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We show that if cf(2ℵ0 ) = ℵ1, then any nontrivial ℵ1-closed forcing notion of size ≤ 2ℵ0

is forcing equivalent to Add(ℵ1, 1), the Cohen forcing for adding a new Cohen subset of
ω1. We also produce, relative to the existence of suitable large cardinals, a model of ZFC
in which 2ℵ0 = ℵ2 and all ℵ1-closed forcing notion of size ≤ 2ℵ0 collapse ℵ2, and hence
are forcing equivalent to Add(ℵ1, 1). These results answer a question of Scott Williams
from 1978. We also extend a result of Todorcevic and Foreman–Magidor–Shelah by
showing that it is consistent that every partial order which adds a new subset of ℵ2,
collapses ℵ2 or ℵ3.

Keywords: Tree specialization; Arosiszajn trees; collapsing cardinals; supercompact car-
dinals.
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1. Introduction

For an infinite cardinal κ, let Add(κ, 1) denote the Cohen forcing for adding a new
Cohen subset of κ; thus conditions in Add(κ, 1) are partial functions p : κ→ {0, 1}
of size less than κ, ordered by reverse inclusion. The forcing is cf(κ)-closed and
satisfies (2<κ)+-c.c., in particular, if κ is regular and 2<κ = κ, then it preserves all
cardinals.

∗Corresponding author.

2050023-1

Sh:1120

https://dx.doi.org/10.1142/S0219061320500233


December 16, 2020 15:26 WSPC/S0219-0613 153-JML 2050023

M. Golshani & S. Shelah

It is well known that if the continuum hypothesis (CH), holds, then any ℵ1-
closed forcing notion of size continuum is forcing equivalent to Add(ℵ1, 1). In [19]
(see also [20]), Williams asked if the converse is also true, i.e. if CH follows from the
assumption “any ℵ1-closed forcing notion of size continuum is forcing equivalent
to the Cohen forcing Add(ℵ1, 1)”. We will show that cf(2ℵ0) = ℵ1 is sufficient to
conclude that all ℵ1-closed forcing notions of size continuum are forcing equivalent
to Add(ℵ1, 1). Since cf(2ℵ0) = ℵ1 is consistent with ¬CH, this gives a negative
answer to Williams question.

Theorem 1.1. Assume cf(2ℵ0) = ℵ1. Then any nontrivial ℵ1-closed forcing notion
of size ≤ 2ℵ0 is forcing equivalent to Add(ℵ1, 1).

Remark 1.2. (1) We can replace ℵ1, 2ℵ0 by κ = μ+, 2μ, respectively, with cf(2μ) =
κ; or by κ, 2μ, respectively, if κ is weakly inaccessible, μ < κ, 2μ = 2<κ and
cf(2μ) = κ.

(2) If 2ℵ0 = 2ℵ1 , then Add(ℵ2, 1) is ℵ1-closed of size continuum, but it is not forcing
equivalent to Add(ℵ1, 1).

On the other hand, it is not difficult to prove the consistency of “2ℵ0 = ℵ2

and there exists a nontrivial ℵ1-closed (but not ℵ2-closed) forcing notion of size ℵ2

which preserves all cardinals” (see [9]). So, it is natural to ask if we can have the
same result as in Theorem 1.1 with 2ℵ0 being regular. We show that this is indeed
the case, if we assume the existence of large cardinals.

Recall that an uncountable cardinal κ is supercompact if for every cardinal λ > κ

there exists a nontrivial elementary embedding j : V → M with critical point κ
such that j(κ) > λ and λM ⊆ M . It is 2-Mahlo if {μ < κ : μ is a Mahlo cardinal}
is stationary in κ.

Theorem 1.3. Assume κ is a supercompact cardinal and λ > κ is a 2-Mahlo
cardinal. Then there is a generic extension of the universe in which the following
hold :

(a) 2ℵ0 = κ = ℵ2;
(b) 2ℵ1 = λ = ℵ3;
(c) Any ℵ1-closed forcing notion of size ≤ ℵ2 collapses ℵ2 into ℵ1, in particular it

is forcing equivalent to Add(ℵ1, 1).

Following [4], let Todorcevic’s maximality principle be the assertion: “every par-
tial order which adds a fresh subset of ℵ1, collapses ℵ1 or ℵ2”, where by a fresh
subset of a cardinal κ we mean a subset of κ which is not in the ground model but
all of its proper initial segments are in the ground model.

In [16], Todorcevic showed that if 2ℵ0 = ℵ2 and every ℵ1-tree of size ℵ1 is
special, then Todorcevic’s maximality principle holds.

By results of Baumgartner [2] and Todorcevic [15], “2ℵ0 = ℵ2 + every ℵ1-tree
of size ℵ1 is special” is consistent, and hence Todorcevic’s maximality principle is
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consistent as well. On the other hand, Foreman–Magidor–Shelah [8] showed that
PFA implies the same conclusion. In [18], Viale and Weiss introduced the principle
guessing model principle (GMP) and showed that it follows from PFA. Cox and
Krueger [3], introduced the stronger principle indestructible GMP (IGMP) and
showed that PFA implies IGMP which in turn implies Todorcevic’s maximality
principle. On the other hand, in [4], they showed that Todorcevic’s maximality
principle does not follow from GMP.

We extends the above result of Todorcevic to higher cardinals, and prove the
following theorem.

Theorem 1.4. Assume κ is a supercompact cardinal and λ > κ is a 2-Mahlo
cardinal. Then there is a generic extension of the universe in which the following
hold :

(a) 2ℵ0 = ℵ1;
(b) κ = ℵ2;
(c) 2ℵ1 = λ = ℵ3;
(d) Every partial order which adds a fresh subset of ℵ2, collapses ℵ2 or ℵ3.

Remark 1.5. In Theorems 1.3 and 1.4, we can replace the cardinals ℵ0,ℵ1 and
ℵ2 by the cardinals η, η+ and η++, respectively, where η is a regular cardinal less
than κ.

The above result is related to Foreman’s maximality principle [7], which asserts
that any nontrivial forcing notion either adds a new real or collapses some cardinals.

This paper is organized as follows. In Sec. 2, we prove Theorem 1.1. Sections 3
and 4 are devoted to some preliminary results which are then used in Sec. 5 for the
proof of Theorem 1.3. In Sec. 6, we prove Theorem 1.4.

To avoid trivialities, by a forcing notion we always mean a nontrivial separative
forcing notion. We use � for the equivalence of forcing notions, so

P � Q ⇔ RO(P) is isomorphic to RO(Q),

where RO(P) denotes the Boolean completion of P. Also P � Q means that P is a
regular sub-forcing of Q.

2. A Negative Answer to Williams Question When the Continuum
is Singular

In this section, we prove Theorem 1.1. In [9], it is shown that if Q is any ℵ1-closed
forcing notiona of size ≤ 2ℵ0 and if λ is the least cardinal such that forcing with Q
adds a fresh λ-sequence of ordinals, then forcing with Q collapses 2ℵ0 into λ, and
hence, if in addition λ = ℵ1, then Q � Add(ℵ1, 1). Thus to prove Theorem 1.1, it
suffices to show that if cf(2ℵ0) = ℵ1, then any ℵ1-closed forcing notion Q of size at

aIn fact being ω + 1-strategically closed is sufficient.
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most 2ℵ0 adds a fresh set of ordinals of size ℵ1. We give a direct proof of this fact
which is of its own interest, and avoids the use of the results of [9].

If 2ℵ0 = ℵ1, then the result is known to hold, so assume that ℵ1 < 2ℵ0 and
cf(2ℵ0) = ℵ1. Let Q be a nontrivial ℵ1-closed forcing notion of size ≤ 2ℵ0 . We are
going to show that Q is forcing equivalent to Add(ℵ1, 1).

Natation 2.1. For a forcing notion P and a condition p ∈ P, let P ↓ p denote the
set of all conditions in P which extend p; i.e. P ↓ p = {q ∈ P : q ≤P p}.

Let 〈Qi : i < ω1〉 be a ⊆-increasing and continuous sequence of subsets of Q
such that Q0 = ∅, for all i < ω1, |Qi| < 2ℵ0 , and Q =

⋃
i<ω1

Qi.

Lemma 2.2. For every i < ω1 and every p ∈ Q, there exists q ≤Q p such that
there is no r ∈ Qi with r ≤ q.

Proof. Let A be a maximal antichain in Q below p of size 2ℵ0 , which exists as Q
is nontrivial and ℵ1-closed. As |Qi| < 2ℵ0 , we can find q ∈ A such that (Q ↓ q) ∩
Qi = ∅. Then q is as required.

We now define by induction on i < ω1 a sequence p̄i such that:

(1) p̄i = 〈p̄i(η) : η ∈ (i+1 (2ℵ0))〉 is a maximal antichain in Q;
(2) if j < i and η ∈ (i+1(2ℵ0)), then p̄i(η) ≤Q p̄j(η � (j + 1));
(3) if η ∈ (i+1(2ℵ0)), then there is no member of Qi which is below p̄i(η).

i = 0: Let p̄0 = 〈p̄0(η) : η ∈ (1(2ℵ0))〉 be any maximal antichain in Q. Note that
clauses (2) and (3) above are vacuous as Q0 is empty.

i > 0: For every ν ∈ (i(2ℵ0)) set p̄1
i,ν = 〈p̄j(ν � (j + 1)) : j < i〉. Then, by the

induction hypothesis, p̄1
i,ν is a countable decreasing sequence of conditions

in Q, and so the set

P2
i,ν = {q ∈ Q : j < i⇒ q ≤ p̄j(ν � (j + 1))}

is nonempty. Let

P3
i,ν = {q ∈ P2

i,ν : ∀ z ∈ Qi[z �Q q and moreover z � “q ∈ ĠQ”]}.
P3

i,ν is easily seen to be a dense subset of P2
i,ν , hence, we can find a maximal

antichain, say P̄i,ν = {pi,ν(α) : α < 2ℵ0}, in it. For η ∈ (i+1(2ℵ0)) set
p̄i(η) = pi,η � i(η(i)). Then it is easily seen that p̄i = 〈p̄i(η) : η ∈ (i+1(2ℵ0))〉
is as required.

Let v∼ ∈ V Q be the Q-name

v∼ = {〈(ǰ, η̌(ǰ)), p̄i(η)〉 : j ≤ i < ω1 and η ∈ (i+1(2ℵ0))}.

Claim 2.3. (a) For every i < ω1 and η ∈ (i+1(2ℵ0)), p̄i(η) �“η = v∼ � i+ 1”.
(b) 1Q �“v∼ ∈ (ω1(2ℵ0))”.
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Proof. (a) is clear from the definition of v∼.
(b) Let G be Q-generic over V . Then for each i < ω1 we can find a unique

ηi ∈ (i+1(2ℵ0)) such that p̄i(ηi) ∈ G. If j < i, then p̄i(ηi) ≤Q p̄j(ηi � (j+ 1)), and so
ηj = ηi � j + 1. It then immediately follows that

v∼[G] = {(i, ηi(j)) : j ≤ i < ω1} =
⋃

i<ω1

{η ∈ (i+1(2ℵ0)) : p̄i(η) ∈ G}

is a function from ω1 into 2ℵ0 .

We now define a Q-name τ∼ for a function from ω1 into 2 as follows: let 〈ρα :
α < 2ℵ0〉 be an enumeration of ω2 with no repetitions. Then let τ∼ be such that

�Q τ∼(ω · i+ n) = ρ v∼(i)(n).

Lemma 2.4. �Q“τ∼ ∈ (ω12) and τ∼ /∈ V̌ ”.

Proof. Let q1 ∈ Q. Then for some i < ω1, q1 ∈ Qi. Since 〈p̄i(η) : η ∈ (i+1(2ℵ0))〉
is a maximal antichain, we can find η ∈ (i+1(2ℵ0)) such that q1 is compatible with
p̄i(η). But q1 �“p̄i(η) ∈ ĠQ”, so there is q2 ≤ q1 such that q2 is incompatible
with p̄i(η). But again as 〈p̄i(η) : η ∈ (i+1(2ℵ0))〉 is a maximal antichain, there
exists ρ ∈ (i+1(2ℵ0)) such that q2 and p̄i(ρ) are compatible. Let q3 ≤ q2, p̄i(ρ), and
let j ≤ i be maximal such that η � j = ρ � j and η � (j + 1) �= ρ � (j + 1). Then
q3, p̄i(η) are compatible with q1, but they force contradictory information about
τ∼ � [ω · j, ω · j + ω). The result follows immediately.

Lemma 2.5. There exists a dense subset Q′ of Q which is the union of ℵ1-many
maximal antichains 〈I∗i : i < ω1〉 of Q.

Proof. For any p ∈ Q, by the previous lemma, p does not force any value for τ∼,
hence there are ordinal i < ω1 and conditions p0, p1 ≤ p such that pl �“τ∼(i) = l”,
l = 0, 1. Hence, we can define by recursion a sequence

〈〈qp,η , ip,η, σp,η〉 : η ∈ (<ω2)〉
such that:

(1) qp,〈 〉 = p;
(2) ν � η ⇒ qp,η ≤ qp,ν ;
(3) ip,η is the least ordinal i less than ω1 such that qp,η does not decide τ∼(i);
(4) qp,η �“∀j < ip,η, τ∼(ip,η � j) = σp,η(j)”.

It is evident that if ν � η, then ip,ν < ip,η.

Claim 2.6. For any p ∈ Q, there exists a perfect subtree Tp of ω2 such that for
some limit ordinal δp and every ρ ∈ Lim(Tp),

⋃
n ip,ρ � n = δp, where Lim(Tp) is the

set of all branches through Tp.
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Proof. For any η ∈ (<ω2) set

δp,η = sup{ip,ν : η � ν ∈ (<ω2)}.
For some η∗, the ordinal δp,η∗ is minimal. δp,η∗ is a limit ordinal of cofinality ℵ0, so
let 〈ηp,m : m < ω〉 be an increasing sequence cofinal in δp,η∗ such that ηp,0 = lh(η∗).
We define hm : m2 → ηp,m2, by induction on m < ω, such that:

(1) hm is 1 − 1;
(2) h0(〈〉) = η∗;
(3) if n < m and η ∈ (m2), then hn(η �n) � hm(η);
(4) if η ∈ (m2), then ip,hm(η) > ηp,m.

Then Tp = {hm(η) : m < ω and η ∈ (m2)} and δp = δp,η∗ are as required.

For each limit ordinal δ < ω1 set

I1
δ = {p ∈ Q : δp = δ}.

Then clearly Q =
⋃{I1

δ : δ is a limit ordinal less than ω1}.

Claim 2.7. Let δ be a countable limit ordinal. Then there exists an antichain
q̄δ = 〈qδ

p : p ∈ I1
δ 〉 such that for each p ∈ I1

δ , q
δ
p ≤ p.

Proof. Let 〈pα : α < αδ ≤ 2ℵ0〉 enumerate I1
δ . We choose, by induction on α, a

pair 〈rα, vα〉 such that:

(1) rα ≤ pα and vα ∈ (δ2);
(2) rα �“τ∼ � δpα = vα;
(3) α �= β ⇒ vα �= vβ .

Suppose α < αδ and we have defined 〈rβ , vβ〉 for all β < α as above. We define
〈rα, vα〉.

For every ρ ∈ Lim (Tpα), the sequence 〈qp,ρ � n : n < ω〉 is a decreasing chain
of conditions in Q, and hence there is a condition q∗ρ,α which extends all of them.
We may further suppose that it forces a value vρ,α for τ∼ � δ, where δ = δpα . Also
note that by the choice of 〈qρ,α : ρ ∈ (<ω2)〉, for ρ1 �= ρ2 in Lim (Tpα), we have
vρ1,α �= vρ2,α. Now {vβ : β < α} ⊆ δ2, hence for some ρ = ρα ∈ Lim (pα), we have
that vρ,α /∈ {vβ : β < α}. Let rα = qρα,α and vα = vρα,α.

Now, for each limit ordinal δ < ω1 let Iδ be a maximal antichain of Q, such that
Iδ ⊇ {qp,δ : p ∈ I1

δ }, and let Q′ =
⋃{Iδ : δ is a countable limit ordinal}. Then Q′ is

as required which completes the proof of Lemma 2.5.
As each I∗i is a maximal antichain in Q′ and hence also in Q, it can easily seen

that there are p̄∗i , i < ω1, such that:

(1) p̄∗i = 〈p∗η : η ∈ (i+1(2ℵ0))〉 is a maximal antichain of Q′ (and hence of Q);
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(2) if j < i and η ∈ (i+1(2ℵ0)), then p∗η ≤ p∗η � (j+1);
(3) if i = j + 1 and η ∈ (i+1(2ℵ0)), then p∗η is stronger than some condition in I∗i .

Let

Q′′ = {p∗η : ∃i < ω1, η ∈ (i+1(2ℵ0))}.
Lemma 2.8. Q′′ is a dense subset of Q.

Proof. Let p ∈ Q. By Lemma 2.5, we can find some i < ω1 and some p1 ∈ I∗i ⊆ Q′

such that p1 ≤ p. By above (3), each p∗η, η ∈ (i+1(2ℵ0)), is stronger than some
condition in I∗i . If there is no η with p∗η ≤ p1, then we contradict with above (1).
The result follows immediately.

Finally note that the map

η �→ p∗η

defines an isomorphism between a dense subset of Col(ℵ1, 2ℵ0) and Q′′. It follows
that

Q � Q′′ � Col(ℵ1, 2ℵ0) � Add(ℵ1, 1).

The theorem follows.

3. A Note on ℵ1-Closed Forcing Notions of Size Continuum

In this section, we present a result about ℵ1-closed forcing notions of size continuum
which will be used in Sec. 5 for the proof of Theorem 1.3.

Assume that 2ℵ0 = ℵ2 and that R is an ℵ1-closed forcing notions of size contin-
uum which does not collapse ℵ2. It then follows from [9] that the forcing notion R
does not add a fresh sequence of ordinals of size ℵ1 and hence it is ℵ2-distributive.
The following result is proved in [1, Theorem 2.1].

Lemma 3.1. There exists a sequence 〈Tα : α < ℵ2〉 of subsets of R such that :

(1) Each Tα is a maximal antichain in R.
(2) If T =

⋃{Tα : α < ℵ2}, then (T,≥R) is a tree of height ℵ2, where Tα is the αth
level of T .

(3) Each t ∈ T has ℵ2-many immediate successors.
(4) T is dense in R.

We denote the above tree T by T (R), and call it a base tree of R. Note that by
clause (4), R � T (R).

4. Specializing ℵ2-Trees Which Have Few Branches

In this section, we consider trees of size and height κ which have ≤ κ-many branches,
and define a suitable forcing notion for specializing them. As we allow our trees to
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have cofinal branches, we need a slightly different definition of the concept of a
special tree than the usual ones.

Definition 4.1. Let κ = +, where  is a regular cardinal.

(1) A κ-tree is a tree of height and size κ (so we allow the levels of the tree to have
size κ).

(2) Let T be a κ-tree [2]. T is special if there exists a function F : T →  such that
for all x, y, z ∈ T if x ≤T y, z and F (x) = F (y) = F (z), then either y ≤T z or
z ≤T y.

By [2, Theorem 8.1], a κ-special tree has at most κ-many cofinal branches.
Let κ = +, where  is a regular cardinal. Let also θ > κ be large enough regular

and let ≺ be a well ordering of H(θ). Let Λ denote the set of all κ-trees T with at
most κ-many cofinal branches, such that for all t ∈ T, SucT (t), the set of successors
of t in T , has size κ.

We define a map � : Λ → Λ, where to each T ∈ Λ, assigns a subtree T � = �(T )
of T , such that T � is dense in T and it has no cofinal branches. Thus let T ∈ Λ. Let
〈bα : α < κ〉 be the ≺-least enumeration of the cofinal branches through T , and for
each α < κ set

sα = the ≤T -least element of bα

∖ ⋃
β<α

bβ .

Finally, set

T � = {t ∈ T : ¬(∃α, sα <T t ∈ bα)}.
Lemma 4.2. (a) T � has no cofinal branches.

(b) (T �,≥T ) is dense in (T,≥T ) (when considered as forcing notions), in par-
ticular (T �,≥T ) � (T,≥T ).

Proof. (a) Assume not, and let b be a branch through T �. then for some α, b ⊆ bα,

and then clearly b ∩ (T \T �) �= ∅, which is a contradiction.
(b) Let t ∈ T. If t ∈ T �, then we are done; so assume that t /∈ T �. Then

for some α < κ, sα <T t ∈ bα. Let t′ ∈ SucT (t)\⋃
β≤α bβ . Then t′ ∈ T � and

t′ ≥T t.

Lemma 4.3. Assume there exists F : T � →  such that if F (x) = F (y), then x

and y are incomparable in T . Then there exists F ′ : T →  such that F ′ ⊇ F and
F ′ specializes T .

Proof. Define G : (T \T �) →  as follows: Let t ∈ (T \T �). Then for some α < κ,
sα <T t ∈ bα. Set G(t) = F (sα). It is now easily seen that F ′ = F ∪ G is as
required.

Thus, in order to define a forcing notion which specializes T , it suffices to define
a forcing notion which adds a function F : T � →  as in Lemma 4.3.
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Definition 4.4. The forcing notion Q(T �), for specializing T �, is defined as
follows:

(a) A condition in Q(T �) is a partial function f : T � →  such that:

(1) dom(f) has size < ;
(2) if x <T y and x, y ∈ dom(f) then f(x) �= f(y).

(b) f ≤Q(T �) g if and only if f ⊇ g.

It is clear that the forcing notion Q(T �) is -directed closed. But in general,
there is no guarantee that the forcing Q(T �) satisfies the κ-c.c., or preserves all
cardinals, even if we assume GCH (see [5, 14]).

Lemma 4.5. Forcing with Q(T �) ∗ T collapses κ into .

Proof. By Lemma 4.2(b), Q(T �) ∗ T � Q(T �) ∗ T �. Let G be Q(T �)-generic over
V and H be T �-generic over V [G]. Let also F =

⋃{f : f ∈ G}. Then F : T � → 

and for all x <T y in T ∗ we have F (x) �= F (y). Let b ∈ V [G ∗ H ] be a cofinal
branch in T �. Then F � b : b →  is an injection, and |b| = κ. Hence, κ is collapsed
into .

Given an infinite cardinal κ, let Add(ℵ0, κ) denote the Cohen forcing for adding
κ-many new Cohen reals; thus conditions are finite partial functions p : κ × ω →
{0, 1} ordered by reverse inclusion. The forcing is c.c.c., and hence it preserves all
cardinals and cofinalities.

For our purpose in Sec. 5, we will work with Add(ℵ0, κ)-names of trees, and we
now modify the above results to cover this case.

Assume κ = +, where  is a regular cardinal and let T∼ be an Add(ℵ0, κ)-
name for a κ-tree which is forced to have ≤ κ-many cofinal branches. Let T∼� be
an Add(ℵ0, κ)-name such that it is forced by Add(ℵ0, κ) that “T∼� is the subtree of
T∼ defined using the function �”. We assume, without loss of generality, that it is
forced by Add(ℵ0, κ) that “the set of nodes of T∼� is κ× κ and for each α < κ, the
αth level of T∼� is {α} × κ”. We now define QA(T∼�) ∈ V as follows.

Definition 4.6. (a) A condition in QA(T∼�) is a partial function f : κ×κ→  such
that:

(1) dom(f) is a subset of κ× κ of size < .
(2) If x, y ∈ dom(f) and f(x) = f(y), then �Add(ℵ0,κ)“x and y are incompat-

ible in the tree ordering, x ⊥ y”.

(b) f ≤QA(T∼�) g if and only if f ⊇ g.

Note that we defined the forcing notion QA(T∼�) in V and not in the generic
extension by Add(ℵ0, κ).
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Lemma 4.7. (a) QA(T∼�) is -directed closed.

(b) Let G be QA(T∼�)-generic over V . Then in V [G], there exists a function F :
κ× κ→ , such that for any H which is Add(ℵ0, κ)-generic over V [G], F is a
specializing function for T∼�[H ].

The next lemma can be proved as in Lemma 4.5.

Lemma 4.8. Let T∼ be an Add(ℵ0, κ)-name for a κ-tree which has ≤ κ-many cofinal
branches. Then

�QA(T∼�)∗Add∼ (ℵ0,κ) “forcing with T∼ collapses κ”.

Proof. By Lemma 4.2(b),

(QA(T∼
�) ∗ Add∼ (ℵ0, κ)) ∗ T∼ � (QA(T∼

�) ∗ Add∼ (ℵ0, κ)) ∗ T∼
�,

and hence it suffices to show that

�QA(T∼�)∗Add∼ (ℵ0,κ) “forcing with T∼
� collapses κ”.

Let (G1 ∗ G2) ∗ H be (QA(T∼�) ∗ Add∼ (ℵ0, κ)) ∗ T∼�-generic over V and F =
⋃{f :

f ∈ G1}. By Lemma 4.7, F : κ × κ → , and if T � = T∼�[G2], then for x <T � y,

F (x) �= F (y).
Let b ∈ V [(G1 ∗ G2) ∗ H ] be a cofinal branch of T �. Then F � b : b →  is an

injection, and hence κ is collapsed into .

5. A Negative Answer to Williams Question When the Continuum
is Regular

In this section, we prove Theorem 1.3. In Sec. 5.1, we define the main forcing
construction P and prove some of its basic properties. In Sec. 5.2, we show that
forcing with P preserves κ. Then in Sec. 5.3 more properties of the forcing notion
P are proved and finally in Sec. 5.4 we complete the proof of Theorem 1.3.

5.1. The main forcing construction and its basic properties

In this section, we define the main forcing notion that will be used in the proof
of Theorem 1.3. Let κ be a supercompact cardinal, and let λ > κ be a 2-Mahlo
cardinal. By [12], we may assume that κ is Laver indestructible, i.e. the supercom-
pactness of κ is preserved under κ-directed closed forcing notions, and that GCH
holds at and above κ.

Let Φ : λ→ H(λ) be such that for each x ∈ H(λ),Φ−1(x)∩{β+2 : β is Mahlo}
is unbounded in λ. Such a Φ exists as |H(λ)| = 2<λ = λ and λ is a 2-Mahlo cardinal.

We define, by induction on α ≤ λ, an iteration

P = 〈〈Pα : α ≤ λ〉, 〈Q∼α : α < λ〉〉
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of forcing notions of length λ. Suppose α ≤ λ and we have defined Pβ , for all β < α.
We define Pα as follows.

Definition 5.1. A condition p is in Pα, if and only if p is a function with domain
α such that for every β < α,�β“p(β) ∈ Q∼β”, where:

(1) supp(p) has size less than κ, where supp(p) denotes the support of p.
(2) {β ∈ supp(p) : β ≡ 0 (mod 3) or β ≡ 2 (mod 3)} has size less than ℵ1.

(3) If β < κ and β ≡ 0 (mod 3) or β ≡ 2 (mod 3), then �β “Q∼β = Col∼ (ℵ1,ℵ2+|β|)”.
(4) If β ≥ κ, β ≡ 0 (mod 3) and β is inaccessible, then �β “Q∼β = Add∼ (ℵ1, κ)”.
(5) If β ≥ κ, β ≡ 1 (mod 3) and β−1 is inaccessible, then �β “Q∼β = Col∼ (κ, 2|Pβ|) =

Col∼ (κ, 2|β|)” (as |Pβ| = |β|).
(6) If β ≥ κ, β ≡ 2 (mod 3), β− 2 is inaccessible and if �β “κ = ℵ2” and Φ(β) is a

Pβ ∗ Add∼ (ℵ0, κ)-name for a κ-tree which has ≤ κ-many cofinal branches, then
�β “Q∼β = Q∼A(Φ(β)�)”.b

(7) Otherwise, �β “Q∼β is the trivial forcing notion”.

Also, set P = Pλ.
The next lemma gives some basic properties of the forcing notion P.

Lemma 5.2. (a) P is ℵ1-directed closed, and hence it preserves CH.
(b) If μ ∈ (κ, λ] is Mahlo, then Pμ satisfies the μ-c.c.
(c) Pλ collapses all cardinals in (ℵ1, κ) into ℵ1, so, if κ is not collapsed, then �P

“κ = ℵ2”.
(d) In V P, λ is preserved, but all μ ∈ (κ, λ) are collapsed, so, if κ is not collapsed,

then �P “λ = κ+ = ℵ3”.
(e) �P “2ℵ1 = λ”.

Proof. (a) is clear as all forcing notions considered in the iteration are ℵ1-directed
closed and the support of the iteration is at least countable.

(b) Assume A ⊆ Pμ is a maximal antichain of size μ and let 〈pξ : ξ < μ〉 be an
enumeration of A. Define F : μ→ μ by F (ξ) = the least η such that supp(pξ) � ξ ⊆
η. F is a regressive function on the stationary set X = {ξ < μ : ξ is inaccessible},
and hence F is constant on some stationary subset Y of X . Let η be the resulting
fixed value. So, for all ξ ∈ Y, supp(pξ) � ξ ⊆ η. We may further suppose that if
ξ1 < ξ2 are in Y , then supp(pξ1) ⊆ ξ2.

As Pη has size less than μ, there are ξ1 < ξ2 in Y such that pξ1 � η is compatible
with pξ2 � η. But then in fact pξ1 is compatible with pξ2 and we get a contradiction.

(c), (e) and the fact that forcing with Pλ collapses all cardinals in (ℵ1, κ) into
ℵ1 are clear and the rest of (d) follows from (b). The lemma follows.

bΦ(β)� is defined from Φ(β) as in Sec. 4 using a fixed well ordering of a large initial segment of
the universe.
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5.2. Preservation of κ

In this section, we show that forcing with P preserves κ. Let

G = 〈〈Gα : α ≤ λ〉, 〈Hα : α < λ〉〉
be P-generic over V , i.e. each Gα is Pα-generic over V and Hα is Q∼α[Gα]-generic
over V [Gα].

For each α ≤ λ, we define the forcing notion PU
α ∈ V , the PU

α -name P∼C
α for a

forcing notion, in such a way that:

(a) There are projections χα : Pα → PU
α and πα : PU

α ∗ P∼C
α → Pα.

(b) If GU
α = χα[Gα], for α ≤ λ, then there exists a function Ψ ∈ V [GU

λ ] such that
for each ordinal α = β + 2 > κ, where β is inaccessible, Ψ(α) ∈ V [GU

α ] is a
PC

α ∗ Add∼ (ℵ0, κ)-name such that

Φ(α)[GU
α ∗H ] = Ψ(α)[H ],

for any H which is PC
α ∗ Add∼ (ℵ0, κ)-generic over V [GU

α ]. Further, if Φ(α) is
a Pα ∗ Add∼ (ℵ0, κ)-name for a κ-tree with ≤ κ-many cofinal branches, then in
V [GU

λ ],Ψ(α) is a PC
α ∗ Add∼ (ℵ0, κ)-name for a κ-tree with ≤ κ-many cofinal

branches.
(c) PU

α is κ-directed closed.
(d) For every γ ∈ [α, λ], PU

γ � “P∼C
α is ℵ1-directed closed”.c

Let us first define the forcing notions PU
α and the corresponding projections χα. Let

U = {β < λ : β ≡ 1 (mod 3) and β − 1 is inaccessible}.
For β ∈ U , let QU

β be the term forcing, whose conditions are Pβ-names p∼ such that

�Pβ
“p∼ ∈ Col∼ (κ, 2|β|)”, ordered by p∼ ≤QU

β
q∼ if and only if �Pβ

“p∼ ≤Col∼ (κ,2|β|) q∼”.

Then set PU
α be the < κ-support product of the forcing notions QU

β , where β ∈ U∩α.
Then there is a natural projection χα : Pα → PU

α .
We now define, by induction on α ≤ λ, the PU

α -name P∼C
α and the corresponding

projection πα : PU
α ∗ P∼C

α → Pα. We also inductively verify (d) along the way.

(1) α ≤ κ: Let PC
α to be Pα/χ

−1
α [ĠU

α ]. It is then clear that PC
α � Pα and there exist

a forcing isomorphism πα : PU
α ∗ P∼C

α � Pα. It is also clear that clause (d) holds.

cIt is also possible to define the forcing notions PU
α ∈ V and PC

α ∈ V [GU
α ] directly, by setting

PU
α = {p ∈ Pα : supp(p) ⊆ {β < λ : β ≡ 1 (mod 3)}}

and

PC
α = {p ∈ Pα : supp(p) ⊆ {β < λ : β ≡ 0 (mod 3) or

β ≡ 2 (mod 3)} and p is compatible with GU
α },

where GU
α = Gα ∩ PU

α . We will give a more explicit definition for PC
α , that will be useful in the

proof of Lemma 5.3.
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(2) α = β + 1 > κ, β ≡ 0 (mod 3) and β is inaccessible: Then set

�PU
α

“P∼
C
α � P∼

C
β ∗ Add∼ (ℵ1, κ)”.

By the induction, there is a projection πβ : PU
β ∗ P∼C

β → Pβ . Since PU
α = PU

β ,
and since by clause (d) we can regard each PU

β ∗ P∼C
β -name for an element of

Add(ℵ1, κ) as a Pβ-name, this induces the projection πα : PU
α ∗P∼C

α → Pα, which
is defined by πα(p, ( q∼, r∼)) = (πβ(p, q∼), r∼). It is also clear that clause (d) holds
in this case.

(3) α = β + 1 > κ, β ≡ 1 (mod 3) and β − 1 is inaccessible: Let �PU
β
“P∼C

α =

P∼C
β ”d. In this case PU

α = PU
β × QU

β , and by the induction hypothesis, there is a
projection πβ : PU

β ∗ P∼C
β → Pβ. This induces the projection πα : PU

α ∗ P∼C
α → Pα,

which is defined by πα((p, q∼), r∼) = (πβ(p, r∼), q∼). Again clause (d) is easily
verified.

(4) α = β + 1 > κ, β ≥ κ, β ≡ 2 (mod 3) and β − 2 is inaccessible: Then we may
assume that Φ(β) is a Pβ ∗ Add∼ (ℵ0, κ)-name for a κ-tree which has ≤ κ-many
cofinal branches, as otherwise the forcing at stage β is the trivial forcing and
the result follows from the induction hypothesis. By the induction hypothesis,
we have projections χβ , πβ , and so there exists Ψ(β) ∈ V [GU

β ] as in clause (b)
above. Set

�PU
α

“P∼
C
α � P∼

C
β ∗ Q∼A(Ψ(β)�)”.

By the choice of Ψ(β), it is clear that we have a natural projection πα : PU
α ∗

P∼C
α → Pα, which extends πβ . Clause (d) is easily verified in this case as well.

(4) α = β + 1 is not as above: Then set

�PU
α

“P∼
C
α = P∼

C
β ”.

Set also πα = πβ . It is also clear that clause (d) holds.
(6) α is a limit ordinal: Then set

�PU
α

“P∼
C
α is the countable support iteration of 〈P∼

C
β : β < α〉”.

Note that πα can be defined in a uniform way from πβ ’s, β < α. To be more
precise, let πα : PU

α ∗ P∼C
α → Pα be defined by

πα(p, 〈 q∼β : β < α〉) = 〈πβ(p, q∼β) : β < α〉.
It is evident that πα(1PU

α∗ P∼C
α
) = 1Pα and that πα is order preserving. Now

suppose 〈p, 〈 q∼β : β < α〉〉 ∈ PU
α ∗ P∼C

α , r ∈ Pα and suppose that r ≤ πα(p, 〈 q∼β :
β < α〉) = 〈πβ(p, q∼β) : β < α〉. By 5.1(2), the set

S = {β ∈ supp(r) : β ≡ 0 (mod 3) or β ≡ 2 (mod 3)}

dNote that we can consider P∼C
β as a PU

α -name as well.
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is at most countable. By induction on β ∈ S, we can find (p̄β , q̄∼β) ∈ PU
β ∗ P∼C

β

such that:

(i) πβ(p̄β , q̄∼β) ≤ r � β;
(ii) if β0 < β1 are in S, then p̄β1 ≤ p̄β0 .

Each p̄β , for β ∈ S, is in PU
α , and since it is κ-closed, we can find p̄ ∈ PU

α which
extends all p̄β ’s, β ∈ S. Then (p̄, 〈 q̄∼β : β < α〉) ∈ PU

α ∗ P∼C
α , where for β ∈ α\S,

�PU
β
“ q̄∼β = 1 P∼C

β
”, and it satisfies

πα(p̄, 〈 q̄∼β : β ∈ S〉) = 〈πβ(p̄, q̄∼β) : β < α〉 ≤ r.

Clause (d) follows easily from the induction hypothesis and the fact that PU
β ’s are

κ-directed closed and hence κ-distributive.

Lemma 5.3. For every α ≤ λ, PU
λ � “P∼C

α is κ-c.c.”.

Proof. Let GU
λ be PU

λ -generic over V and for each β < λ let GU
β = GU

λ ∩PU
β . Then

GU
β is PU

β -generic over V . It follows that for any ordinal α = β + 1 > κ, where
β ≡ 2 (mod 3) and β − 2 is inaccessible, we have

V [GU
λ ] |= “PC

α+1 � PC
α ∗ Q∼A(Ψ(α)�)”.

As PU
λ is κ-directed closed and κ is assumed to be Laver indestructible, κ remains

supercompact, and hence weakly compact, in V [GU
λ ].

Working in V [GU
λ ], let F be the weakly compact filter on κ, i.e. the filter on κ

generated by the sets {λ < κ : (Vλ,∈, B ∩ Vλ) |= ψ}, where B ⊆ Vκ and ψ is a Π1
1

sentence for the structure (Vκ,∈, B). Let also S be the collection of F -positive sets,
i.e. S = {X ⊆ κ : ∀B ∈ F , X ∩B �= ∅}.

The proof of the next claim is as in the proof of [10, Lemma 2.13], where the
forcing notions P2

α and P1
α there, are replaced with PC

α and Add(ℵ0, κ).e

Claim 5.4. Work in V [GU
λ ]. Let α ≤ λ. For any sequence 〈qi : i < κ〉 of conditions

in PC
α , there exist a set X ∈ S and two sequences 〈q1i : i ∈ X〉 and 〈q2i : i ∈ X〉 of

conditions in PC
α , such that :

• For all i ∈ X, q1i , q
2
i ≤ qi.

• For all i < j in X, q1i is compatible with q2j , and this is witnessed by a condition
q, such that for every ξ < α, q � ξ � “q(ξ) = q1i (ξ) ∪ q2j (ξ)”.

By Claim 5.4, for every α ≤ λ,

V [GU
λ ] |= “PC

α is κ-c.c.”,

and the lemma follows.

The following is immediate.

eIn [10], only forcing notions for specializing P1
α-names for trees are considered, while in our

forcing, we also consider the Cohen forcing Add(ℵ1, κ), but this does not produce any problems,
as the forcing Add(ℵ1, κ) is well-behaved and is κ-c.c.
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Lemma 5.5. V P |= “CH + κ = ℵ2 + λ = ℵ3 = 2ℵ1” .

5.3. More on the forcing notion P

In this section, we prove a few more properties of the forcing notions P that will be
used in the proof of Theorem 1.3.

Lemma 5.6. Assume that μ ∈ (κ, λ) is a Mahlo cardinal. Let T∼ be a Pμ ∗
Add∼ (ℵ0, κ)-name of a κ-tree. Then

�Pμ+2∗Add∼ (ℵ0,κ) “T∼ has ≤ κ-many κ-branches”.

Proof. Let Gμ be Pμ-generic over V and V1 = V [Gμ]. In V1, T∼ can be considered
as an Add(ℵ0, κ)-name. Note that in V1, κ = ℵ2, μ = ℵ3 and 2ℵ1 = ℵ3. Further,
we have

Pμ+2/Pμ � Qμ ∗ Q∼μ+1 = Add(ℵ1, κ) ∗ Col∼ (κ, 2μ),

and

�Pμ+2∗Add∼ (ℵ0,κ) “|{b ∈ V1 : b is a branch of T∼}| ≤ |(2κ)V1 | = κ”.

So, it suffices to show that forcing with Qμ ∗Q∼μ+1 ∗Add∼ (ℵ0, κ) adds no new cofinal
branches. Assume by contradiction that η∼ is a Qμ∗Q∼μ+1∗Add∼ (ℵ0, κ)-name which is
forced to be a new κ-branch of T∼. The next claim follows easily from the assumption
that η∼ is forced to be a new branch.

Claim 5.7. For every 〈p0, p1, p2〉 ∈ Qμ ∗ Q∼μ+1 ∗ Add∼ (ℵ0, κ), there are conditions
〈q0i , q1i , q2i 〉, for i = 0, 1, δ < κ and x0, x1 such that :

(a) 〈q00 , q10 , q20〉, 〈q01 , q11 , q21〉 ≤ 〈p0, p1, p2〉;
(b) x0 �= x1;
(c) � “x0, x1 ∈ T∼δ, the δth level of T∼”;
(d) 〈q0i , q1i , q2i 〉 � “xi ∈ η∼” (i = 0, 1).

In fact, as the forcing notions Add(ℵ1, κ) and Add(ℵ0, κ) are κ-c.c. and
Col(κ, 2μ) is forced to be κ-closed, we can show that the conditions 〈q00 , q10 , q20〉
and 〈q01 , q11 , q21〉 in the claim can be chosen so that q00 = q01 = p0 and q20 = q21 = p2

(see [11] for similar arguments).
Let us assume that the empty condition forces η∼ is a new branch. By repeated

application of Claim 5.7, we can build a sequence 〈 q∼
1
ν : ν ∈ (<ω12)〉 of Qμ-names

of elements of Q∼μ+1, an increasing continuous sequence 〈δi : i < ω1〉 of ordinals less
than κ and a sequence 〈xν : ν ∈ (<ω12)〉 such that:

(1) ν1 � ν2 ⇒�Qμ“ q∼
1
ν2

≤ q∼
1
ν1

”;

(2) 〈∅, q∼
1
ν , ∅〉 �“xν ∈ T∼δi” where i = lh(ν);

(3) xν�〈0〉 �= xν�〈1〉;
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(4) 〈∅, q∼
1
ν , ∅〉 �“xν ∈ η∼”;

(5) ν1 � ν2 ⇒ 〈∅, q∼
1
ν2
, ∅〉 �“xν1 <T∼ xν2”.

For some ξ < κ, 〈 q∼
1
ν : ν ∈ (<ω12)〉 is in fact an Add(ℵ1, ξ)-name. Now, we have

Qμ ∗ Q∼μ+1 ∗ Add∼ (ℵ0, κ) � Add(ℵ1, ξ) ∗ Add∼ (ℵ1, [ξ, κ)) ∗ Q∼μ+1 ∗ Add∼ (ℵ0, κ),

and in the generic extension V Pμ∗Add∼ (ℵ1,ξ), we have an interpretation q1ν of the name
q∼

1
ν , where ν ∈ (<ω12).

Work in V Pμ∗Q∼μ . For each τ ∈ (ω12), let q1τ ≤ q1τ � i, i < ω1 and let δ = sup{δi :
i < ω1} < κ. By extending q1τ if necessary, we can assume that for some xτ ,

〈∅, q1τ , ∅〉 � “xτ ∈ T∼δ ∩ η∼”.

But then for all τ1 �= τ2 in ω12 we have xτ1 �= xτ2 , and so

�Pμ∗Add(ℵ0,κ)∼ “the δth level of the tree has at least 2ℵ1 = μ = ℵ3-many nodes”.

But �Pμ∗Add∼ (ℵ0,κ) “|T∼δ| ≤ κ < μ”, and we get a contradiction.

The next lemma follows from Lemma 5.6 and the fact that Pμ ∗ Add∼ (ℵ0, κ) �
Pμ+2 ∗ Add∼ (ℵ0, κ).

Lemma 5.8. With the same hypotheses as in Lemma 5.6, we have the following:
In V Pμ+2 , T∼ is isomorphic to some T∼′, which is an Add(ℵ0, κ)-name of a κ-tree
with ≤ κ-many cofinal branches.

5.4. Completing the proof of Theorem 1.3

Finally, in this section, we complete the proof of Theorem 1.3. We first prove the
following lemma.

Lemma 5.9. �P∗Add∼ (ℵ0,κ) “Any ℵ1-closed forcing notion of size ≤ κ collapses κ”.

Proof. Let G ∗H be P ∗ Add(ℵ0, κ)-generic over V and assume R ∈ V [G ∗H ] is
an ℵ1-closed forcing notion of size ≤ κ = ℵ2.

Assume towards a contradiction that forcing with R over V [G ∗ H ] does not
collapse ℵ2. It then follows from [10] that R is ℵ2-distributive, and hence by Lemma
3.1, there exists a κ-tree T = T (R), the base tree of R, which is dense in R.

Let T∼ be a P ∗ Add(ℵ0, κ)-name for T . By Lemma 5.2, we may assume that
T∼ ∈ H(λ), and hence there exists some Mahlo cardinal β ∈ (κ, λ) such that T∼ is a
Pβ ∗ Add∼ (ℵ0, κ)-name. By Lemma 5.6, T∼ is isomorphic to some T∼′ ∈ H(λ) which
is a Pβ+2 ∗Add∼ (ℵ0, κ)-name for a κ-tree which has ≤ κ-many cofinal branches. On
the other hand {β + 2 : β ∈ (κ, λ) is a Mahlo cardinal and Φ(β + 2) = T∼′} in
unbounded in λ, and hence we can choose β as above such that T∼′ = Φ(β + 2).
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Then Pβ+3 � Pβ+2 ∗ Q∼A(Φ(β + 2)�), and by Lemma 4.8,

�Pβ+3∗Add∼ (ℵ0,κ) “Forcing with T ′
∼ collapses κ into ℵ1”.

As Pβ+3 ∗ Add∼ (ℵ0, κ) � P ∗ Add∼ (ℵ0, κ),

�P∗Add∼ (ℵ0,κ) “Forcing with T ′
∼ collapses κ into ℵ1”.

This implies

�P∗Add∼ (ℵ0,κ) “Forcing with R∼ collapses κ into ℵ1”.

The lemma follows.

Now let G ∗H be P ∗ Add(ℵ0, κ)-generic over V . Let also R ∈ V [G ∗H ] be an
ℵ1-closed forcing notion of size ≤ κ = ℵ2. By Lemma 5.9,

V [G ∗H ] |= “R � Col(ℵ1, κ) � Add(ℵ1, 1)”.

6. Consistency, Every Forcing Which Adds a Fresh Subset of ℵ2

Collapses a Cardinal

In this section, we prove Theorem 1.4. Thus assume that GCH holds and λ > κ are
such that κ is supercompact and Laver indestructible, and λ is a 2-Mahlo cardinal.
Let also Φ : λ → H(λ) be such that for each x ∈ H(λ),Φ−1(x) ∩ {β + 2 : β is
Mahlo} is unbounded in λ. The forcing notion we define is very similar the forcing
notion of Sec. 5.

Definition 6.1. Let

〈〈Pα : α ≤ λ〉, 〈Q∼α : α < λ〉〉
be an iteration of forcing notions such that for each α ≤ λ, p ∈ Pα if and only if p
is a function with domain α such that:

(1) p has support of size less than κ.
(2) {β ∈ supp(p) : β ≡ 0 (mod 3) or β ≡ 2 (mod 3)} has size less than ℵ1.
(3) If β < κ and β ≡ 0 (mod 3) or β ≡ 2 (mod 3), then �β “Q∼β = Col∼ (ℵ1,ℵ2+|β|)”.
(4) If β ≥ κ, β ≡ 0 (mod 3) and β is inaccessible, then �β “Q∼β = Add∼ (ℵ1, κ)”.
(5) If β ≥ κ, β ≡ 1 (mod 3) and β−1 is inaccessible, then �β “Q∼β = Col∼ (κ, 2|Pβ|)”.
(6) If β ≥ κ, β ≡ 2 (mod 3) β− 2 is inaccessible, and Φ(β) is a Pβ-name for κ-tree

with ≤ κ-many cofinal branches, then �β “Q∼β = Q∼A(Φ(β)�)”.
(7) Otherwise, �β “Q∼β is the trivial forcing notion”.

Finally set P = Pλ.

The next lemma can be proved as in Sec. 5.
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Lemma 6.2. Let G be P-generic over V . Then the following hold in V [G]:

(a) 2ℵ0 = ℵ1 < κ = ℵ2 < 2ℵ1 = λ = ℵ3,

(b) Every tree of size and height ℵ2 is specialized.

Thus (a)–(c) of Theorem 1.4 are satisfied. Let’s prove Theorem 1.4(d). The proof
is similar to Todorcevic’s proof in [16], and we present it here for completeness.

Work in V [G]. Let P be any forcing notion, and suppose that forcing with
P adds a fresh subset of ℵ2 without collapsing it. We show that forcing with P
collapses ℵ3. Let B = RO(P). Let also τ∼ be a name for a fresh subset of ℵ2 such
that

‖(τ∼ ⊆ ℵ2) ∧ (τ∼ /∈ V̌ ) ∧ (∀α < ℵ2, τ∼ ∩ α ∈ V̌ )‖B = 1.

For α < ℵ2, set aα,0 = ‖α ∈ τ∼‖B and aα,1 = ‖α /∈ τ∼‖B. Let T0 = {1B}, and for
0 < α < ℵ2 set

Tα =
{∧

{aβ,f(β) : β < α} : f ∈ α2,
∧

{aβ,f(β) : β < α} �= 0B

}
.

By the assumption on τ∼, each Tα is a partition of 1B, for β < α, Tα refines Tβ and
so T =

⋃{Tα : α < ℵ2} is a tree of height ℵ2, whose αth level is Tα. Also, clearly
|T | = 2ℵ1 = ℵ3.

Claim 6.3. For every 0B �= b ∈ B, there exists α < ℵ2 such that

|{a ∈ Tα : a ∧ b �= 0B}| > ℵ2.

Proof. Suppose not. So, we can find 0B �= b ∈ B such that for each α < ℵ2,

|{a ∈ Tα : a ∧ b �= 0B}| ≤ ℵ2. Define a new tree T ∗ =
⋃{T ∗

α : α < ℵ2}, where for
each α,

T ∗
α = {a ∧ b : a ∈ Tα, a ∧ b > 0B}.

Then T ∗ is an ℵ2-tree of size ℵ2 and hence it is specialized. But then

‖ĠB ∩ T ∗ is a new cofinal branch of T ∗‖B ≥ b,

where ĠB is the canonical name for a generic ultrafilter over B. This is impossible
as T ∗ is specialized and forcing with B preserves ℵ2.

For each α < ℵ2, let 〈aα(ξ) : ξ < λα ≤ ℵ3〉 be an enumeration of Tα, and let f∼
be a name for a function from ℵ2 into ℵ3 defined by

‖f∼(α) = ξ‖B =

{
aα(ξ) if ξ < λα,

0B Otherwise.

Claim 6.4. ‖range(f∼) is unbounded in ℵ3‖B = 1B.
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Specializing trees and answer to a question of Williams

Proof. Assume not. Then for some δ < ℵ3, b = ‖range(f∼) ⊆ δ‖B > 0B. By Claim
6.3, we can find α < ℵ2 such that |{a ∈ Tα : a ∧ b �= 0B}| = ℵ3, so λα = ℵ3. Pick
some ξ > δ so that aα(ξ) ∧ b �= 0B. This implies

‖f∼(α) = ξ‖B ∧ ‖range(f∼) ⊆ δ‖B �= 0B,

and we get a contradiction (as ξ > δ).

Acknowledgement

M. Golshani’s research has been supported by a grant from IPM (No. 96030417).
He also thanks Camilo Arosemena and Yair Hayut for the helpful comments. S.
Shelah’s research has been partially supported by European Research Council Grant
No. 338821. Publication 1120 on Shelah’s list. The authors thank Ashutosh Kumar
for some useful comments and corrections. They also thank the referee of this paper
for some useful comments and corrections which improved the presentation of this
paper.

References

[1] B. Balcar, M. Doucha and M. Hruk, Base tree property, Order 32(1) (2015) 69–81.
[2] J. E. Baumgartner, Iterated forcing, in Surveys in Set Theory, London Mathematical

Society Lecture Note Series, Vol. 87 (Cambridge University Press, Cambridge, 1983),
pp. 1–59.

[3] S. Cox and J. Krueger, Indestructible guessing models and the continuum, Fund.
Math. 239(3) (2017) 221–258.

[4] S. Cox and J. Krueger, Namba forcing, weak approximation, and guessing, accepted
for J. Symbolic Logic.

[5] J. Cummings, Souslin trees which are hard to specialise, Proc. Amer. Math. Soc.
125(8) (1997) 2435–2441.

[6] J. Cummings, Iterated forcing and elementary embeddings, in Handbook of Set The-
ory, Vols. 1–3 (Springer, Dordrecht, 2010), pp. 775–883.

[7] M. Foreman, M. Magidor and S. Shelah, 0� and some forcing principles, J. Symbolic
Logic 51(1) (1986) 39–46.

[8] M. Foreman, M. Magidor and S. Shelah, Martin’s maximum, saturated ideals, and
nonregular ultrafilters, I, Ann. Math. (2) 127(1) (1988) 1–47.

[9] M. Golshani and Y. Hayut, On Foreman’s maximality principle, J. Symbolic Logic
81(4) (2016) 1344–1356.

[10] M. Golshani and Y. Hayut, The special Aronszajn tree property, accepted for J.
Math. Log.
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