mod (J<y[a] + b;)

(E) if g < g’ €[] a, then for arbitrarily large i < \:

N l19(8) = £:(6) < ¢'(6) > £:(9)],

6€a
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(F) if 6 is a limit ordinal < A, f5 is a <;j_,[q] —lub of {fo : a < 6} then
bs is a lub of {by : o < 6} in P(a)/J<i[a].

Proof of 1.7: Assume the lemma fails. We now define by induction on
a < |alt, ga, i(a) < A, (6% : i < ) such that:

(i) 9a € [Ia

(ii) for B < a, g3 < ga

(iii) by =: {# € a: fi(8) > g.(0)}

(iv) if i(a) <% < X then b # bt

For a =0 let go = fo.

For a limit let go(0) = Ugq 98(0) (now [B < o => gg < ga] holds trivially
and g, € [] a as min a > |a|* > ).

Fora = B+1,if {i <X:b? € J.,[a]} is unbounded in ), then gz is a
bound for (f; : i < A) mod Jcy[a] contradicting an assumption. Clearly,
i <j<X= by C b’ mod Js[a], hence {i < X : bY € Jc,[a]} is an
initial segment, so by the previous sentence there is i(a) < A such that
Vi € [i(a), ), B2 ¢ Jou[a]. If (67 : i < \) satisfies the desired conclusion,
with i(c) for i(%) in (A) and gg for g in (D), (D)* and (E), we are done.
Now, among the conditions in the conclusion of 1.7, (A) holds by the defini-
tion of b2 and of i(), (B) holds by 6?’s definition as [i < j = f; < f; mod
J<ala]], (D)t holds with g = gg by the choice of b?. Lastly, if (E) fails,
say for ¢/, then it can serve as go. Now condition (F) follows immediately
from (iii) (if (F) fails for &, there is e C b5, A,_sb? C emodJcy[a] and
bg \ e ¢ Jca[a]; now (g[(a\e))U (fsle) contradicts “fs is a <j,(a] —lub of
{fi 1< 6}’). So only (C) (of 1.7) may fail, without loss of generality for
i =i(a). Le. (f; [bz.ﬂ(a) : j < A) is not cofinal in (H bf(a), <J<,\[a]). As this
sequence of functions is increasing w.r.t. <j_,[a], there is hy € IT bf( o)

such that for no j < A, he < f; fbf(a) mod Jy[a]. Let Ay = ho U Oaves,,y

and go € []a be defined by g,(8) = max{gp(6),h,(6)}. Now define b¢
by (iii), so (i), (ii), (iii) hold trivially, and we can check (iv). So we can
define g,, i(a) for a < |a|t, satisfying (i)-(iv). As in the proof of 1.5, this
is impossible; so the lemma cannot fail. Ci7

Lemma 1.8 Suppose |a| < min(a).
(1) For every b € J<ia[a]\J<i[a], we have:

(H b, <j. ,\[a]> has true cofinality A

(hence A is regular).
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(2) If 0 < a < A and for B < a, ¢g € J<p[a]\J<r[a] then
(e € J<ala]\J<a[a])(VB < @)(cg C ¢ mod Jcy[a]).

(3) If D is an ultrafilter on a, then cf(]] a/D) is min{\ : DN J<)[a] # 0}.
(4) (Z) For \ limit J<)\[Cl] = U J<M[a]’ hence
u<A

(ii) for every X\, Jealal = U J<ula].
u<A

(5) |pcf(a)| < 2!l and [\ € pcf(a) & Jcala] # J<i[a]]
Proof: (1) Let J={b Ca: b e Jcyla]or b € J<p[a]\J<r[a] and

(H b, <j. A[a]) has true cofinality A}.
Clearly J C J<y[a]; it is quite easy to check it is an ideal. Assume J #
J<a[a] and we shall get a contradiction. Choose b € J<)[a]\J; as J is en
ideal, there is an ultrafilter D on a such that: DNJ = 0 and b € D.
Now if cf([Ta/D) > At, then b ¢ J<y[a] (by the definition of J<)[a]);
contradiction. On the other hand, if F C [[a, |F| < A there is g € [Ja
such that (Vf € F)(f < g mod Jcy[a]) so (Vf € F)[f < g mod D] (as
Jeala) € J, DN J = 0), and this says cf(J[[a/D) > A. By the last two
sentences we know that tcf([[a/D) is A\. Now by 1.6 for some ¢ € D,
(IT¢, <s_,[a]) has true cofinality A. Clearly, if ¢/ C ¢, ¢/ ¢ Jcy[a] then also
(IT¢, <. ,\[a]) has true cofinality )\, hence without loss of generality ¢ C b;
hence ¢ € J<)[a], hence, by the definition of J, we have ¢ € J. But this
contradicts the choice of D as disjoint from J.

We have to conclude that J = J<)[a] so we have proved 1.8(1).

(2) For each 8 < a let (ff : j < A) exemplify that (H a, <J<A[a]+(a\cﬁ))
has true cofinality \; so ff € [Ja and

[5(1) < 3(@) < A= £y < fha mod (Jerla] + (a\cp)]

and
(vg e [T a)@i < X) |g < £ mod (Jealal + (a\cg)) -
By 1.5 we can define f; € [] a by induction on j < X such that:
(i) for i < j, ff < ff mod Jcy[a]
(i) for each < a ff < ff mod Jca[a).

Let (b; : 4 < ) be as guaranteed by 1.7 (for (f; : j < X)). Clearly for each
B < a, (ff +J <A is <j_,[a]+(a\cpyincreasing and cofinal. So for each
B < a for some i(8) < A

3 - bi(ﬂ) mod J<,\[a].

[Why? If there is 8 < o such that = (\/,., ¢g C b; mod Jcy[a]), then (as
i<j< A= b; Cb; mod Jcp[a]) we have ¢g ¢ J, where J comes from
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1.7(D). Choose now an ultrafilter D on a such that cg € D & DN J = 0.
Applying 1.7(D) yields a function g € [] a such that /\j «xfj < gmod J,
S0 /\j<)\ f} < g mod D. On the other hand, (by the choice of (ff 1 J < A))
for some jo < A, g < fﬁ, < f;, mod Jy[a] + (a\cg), so g < f, mod D
(since DN Jcpz[a] € DNJ =0 and ¢g € D)-a contradiction to the choice
of g].

Let i(*) = supg<q i(B). Now i(x) < A (as A = cf(A) > |o|) and cg C by(4)
mod J.y[a] for each 8 < a (because i; < iz = b;; C b;, mod J.,[a]) and
bi(x) € Jea+[a] (by the choice of (b; : i < A) in 1.7).

(3) Let A € pcf(a) be minimal such that D N J<y[a] # @ and choose
b € DNJcyalal. So [u < A=b¢ Jc,[a]] (by the choice of A) hence by
1.8(4)(ii) below, we have b ¢ J<,[a].

Similarly, by the choice of A, DN J<y[a] = 0. Now ([Ta, <;._ A[a]+(a\b)) has
true cofinality A by 1.8(1). As b € D and J<)[a] N D = 0, we have finished
the proof.

(4) (i) Let J =: U, <) J<ula]. Now J is an ideal and ([] @, <) is A-directed;
i.e. if a* < Xand {fy: a < a*} C[]a, then there exists f € [ a such that

(Va < a*)(fa < f mod J).

[Why? A is a limit cardinal, hence there is u* such that o* < u* < A. By
1.5, there is f € [] a such that (Vo < o*)(fa < f mod Jc,+[a]). Since
J<ura] C J, it is immediate that

(Vo < a*)(fa < f mod J).]

Clearly J = | Jcpula]l C Jcala] by 1.4(2). On the other hand, let us
n<A

suppose that there is b € (Jca[a]\ U J<pla]). Choose an ultrafilter D
n<A

on a such that b € D and DN J = (. Since ([[a,<s) is A-directed and
DN J =0, one has tcf([Ta/D) > A, but b € DN Jcy[a], in contradiction
to Definition 1.2(2).

(4)(ii) If X limit — by part (i) and 1.4(2); if A successor — by 1.4(2) and
Definition 1.2(3).

(5) The second phrase is easy by 1.8(3) (and 1.4(4)). The first phrase follows
as by the second phrase and 1.4(2) we know that: (J<a(a) : A € pcf(a)) is
a strictly increasing sequence of subsets of P(a). O 8

Conclusion 1.9 If |a| < min a, then pcf(a) has a last element.

Proof: This is the minimal X such that a € J<j[a].
[A exists, since k =: |[Ta| € {\: a € Jca[a]}#0]. Oio
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Claim 1.10 Suppose k£ < min(a), for i < k, D; is a filter on a, E a filter
on kand D* = {b Ca:{i < k:b € D;} € E} (a filter on a). Let
Ai =: tef([] a, <p,) be well defined. Let

A = tcf(H a,<p+), 4= tcf(H i, <E)-

1<K
Then A\* = p (in particular, if one is well defined, then so is the other).

Proof: Let (fi : @ < A;) be an increasing cofinal sequence in ([] a, <p,).
Define for g € [];.,. i, F(g) € [] a by:

F(g)(6) =sup{f5(0): i < k,B8=g(i)} <0

(as kK < min a).
Now for each f € [] a, define G(f) € [],.. X by

G(£)(i) = min{y < A; : f < f mod D;}

(it is well defined for f € [[ a by the choice of ( f?; Ly < Ad)).
Note that for f!,f2 € [[a:
f1 < f?mod D* = B(f1, f?)=: {0 € a: f1(8) < ()} € D*

= A(fL ) ={i<w:B(f',f)eDi} € E

= A G(f)(E) < G(f?)(i) where A(f', f*) € E

1€EA(S1,12)

= G(f!') < G(f?) mod E.

So G is a homomorphism from (][] a, <p+) into ( [] A;, <g). The range of

1<K
G is a cover of ([ A\i, <Ep):

<K

if g e H i then f;(i) < F(g)

<K

(for every i < k, see the definition of F') hence g(i) < [G(F(g))] (¢), hence

9 < G(F(g)).
This finishes the proof. U110

Claim 1.11 In 1.10 if |a|* < min a, we can weaken the hypothesis x <min a
to k < min{); : 1 < Kk}

Proof: Similar to the proof of 1.10.
We define G : [[a — [] A; exactly as previously and also the proof of
<K

[f! < f?2 mod D* = G(f') < G(f?) mod E] does not change.



Sh:345a

Normality of A € pcf(a) for a 13

It is enough to prove that

for g € H)‘i’ for some f eHa,gS G(f) mod E.

1<K
By 1.5 ([[a, <s..[q)) is kT-directed, hence for some f € [] a:
(#)1 for i <&, fi ;) < f mod Jelal.

We assume & < A; hence J<[a] C Jcy,[a] which is disjoint from D; (use
1.8(3)), so together with (¥);:

()2 fori < &, f;(i) < f mod D,.
So clearly g < G(f) (more than required). Oq1.11

Conclusion 1.12 If |a| < mina, b C pcf(a), |b] < min b then
pcf(b) C pcf(a).

§2 Normality of A € pcf(a) for a

Having found those ideals J<[a] which are so central in this book, we would
like to know more. As J.)[a] is increasing continuous in A the question is
how Jcala], Joa+[a] are related.

The simplest relation is Joy+[a] = J<x[a] + b for some b C a, and then
we call A\ normal (for a) and denote b = bj[a], though it is unique only
modulo J.y[a]. We give sufficient conditions for this , use this in 2.8; give
the necessary definitions in 2.3 and needed information in 2.4, 2.5, 2.6; 2.7
is the essential uniqueness of cofinal sequences in appropriate [[ a/I. Then
in 2.11, we get a weaker result which does not need an extra assumption:
there is b € J<)[a] such that for every ¢ € J<y[a], ¢\b is included in a
countable union of members of Jy[a].

* * *

Definition 2.1 (1) We say A € pcf(a) is normal (for a) if for some b C a,
JS)\[a] = Jeala] + 6.

(2) We say X € pcf(a) is semi-normal (for a) if there are b; for ¢ < A such
that:
(i) i< j=b; Cb; mod Jcy[qa]
and
(ii) JS)\[a] = Jeala] +{0;: i < A}

(3) We say a is normal if every A € pcf(a) is normal for a.

Fact 2.2 Suppose mina > |a|, A € pcf(a). Now:

(1) X is semi-normal for a iff for some F = {f, : @ < A} C []a, for
every ultrafilter D over a, F' is unbounded in ([Ja, <p) whenever
th(H a, <D) =\
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(2) In 2.1(2) we can assume without loss of generality that either:
b; = by mod J.[a] (so A is normal) or:
b; # b; modJcy[a] for i < j < A and in 2.2(1) above

[@ < B= fo < fsmodJc[da]].

(8) Suppose F = (fo : @ < A) is as in (1) and is <;j_, [o]-increasing. Then
A is normal iff there is g € [[pco(@ + 1) which is a <p-least upper
bound of F for every ultrafilter D such that cf([Ja/D) = A; if the
second clause holds then b =: {0 € a: g(f) = 6} generates J<,[a].

Proof: Left to the reader. (Use 1.7, 1.8(3)).

We shall give some sufficient conditions for normality.

Definition 2.3 For given regular \, § < u <\, SC A, supS =\

(1) We call A = (A, : @ < A) a continuity condition for (S, u, ) if: A, C o,
|Ag| < 1, [6 €S = p>cf(6) >6)] and [ € Ay = Ag = AN B] and
[6 € S = 6 =supAs.

(2) Wesay f = (fo:a <)) obeys A= (A, :a <) if:
(a) for B € A, Ngea f8(0) < fa(0)
(b) if o € S (is a limit ordinal) then fo(f) = supgea, (fp(6) +1) for

every 0 € a.

If only (2) holds we say: f weakly obeys A. Note: if A is a continuity
condition, the +1 in clause (b) is redundant.

(3) If @ = Ro we omit it, (5, a) stands for (S, min a, |a|t), (A, y, 0) stands
for “(S, u, 0) for some stationary S”.

(4) We add to “continuity condition” (in part (1)) the adjective “weak” if
“Be Ay = Ag = Ay NP is replaced by

“‘acS&pecA,= (Fv<a)[AaNBC A,

(6) I[A] = I9[A] =: {S C X : there is a sequence (P, : @ < A) such that:
Py is a family of < A subsets of «, and
for every 6 € S for some unbounded
ACb:otpA<ébdand e A=
ANnace Uﬁ<6'Pﬁ]}.

(6) I¥E[A] = {S C X :there is a sequence (P, : @ < A) such that P, is a

family of < X subsets of a, [A € U, Po =

|A| < p] and for every § € S, for some
unbounded A C §:

a€A=3B)[ANaC B e Uy, Pl
(s0 |4 < )}
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(7) I%5[A] = {S C X :there is a sequence (P, : @ < A) such that P, is a
family of < A subsets of a each of power < u
and: for every 6 € S, cf(6) < p and for some
unbounded A C § : for every a € A,
for some i* < § and z; € Uﬁ<5 P for
i <i*, [ANa C ;g zil}-

(8) Stationary members of I[)\] are called good stationary sets; similarly,

stationary members of I)/8[)] are called weakly good stationary sets.
Again I38[)] stands for I35 [N] (it is I}y8[)]).

Fact 2.4 (0) Let S C A\, A = cf(A) > No, A > p = Useg(cf(6))™ and
[6 € S = cf(6) < 6. Then S € I[)] [S € IVE[\]] iff for some club
C of A, there is a [weak| continuity condition A for (S, u); moreover,
§ € S = otp A5 = cf().

(1) There is a [weak| continuity condition A for (), a) iff there is stationary
S such that: S C {6 < A :|a| < cf(6) < min a}isin I[N [in I} 4[A]].

Remark 2.4A (1) The following will not be used and are included for the
reader’s amusement.

(2) If X = pu™t, cf(u) = p > No then {§ < X\ : cf(6) < u} is in I[A] (in fact
we prove this in [Sh365,2.14]).

(3) If A =put, 6 < cf(u) then {§ < A : cf(6) = 6} is the union of cf(u) sta-
tionary sets each of them from I$8[)\] for some k < u (not necessarily
the same k).

4) If A\ = u¥t, p singular > x and x — (6)2%,,,, then there are x < p and
cf(u)
a stationary S C {6 < X\ : cf(8) = 6} which is in IVE[)].
(5) If A = u™, u is singular strong limit then

A € I¥ ctuyy+ A and T[] = I[N].

If )\ is strongly inaccessible > Ny then A € I[A]. If A > @ are regular,
A = A< then there is a stationary S = {§ < X : cf(6) = 6} in I9[)].

Fact 2.5 Suppose A is a weak continuity condition for (S, a), fo € [] a for
a < A\, mina > |a|*, A = cf(\) > |a|. Then
(1) we can find (f’ : & < \) obeying A, f’, € [[ a, such that:
(i) for a € A\\S we have f, < f}
(ii) for every a, fo < foq1-
(2) Suppose (f, : a < \) obeys A and satisfies (i). If go € [ @, (9o : @ < A)

obeys A and A go < fo then A go < fl.
a a
(3) We can add in (1)
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(iii) if (f” : @ < ) obeys A, f” € [] a, and it satisfies (i) and (ii),
then for every a, f, < fI.

Proof: Easy.

Lemma 2.6 Suppose fo € [[a for a < A, X regular, f={fa:a<))
obeys some A = (Ay : a < X) which is a weak continuity condition for
(A, a), and f is <j_,[a]-increasing (so X > min(a) > |a|*). Then

(a) (foa:a <) has a <j_,[a-ezact upper bound g € T] (6 +1).

(b) by € J<r|a] where by =: {0 €a:g(6) =06} fca

(c) Letting pe = cf(g(8)), we have that ([Tpeq 1o, <s. ,\[a]) has true cofi-
nality A and pg < 6.

Proof: First note (b), (c) follows from (a); by € J<a[a] as (fo : @ < A)
is <J_,[a]+(a\B,yincreasing and cofinal in [] a, and similarly (c) holds (by
1.3(6)(ii)). So it suffices to prove:

Claim 2.6A Assume I an ideal on s, A = cf(\) > k%, fo € “Ord for
a < ) is <j-increasing and weakly obeys A = (4, : @ < \) which is a
weak continuity condition for (S, u,x%), S a stationary subset of A (see
Definition 2.3(1),(2),(3),(4)). Then (fs : @ < A) has an <j-exact upper
bound.

Proof: We first prove the existence of a lub. We try to choose by induction
on ¢ < k%, g¢ and for ¢ limit also ag, s¢i( < k), f¢,a(@ < A) such that:
(A) (a) g¢ € *Ord

(b) fa <rgcfora<A

() §<{=>g¢ <19

(d) £ < ¢ =>—gc=r19¢

(by (c) it is enough: £ + 1 = ¢ = —g¢ =1 g¢)

(B) if ¢ is limit also

(e) s¢,i =2 {ge(i) : £ < C}U {sup, fa(i) + 1}

(£) f¢,a(i) =: min [s¢,i\fa(i)]

(8) 9¢ = fe,ae and a¢ K a < A = g¢ =1 f¢,a-
We let go € *Ord be defined by go(i) = sup ) fa(?) + 1. If { = € + 1,
and there is no g¢ as required (relevant parts are (a) - (d)) then we are
done and the conclusion holds. So assume ( is a limit ordinal < k¥, then
define s¢ ;(i < k) as in (e) and f¢o(a < A) as in (f). If for some a¢ < A,
[ac @< A= far =1 fe,a] let g¢ = f¢,a., and you can check that all
conditions hold. If not, then for some club F of A,

lo<B&acE&BeE=fra=1fg

Note
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(*) a<fB= fC,a <I fC,ﬁ'

Choose 6 in S which is an accumulation point of E. So As is defined, and
for every B € As there is 75 < 6 such that AsN(B+1) C A,, (see Definition
2.3(4)). Let {8 : € < cf(6)} C As be unbounded such that:

(@) 78: < Bet1

(ﬂ) —'fC,‘Yﬁe =I fC,ﬁe+1 moreover (7ﬁeaﬂe+1) NE # 0.

(why is this possible? (a) by 2.3(4) clause (3) holds as § is an accumulation
point of E).

Now for each € < cf(6) by clause (8) clearly

te =t {i <K : fermp, (8) > fe,8.,: (1)} is # kmod I,

so there is i(€) € k\t¢, hence for some i(x) < & the set
B = {e < cf(6) : i(e) = i(x)}

is an unbounded subset of As hence of § (remember A is an (S, u, k*)-weak
continuity sequence and § € S, so cf(6) > «). Now if €(1) < €(2) are in B
then f¢ g, .., (i(*)) < fg,,me(z) (i(x)) [as (fa : @ < A) weakly obeys A and

,Be(l)+1 S A6 N (ﬂ€(1)+1 + 1) - A5 N (,35(2) + 1) - A‘Yﬁ(z)]
and fC"Yﬂe(z) (Z(*)) < fc:ﬁe(2)+1 (i(*)) [as Z(*) ¢ t€(2)]; hence

fC,ﬁe(1)+1 (’L(*)) < fC,ﬁe(2)+1 (’L(*))

So (f¢,Be.1((*)) : € € B) is a strictly increasing sequence of ordinals, but
by the definition of f¢ g,.,, they are all in s¢ ;(.), but s¢ ;) has cardinality
< [¢] £ k < kT, contradiction.

So we can carry out the induction on ¢ < k. Let o* = SUD¢ <+ O < A
For each i, s¢,; increases with ¢, hence f¢ o+ (i) = min (s¢,;\ fa+ (1)) decreases
with ¢ hence is eventually constant; as this holds for each 4, (f¢ o+ : ¢ <
k1) is eventually constant; but f¢ o« = g¢ mod I for each ¢ (by (g))
contradicting (d).

So f has a <; —lub g.If g is not an <; —eub, in Definition 1.1(4), parts
(c), (7y) hold easily, so (8) fails, then for some h € “Ord, h <; max{g, 1},
but for no a < A\, h <;r max{f,,1}. Let by = {i < a: k(i) > fa(%),1},
soa < B =0by 2bgmodI; but @ < A = b, ¢ I. If for some a* < A,
[@* < a < A= ber = by mod I], then g[(k\bg+) U h[by+ contradicts “g is
a <y —lub of f”. So for some club E of A\ we have

[ < B € E = by #bsgmod I

and we get a contradiction as above. U264
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Claim 2.7 Suppose:

(a) fo € [Tafor @ < X\, X € pef(a) and f = (fo : @ < N) is <j_,[qr
increasing.

(b) f obeys A, a weak continuity condition for (S,a), A\ = sup S (hence
A > min(a) > |a|T).

(c) J is an ideal on P(a) extending Jcy[a], and (f,/J : @ < A) is cofinal
in ([T a, <) (for example J = Jcy[a] + (a\b), b € J<ir[a]\J<A[a]).

(d) (f. :a <)) satisfies (a), (b) above.

(e) fo < fl, for o < X (alternatively: (f), : @ < A) satisfies (c)).

Then {6 < A: if § € S then f; = fs mod J} contains a club of .
Proof: Not hard.

Remark 2.7A Here (and even in 2.5 — 2.10) we can use Iffo [A] provided
that we restrict ourselves to #-complete ideals.

Lemma 2.8 Suppose mina > |a|*, A = cf()\) € pcf(a) and there is a good
stationary set C {6 < A : |a| < cf(6) < min a} or at least a weakly good
stationary set C {6 < X : |a| < cf(6) < min a}. Then A is normal for a.

Proof: Let A be a weak continuity condition for (S, a) for some S, a sta-
tionary subset of {§ < A : |a| < cf(§) < min a}. We assume ) is not
normal for a and eventually get a contradiction. By 2.2(1), 2.2(3), 2.5 and
2.6 X is not semi-normal for a. Let us define by induction on ¢{ < |a|T,
¢ = (f$:a< ) and D¢ such that:
M () 75 € [1a

(i) & < 8= f§ < £§ mod Jcala]

(iii) f¢ obeys A

(iv) for e < ¢ <|a|t and a < X: f§ < £
(IT) (i) D¢ is an ultrafilter on a such that: cf([[ a/D;) =

(ii) (f$/D¢ : @ < A) is not cofinal in ] a/D¢

(iii) (f$*t1/D¢ : a < A) is cofinal in [ a/D;

(iv) f$T /D¢ is above {f$/D¢ : a < A}
For ( =0 : no problem. [Use 2.5 and 1.5].

For ¢ limit: Let g§ € []a be defined by g5(f) = sup,.. f5(6), which be-
longs to [] a as |a|* < min(a). Now use 2.5 (1)+(3) and get (fS:a< )
obeying A as there, in particular such that [a € A\S = g4 < f¢] and
98 < £5 +1)- Use 2.2 to find an appropriate D¢ (i.e. let by be as in 2.2(3); 1f
J<>\[a] # J<a[a]+bg we can find an ultrafilter D = D, on a, DNJcy[a] =

by ¢ D and DN J<p[a] # 0). Now (f$ : @ < A) and Dy are as required.

For ( =¢+1: Let (kS : @ < A) be cofinal in ([] a,<p,) and without loss

of generality f§ < hC mod D¢. We get D¢ and (fS :a <)) by 2.2 and 2.5
for (S, : @ < A).
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Now for each ¢ < |a|T we apply 2.7 for (f$t1:a < M), { o' o < A)
and J = P(a)\D¢ (which is a maximal ideal on a). We get a club C¢ of A
such that:

(*) a e SNC; = £ = f1%" mod D,
So () C¢isaclub of X since |a]* <), so we can choose a€SN (| C¢.
¢<lalt ¢<lalt+

Let
cc = {0 ea:f6) =16}

By (*), c¢+1 € D¢; by (II)(iv) e¢ € D¢, hence ¢¢ # e¢q1.
On the other hand by (I)(iv), (¢¢ : ¢ < |a|T) is C-increasing and by the
previous sentence it is strictly C-increasing; contradiction. Llag

Claim 2.9 Suppose min(a) > |a|™, |a|T < g = cf(u) < A € pcf(a). Then
for some kg = cf(kg) < 6 (for 6 € a) we have ([Jscq k9, <J.,[a]) has true
cofinality u, provided that:

(x) p has a weakly good stationary set
SC{d<p:|al <cf(d) <min a}.
Proof: Easy, by 2.6A, 2.5.

Claim 2.10 Suppose the assumptions (a),(c),(d),(e) of 2.7 hold and
(b)! f obeys A, A a continuity condition for (S, &, Xo)(where A = sup S).
(f) J is k-complete, k = cf(k) > cf(6) for every 6 € S.

Then for some club C of A

§€SNC = fs= fsmod J.
Proof: Not hard. (See 2.7).

Lemma 2.11 Suppose min(a) > |a|*, X € pcf(a).

Then there is bo C a for a < X such that b € J<)[a] and:

(x) for every ¢ € J<y[a] there are b, € Jcy[a] for n < w and o < A such
that c C b, U |J by,.

n<w

Proof: Let
S ={8 < A:cf(8) =Rp or § is zero or § is a successor ordinal} .

We can easily find a continuity condition A = (A, : @ < A), for (S, Ry, No)
such that: for § € S, As is an unbounded subset of § of order type w,
and for non-limit a € S, A, is finite. Here is how one finds the continuity
condition.
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_ We prove by induction on a < A the existence of a continuity condition
A* = (A2 :ieansl):
1) afw+1
Let Ay =i fori < a.
(2) not (1) and a@ = 8+ where 8 < a, v < @, cf(8) # No, 1,0.

o _ AP ifiepns
LetAi_{ﬂ+A} ificanS\B, i—-B=j
where B+ A={8+(:( € A}.
(3) Not (1), (2) and o = G, cf(8) = Ng or @ = §+ 1, cf(8) = No.
Let 8= |J an, where 0 = ap < o1 < @ < ..., each a1 a successor

n<w
ordinal, and let

(a) Af ={an :n <w} [if B <0
(b) A = {om:m < n}
(c) if ap < ¥ < apy1 let

o __. n "-( n+l
A5 =t (an +1) + AR,

(4) Not 1), 2), 3), a > cf(a) > No.
Let & = cf(a). Let {(o; : ¢ < k) be increasing continuous, | o; = a,
<K
ap = 0, each ;41 a successor ordinal.
We define by the induction hypothesis

o __ ait1—(a;+1)
AJ = (s + 1)+ A 500

for a; < ¥ < Q41 and
A ={oj:j€ A}

(5) a=cf(a) > N,.
Call a = &.

Choose (a; : ¢ < k) increasing continuous, |J o = a, a9 = 0, 41
<K
successor of limit and a;41 > (w + w) + (a; + ;) + w. So

E;={6+1:6 limit, &; < § + 1 < 341} has power > |ayl|.
Let g; be a function from E; onto |J i<i Ej-

We define h : k — &,

h(a) = a+1 o« successor,
a otherwise.
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Choose Af;; as follows:

for a; < v < @jy1, let BS = (; +1) + A:"j(la_ig_al‘)ﬂ), and

Agy=1{h():Ce B2}. So we have defined AS for

v € Uicr (@i, 541)\E) N S.
For v € E; we define AS by induction on 7 :

i=0 A2 =0

i>0 AS = {gi(7)}u Ag
Lastly for v € {a; : i < &}, if ¢ is non-limit or cf(i) > No, let AZ = 0,
otherwise cf(a;) = Ng and cf(i7) = Rg. So there are

(jn:n<w): 0=jo<ji...

and

U]n=z

Choose inductively 74 € E;, h(v441) = 7. So A = {7&,....,7% _;} and
let A2, =: {7% : n < w}.

Now after this digression, we return to the proof of 2.11. The proof is the
same as that of 2.8, using 2.10 instead of 2.7, applied to

J=:J%,[a] = {U by : b, € Jeu[a] for n < w}
n

which is an Nj-complete ideal (we use J instead of J<y[a]). Os.11

Conclusion 2.12 Suppose mina > |a|*.
(1) We can find (by o : @ < A € pcf(a)) such that:

() bra € Jaa[a]\J<a[q]
(ii) every member of J<)[a] is included in some |J by, 4, , for some
n<w
an < A < A
(2) If every X € pcf(a) is normal for a, then we can replace (ii) above by

(if) J<x[a] is generated by {b, : p € AN pcf(a)}.

83 Getting better representation: generating sequences and co-
finality systems

Assume for simplicity that our a’s are such that for every A there is by =
by[a] C a such that J<p[a] = Jca[a] +bx. Then b = (by : A € pcf(a)) is
called a generating sequence; it is a concise description of (J<p[a] : A €
pcf(a)) as Jcy[a] is the ideal on a generated by {bg : 8 € A N pcf(a)}.
An immediate useful property is the following “compactness” (3.2(5), 3.7
respectively):
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®; if b C a, then for some finite @ C pcf(b), b C |J by
)
®3 if A = max pcf(a), sup(ANpcf(a) singular, ¢ an unbounded subset of
ANpcf(a) of cardinality < min ¢ then A is the true cofinality of (T] ¢, <ba)
(see 1.1(1)(b), and 1.0; see 1.10-1.12).

To apply this note

®3 if A = max pcf(a) and p is the maximal accumulation point of pcf(a)
(if a is infinite it necessarily exists), then pcf(a)\u is finite and for some
b € Jcala], p = sup[A N pcf(a\b)] (and necessarily A = max(pcf(a\b))).

However, our terminology is somewhat misleading: bg[a] is not unique, it

is defined only mod J<g[a]. So it is natural to ask whether we can choose

one (more exactly, a sequence) which is “nice”. The suggested properties

are: smooth if § € by = by C b), and closed if an pcf(by) = by. This is
particularly interesting when a = pcf(a) (so when mina > 2%/, we know
|pcf(a)] < min a = min pcf(a), and by 1.12 pcf(pcf(a)) = pcf(a), so our
theorem applies to a’ =: pcf(a)).

Now we know that for each A, we can find a <;_,[q-increasing cofi-

nal sequence of length A in [ by (or use <;_,[q)+(a\b,)20d [] a, or other
variant). For our end we want more specific properties; we define “nice”,
“continuous” such sequences (in Definition 3.3) then prove their existence
(3.4(1)) and investigate what is the function 6 — sup(@ N N) for appro-
priately closed elementary submodels NV of large enough fragments H ()
of the universe of sets (in 3.5) and use this to find smooth b (in 3.6) and
under stronger conditions smooth and closed b (in 3.8).
In some possible representation this is central (as in my lectures on the
subject in the Hebrew University, Spring 1989), deducing for example the
localization theorem by formal manipulations of such generating sequences,
but as the main conclusions have some restrictions, this will not be done
here. On more see end of [AG 4.13].

* * *

We can replace systematically normal by semi-normal and b, by (bf‘ :
i < A) as in Definition 2.1, but avoid it to ease the reading.

Definition 3.1 (1) We say (b) : A € ¢) is a generating sequence for a if:
(i) by C a, ¢ C pcf(a)
(ii) J<ala] = (J<a[a]) + Ba.
(2) Let Ji’f[a] be the k-complete ideal on P(a) generated by J<x[a].
(3) Let pcf*(a) = {) € pcf(a) : J2¥[a] # Jé’f[a]}. (See 3.1(6)).
(4) We say (by : X € ¢) is a weak generating sequence for a if:
(i)brxC a, by ¢ Jeala], by € J<[q]
(ii) ¢ C pcf(a).
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(5) We say (b o : @ < X € ¢) is a k-almost generating sequence for a if
(i) by,a C a bra € Jer[a], and a < B = by o C by g mod Jc\[a]
(ii) ¢ C pefh*(a)
(iii) JSA [a] = ( iy [a]) + {bx,a : @ < A} whenever A € pcf™*(a).
If by o = by, we write (b) : X € ¢).
(6) In 2), 3), 5) if Kk = N;, we omit it.
(7) We call b= (b) : X € ¢) smooth if:
0 €by= by CHb,.
(8) We call b= (b : A € a) closed if for each A
by = a N pcf(by).

Fact 3.2 Let |a]* < min a.
(1) X € pcf'(a) iff for some N;-complete ideal J on a, A = tef([] a, <y).
Similarly for A € pcf'**(a).
(2) There is an almost generating sequence (by o : @ < A € pcf'(a)) for a
(3) There is a generating sequence (by : A € pcf(a)) for a if every
A € pcf(a) has a (), a)-weakly continuity condition (see Definition
2.3(1)+(3)+(4)).
(4) An Np-almost generating sequence is a generating sequence.
(5) Suppose ¢ C pcf(a), b= (by : A € ¢) is a generating sequence for a,
and b C a, pcf(b) C ¢ then for some finite @ C ¢, b C | by .
€D
Proof: 1) If A € pcf'(a), ie. A € pcfP™(a) (see 3.1(6)) this means
“‘I[a] # I al, e Ty [a] # J%, [a]. So L, [a] € 7 A[a] hence J<x[a] Z
JL,[a]. So choose b € J<x[al, b ¢ Ji)\[a] and let J = JZ, [a] + (a\b), obvi-
ously J is N;j-complete. Apply 1.8(1).
The other direction is trivial too. (Use 1.8(3) and note that JL,[a] # J,[a]
iff JL, [a] 2 J<alal]).

2) By 2.11.

3) We can assume a is infinite. Use 2.8.

4) Check.

5) If not, then I = {bN [J by : 9 C ¢, 0 finite} is a family of subsets of

fed
b, closed under union, b ¢ I, hence there is an ultrafilter D on b disjoint

from I. Let § =: cf(]] b/D); necessarily 6 € pcf(b), hence 6 € ¢. Let D’ be
the ultrafilter on a which D generates, clearly 6 = cf([] a/D’); by 1.8(3)
we have bg € D’ hence b N by € D, contradicting the choice of D. O30

Definition 3.3 (1) For a weak generating sequence b= (b) : A € ¢) for a
we say
f={{fra:a< A :)Ec¢) is a cofinality sequence for (a, b) if:
(i) (fa,a 1 @ < A) is strictly increasing mod J<[a] and cofinal in
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(IT(aN M), <scafal+aren)-
(ii) fa0 = Oarr+-
(2)¢ f is S—%continuous, where S = (S : X € ¢) and each S} is a station-
ary subset of A if:
(iii)a' b€ S = f>\,5/J<>\[a] is a <Ucala] —lub of
{fA,a/J<)\[a] a<< 5}.
We write p instead of ({6 < A : cf(6) = u} : A € ¢) and similarly
(> p). Instead of (> min a) we write nothing. We add “weakly” if in
(iii) we assume such lub exists. Let continuous mean “continuous (see
below).
(2)° f is ®continuous if:
(iii)? if § < ), |a| < cf(6) < min a then for § € a

rs(0) = min{ U Fra(@):C Céisaclub }

aeC

(2)¢ f is °continuous if:
(iii)¢ if § < A, |a| < cf(6) < min a then we first define

fas € H(a nat)

by induction on € < min a, (and only later make our
requirements on f) s) :
(o) €=0, for # € an AT we let

f§,5(0) = min{UaeC Ha@):CCéa club}
(B) e=£+1,for € an At we let
£+1(0)—sup[{f)\ 6(0)} { £, 7 5(“)(0) O<pu< A ,uea}]
(7) € limit, for § € anN A we let f5 5(6) = U{f)\’é(O) : ¢ < €}
Lastly, fa,s € [[(aN AT) is defined by:
for 6 € anAt, fi5(0) = U{f5 s(0) : e <min a}, except when it is equal to
6 (possible only if § = min a), and then f) 5(¢) = 0%

(2)® For b= (b) : A € a) a weak generating sequence, the notion “f is a
dcontinuous cofinality sequence for (a, b)” is defined as in (2)¢, except
that () is replaced by:

(B) e=£+1for 0 eanit welet

F5510) = sup [{fx 5(9)} { il (@) S p<Ape a}

U {min{y < 8: f§51(aN6%) < fo,y mod Jeola] + (a\Bo)} ] -

2really ( f§, s : ¢ < min @) is eventually constant, see later.
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(3) f is ®nice if it is *continuous and in addition:
(iv) if @ < A and A € ¢, then
fcanit&oecandt = fg,f‘\,a(g)((f) < f)‘,a(O').

(4) Similar definitions for b= (b) 4 : @ < A € ¢) as in Definition 3.1(5).

Remark 3.3A In [Sh345,7.3], another variant, in between °continuous
and “continuous, is used.

Fact 3.4 Assume |a| < min a.

(1) For every weak generating sequence b for a, (b = (b : A € ¢) or even
(baa : @ < X € ¢)) some f is a continuous cofinality sequence for
(a, b).

(2) If {(fr,a : @ < A) : X € pcf(a)) is a cofinality sequence for (a,b), bis a
generating sequence for a with domain pcf(a) then:

(*)2 for every g € [[ a there are n < w, Ao > A1 > --- > A, from pcf(a)
and ay < M\ for £ < n such that

g <max{fy,,a, : £ <n}

(3) In (2), if b is only a k-almost generating sequence for a (so its domain
D pcf*(a)) then:

()3 for every g € [] a there is a set b C pcf*(a) of cardinality < & and
(g : 6 € b) such that ay < 6 and

g <sup{fra, : A€ b}
that is (V6 € a) }\\E/bg(O) < fa,ax (6).

Proof: 1) We define (fy o : @ < M) for each A € ¢. By 1.8(1) there is
(f3 o * @ < A), <j-increasing, where J = (J<a[a] + (a\by))I(a N At) and
cofinal in ([J(a N A*),<s). We now choose f) o by induction on a such
that:

(a) for a =0, fa,a = 0gnn+

(b) for o successor, f5 , < fa,e € [[(aNAT)

(c)for B<a fap < framodJ

(d) if  is limit, |a| < cf(a) < min a, then (iii)® of 3.3(2) holds.
The only problematic point is, why if « = §, |a|] < cf(6) < min a, if we
define f) 5 as required in (d), then it satisfies (c) and belongs to [J(anAT).
The latter holds as there is a closed unbounded C' C 6, with otp(C) =
cf(6) < min a, 50 fr,a(f) < Ugec fa,5(0) < 0 as f,5(8) < 6 and cf(f) =
6 > min a > |C|.

For the first point (for 8 < a@ =6, fig < fi,s mod Jci[a]) for every
6 € an AT, for some club Cy of § we have
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() f,6(0) =U{frp(0): B € Cp}.

We can find y € (] Cp, 7 > B; by the induction hypothesis f) g <;
fcanit
f>,y, whereas by (x) we have f) < f 5. Together we finish.

(2) A particular case of part (3).

(3) Let b=(by: A€ c) forea,ch}\e ¢ we can find @ = a) < A such that
glby < fralby mod J23. Let b% = {6 € by : g(8) < fr,a(8)}, s0 b C by

and b)\b% € J2F. If for some ? C ¢, [9| < k and a = |y, b%, we are done;

otherwise let J be the k-complete filter on a generated by {b3 : X € ¢}, let

p be minimal in ¢ such that Ji;: [a] Z J.

Necessarily p € pcf*(a) C ¢, and choose ? € JI“ +[a]\J and even 0 €

Jepr[al\J;s00\b, € JZ ila] C J (by “bis a generatmg sequence” and the

minimality of 4 respectively) and b,\b}, € J2 »[a] € J and b}, € J, by the

choice of by, see above. Sod\ by, b, \ b* and b* belong to J hence Ve J,

contradicting the choice of ?.
U3.4

Claim 3.5 Suppose

(a) |a|t < min a, z € {b,c}

(b) b= (bg : 6 € a) is a weak generating sequence for a

(¢) f=(< fre:a <A >:)\Ea)is a “continuous cofinality sequence for
(a,B) and if z € {c} then f5 ; as in (iii)® of 3.3(2%).

(d) x is large enough, |a| < ¢ < min a, 0 = cf(0), N; < (H(x), €, <}) for
i < 0, N; € Njy1, N; increasing continuous in i, a € Ny, f € Ny,
a C No, || V]| < min a.

(e) Define g; € [ a by: gi(8) = sup(V; N 6) (for i < o and 0 € a).

Then

(@) for A € a, § <o, cf(6) > |a| we have fi g,() < gsl(aNAT)

(B) for A € a, § < 0, cf(6) > |a| we have f) g,x)[bx = gs[bx mod Ja[a].

(7) if bis a k-almost generating sequence, § < o, cf(6) > |a|, a = pcf(a) =
Dom b, then for some ? C a, [9| < k and gs = max{fy g;(n) : A € 0}.

(6) ifx =c, A€ aand (b} :i < )A) € Ny is as in 1.7 for (fro : @ < A)
and 6 < o, Cf(é) > |a| then 0 =: {0 €anit: fA,g&(A)(e) = 95(0)}
satisfies 9) € J<x[a], moreover, for i < gs(A) :

b} C 0 C by, (y) mod Jx[al.

[Hence if J<x[a] = J<ala] + by then 9\ = by mod Jcy[a]).

(€) ifx =¢, 6 <o,cf(6) > |al, A €a,y < A, |a| < cf(y) < min a, v = gs(A)
then for every large enough € < min a, f§ = fi, hence (iv) of 3.3(3)
holds for f when min a > cf(a) > |al.
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(€) if 6 < o, cf(6) > |a], A € a, then f) 4,x)[bx is a <;_,[p,] —Iub and
even <J<,\[b,\]-eub of {fz\ albr:a< 95(A)}

Remark 3.5A (1) Using J2[a], (A € pef**(a)) we have parallel results:
if we restrict ourselves to cf(6) € [Ny, k) the same continuity notion
(i.e. as for z = ¢) is O.K. (i.e. in addition to cf(é) € [|a|t, min a)).

(2) For cf(6) = Ng, we should have a preassigned unbounded Cjs C §, otp
Cs = w for § < A, cf(6) = Ny, and use C C Cs in the definition of
continuous.

(3) It follows that if A = maxpcf(a),|a|t <mina and (frqo:a < A)is a
< Jj.x[arincreasing cofinal in ([] a, <j_,[q]), then
S=:{6 <A:l|a| <cf(6) < mina and {fy: @ <8} has a

<yeyfarlub},

is not too small. E.g. no 8’ C {§ < A: |a| < cf(§) < min a} disjoint
to S is stationary and in I[A]- see [Sh371,5.1A(6),(5)]-

Proof: Note that if i < j < o then g; € N; so as a C Ny, clearly Rang
gi € N; hence g; < gj. As f € N; < Njand a C N; < N;, foreach f € a
we have g;(6) € N; hence fj 4,y € N; hence (as Dom fq 4,9y = an 6+ C
N; < N;) we have Rang fg 4.6y C N;. By the definition of g; this implies
fo,0:(0) < 951(a N 67).

Note that for § € a, (g;(f) : i < o) is a strictly increasing continuous
sequence of ordinals. So for limit § < o,

cf(gs(8)) = cf(6), and C§ =: {g;(#) : i < 6} is a club of gs(6).

Now we shall prove:

Subclaim 3.5B If z, f, a, b, (N; : i < o) are asin 3.5, A\ € a, § < o0,
cf(8) > |a| and v belongs to the closure of N5 N A, then:

(A) if z € {b, c} then fy ; < gs[(aNAT); moreover Rang f) . is included
in the closure of N5 N A (in the order topology)

(B) if z = ¢, || Ns|| > cf(7) > |a| and € < mina then f§_ < gsf(an
AT); moreover Rang f§ X,y 18 included in the closure of NsN A (hence every
sequence (f5 (@) : €< mln(a)) is eventually constant).

This is enough for proving (o) (of 3.5), as fy g,(n) < g5 by (A) (because
gs(M\) belongs to the closure of Ns-by its definition); by the way, note as
gs(A) ¢ Ns, we have cfgs(A)] < || Ns|| (in fact is cf(6)). It is also enough
for (e), as (f5 ,(f) : € < min a) is non-decreasing whereas closure(Ns N A)
has cardinality < ||Ns|| < min a.

Proof of 3.5B: We prove, both parts, by induction on A € a.

Let A be given. We first deal with (A); note that if ¥ € N, then f) , € N,
hence (as a C Ng C N;s) clearly Rang(f) ) C Ns, hence by the definition
of gs, fo,y < gs (and, of course, NsN A Cclosure(NsNA)), so (A) holds. On
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the other hand if v ¢ Nj, as «y is in the closure of NsN A, and the closure of
N; is C N;y1 C Ng, necessarily (sup(V; N7y) : 4 < §) is strictly increasing
hence cf(y) = cf(6) hence ||Ns|| > cf(y) > |a|, hence (B) will apply; now
if we prove (B) then (A) follows when z = ¢, as by (iii)* of 3.3(2)*, for
fecanit:

Fan(8) = U{f5(8) : € < min a}

(if the latter is < 6, but by (B) it is < gs(8) < 8 (remember | Ns|| < o <
min(a)). When z = b, (A) amounts to (B) for e = 0.

So it suffices to prove (B) (for our A).
We prove the statement in (B) by induction on e.

First Case: e =0

First we note that there is a strictly increasing continuous sequence
(7i : i < cf(y)) of ordinals in NsN A with limit 7.
[ Why ? Subcase 1A: v € Njs. As cf(y) < || Ns|| (by assumption) it suffices
to show || Ns|| € Ns. For i < 6, N; € Ns and N; < N; hence || N;||+1 C Ng;
so the only case left is | Ns|| > sup;s || Vi|| so 6 = || Ns||. Now

(min(6 \ NV;) : @ < 6),
is a strictly increasing sequence of ordinals, so

Ns= N2 | J@ins) =6

<6 <6

Subcase 1B: v ¢ Ns. Then necessarily cf(y) = cf(§), and

(sup(N; Ny) : i < 6)
is as required, as
sup(N,- N ’)’) = sup(Ni N (mlIl(N.,, N Ord\’y)) € N;y1 C Ng]

So by the definition of f) _, each f3 _(6) is U{fx(6) : i € C} for some
= every small enough) club of cf(y) and as f),(8) € Ng, it follows that
Rang(fy ) is a subset of the closure of N5 N A.
Note that this also proves (a) for the case z = b.

Second case: e =&+ 1
So,

ff\,v(o) = sup [{fi‘y(e)} U {fu,ff,.,(u)(e) 0sp<ipe a}]

(see (iii)¢ of 3.3(2)°). As the closure of NsN# is closed, it is enough to show
that every ordinal in the range of the sup is in this closure. Now ffﬂ (9)
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is, by the induction hypothesis on €. As for f, ¢ ,)(6) we know (by the
W,y

induction hypothesis on €) that ffﬂ (8) is in the closure of Ns N @; by the
induction hypothesis on A, (part (A)) it follows that f, ( M)(O) belongs
b AI’Y

to the closure, as required.

Third case: € limit

As f§’7(0) = U{f5,(6) : € < (}, as the closure of N5 N A is closed, and
the induction hypothesis on €, this is trivial.
So we have proved 3.5B, hence clauses (), (€) of 3.5. OssB

Continuation of the Proof of 3.5: foreach A € aand i < j < o, as
g; € ([Ta) N N;, for some a = a(A, i) we have:

a€ANN; and g; < fr o mod (Jep[a] + (a\by)).
Now as a € AN N;, we have a < g;(A) so

Fra < fag;n) mod (J<ala] + (a\by))

hence together
9i < fag;n) mod (Jen[a] + (a\by)).
So if § < o, |a| < cf(6), we have:
9i < fa,gs(n) mod (Jeala] + (a\by)) for each i < 6.

Let for i < 6,
={f€an At g:(6) > fA,ga(A)(e)}.

Now as [1 < j = g; < g;] we have [i < j = ¢; C ¢;], so (as cf(6) > |a| =
|Dom g;|) clearly (¢, : i < §) is eventually constant; by the definition of the
cjs and as (g;(f) : j < 6) is continuously increasing clearly ¢s = U, 4 ¢5;
hence we have ¢5 = ¢; for some i < §. But we have shown above that for
i <9,

¢ € (J<)\[a] + (a\b)\)) SO ¢5 € (J<>‘[a] + (a\b)\))so

{#eanit: gs(0) > f)\,g‘s()\)(e)} € (Jeala] + (a\by))so

95 < fia,gs(ny mod (Jea[a] + (a\by))

As we have already proved clause (a) of 3.5:

g5 = fa,gs(n) mod (J<a[a] + (a\by))

i.e. we get clause (3).
Now clause (7) is left to the reader (see 3.4(3)).
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We try now to prove clause (6) of 3.5. For a fixed \ let g € [[a be as
in 1.7(D), (D)*; without loss of generality g € Ny. Remember

={fe€an At g5(0) = f)"QJ()‘)(Q)}.

By the definition of ) (and as g < gs because g € Ns) we have:

0 €05 = g(8) < fr,g0(6)

ie. by 1.7(D)*:

On the other hand by (E) of 1.7 (and 1.5) certainly for every a < §, if
i € AN Ny, then the proof of (8) (of 3.5) holds also if we replace by by b

hence
Frgsn 07 = g516 mod J.y[al,

hence b C 9, modJ«,|al.
So we have finished proving clause (6) of 3.5 by (x) above.

Let us prove clause ({). By clause () it is enough to show that gs[by
is a <j_,[p,eubof {fae : @ < gs(A)}. We first prove it is a <j_,[6,]
—lub. For each i < o there is a(),i) € A N N;y1 such that g;[by <
f)\,a()\,'i) mod J<,\[a] + (a\b)\), and as Ot(>\, ’L) €A ﬂN,;_H, clearly f)‘,a()".,;) <
gi+1- Let

c; =: {0 € by : not “g;(f) < fa,ar,p)(0) < gi+1(0)”},
so clearly ¢} € Jca[a]. As:
[ < gs(A) = thereis 8, a < B € NsN A,

[a < B € NsNgs(A) = fra < frp < gs mod Jex[a] 4 (a\By)],

we have that gs[bx is a <j_,[a]+(a\byyuPPer bound of {fa.lbx : a <
gs(A)}. So suppose g’ € []a is another <;_,[a]+(a\b,yupper bound of
{fre:a<gs(N)} Let for i <6,

;" = c;U{f €ba: faanp(f) 29'(O)}
Clearly ¢* € J<a[a]. Define g* € [J[(a N AT) by:
g*(0) =: sup{fa,a(r,9)(0) : 0 & ¢;*,i < 6}.

So by the definition of ¢*, g*[b) < ¢’ and as ¢}* € J<)[a] we have

(2

Frari < 9" modJey[a] + (a\by).
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So without loss of generality ¢’ = g*; let
¢t ={0eby:g*(0) <gs(0)};

assume ¢t ¢ J.x[a] and we shall get a contradiction, thus finishing the
proof of clause (¢) hence of 3.5. For each 6 € ¢*, by the definition of gs(6)
(and as (g;(f) : j < o) is increasing continuous) there is jy < 6 such that
9*(6) < 9jo(6); let j =: sup{jo : 6 € c*}, s0 j < § (as cf(6) > |a] > |cT]),
and

{6 €b,: g*(0) < gj(e)} ¢ J<>\[a]

SO
=[g* > fae(n,j) mod Jea[a] + (a\by)),

contradiction. We leave the proof of its being <;_,(s,] —€ub to the reader.
Us.s

Lemma 3.6 Suppose |a| < mina, b= (by : A € a) is a weak generating
sequence for a.
Then we can find o' = (b} : A € a), f = ((fra:a <A :\E a) such that:
() b’ is a smooth weak generating sequence for a
(B) for XA € a, by C b, mod Jci\[a
(7) f is a °nice cofinality system for (a,b’).

Proof: Let f = ((ff, : @ < A) : X € a) be a Pcontinuous cofinality

system for (a,b) (exist by 3.4(1)). We now define by induction on A € a
the sequence (f o : @ < A). We define fy o, by induction on a such that:

(1) £ 41 < Frat1 € [[(anAt)

(2) for < a f)\,ﬁ by < f)\,a by mod J<>\[a]

(3) if @ < A, cf(a) < |a| or cf(e) > mina we choose f . satisfying the
relevant cases of (1) and (2) and, if possible:
(*) felNa= fg,f)"a(g) < f)‘,a [(a N 0+).

(4) if a < A, |a] < cf(a) < mina then define:

f}? «(6) =: min {Uﬂec r,p(8) : C a club of a}
C+1(9) : sup [{f>\ LU {fu i< (“)(0) O<pu<puce a}]
f}‘,a(0), for ¢ limit is U{f5 ,(6) : € < (}-

Let f),a(0) = U{ff,a(O) : ( <min a} except if it is 6, then f) o(6) = 0.
There are no problems in this.
Clearly f is a “continuous cofinality system ((4) and (2) are compatible:
proof as in 3.4).

Next choose x large enough o =: |a|* and (N; : i < o) continuously
increasing, N; < (H(X),ev <;)a ”N'I-” = lal+1 Ial+ CN;, N; € N’H-l and
{jF,B,Cl} GEJVb.
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Now apply 3.5(), (B) for 6 = o, A € a. We can now show that in (3) above,
() was always possible: if not there is a minimal A for which it fails and
then a minimal a. So (A, ) is definable from parameters which belongs to
Ny, hence (\,a) € Ny. Now g, [(a N AT) shows () is possible — by ()
of 3.5. Moreover (*) now holds also if & < A, |a| < cf(a) < mina by (e)
of 3.5 and Definition 3.3(2)¢. So f is continuous and even °nice (check
Definition 3.3(3)). Now let b} =: {# € an At : g,(8) = fi,g,(0)(6)}, they
are as required: by C b3 mod J.)[a] by clause (3) of 3.5 and smoothness
(of (B) : A € a)) follows from °niceness because

S\ = {0 can )\+ : ga(0) < f)\’ga()\)(e)}

which holds again by clause (a) of 3.5.
Also by € J<i[a], because ([]a, <J9[a]) is AT-directed so there is f €
(IT @) N Ny such that:

a< A= fio < fmod JS)\[a].

But fe No= f < go-
This implies f)\,ga()\) < g, mod JS)\[CL] hence 63\ S JS,\[a].

So clause (a), (8) of 3.6 holds. As for clause (7y)- the proof above that
it holds for b apply also for b’. Use 3.5(8) and 1.7 to see that (f) q;a < A)
is still cofinal mod Jcx[a] + (a\ b}). Os.6

Lemma 3.7 If |a| < mina, A = max[pcf(a)], sup [A N pcf(a)] is singular,
then for every unbounded ¢ C AN pcf(a) of power < min c,

A= th(HC, <JEd).

Proof: First max pcf(c) < A as pcf(c) C pcf(a) by 1.12. If

= [tef ([T ¢, <gva) = A], then Jea[e] € Jp¢ (by 1.8(1)) so for some D C ¢;
0 ¢ JPd and 6 =: max pcf(d) < A

Now (9, <jva) is sup(d)-directed, so 6 > sup(d); sup? is singular, so
sup® < @ < A. Now 0 C pcf(a) and 9| < |¢|] < min ¢ < min 9, hence
pcf(?) C pcf(a) by 1.12, but § € pcf(?) so § € pcf(a) and so

6 < sup(pcf(a) NA) =supec=supd << A
— contradiction. O3 7

Claim 3.8 (1) Suppose (with & = 2/9l) :
(a) kT < mina and z =d
(b) (bg : 6 € a) is a weak generating sequence for a
(c) f = {{fra: A <A): € a) is a ®continuous cofinality sequence
for (a,b), and ff,s(lal < cf(6) < min a,¢ < min a) is as in (iii)*
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of 3.3(2)%.
(d) x large enough, |a| < cf(0) = 0 < &, N; < (H(x), €, <})
for i <o, N; € Nij11, K C N;, N; increasing continuous in 3,
a € Ny, f € Ny, <N,,, 1 < j) € Nj.|_1 and ”N,,” < |I‘&| + |’L|
Then: (a)-(¢) of 3.5 holds omitting “if z = ¢” in (§), (€).
(2) The parallel of 3.5B holds.
(3) If in 3.6 we add “2/%! < min a”, we can strengthen in the conclusion:
(@)t b’ is a smooth closed generating sequence (“weak”
disappears)
(7)* f is a nice cofinality system for (a, b’).

(4) In (1) — (3) instead of “6 = 2%l < min a” we can demand: x = |a|*
and “for every A € a, thereis § C {6 < A : cf(6§) = |a|*} stationary
and weakly good”.

(5) In (1) — (3) instead of “k = 2!*/ < min a” we can add |a| < kK < min
a and for every A € a and A C )\ of power k, E4 has < k equivalence
classes, where:

for a, B8 < X we have: a E40 iff

{6 € a: min(A\f),a(0)) # min (A\fx,5(0))} € J<a[a].

Proof: Clearly (1) — (3) are particular cases of (5) as E4 has < |All¢l =
k!9l classes. Also (4) is a particular case of (5) by the proofs in §2. Lastly,
the proof of (5) is just like the proof of 3.5, 3.6, the only difference is that
in the parallel to 3.5B we have one more thing to prove in the successor
stage.
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