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Abstract. We prove that if the sequence 〈kn : 1 ≤ n < ω〉 contains a so-

called gap then the sequence 〈Sℵn

ℵkn

: 1 ≤ n < ω〉 of stationary sets is not mutually

stationary, provided that kn < n for every n ∈ ω. We also prove a sufficient con-
dition for being singular Jonsson cardinals.

0. Introduction

Mutual stationarity appeared first in a seminal paper of Foreman and
Magidor [2]. The combinatorial motivation can be described as follows.
If κ = cf(κ) > ℵ0 then club subsets of κ and stationary subsets of κ are ex-
tremely important concepts with a very rich structure. But if μ > cf(μ) = ℵ0
then a straightforward generalization of these concepts is almost meaning-
less. For example, one can easily define two disjoint clubs of μ. Mutual
stationarity is an attempt to capture the parallel of stationarity at regu-
lar cardinals while dealing with singular cardinals with countable cofinality.
Earlier work on the case where each Sn is S

λ(n)
κ(n) is Liu–Shelah [4]. Lately,

Ben Neria has worked on this.
A particular case which attracted some attention is μ = ℵω. One rea-

son is the possible connection between mutual stationarity at μ > cf(μ) = ℵ0
and the possible Jonssonicity of μ, a long standing open problem in set the-
ory. The main result of this paper is that one can prove the existence of a
sequence of non-mutual stationary subsets of the ℵn’s.
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Other results are focused on singular Jonsson cardinals and, in particu-
lar, the preservation of Jonssonicity under forcing extensions. The accepted
wisdom was always that, to prove the consistency of ℵω is a Jonsson car-
dinal we should force 2ℵn = ℵn+1 for every n < ω and that for any given
M∗ ∈ Mℵω

, 0.2(2). we should find an elementary sub-model M of M∗ such
that for every n < ω we have cf(sup(M ∩ ωn+1)) = ℵn = ‖M ∩ ωn+1‖; nat-
urally starting with the natural large cardinal. We have thought that it is
more natural to try to force that M satisfies cf(sup(M ∩ ωn)) = ℵh(n) where
h is a function from ω to ω satisfying h(n+ 1) ≤ h(n) + 1, for some increas-
ing sequence 0 = n0 < n1 . . . we have h � [ni + 1, ni] is non-decreasing from
its domain onto [0, ni].

The paper answers a question which arose during a lecture of Ben-Neria
in the Hebrew University, Fall 2017. In fact, it had been asked by Foreman
[3].

We thank Ben-Neria and Shimoni for their help.

Notation 0.1. For regular κ < λ let Sλ
κ = S[λ, κ] be the set {δ < λ :

cf(δ) = κ} and let S[λ,≥ κ] be the set {δ < λ : cf(δ) ≥ κ}.

Convention 0.2. 1) Let μ be a cardinal. We follow the convention by
which an algebra M∗ on H (μ) is a model in a countable language, which
expands (H (μ),∈). By Skolemizing, we may always assume that M∗ has
definable Skolem functions, whose induced closure function is denoted by
FM∗

: [H (μ)]<ℵ0 → [H (μ)]ℵ0 and let Mμ = M (μ) be the set of such mod-
els M∗.

2) A sub-algebra M of M∗ is an elementary substructure M ≺ M∗.
Therefore, for every X ⊆ H (μ), the Skolem-hull of X ,

SkM∗(X) = FM∗
“[X]<ℵ0

is a sub-algebra of M∗ of cardinality |X|+ ℵ0.
3) For every cardinal κ ∈ M we define χM (κ) = sup(M ∩ κ).

Definition 0.3. We say μ is Jonsson when for every algebra M∗ on
H (μ) there exists a sub-algebra M ≺ M∗ such that |M ∩ μ| = μ and M ∩ μ
�= μ.

Definition 0.4. 1) Let �κ = 〈κn : n < ω〉 ∈ M be a sequence of cardi-
nals, and �S = 〈Sn : n < ω〉 be a sequence of sets, Sn ⊆ κn = sup(Sn). We say
that �S is mutually stationary if for every algebra M∗ on H (μ), μ =

⋃
n κn,

there exists a sub-algebra M ≺ M∗ such that χM (κn) ∈ Sn for every n < ω.
2) Similarly for an increasing sequence 〈κα : α < α(∗)〉 of regular car-

dinals and sequence 〈Sα : α < α(∗)〉 when with Sα a sequence with Sα an
unbounded subset of κα
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Definition 0.5. An infinite cardinal λ is I1 iff there is an elementary
embedding j : Vλ+1 → Vλ+1. It is easy to see that if λ is I1 then, e.g. λ is
an ω-limit of measurable cardinals and hence Jonsson.

1. Mutual stationarity at the ℵn’s

In this section we shall give a positive answer to Question 4.3 from [3].
Before stating the main theorem of this section we define the following

concept:

Definition 1.1. Let 〈kn : n0 ≤ n < ω〉 be a sequence of integers satis-
fying kn < n. We say that the sequence contains a gap if there are k < ω
and n < ω, so that 0 < k < kn but k �= km for all m < n.

Theorem 1.2. There exists a sequence 〈Sn : 1 ≤ n < ω〉 of stationary

sets Sn ⊆ ωn which is not mutually stationary. Moreover, each Sn can be

taken to be Sn = Sn
kn

for some kn < n.

Proof. Let 〈kn : 1 ≤ n < ω〉 be a sequence of integers kn < n, which
contains a gap. We prove that the sequence of stationary sets 〈Sn :
1 ≤ n < ω〉, Sn = Sn

kn
, is not mutually stationary.

By the definition of mutual stationarity we should find M∗ ∈ Mℵω
such

that for every M ≺ M∗ there exists n ∈ ω such that χM (ℵn) �∈ Sn
kn
. Hence

by stipulating M∗ ∈ M (ℵω), it suffices to show that there are no sub-
algebras M ≺ M∗ for which n < ω ⇒ cf(χM(ℵn)) = ℵkn

. Suppose otherwise.
Let μ = ℵω and fix a counter example M ≺ M∗ and k < ω, n′ < n < ω, for
which kn′ < k < kn and k �= km for all m < n. Also define u = {m ≤ n :
cf(χM(ℵm)) > ℵk}.

For each m ≤ n, let Am ⊆ (χM (ℵm) \ ωm−1) ∩M be a cofinal subset of
χM (ℵm) of minimal order type otp(Am) = ℵkm

. Also choose B ⊆ An of
cardinality |B| = ℵk; possible because |An| = ℵkn

, kn > k. To establish a
contradiction, we shall show that under the above assumptions, it is pos-
sible to construct a sub-algebra N0 ≺ M of cardinality |N0| ≤ ℵk−1, which
contains B.

To this end, we shall define by a decreasing induction on i = n, n− 1,
. . . , 1, 0, a sequence of sub-algebras Ni of M together with a sequence of
ordinals αi ∈ Ai(⊆ M) when i ∈ u and B ⊆ Ni. If 0 < i ≤ n is such that αj

have been defined for every j ∈ u \ i, then we define

Ni = SkM
(
(M ∩ ωi−1) ∪ {αj : j ∈ u \ i} ∪

( ⋃
j∈(n\(u∪i))

Aj

))
.

If i = 0 then let N0 = SkM
(
{αj : j ∈ u} ∪

( ⋃
j∈n\uAj

))
.
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It is clear from this definition of the sub-algebras Ni, that Nn ⊆ M
and they form a decreasing sequence Nn ⊇ Nn−1 ⊇ . . . ⊇ N0, that ‖Ni‖ <
ℵmax{i,k} and that ‖N0‖ < ℵk.

The reason for ‖N0‖ < ℵk is that j ∈ n\u ⇒ ¬(|Aj | > ℵk) and then nec-
essarily |Aj | < ℵk since k �= km for every m < n. Note that this is the only
point in which we use the fact that our sequence contains a gap. The key
is therefore to choose the ordinals αj for j ∈ u, so that B ⊆ Ni for every i;
this will give the desired contradiction because ℵk = |B| < ℵk.

Case I: i = n. Note that B ⊆ An has cardinality |B| = ℵk < ℵkn
=

cf(χM (ℵn)) and is therefore bounded by some αn ∈ An. Since αn ∩M ⊆
Nn = SkM ((M ∩ ωn−1) ∪ {αn}) we conclude that B ⊆ Nn.

Next, let i < n and suppose that {αj : j ∈ u \ (i+ 1)} have been defined
so that B ⊆ Ni+1.

Case II: i �∈ u and i < n. The inductive assumption is that B ⊆ Ni+1,
and we shall show that in this case Ni = Ni+1 which is stronger than
what we have to prove. Since Ai is cofinal in χM (ℵi), and Ai ⊆ Ni we
have that M ∩ ωi ⊆ SkM ((M ∩ ωi−1)∪Ai). As i �∈ u, {αj : j ∈ u \ i} = {αj :
j ∈ u \ (i+ 1)}, and it follows at once that

Ni = SkM
(
(M ∩ ωi−1) ∪ {αj : j ∈ u \ i} ∪

( ⋃
j∈(n\(u∪i))

Aj

))

= SkM
(
(M ∩ ωi) ∪ {αj : j ∈ u \ i+ 1} ∪

( ⋃
j∈n\(u∪(i+1))

Aj

))
= Ni+1.

In particular, B ⊆ Ni.
Case III: i ∈ u and i < n. For each α ∈ Ai, consider the sub-algebra

Ni,α = SkM
(
(M ∩ ωi−1) ∪ {αj : j ∈ u \ (i+ 1)} ∪

( ⋃
j∈(n\(u∪i))

Aj

)
∪ {α}

)
.

It is clear from our definition of Ni+1 that 〈Ni,α : α ∈ Ai〉 is a ⊆-increasing
sequence of sub-algebras of M and even of Ni+1, which cover Ni+1. As
otp(Ai) ≥ ℵk+1 > |B|, there must exist some α ∈ Ai such that B ⊆ Ni,α. We
define αi to be the minimal such α ∈ Ai. It is clear from the definitions that
Ni = Ni,αi

, and thus, B ⊆ Ni as required. �1.2

Assume that λ =
⋃

n∈ω κn, where 〈κn : n ∈ ω〉 is an increasing sequence
of measurable cardinals; see [6, (3a), p. 506] or [1, Theorem 5.2], the state-
ment of 1.2 fails at λ. The reason is that in this case, λ is a fixed point of
the ℵ-function, as can be deduced from the proof. Therefore, we can phrase
the following:
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Claim 1.3. Let λ = ℵδ > cf(λ) = ℵ0 and suppose that δ < ℵδ = λ.
1) Assume δ = α+ ω and 〈ni = n(i) : i < ω〉 is increasing sequence of

non-zero natural numbers and κi = ℵα+n(i).
Then there exists a sequence 〈Si : i ∈ ω〉 such that :

(a) Si ⊆ κi is stationary for every i < ω
(b) 〈Si : i < ω〉 is not mutual stationary.

2) In part (1), if ni + 1 < ni+1 then we can choose Sj = S[κj ≥ κni+1]
when j ∈ [ni, ni+1) and Sj = κj when j < ω, j �∈ [ni, ni+1).

3) In part 1), if clause (A) below holds then we can choose the Si-s as

in clause (B), where
(A) (a) i1 = i(1) < i2 = i(2) < ω

(b) for i ∈ [i1, i2] we have wi ⊆ [i(1), i]
(c) there is no f satisfying : its domain is [i1, i2] and when f(i)

is well defined then it belongs to wi and is equal to ni(1) − 1 or it belongs to

[i(1), i); and its range include [i(1), f(i2)).
(B) (a) if i ∈ [i1, i2] then Si =

{
β < κi : cf(β) = ℵα+i(1) or cf(β) ∈

{ℵα+n : n ∈ wi}
}

(b) if i < ω, i �∈ [i1, i2] then Si = κi.
4) The following is impossible: M∗ ∈ Mλ and |δ| < ℵi(∗), j(∗) < i(∗) < δ

and i ∈ [j(∗) + 1, i(∗)) ⇒ χM (ℵi+1) �= ℵj(∗)+1 and χM∗
(ℵi) > ℵj(∗)+1.

Proof. 1) If ni = i+1, the proof is exactly as the proof of 2.1, or note
that forcing by the Levy collapse of ℵα+n(0)−1 to ℵ0. If not as above, this
reduce to Theorem 1.2 and anyhow then we can apply part (2).

2) A special case of part (3).
3) Consider a model M∗ ∈ Mλ and let M be an elementary sub-model of

M∗ and let f be the function with domain [i(1), i(2)) defined by: if χM (ℵα+n))
≤ ℵα+i(1)−1 then f(n) = i(1)−1 and otherwise χM (ℵn) = ℵα+f(n). Now con-
tinue as in the proof of 2.1 with n(i(1))− 1, i(2), f(m) here playing the role
of 0, n, km.

4) We choose Ai an unbounded subset of ℵi ∩M of order-type χM (ℵi),
so is of cardinality ℵi when ℵi ∩M is unbounded in ℵi. Let B be a subset of
An(i(2)) of cardinality ℵj(∗)+1, let C =

⋃
{Ai : i < δ,χM (ℵi) ≤ ℵα+j(∗)}∩ωj(∗)

so C is a subset of M of cardinality at most ℵj(∗). Now by induction on
k < ω choose Bk, Nk, Mk such that:

(a) Bk is a subset of M of cardinality ≤ ℵj(∗)
(b) Mk is the Skolem hull of ∪{Bm : m < k} ∪ C
(c) Nk is the Skolem hull of Mk ∪B
(d) if i < δ, i > i(∗) and Ai has cardinality > ℵj(∗) then Bk contains a

member of Ai which is above Nk ∩ ℵi+1
Now we can prove that N = ∪{Nk : k < ω} = ∪{Mk : k < ω}, as in [7,

Ch.XIII], [8, Ch.VII]. �1.3
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2. On singular Jonsson cardinals

Suppose that μ is a strong limit singular cardinal. The purpose of this
section is to provide sufficient conditions for μ being Jonsson.

Let M∗ be an algebra on H (μ). As before, let FM∗
be the function

induced by a definable collection of Skolem functions from M∗. For every
cardinal λ < μ, we define M∗�H (λ) to be the algebra on H (λ) generated
by F λ

M∗

: [H (λ)]<ω → H (λ), where

F λ
M∗

(v0, . . . , vm−1) =

{
FM∗

(v0, . . . , vm−1) if FM∗
(v0, . . . , vm−1) ∈ H (λ)

0 otherwise.

Clearly, for every x ⊆ λ, F λ
M∗

“[x]<ω = FM∗
“[x]<ω ∩ H (λ). In particular, for

every sub-algebra M ′ of M∗�H (λ), there exists a sub-algebra M of M∗ so
that M ′ = M ∩ H (λ).

Claim 2.1. Suppose that there exist three increasing sequences �κ = 〈κn :
n < ω〉, �μ = 〈μn : n < ω〉, �λ = 〈λn : n < ω〉, all cofinal in μ. The following

conditions guarantee that μ is Jonsson:
(1) κn < μn < λn < κn+1 for every n < ω
(2) 2μn ≤ λn for every n < ω

(3) for every algebra M∗ on H (μ), there exists a sequence �M = 〈Mn :
n < ω〉 so that {κk, μk, λk : k < ω}∩λn ⊆ Mn, κ0 � M0, and for every n < ω:

(a) Mn is a sub-algebra of the algebra M∗�H (λn),
(b) |Mn ∩ μn| ≥ κn,
(c) Mn+1 ∩ λn ⊆ Mn.

Proof. Fix an algebra M∗ on H (μ). Denote for each n < ω, Mn ∩ μn

by An, and define M = SkM∗

( ⋃
nAn

)
= FM∗

“[
⋃

nAn]<ℵ0 . Clearly M is el-
ementary in M∗ and has cardinality |M | =

∑
n |An| =

∑
n κn = μ. To show

thatM is nontrivial, we verify thatM ∩κ0 = M0∩κ0. In particular, κ0 � M
by our assumptions.

Clearly M0 ∩ κ0 ⊆ M ∩ κ0, so let us prove that M0 ∩ κ0 ⊇ M ∩ κ0.
Fix some τ ∈ M ∩ κ0. By the definition of M , there is m < ω and

finite sequences ai ∈
ω>(Ai), i = 0, . . . ,m, so that τ = FM∗

(a0, a1, . . . , am).
We proceed to show by downward induction on i = m,m− 1, . . . 1, that
for every i, there exists a function fi : ω>(μi−1) → κ0 in Mi−1, such that
τ = fi(a0, . . . , ai−1).

Starting from i = m, define fm : [μm−1]<ω → κ0 by

fm(v0, . . . , vm−1)=

{
FM∗

(v0, . . . , vm−1, am) if FM∗
(v0, . . . , vm−1, am)<κ0

0 otherwise.
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fm ∈ Mm since am, κ0, μm−1 ∈ Mm. Moreover, the fact that 2μm−1 ≤ λm−1
and Mm ∩ λm−1 ⊆ Mm−1, implies that fm ∈ Mm−1.

Next, suppose that fi+1 ∈ Mi, fi+1 : ω>(μi) → κ0 has been defined. Let
fi : ω>(μi−1) → κ0, by fi(v0, . . . , vi−1) = fi+1(v0, . . . , vi−1, ai). fi belongs to
Mi since fi+1, ai do. It further belongs to Mi−1 since 2μi−1 ≤ λi−1 and
Mi ∩ λi−1 ⊆ Mi−1.

Finally, for i = 1, we have that f1 : [μ0]<ω → κ0 belongs to M0. Since
both f1, a0 ∈ M0, τ = f1(a0) belongs to M0 ∩ κ0. �2.1

Example 2.2. Suppose that j : Vτ+1 → Vτ+1 is an elementary em-
bedding. Let τ0 = cp(j) and τk+1 = j(τk) for every k < ω. In particular
τ =

⋃
k τk. It is not difficult to see if (κn, μn, λn) n < ω, are chosen among

the cardinals τk, k < ω, so that for every n < ω, κn = τtn implies μn = τtn+1

and λn = 2μn , then the resulting sequences �κ, �μ, �λ satisfy the conditions
of Claim 2.1. This is an immediate consequence of the elementarity of
the embedding j and the fact that for every algebra M∗ on μ, the se-
quence 〈j′′(M∗�H (λn)) : n < ω〉 satisfies the desired condition with respect
to j(M∗).

The proof of Claim 2.1 naturally generalizes to cases where μ is singular
of an arbitrary cofinalily. We state the relevant result.

Claim 2.3. Suppose that μ is a singular limit of sequences �κ = 〈κi : i <
cf(μ)〉, �μ = 〈μi : i < cf(μ)〉, �λ = 〈λi : i < cf(μ)〉, which satisfy the following

conditions:
(1) κi < μi < λi and 2μi ≤ λi for every i < cf(μ)
(2) λi < κj whenever i < j < cf(μ)
(3) For every algebra M∗ on H (μ) there is a sequence 〈Mi : i < cf(μ)〉

of sub-algebras of M∗, such that κ0 � M0, and the following holds for each

i < cf(μ):
(a) |Mi ∩ μi| ≥ κi,
(b) Mj ∩ λi ⊆ Mi for every j > i.
(c) M0 ∩ κ0 �= κ0.

Then μ is Jonsson.

2.1. Speculating on preserving the Jonsson property in generic

extensions. Building on the result of the first claim, we proceed to de-
scribe conditions under which μ remains Jonsson after collapsing certain
cardinals below μ. Recall that μ = ∪{λn : n < ω}.

Suppose that P = 〈Pn,Qn : n < ω〉 is a full-support iteration of posets
Qn, so that for each n < ω,Qn collapses certain cardinals in the interval
(λn−1, λn). For completeness, we set λ−1 = ℵ0. Suppose also that for each
n < ω, Pn satisfies the λn−1-c.c, and that P/Pn is λ+

n−1-closed. We naturally
assume Pn+1 ⊆ H (λn) hence every antichain A of Pn+1 belongs to H (λn).
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Let �M = 〈Mn : n < ω〉 be a sequence of sub-algebras satisfying the con-
ditions of Claim 2.1, where for each n < ω,Pn+1 is definable over Mn (i.e.,
Mn is elementary in an expansion of (H (λn),∈,Pn+1)).

Definition 2.4. We say that a condition �p∗ = 〈p∗n : n < ω〉 of P has
property (*) if for every algebra M∗ on H (μ), and every condition �p = 〈pn :
n < ω〉 which extends �p∗, there exists a sequence �M = 〈Mn : n < ω〉 of sub-
algebras Mn ≺ M∗�H (λn), as in the statement of Claim 2.1 above, and an
extension �q of �p, so that for each n < ω, and a Pn+1-name σ

˜
∈ Mn of an

ordinal below λn−1, there exists a Pn-name σ∗

˜
∈ Mn, such that �q � σ

˜
= σ∗

˜
.

Remark 2.5. Let �p∗ be a condition of P and suppose that for every
�p ≥ �p∗ and an algebra M∗ on H (μ), there exist a sequence �M as in the
statement of Claim 2.1, and an extension �q ≥ �p, so that for every n < ω, �q�n
forces that qn is Mn[G

˜
n]-generic for Qn (here, G

˜
n is the canonical name

for a Pn-generic filter). Then �p∗ satisfies property (∗). For this, note that
for every Pn+1-name σ

˜
∈ Mn of an ordinal there is a Pn-name of a dense

set D in Qn, so that each r ∈ D forces that σ
˜
= σ∗

˜
for some Pn-name σ∗

˜
.

Therefore, if σ
˜
∈ Mn and qn is forced to be Mn[G

˜
n] generic, by �q�n, then qn

is forced to belong to D ∩Mn[Gn
˜
], and thus, to force that σ

˜
= σ∗

˜
for some

σ∗

˜
∈ Mn−1[G

˜
n].

Example 2.6. Suppose j : Vτ+1 → Vτ+1 is an elementary embedding,
as in Example 2.2 above and let P = 〈Pn,Qn : n < ω〉 be a full support
iteration, so that for each n < ω,Qn is an Easton support iteration of
Coll(α+, α+13) where α ranges over all strongly inaccessible cardinal in
[λn−1, λn). Define �p∗ = 〈p∗n : n < ω〉 as follows.

For each n < ω, p∗n = 〈p∗n(α) : α ∈ [λn−1, λn+1) inaccessible〉, is defined
by:

(1) p∗0 is the empty condition of Q0,
(2) for every n ≥ 1, �p∗�nˆp∗n�α �Pn∗(Qn �α) p

∗
n(α) = ∅ if α �∈ j′′λn−1, and

(3) �p∗�nˆp∗n�j(β) �Pn∗(Qn �j(β)) p
∗
n(j(β)) = j′′gn−1(β)

˜
where gn−1(β)

˜
is the

canonical name of the Qn(β)-generic collapse function gn−1(β) : β+ → β+13.
It is straightforward to verify that:
(i) �p∗ can be identified with a condition in j(P) (i.e., by a simple re-

naming of its indices) which extends j(�p∗)
(ii) for every algebra A on either H (μ) or H (τn), �p∗ is M = j′′A -

generic.
It follows that j(�p∗) has the (∗)-property-witness �p∗ with respect to

j(M∗), for every algebra M∗ on H (μ). Therefore �p∗ satisfies (∗).
As shown below, the existence of a condition �p∗ which satisfies (∗) guar-

antees that μ remains Jonsson after forcing with P above �p∗. We note that
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this example is somewhat superfluous, as here, the condition �p∗ guarantees
that the I1 embedding j in V , extends to the P-generic extension.

Claim 2.7. Extending the conditions of Claim 2.1 above, if G ⊆ P is a
generic filter containing a condition �p∗ ∈ P which satisfies (∗) from Defini-
tion 2.4, then μ remains Jonsson in V [G].

Proof. Let M∗ be an algebra on H (μ)V [G]. Fix a P-name M∗
˜

and
�p ∈ G which extends �p∗, and forces M∗

˜
is an algebra on H (μ). Recall that

our assumptions on P include that for every n < ω, P/Pn+1 is λ+
n -closed.

We may therefore assume that �p reduces M∗
˜

�H (λn) to a Pn+1-name, for
each n < ω. Since �p∗ satisfies property (∗), there exists a sequence 〈Nn :
n < ω〉 satisfying the conditions of Claim 2.1, so that each Nn is a sub-
algebra of 〈H (λn),∈,Pn, FM∗

˜
�H (λn)〉, and a condition �q ∈ G, which forces

that Nn[G] ∩ λn−1 ⊆ (Nn ∩ H (λn−1))[G�n]. Recall that our assumptions
on �N in the statement of Claim 2.1 guarantee that Nn ∩ H (λn−1) ⊆ Nn−1.
It follows that Nn[G] ∩ λn−1 ⊆ Nn−1[G�n] = Nn−1[G]. Clearly, Nn[G] is a
sub-algebra of M∗�H (λn)V[G] and |Nn[G] ∩ μn| ≥ κn for every n < ω.

We conclude that the sequence �M = 〈Mn : n < ω〉 of sub-algebras, Mn =
Nn[G] ≺ M∗�H (λn)V[G], satisfies the conditions of Claim 2.1. We may
therefore apply the claim in V [G] and conclude that μ is Jonsson. �2.7
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