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Introduction

This continues [GuSh 536] and was announced there. For a monadic second order sen-
tence ψ in the language with one unary functions and unary predicates, the spectra of the
sentence (i.e., the set {||M || : M a finite model of ψ} is (see [GuSh: 536]) periodic, but this
fail badly when we allow, e.g. two unary functions. In the second section we characterize
the family of finite structures which really behave like the unary function case.
In section one we assume that a monadic second order sentence satisfies: every model is
not indecomposable, i.e., has a non trivial decoposition in a weak sense (see Definition 1.2).
We conclude that the specra is not arbitrary, mainly - there are no big gaps in it (from
some point on). This is of course considerably weaker conclusion than what we know for
the languages with only a unary function (under a much weaker assumption).
Subsequently, (but before the release of this paper) Fischer and Makowsky [FiMw03] con-
tinues [GuSh 536] in a different direction, using counting monadic logic and dealing with
width of graphs (and of models).
It seems that Definition 2.2 is a variant of “clique width of models”; see on this [FiMw03].
Clearly we can in §1 use operations like [2.2] instead of M1 ∪M2.

§1 Weakly decomposable

We can deal just with graphs just a this is traditional. The restriction to relational
vocabulary.

1.1 Context. 1) Let τ be a finite relational vocabulary, i.e., a finite set of predicates this is
for simplifying our statement.
2) Let K∗

τ be the class of τ -models and recall ‖M‖ is the number of elements of M ∈ K∗
τ , R

M

is the interpretation of R ∈ τ .
3) Let K denote a family of τ -models closed under isomorphisms.

1.2 Definition. 1) We say that K is weakly k-decomposable if: for every m there is n such
that

�k,m,n if M ∈ K, |M | ≥ n then we can find submodels M1,M2 (for graphs-induced sub-
graphs G1, G2) such that
(a) M1 ∪M2 = M (i.e., a ∈ M ⇔ a ∈ M1 ∪ a ∈ M2 and RM1 = FM1 ∪ RM2 for

any R ∈ τ (for graphs: G,G1, G2 let G = G1 ∪G2 mean that the set of nodes
is the union of the set of nodes of G1 and of G2, and the set of edges of G is
the union of the set of edges of G1 and of G2)

(b) |M1 ∩M2| ≤ k

(c) |M�| ≥ m for � = 1, 2.

2) For a monadic second order sentence ψ (in a vocabulary τ) we say that ψ is k-decom-
posable if Kτψ is (see part (3)).
3) For a vocabulary τ (as in 1.1) and sentence ψ (in this vocabulary) let Kτψ = {M : M is
a finite τ -model such that M |= ψ}. We may suppress τ , when clear from the context.
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1.3 Claim. Assume

(∗)k∗ψ ψ a monadic second order sentence, in the vocabulary τ,K = Kτψ is k∗-decomposable

then Sp(ψ) = {|M | : M ∈ K} satisfies for some n∗, that

� if n1 < n2 are successive members Sp(ψ) and n∗ < n1 then n2 < 2n1.

Proof. Let ψ have quantifier depth ≤ d∗.
Let m∗

1 > k∗ be large enough such that

�1 if M1 ∈ K∗
τ , ‖M1‖ > k∗ and a1, . . . , ak ∈ M1 and k ≤ k∗ then there is M2 ∈ K and

b1, . . . , bk ∈M2 such that
Thd

∗
(M1, a1, . . . , ak) = Thd

∗
(M2, b1, . . . , bk)

and k∗ < |M2| < m∗
1.

Let m∗
2 be such that the statement �k∗,m∗

1 ,m
∗
2

from Definition 1.2 holds (for K).
Now assume that n1 < n2 are successive members of Sp(ψ) and n1 > m∗

2. Hence there
is M ∈ K with exactly n2 members. So applying �k∗,m∗

1,m
∗
2

to M we can find M1,M2 as in
Definition 1.2 and let {a1, . . . , ak} list M1 ∩M2; so k ≤ k∗ and |M1|, |M2| ≥ m∗

1. Without
loss of generality |M1| ≤ |M2| still |M1| ≥ m∗

1.
By the choice of m∗

1 there is (M ′
1, b1, . . . , bk) such that k∗ < ‖M ′

1‖ < m∗
1 and

Thd
∗
(M ′

1, b1, . . . , bk) = Thd
∗
(M1, a1, . . . , a2).

Without loss of generality � ∈ {1, . . . , k} ⇒ b� = a� and no member (for graphs - node)
of M ′

1 belongs to M2\{a1, . . . , a2}. Let M ′ = M ′
1 +
{a1,...,ak}

M2 be defined naturally (set of

elements ofM ′ = union of set of elements ofM ′
1 and set of elements ofM2, R

M = RM
′
1∪RM2

for R ∈ τ).
By the addition theorem M ′ |= ψ, i.e., M ′ ∈ K and

� 1
2‖M‖ ≤ ‖M2‖ < ‖M ′‖ = ‖M ′

1‖+‖M2‖−k < m∗
1 +‖M2‖−k ≤ ‖M1‖+‖M2‖−k <

‖M‖.
That is n2/2 < ‖M ′‖ < n2 but M ′ ∈ K so ‖G′‖ ∈ Sp(K), ‖M ′‖ < n2 hence ‖M ′‖ ≤ n1 so
n2/2 < n1 so we are done. �1.3

1.4 Conclusion. If ϕ is a second order monadic sentence and (∗)k∗ϕ and α is a real > 0 then
for every n large enough

n ∈ Sp(ϕ) = (∃m ∈ (Sp(ϕ))[n < m < (1 + α)n].

Proof. By Claim 1.3.
Let Ξ be the family of positive reals α such that

�1 for every monadic second order sentence ψ (for any vocabulary τ as in 1.1) such
that (∗)k∗ψ holds, the conclusion of 1.3 holds
(no harm in varying k∗, too).

Sh:817



558 SAHARON SHELAH

Note that allowing individual constants in τ is O.K. (either allow them or code them by
unary predicates); for a vocabulary τ let τ+k be τ + k individual constants.
Clearly 0 < β < α & β ∈ Ξ ⇒ α ∈ Ξ. By Claim 1.3 we have 1 ∈ Ξ.

We shall now prove that

�2 if α ∈ Ξ ⇒ α/2 ∈ Ξ.

This clearly suffices. Before proving �2 note that given (τ,K and ψ), let d be above the
quantifier depth of ψ. For k ≤ k∗ let

K′
k = {(M ′, a1, . . . , ak) :for some M ∈ K and M1,M2 as in 1.2

with |M1 ∩M2| ≤ k∗ we have M ′ = M

and {a1, . . . , ak} lists M1 ∩M2}.

This is a class of τ+k models. Let {Thd(M ′, a1, . . . , ak) : (M ′, a1, . . . , ak) ∈ K′
k} be listed as

t1, . . . , tm and for � ∈ {1, . . . ,m} let K′
k,� = {(M ′, a1, . . . , ak) ∈ K′

k : Thd(M ′, a1, . . . , ak) =
t�}.
It is not hard to see

�3 for some monadic second order sentence ψ� of quantifier depth d,K′
k,� is the class of

models of ψ� and (∗)k∗ψ�
holds.

Let us prove �2 so α, τ,K, ψ, d are given and let K′
k,K

′
k,� be as above. Now for any M ∈ K

by the proof of 1.3, as we are assuming that α ∈ Ξ we can choose M ′
1 such that

‖M1‖
1 + α

< ‖M ′
1‖ < ‖M1‖

hence

‖M ′‖ = ‖M2‖ + ‖M ′
1‖ − k > ‖M2‖ +

‖M1‖
1 + α

− k

=
1

(1 + α)
(‖M2‖ + α‖M2‖ + ‖M1‖ − k − αk)

=
1

1 + α
(‖M‖ + α‖M2‖ − αk)

≥ 1
1 + α

(‖M‖ + α‖M‖/2) − αk

1 + α
=

1 + α/2
1 + α

|M | − αk

1 + α

so we conclude: if conclusion 1.4 holds for α > 0 it holds for α/2 because

β =
1 + α

1 + α/2
− 1 =

α/2
1 + α/2

< α/2.

So we can prove by induction on i that it holds for α ≥ 1
2i . �1.4
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§2 what the method of [GuSh 536] gives

2.1 Discussion: The result above is interesting but leave us unsatisfied. For trees we get
essentially sharp results. Here the spectra is not characterized. We know that it is quite
restricted but, e.g. is it almost periodic?

The problem is that we do not see here a parallel to the operations generating the class.

We may consider such classes:

2.2 Definition. Let τ and k∗ be fixed and let Kk∗ be the minimal family of (M,a1, . . . , ak),
M a finite τ -model k ≤ k∗, a� ∈M such that

(a) Kk∗ includes those with ≤ k∗ elements
(b) if (M�, a

�
1, . . . , a

�
k�

) ∈ Kk∗ for � = 1, 2 and
x ∈ M1 ∧ x ∈ M2 ⇒ x ∈ {a1

1, . . . , a
1
k1
} ∩ {a2

1, . . . , a
2
k2
} then (M, b1, . . . , bk) ∈ Kk∗

when:
� (i) x an element of M ⇒ x an element node of M1 or of M2

(ii) x an element of M�, x /∈ {a�1, . . . , a�k2} ⇒ x an element of M

(iii) {b1, . . . , bk} ⊆ {a1
2, . . . , a

1
k1
} ∪ {a2

1 . . . a
2
k2
}

(iv) if R ∈ τ is k-place predicate, and y1, . . . , yk ∈M, z1, . . . , zk ∈M
then 〈y1, . . . , yk〉 ∈ RM ≡ 〈z1, . . . , zk〉 ∈ RM when:

(�) (zi = zj) ≡ (yi = yj), (zi = a1
�) ≡ (yi = a1

�)
(zi = a2

�) ≡ (yi = a2
� ), (zi ∈M�) ≡ (yi ∈M�) and letting

w� = {i : yi ∈ G�} the quantifier free type of 〈yi : i ∈ w�〉
in M� is equal to the quantifier free type
of 〈zi : i ∈ w�〉 in M�.

2.3 Claim. We can prove for Kk∗ what we have proved for trees; including almost period-
ically of the spectrum.

2.4 Question: Is the class Kk∗ known? Interesting?
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