
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 149, Number 2, February 2021, Pages 867–874
https://doi.org/10.1090/proc/15242

Article electronically published on December 16, 2020

TRANSCENDENCE BASES, WELL-ORDERINGS OF THE REALS

AND THE AXIOM OF CHOICE

HAIM HOROWITZ AND SAHARON SHELAH

Abstract. We prove that ZF+DC+“there exists a transcendence basis for the reals”
+ “there is no well-ordering of the reals” is consistent relative to ZFC. This
answers a question of Larson and Zapletal.

Introduction

It’s well known that the axiom of choice has far-reaching consequences for the
structure of the real line. Among them, to name a few, are the existence of non-
measurable sets of reals, nonprincipal ultrafilters on ω, paradoxical decompositions
of the unit sphere, mad families and more. As the aforementioned statements are
consistently false over ZF + DC, it’s natural to study the possible implications
between them in the absence of choice. This direction of study has gained consid-
erable interest in recent years, with many consistency results showing mostly the
independence over ZF +DC between various properties of the real line implied by
the axiom of choice. We mention several such examples:

Theorem ([She85]). It’s consistent relative to an inaccessible cardinal that ZF +
DC holds, all set of reals are Lebesgue measurable and there is a set of reals without
the Baire property.

Theorem ([HwSh2]). It’s consistent relative to an inaccessible cardinal that ZF +
DC holds, all sets of reals are Lebesgue measurable and there is a mad family.

Theorem ([LZ17]). It’s consistent relative to a proper class of Woodin cardinals
that there exists a mad family and there are no ω1 sequences of reals, nonatomic
measures on ω and total selectors for E0.

Our current paper will focus on two consequences of the axiom of choice for
the real line, namely the existence of a transcendence basis for the reals and the
existence of a well-ordering of the reals. The following question was asked by Larson
and Zapletal in their forthcoming book:

Question ([LaZa2]). Does the existence of a transcendence basis for the reals imply
the existence of a well-ordering of the reals?
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We shall prove that the answer is negative, namely:

Main result. ZF+DC+“there exists a transcendence basis for the reals”+“there
is no well-ordering of the reals” is consistent relative to ZFC.

It should be noted that in the recent papers [BSWY18] and [BCSWY], models
of ZF + DC were constructed where there exists a Hamel basis and there is no
well-ordering of the reals. However, by [LaZa2], the existence of a Hamel basis
(over ZF +DC) doesn’t imply the existence of a transcendence basis (as explained
there, the difference is related to certain model theoretic considerations involving
the associated pre-geometries).

The proof strategy will be similar to that of [She85] and [HwSh2] (though no
inaccessible cardinals will be used in the current proof). Our forcing P will consist
of conditions p = (up,Qp, Rp

∼
) where Qp is a ccc forcing from some fixed H(λ)

that forces MAℵ1
and Rp

∼
is a set of Qp-names of reals that’s forced by Qp to be

a transcendence basis for the reals. The order will be defined naturally. The sets
of the form Rp

∼
will approximate a transcendence basis in the final model, while

the forcing notions Qp will help us to prove the non-existence of a well-ordering of
the reals using a standard amalgamation argument. The fact that each Qp forces
MAℵ1

will guarantee that the relevant amalgamation will be ccc.
The rest of the paper will be devoted to the proof of the main result mentioned

above. We shall assume basic familiarity with amalgamation of forcing notions (see,
e.g., [HwSh1]).

Proof of the main result

We will be forcing over a model of ZFC. The desired model will be obtained as
an inner model of the generic extension.

Hypothesis 1. Throughout the paper, we fix infinite regular cardinals λ and κ and
an infinite cardinal μ such that μ = μℵ1 < λ, κ = μ+ or ℵ2 ≤ cf(κ) ≤ κ ≤ λ and
(∀α < κ)([α]ℵ1 < κ) (note that this follows from μ = μℵ1 ∧ κ = μ+).

Definition 2. We define the forcing notion P as follows:

A, p ∈ P iff p = (u,Q, R
∼
) = (up,Qp, R∼p

) where:

a, u ∈ [λ]<κ.
b, Q ∈ H(λ) is a ccc forcing such that u is its underlying set of elements.
c, �Q MAℵ1

.
d, R

∼
is a set of canonical Q-names of reals that is forced by Q to be a

transcendence basis of the reals. A canonical Q-name of a real τ
∼
will

be represented by {(p̄q1,q2 , ηq1,q2) : q1 < q1 are rationals} where for
each q1 < q2, p̄q1,q2 = (pq1,q2,α : α < λτ

∼
) lists without repetition a

maximal antichain of Q, ηq1,q2 ∈ 2
λτ∼ and pq1,q2,α � ”τ

∼
∈ [q1, q2] iff

ηq1,q2(α) = 1”.
B, p ≤P q iff

a, up ⊆ uq.
b, Qp �Qq.
c, R

∼p
⊆ R

∼q
.
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Definition 3. We define the following P names:

a, Q
∼
= ∪{Qp : p ∈ G

∼P
}.

b, R
∼
= ∪{R

∼p
: p ∈ G

∼P
}.

Claim 4.

a, P is a forcing notion of cardinality λ<κ, preserving cardinals and cofinalities
of cardinals ≤ κ and > λ<κ.

b, If δ < κ is a limit ordinal and p̄ = (pα : α < δ) is ≤P-increasing and satisfies
α < δ → ∪

β<α
Qp1+β

� Qpα
, then p̄ has an upper bound pδ such that p̄̂(pδ)

is ≤P-increasing continuous.
c, In clause (b), if ℵ2 ≤ cf(δ), then pδ can be chosen as the union of the pαs.
d, �P ”Q

∼
is ccc and λ is its underlying set of elements”.

e, �P ” �Q
∼
”R
∼

is a transcendence basis for the reals.

f, Every permutation g of λ naturally induces an automorphism ĝ of P and
Q
∼

which maps R
∼

to itself.

Remark. Recall that a condition in P is a triple (u,Q, R
∼
) where Q is a forcing whose

universe is u ∈ [λ]<κ and R
∼

is a set of canonical Q-names. If g is a permutation of

λ, then we can let Q∗ be the forcing isomorphic to Q whose universe is u∗ := g′′u.
This isomorphism naturally maps Q-names to Q∗-names, so R

∼
is mapped to a set

R
∼
∗ with the same properties. The desired automorphism of P will thus be defined

by ĝ(u,Q, R
∼
) = (u∗,Q∗, R

∼
∗). We shall use the notation ĝ for the function induced

by g on P, as well as on the P-names and P ∗Q
∼
. We also remind the reader of the

standard fact that if ĝ is an automorphism of a forcing P ∗ Q
∼

and (p, r) � φ(τ
∼
),

then ĝ(p, r) � φ(ĝ(τ
∼
)).

Proof (of Claim 4).

a, By clause (b), P is (< κ)-complete, hence it preserves cardinals and cofi-
nalities ≤ κ. The rest should be straightforward.

b, As ∪
α<δ

Qpα
is ccc, it can be extended to a ccc forcing Qpδ

such that ∪
α<δ

Qpα
�

Qpδ
and �Qpδ

MAℵ1
. As the union of the R

∼pα

is algebraically independent,

we can extend it to a transcendence basis for the reals.
c, Letting Qδ = ∪

α<δ
Qpα

, obviously Qδ is ccc. In order to show that �Qδ

MAℵ1
, it’s enough to show that for forcing notions of cardinality ℵ1 in

V Qδ . As ℵ2 ≤ cf(δ), the names for a given ccc forcing in V Qδ and ℵ1-
many of its dense subsets are already Qα-names for some α < δ, and as
�Qα

MAℵ1
, we’re done. Similarly, every Qδ-name for a real is already a

Qα-name for some α < δ, hence ∪
α<δ

R
∼pα

is a Qδ-name of a transcendence

basis.
d, Let G ⊆ P be generic over V ; we shall argue in V [G]. Given I = {qα : α <

ω1} ⊆ Q, as P is (< κ)-complete, it doesn’t add new sequences of ordinals
of length ω1, hence I ∈ V . For every p ∈ P, there is some q ∈ P above p
such that I ⊆ Qq. Therefore, there is some p ∈ G such that I ⊆ Qp. As
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Qp is ccc, there are two elements of I that are compatible in Qp, and hence
they’re compatible in Q. It follows that Q is ccc. By a similar density
argument, for every α < λ, there is some p ∈ G such that α ∈ Qp, hence λ
is the underlying set of elements of Q.

e, As before, we shall argue in V [G] where G ⊆ P is generic over V . The
algebraic independence of R

∼
follows from G being directed. As for the

maximality of R
∼
, as before, suppose that r

∼
is a Q-name for a real. Then

by a similar argument as in clause (d), there is p ∈ G such that r
∼

is a

Qp-name. As R
∼p

is a Qp-name of a transcendence basis, we’re done.

f, This is straightforward. Note that the claim is that ĝ maps the name R
∼

to

itself, that is, p � ”τ
∼
∈ R

∼
” iff ĝ(p) � ”ĝ(τ

∼
) ∈ R

∼
”. In fact, for p ∈ P and τ

∼
we have that τ

∼
is a member of Rp

∼
iff ĝ(τ

∼
) is a member of Rĝ(p)

∼
.

�
Definition/Observation 5. Let V1 be the model HOD(R<κ ∪ {R

∼
} ∪ V ) inside

V
P∗Q

∼ (note that this means that if G ⊆ P ∗ Q
∼

is generic over V , then R
∼

above is

interpreted as R
∼
[G]); then V1 is a model of ZF + DC<κ with the same reals as

V
P∗Q

∼. In particular, V1 contains a transcendence basis for the reals (using Claim
4(e)). �

We shall obtain the desired result by proving that there is no well ordering
of the reals in V1. Before that, we shall prove our main amalgamation claim,
towards which we mention some basic definitions and facts regarding amalgamation:
Suppose that P0,P1,P2 are forcing notions and fl : P0 → Pl (l = 1, 2) are complete
embeddings. The amalgamation of P1 and P2 over P0, denoted P1 ×f1,f2 P2, is the
set {(p1, p2) ∈ P1×P2 : (∃p ∈ P0)(p �P ”p1 ∈ P1/f1(P0)∧p2 ∈ P2/f2(P0)”)} ordered
in the natural way. If f1 and f2 are the identity mappings, we shall denote this by
P1 ×P0

P2. We shall use the fact that forcing with P1 ×P0
P2 is the same as forcing

with P0 ∗ ((P1/P0)× (P2/P0)). We shall also use the fact that MAℵ1
implies that

every ccc forcing is Knaster and that being Knaster is preserved under products. As
a corollary, if P0,P1,P2 are ccc and �P0

”MAℵ1
”, then the amalgamation P1×P0

P2

is ccc. We refer the reader to [RS04] for more information on this subject. We shall
now turn to the proof of the main amalgamation claim:

Claim 6 (Main amalgamation claim). (A) implies (B) where:

A, a, Q0 �Ql (l = 1, 2).

b, �Ql
”B
∼ l

= {rl,i
∼

: i < nl} is algebraically independent over RV Q0
.

c, Q = Q1 ×Q0
Q2.

B, �Q ”B1
∼

∪B2
∼

is algebraically independent over RV Q0
.

Proof. Assume towards contradiction that there is a counterexample to the claim.
As forcing with Q is the same as forcing with Q0∗((Q1/Q0)×(Q2/Q0)), if there is a
counterexample to the claim, then by working in V Q0 we obtain a counterexample
where Q0 is trivial and Q = Q1 × Q2. Therefore, we may assume wlog that Q =
Q1 ×Q2 and Q0 is trivial. We may also assume wlog that it’s forced by Q that r̄1

∼
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and r̄2
∼

form a counterexample (if (q1, q2) ∈ Q1 × Q2 forces that r̄1
∼

and r̄2
∼

form a

counterexample, then we can replace Ql by Ql � ql for l = 1, 2).

Subclaim. We may assume wlog that Q1 and Q2 are Cohen forcing.

Proof of Subclaim. Suppose that x̄ = (Q1,Q2, r̄1
∼
, r̄2
∼
) form a counterexample to

the amalgamation claim; we shall construct a counterexample x̄′ = (Q′
1,Q

′
2, r̄

′
1
∼
, r̄′2
∼
)

where Q′
1,Q

′
2 are Cohen forcing. As x̄ is a counterexample to the claim, there is

a nontrivial polynomial P = P (x0, ..., xn1−1, y0, ..., yn2−1) with coeficients in RV

and a condition (p1, p2) ∈ Q1 × Q2 such that (p1, p2) �Q1×Q2
”P (r̄1

∼
, r̄2
∼
) = 0”. It’s

now possible to choose ( ¯p1,n, ¯p2,n, ¯a1,n, ¯a2,n) by induction on n < ω such that the
following conditions hold:

a, ¯pl,n = (pl,n,ν : ν ∈ ωn) (l = 1, 2).
b, Each pl,n,ν is a condition in Ql (l = 1, 2).
c, If n = m+ 1, l ∈ {1, 2} and ν ∈ ωn then pl,m,ν�m ≤ pl,n,ν .
d, ¯al,n = (a−l,n,η,i, a

+
l,n,η,i : η ∈ ωn, i < nl).

e, a−l,n,η,i and a+l,n,η,i are rationals such that a+l,n,η,i − a−l,n,η,i <
1
2n .

f, pl,n,η �Ql
” ∧

i<nl

a−l,n,η,i < rl,i
∼

< a+l,n,η,i”.

g, If n = m+ 1, ρ ∈ ωm, l ∈ {1, 2}, ((ai, bi) : i < nl) is a sequence of pairs of
rationals such that ai < bi for i < nl and pl,m,ρ �Ql

”¬( ∧
i<nl

ai < rl,i
∼

< bi)”,

then for some k < ω, pl,n,ρ̂(k) �Ql
” ∧

i<nl

ai < rl,i
∼

< bi”.

h, Moreover, we have ai < a−l,n,ρ̂(k),i < a+l,n,ρ̂(k),i < bi.

i, Moreover, if n = m + 1 and ν1, ν2 ∈ ωm, then for some k1 and k2,
letting ρl = νl̂(kl) (l = 1, 2) we have: For all x1, ..., xn1

, y1, ..., yn2
, if

∧
i<n1

a−l,n,ρ1,i
< xi < a+l,n,ρ1,i

and ∧
j<n2

a−l,n,ρ2,j
< yj < a+l,n,ρ2,j

then − 1
2n <

P (x1, ..., xn1−1, y1, ..., yn2−1) <
1
2n .

j, The a−l,n,η,i are increasing with η and the a+l,n,η,i are decreasing with η.

The induction is straightorward where for clause (i) we use the fact that (p1, p2)
�Q1×Q2

”P (r̄1
∼
, r̄2
∼
) = 0”.

For l = 1, 2 we define the following objects:

a, Q′
l = (ω<ω,≤) (where ≤ is the usual inclusion for functions).

b, ηl
∼

is the name for the generic real of Q′
l.

c, For i < nl, r
′
l,i
∼

is the unique real in ∩
n<ω

(a−l,n,ηl�n,i
∼

, a+l,n,ηl�n,i
∼

).

Now Q′
l are equivalent to Cohen forcing, and by clause (i) of the induction,

�Q′
1×Q′

2
”P (r′1

∼
, r′2
∼
) = 0”. Therefore, in order to prove the subclaim, it suffices

to show that �Q′
l
”r′l,1

∼
, ..., r′l,n1−1

∼
are algebraically independent over RV ”. As-

sume towards contradiction that there is some η ∈ Q′
l and a nontrivial polynomial

P ′
l (x0, ..., xnl−1) such that η �Q′

l
”P ′

l (r
′
l

∼
) = 0”. By the assumption on (Ql, rl

∼
),

letting n = lg(η), pl,n,η �Ql
”P ′

l (rl∼
) 
= 0”. Let Gl ⊆ Ql be generic over V such that

pl,n,η ∈ Gl, so wlog P
′
l (rl∼

[Gl]) > 0. By continuity, there are rationals ai < bi (i < nl)
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such that V [G] |= ”for every x0, ..., xnl−1, ∧
i<nl

ai < xi < bi → P ′
l (x0, ..., xnl−1) > 0

and rl,i
∼
[Gl] ∈ (ai, bi)”. Therefore, the first part of the statement holds in V and

there is some q ∈ Gl such that pl,n,η ≤ q and q forces the second part of the
statement. In particular, pl,n,η �Ql

”¬( ∧
i<nl

ai < rl,i
∼

< bi)”. By clause (g) of the

induction, there is some k < ω such that pl,n+1,η̂(k) �Ql
” ∧

i<nl

ai < rl,i
∼

< bi” and

ai < a−l,n+1,η̂(k),i < a+l,n+1,η̂(k),i < bi. Now η̂(k) is a condition in Q′
l that forces

in Q′
l that rl,i

∼
′ ∈ (ai, bi) for all i < nl. It follows that η̂(k) forces in Q′

l that

P ′
l (rl,0

∼
′, ..., rl,nl−1

∼
′) > 0, contradicting the choise of η and P − l′. It follows that

�Q′
l
”r′l,1

∼
, ..., r′l,n1−1

∼
are algebraically independent over RV ”, which completes the

proof of the subclaim. �
We shall now return to the proof of the main amalgamation claim:
Let χ ≥ ℵ1 be large enough and let N be a countable elementary submodel of

(H(χ),∈) such that Ql, r̄l
∼

∈ N (l = 1, 2). As Ql is Cohen, there is a Ql-name

ηl
∼

for a Cohen real over V that generates the generic for Ql. For each l ∈ {1, 2}
and i < nl there is a Borel function Bl,i such that rl,i

∼
= Bl,i(ηl

∼
); we may assume

that the Bl,is belong to N as well. Let η′1 ∈ V be Cohen over N , let G2 ⊆ Q2

be generic over V and let η2 = η2
∼
[G2]. η2 is Cohen over V and is also generic

over N [η′1]. Therefore, (η′1, η2) is generic for Q1 × Q2 over N . As it’s forced by
Q1 ×Q2 over V that r̄1

∼
ˆr̄2
∼

is a counterexample, there is a polynomial P witnessing

this, i.e. V |= ” �Q1×Q2
”P (...,B1,l(η

′
1
∼
), ...,B2,l(η2

∼
), ...) = 0””. By absoluteness,

the same stetement holds in N . By the genericity over N of (η′1, η2), N [η′1, η2] |=
P (...,B1,l(η

′
1), ...,B2,l(η2), ...) = 0. Therefore, there is p2 ∈ G2 ⊆ Q2 such that

N [η′1] |= ”p2 �Q2
”r̄2
∼

is not algebraically independent over RV , as witnessed by

(B1,l(η
′
1) : l < n1)””, and by absoluteness, the same holds in V . This contradicts

assumption (A)(b) and completes the proof of the claim. �
Before proving the relevant conclusion for P, we need the following algebraic

observation:

Observation 7. Let p1, p2 ∈ P and suppose that p1 ≤ p2. Denote Qpl
by Ql and

Rpl

∼
by Rl

∼
(l = 1, 2). Then �Q2

”R2
∼

\R1
∼

is algebraically independent over RV Q1
”.

Proof. Suppose towards contradiction that there is some q ∈ Q2 and r0
∼
, ..., rn2−1

∼
(with no repetition) such that q �Q2

”r0
∼
, ..., rn2−1

∼
∈ R2

∼
\ R1

∼
are not algebraically

independent over RV Q1
”. By increasing q if necessary, we may assume wlog that

there is a nontrivial polynomial P (x0, ..., xn2−1) over RV Q1
such that

q �Q2
”P (r0

∼
, ..., rn2−1

∼
) = 0”. Therefore, there are Q1-names of reals s0

∼
, ..., sn1−1

∼
and a polynomial Q(x0, ..., xn2−1, y0, ..., yn1−1) over the rationals such that q �Q2

”Q(x0, ..., xn2−1, s0
∼
, ..., sn1−1

∼
) = P (x0, ..., xn2−1)”. Recalling that R1

∼
is a Q1-name

of a transcendence basis over the rationals, then by increasing q if necessary, there
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are Q1-names of reals t0
∼
, ..., tn0−1

∼
such that q �Q2

”t0
∼
, ..., tn0−1

∼
∈ R1

∼
(with no

repetition)” and q �Q2
”s0
∼
, ..., sn1−1

∼
are algebraic over Q[t0

∼
, ..., tn0−1

∼
]” (here Q de-

notes the field of rational numbers). It follows that q �Q2
”{t0

∼
, ..., tn0−1

∼
, r0
∼
, ..., rn2−1

∼
}

⊆ R2
∼

is not algebraically independent over the rationals”. By the choice of the ti
∼
s

and the ri
∼
s, q �Q2

”t0
∼
, ..., tn0−1

∼
, r0
∼
, ..., rn2−1

∼
are without repetition”. Together,

we get a contradiction to the definition of the conditions in P and the fact that
p2 ∈ P. �

Conclusion 8. Suppose that p1, p2 ∈ P such that p1 ≤ p2. Let g be a permutation
of λ such that g � up1

= id and g′′(up2
)∩up2

= up1
, and let p3 = ĝ(p2). Then there

is q ∈ P such that p2, p3 ≤ q and Qp2
×Qp1

Qp3
�Qq.

Proof. Let Q = Qp2
×Qp1

Qp3
. As Qp1

is ccc and �Qp1
”MAℵ1

+ Qp2
/Qp1

|=
ccc+Qp3

/Qp1
|= ccc”, it follows that Q is ccc (see e.g. [HwSh1] for details). By the

previous observation, for l = 2, 3, �Qpl
”Rpl

∼
\Rp1

∼
is algebraically independent over

RV Qp1 ”. Therefore, by Claim 6, �Q ”(Rp2

∼
\Rp1

∼
)∪ (Rp3

∼
\Rp1

∼
) is algebraically inde-

pendent over RV Qp1 ”. It follows that �Q ”Rp2

∼
∪Rp3

∼
= Rp1

∼
∪(Rp2

∼
\Rp1

∼
)∪(Rp3

∼
\Rp1

∼
)

is algebraically independent over the rationals” (recall that if {α0, ..., αn−1} are al-
gebraically independent over the rationals and {β0, ..., βm−1} are algebraically inde-
pendent over a field F containing Q∪{α0, ..., αn−1}, then {α0, ..., αn−1, β0, ..., βm−1}
are algebraically independent over the rationals). By Hypothesis 1, there is a ccc
forcing Qq such that Q � Qq, �Qq

MAℵ1
and |Qq| = uq for some uq ∈ [λ]<κ. As

�Qq
”Rp2

∼
∪Rp3

∼
are algebraically independent over the rationals”, there is a set Rq

∼
of Qq-names of reals such that Rp2

∼
∪Rp3

∼
⊆ Rq

∼
and �Qq

”Rq
∼

is a transcendence basis

for the reals”. Now let q = (uq,Qq, Rq
∼
); it’s easy to verify that q is as required. �

Recalling Observation 5, we shall complete the proof of the main result of the
paper by proving the following claim:

Claim 9. There is no well-ordering of the reals in V1.

Proof. Assume towards contradiction that there are (p1, r1) ∈ P∗Q
∼
such that, over

V , (p1, r1) �P∗Q
∼

”f
∼

is a one-to-one function from R to Ord” and such that f
∼

is

definable via a formula φ from R
∼

and a sequence (ηε
∼

: ε < ε(∗)) where ε(∗) < κ

and wlog each η
∼ε

is a Qp1
name for a real (by a similar argument as in Claims 4(d)

and 4(e), we can always extend p1 to make this true). We shall apply Claim 4(f)
and the remark following it throughout the proof. Choose (p2, r2) ≥ (p1, r1) and a

name of a real r
∼
such that (p2, r2) �P∗Q

∼
”r
∼
∈ RV Qp2 \ RV Qp1 ”, wlog r2 ∈ Qp2

, and

by extending the condition if necessary, we may assume wlog that (p2, r2) forces a
value γ to f

∼
(r
∼
).

Let g be a permutation of λ such that g � up1
= id and g′′(up2

) ∩ up2
= up1

.
We shall denote both of the induced automorphisms on P and Q by ĝ. Clearly,

Sh:1093
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ĝ(p1) = p1. Let p3 = ĝ(p2) and r3 = ĝ(r2). By the previous claims, there is
q ∈ P such that p2, p3 ≤ q and Qp2

×Qp1
Qp3

� Qq, and by the construction of the

amalgamation, there is r ∈ Qq above r2 and r3. As �P∗Q
∼
”RV Qp2 ∩RV Qp3 = RV Qp1 ”,

it follows that (q, r) �P∗Q
∼
”r
∼

= g(r

∼
)”. As (p2, r2) ≤ (q, r), (q, r) �P∗Q

∼
”f
∼
(r
∼
) = γ”.

Recalling that f
∼

is forced to be injective, we shall arrive at a contradiction by

showing that (q, r) �P∗Q
∼

”f
∼
(ĝ(r

∼
)) = γ”. It’s enough to show that the statement

is forced by (p3, r3) = (ĝ(p2), ĝ(r2)), and in order to show that, it suffices to show
that f

∼
= ĝ(f

∼
). Recalling that each ηε

∼
in the definition of f

∼
is a Qp1

-name and that

g is the identity on up1
, it follows that ĝ(ηε

∼
) = ηε

∼
. By Claim 4(f), R

∼
is preserved

by ĝ. As f
∼
is definable from R

∼
and (ηε

∼
: ε < ε(∗)), it follows that ĝ(f

∼
) = f

∼
. This

completes the proof of the claim. �
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