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ABSTRACT

We would like to build Abelian groups (or R-modules) which on the one

hand are quite free, say ℵω+1-free, and on the other hand are complicated

in a suitable sense. We choose as our test problem one having no non-

trivial homomorphism to Z (known classically for ℵ1-free, recently for

ℵn-free). We succeed to prove the existence of even ℵω1·n-free ones. This

requires building n-dimensional black boxes, which are quite free. This

combinatorics is of self interest and we believe will be useful also for other

purposes. On the other hand, modulo suitable large cardinals, we prove

that it is consistent that every ℵω1·ω-free Abelian group has non-trivial

homomorphisms to Z.
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2 S. SHELAH Isr. J. Math.

0. Introduction

0(A). Abelian groups. We would like to determine the supremum of all λ

for which we can prove TDCλ, so, dually, the minimal λ such that consistently

we have NTDCλ which means the failure of TDCλ, the trivial dual conjecture

for λ, where:

(TDCλ) there is a λ-free Abelian group G such that

Hom(G,Z) = 0.

This seems the weakest algebraic statement of this kind; it is consistent that

the number is ∞, as if V = L then TDCλ holds for every λ (see, e.g., [GT12]).

On the one hand by Magidor–Shelah [MS94], for

λ = min{λ : λ is a fixed point, that is λ = ℵλ},
NTDCλ is consistent, as more is proved there: consistently “λ-free ⇒ free”.

On the other hand, for a long time we have known the following for λ = ℵ1,
and recently by [She07] we know that for λ = ℵn there are examples using

the n-BB (n-dimensional black boxes) introduced there (for every n). Sub-

sequently, those were used for more complicated algebraic relatives in Göbel–

Shelah [GS09], Göbel–Shelah–Strüngman [GSS13] and Göbel–Herden–Shelah

[GHS]. In [She13b] we have several close approximations to proving in ZFC the

existence for ℵω, that is TDCℵω using 1-black boxes.

Here we finally fully prove that TDCℵω holds and much more; λ = ℵω1·ω is

the first cardinal for which TDCλ cannot be proved in ZFC. The existence proof

for λ′ < λ is a major result here, relying on the existence proof of quite free n-

black boxes (in §1) which use results on pcf (see [She13a]). For complementary

consistency results we start with the universe forced in [MS94] and then we

force with a c.c.c. forcing notion making “MA+2ℵ0 large” but we have to work

to show the desired result.

Of course, we can get better results (μ+-free) when μ ∈ Cθ (see Definition 0.2)

is so-called 1-solvable or 2μ = 2<Υ < 2Υ and Υ < 2μ.

Note a point which complicates our work relative to previous ones: the

amount of freeness (i.e., the κ such that we demand κ-free) and the cardinality

of the structure are markedly different. In [She13b] this point is manifested

when we construct say G of cardinality λ which is μ+-free, where μ ∈ Cℵ0

or μ ∈ Cℵ1 and λ = 2μ or min{λ : 2λ > 2μ}. The “distance” is even larger

in [She07].
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An interesting point here is that for many non-structure problems we nat-

urally end up with two incomparable proofs. One is when we have a μ+-free

F ⊆ ∂μ of cardinality λ, λ as above. In this case the amount of freeness is large.

In the other, we use the black box from Theorem 1.25. But we may like to use

more sophisticated black boxes, say start with λ�, μ�(� ≤ k), a black box x

as in Theorem 1.25 and combine it with [She05]. The quotients G/Gδ+1, δ a

limit ordinal, are close to being λ+
k -free, replacing free by direct sums of small

subgroups.

Recall from [Sheb, §3]: if we are given BB approximating models with uni-

verse, e.g., κ2 by “guesses of cardinality κ1”, and usually models κ2 = κκ1
2 , then

we can construct models of cardinality κ2 quite freely except the “corrections”

toward avoiding, e.g., undesirable endomorphisms, i.e., for each approximation

of such endomorphisms given by the BB is seen as a “task” how to avoid that in

the end there will be an endomorphism extending the one given by the approx-

imation. The “price” is that we make the construction not free, but between

the various approximations there is little interaction. This will hopefully help

in a planned continuation of [Shed] to use ∂ > ℵ0 and here to try to sort out

the complicated cases like End(G) ∼= R. Maybe we can get a neater proof.

In [She75b], [She74] we suggested that combinatorial proofs from [She78,

Ch. VIII], [She90, Ch. VIII], should be useful for proving the existence of many

non-isomorphic structures, as well as rigid and indecomposable ones. The most

successful case were black boxes applied to Abelian groups and modules first

applied in [She84a], [She84b], that is:

(A) For separable Abelian p-groups G, proving the existence of those of

cardinality λ = λℵ0 with only so called small endomorphisms ([She84a]).

(B) Let R be a ring whose additive group R+ is cotorsion-free, i.e., R+

is reduced and has no subgroups isomorphic to Z/pZ or to the p-adic

integers. For λ = λℵ0 > |R| there is an abelian group G of cardinality λ

whose endomorphism ring is isomorphic to R and as an R-module it is

ℵ1-free ([She84b, Th. 0.1, p. 40]).

We can relax the demands on R+ and may require that G extends a suitable

group G0 such that R is realized on End(G) modulo a suitable ideal of “small”

endomorphisms.

(C) Let R be a ring whose additive group is the completion of a direct

sum of copies of the p-adic integers. If λℵ0 ≥ |R|, then there exists a
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separable Abelian p-groupG with so-called basic subgroup of cardinality

λ and R = End(G)/Ends(G). As usual we get End(G) = Ends(G)⊕R

([She84b, Th. 0.2, p. 41]).

For previous history of those algebraic problems see [EM02], [GT12]. Quite

many works using black boxes follow, starting with Corner–Göbel [CG85]; see

again [EM02], [GT12]. On black boxes in set theory with weak versions of

choice see [She16, §3A], with no choice see [She16, §3B] and for k-dimensional

hopefully see [She16].

For further applications of those black boxes continuing the present work,

mainly representation of a ring R and the endomorphism ring of a quite free

Abelian group, see [Shed].

Discussion 0.1: (1) Note that usually, the known constructions were either for a

λ-free R-module of cardinality λ using a non-reflecting S ⊆ Sλ
ℵ0

with diamond

or ℵ1-free of some cardinality λ (mainly λ = (μℵ0)+ but also in some other

cases) many times using a black box (see [Sheb]) or “the elevator” (see [GT12]).

In the former we use induction on α < λ and each α has kind of a “one task”.

That is, using black boxes in the nice versions, we have for each δ ∈ S a

perfect set of pairwise isomorphic tasks.

To deal with getting an ℵn-free Abelian group G with Hom(G,Z) = 0, the n-

dimensional black boxes actually constructed and used in [She07] were products

of black boxes from [Sheb]; each black box separately is only ℵ1-free but the

product of k gives ℵk-freeness. Here things are more complicated.

(2) Here cardinality and freeness differ.

(3) Note that the versions of freeness of BB in [She13b] and here are not the

same.

0(B). Notation. Recall (on pp see [She94] but the reader can just use 0.3

below)

Definition 0.2: Let C = {μ : μ strong limit singular and pp(μ) =+ 2μ},
Cκ = {μ ∈ C : cf(μ) = κ}.

Claim 0.3:

(a) μ ∈ C if μ is strong limit singular of uncountable cofinality,

(b) if μ = �δ > cf(μ) and δ = ω1 or just cf(δ) > ℵ0, then μ ∈ Ccf(μ) and

for a club (= a closed unbounded subset) of α < δ we have �α ∈ C.
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Proof. Clause (a) holds by [She94, Ch. II, §2] and clause (b) by [She94, Ch. IX,

§5]. 0.3

Explanation 0.4: (1) A reader, particularly with algebraic background, may

wonder how the ideals defined in Definition 0.5 below are used in the algebraic

construction. For an ideal J on a set S we may try to find an Abelian group G1

extending the free Abelian group

G0 = ⊕{Zxs : s ∈ S}
such that the quotient

G1/⊕ {Zs : s ∈ S1}
is free for every S1∈J . In particular, we would like to have some h0∈Hom(G0,Z)

which cannot be extended to a homomorphism from G1 to Z. Copies of such

tuples (S, J,G1, G0, h0) are used as “the building block” in the constructions,

so finding such examples is crucial; we find some, see in §2; more in [Shed].

(2) Concerning Observation 0.6, note that the product J1 × J2 is not sym-

metric (even up to isomorphisms) because if, e.g., ∂ < κ are regular, then

J∂ × Jκ = {A ⊆ ∂ × κ : for some i < ∂, j < κ we have A ⊆ (i× κ) ∪ (j × ∂)};
but Jκ × J∂ has no such representation.

Definition 0.5: (1) For a set S of ordinals with no last member let Jbd
S be the

ideal consisting of the bounded subsets of S.

(2) If J� is an ideal on S� for � = 1, 2, then J1 × J2 is the ideal on S1 × S2

consisting of the S ⊆ S1 × S2 such that

{s1 ∈ S1 : {s2 ∈ S2 : (s1, s2) ∈ S} /∈ J2}
belongs to J1.

(3) If δ1, δ2 are limit ordinals, J� is an ideal on δ� and δ1 ·δ2 = δ3, then J1 ∗J2
is the following ideal on δ3: it consists of

{{δ1 · i+ j : i < δ2, j < δ1 and (j, i) ∈ A} : A ∈ J1 × J2}.
(4) If δ1, δ2 are limit ordinals, J� is an ideal on δ� for � = 1, 2 and δ1 · δ2 = δ3,

then J2  J1 is the following ideal on δ3: it consists of

{{δ1 · i+ j : i < δ2, j < δ1 and (i, j) ∈ A} : A ∈ J2 × J1}.
Observation 0.6: If ∂ > κ are regular cardinals, then Jbd

∂ ×Jbd
κ is isomorphic

to Jbd
∂ ∗ Jbd

κ which includes Jbd
∂  Jbd

κ , which is isomorphic to Jbd
κ × Jbd

∂ .
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Proof. Should be clear but we elaborate the first equivalence.

Why is J ′ = Jbd
∂ × Jbd

κ isomorphic to J ′′ = Jbd
∂ ∗ Jbd

κ ?

Note that J ′ is an ideal on ∂ × κ and J ′′ is an ideal on ∂ · κ. We define a

function π : ∂ × κ→ ∂ · κ by

(*) π((i, j)) = ∂ · j + i, so π is a one-to-one function from ∂ × κ onto ∂ · κ
by the rules of ordinal division.

It suffices to prove that for any A ⊆ ∂ × κ, A ∈ J ′ ⇔ π′′(A) ∈ J ′′; so fix

A ⊆ ∂ × κ and below we have •i ⇔ •i+1, hence •1 ⇔ •4, which suffices, when:

•1 A ∈ J ′,
•2 {s1 ∈ ∂ : {s2 ∈ κ : (s1, s2) ∈ A} /∈ Jbd

κ } ∈ Jbd
∂ ,

•3 {i < ∂ : {j < κ : ∂j + i ∈ π′′(A)} /∈ Jbd
κ } ∈ Jbd

∂ ,

•4 π′′(A) ∈ J ′′.

That is, •1 ↔ •2 by the definition of J ′ and •2 ↔ •3 by the choice of π and

•3 ↔ •4 by the definition of J ′′. 0.6

Definition 0.7: (1) We say F ⊆ SX is (θ, J)-free when1 J is an ideal on S and

for every F ′ ⊆ F of cardinality < θ there is a sequence 〈wη : η ∈ F ′〉 such
that: η ∈ F ′ ⇒ wη ∈ J and if η1 �= η2 ∈ F ′ and s ∈ S\(wη1 ∪ wη2) then

η1(s) �= η2(s).

(2) We say F ⊆ SX is [θ, J ]-free when J is an ideal on S and for every

F ′ ⊆ F of cardinality < θ there is a list 〈ηα : α < α∗〉 of F ′ such that: if

α < α∗ then the set wα := {s ∈ S : ηα(s) ∈ {ηβ(s) : β < α}} belongs to J .

(3) Let θ-free or (θ)-free mean (θ, J)-free when S ⊆ Ord, J = Jbd
S .

(4) We say μ is 1-solvable when μ is singular strong limit and there is a

μ+-free family F ⊆ cf(μ)μ of cardinality 2μ.

(5) We say μ is (θ, 1)-solvable when above we weaken “μ+-free” to “θ-free”.

(6) We say F ⊆ SX is weakly ordinary when each η ∈ F is a one-to-one

function. We say F ⊆ γOrd is ordinary when each η ∈ F is an increasing

function.

1 E.g., in [She94], this version is used. Sometimes we even demand

α < α∗ ⇒ {s ∈ S : ηα(s) ∈ {ηβ(t) : β < α, t ∈ I}} ∈ J.

But in the main case “J is a θ-complete filter on θ”, the versions in 0.7(1),(2) are equiv-

alent; see 1.16.
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Claim 0.8: Assume θ > ∂ and ∂ is regular, J is an ideal on ∂ extending [∂]<∂

and F ⊆ ∂Ord and2 η �= ν ∈ F ⇒ |{i < ∂ : η(i) ∈ Rang(ν)}| < ∂.

(1) We have F is (θ, J)-free iff F is [θ, J ]-free.

(2) If every η ∈ F is one-to-one, then we can add in Definition 0.7(2),

ηα(s) /∈ {ηβ(t) : β < α, t ∈ S}.
Remark 0.9: (1) We may consider only the case i �= j ⇒ η(i) �= ν(j) in 0.7(1),

1.2(6), 1.11(1).

(2) Compare with [She94], [She13b].

(3) Because of 0.8 the difference between (θ, J)-free and [θ, J ]-free is not

serious. For k-c.p. x see Definition 1.5; there we use only the latter version so

do not write [θ, J ].

Proof. (1) It is enough to prove for every F ⊆ ∂Ord of cardinality < θ that F

is (θ, J)-free iff F is [θ, J ]-free.

First, if F is [θ, J ]-free, then there is a sequence 〈ηα : α < α∗〉 enumerating F

as in Definition 0.7(2), i.e., α<α∗⇒w1
α := {i < ∂ : ηα(i) ∈ {ηβ(i) : β < α}}∈J .

Define wη by η = ηα ⇒ wη = w1
α; easily 〈wη : η ∈ F 〉 is as required in Definition

0.7(1).

Second, if F is (θ, J)-free, then there is 〈wη : η ∈ F 〉 which is as required in

Definition 0.7(1).

Let 〈η1α : α < α∗〉 list F and by induction on n for each α we define uα,n as

follows:

(∗)1α (a) uα,0 = {α},
(b) uα,n+1 = uα,n ∪ {β < α∗ : for some i ∈ ∂\wβ we have

ηβ(i) ∈ {ηγ(i) : γ ∈ uα,n}}.
Now

(∗)2α |uα,n| ≤ ∂ and uα,n ⊆ α∗.

Why? Trivially uα,n ⊆ α∗. Also |uα,0| = 1 ≤ ∂, and if |uα,n| ≤ ∂ then

|uα,n+1| ≤|uα,n|+
∑
i<∂

∑
γ∈uα,n

|{β < α∗ : β satisfies i /∈ wβ ∧ ηβ(i) = ηγ(i)}|

=|uα,n|+
∑
i<∂

∑
γ∈uα,n

1

≤∂ + ∂ · ∂ · 1 = ∂.

2 We can replace “< ∂” by “∈ J ′” when J ′ ⊆ J is a ∂-complete ideal.
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We define uα by induction on α < α∗ as follows:

uα =
⋃
n

uα,n\
⋃
β<α

uβ,

so 〈uα : α < α∗〉 is a partition of α∗ to sets each of cardinality ≤ ∂, so we can

let 〈β∂α+i : i < iα ≤ ∂〉 list uα. Let

U = {∂α+ i : α < α∗, i < iα and β∂α+i /∈ ∪{uγ : γ < α}},

so {βγ : γ ∈ U } lists α∗ with no repetitions and easily 〈ηβζ
: ζ ∈ U 〉 is a list as

required in Definition 0.7(2). That is, let

β = β∂α+i = β(γα + i), i < iα.

So {i < ∂ : ηβ(j) ∈ {ηγ(j) : γ ∈ U ∩ β}} is the union of the following sets:

w2
β :={j < ∂ :ηβ(j)∈{ηγ(j) :γ∈U ∩ β∂,α}} and w2

β,ι={j<∂ :ηβ(j)=η∂α+ι(j)}
for ι < i. Now each of those sets belong to J . [Why? w2

β by the choice of

the uγ,n’s and the uγ ’s; w2
β,ι as it is included in wηβ(∂α+i)

.] So if J is a ∂-

complete ideal we are done, and if not, by part of the assumption of the claim,

ι < i⇒ |w2
β,ι| < ∂, so recalling ∂ is regular,

⋃
ι<iw

2
β,ι has cardinality < ∂ hence

belongs to J , so as J is an ideal we are done.

Pedantically

〈η′γ : γ < otp(U )〉

is such a list when we define η′γ for γ < otp(U ) by η′otp(ζ∩U ) = ηβζ
.

(2) Similarly to the “Second” in the proof that 0.7(1) holds, except

that (∗)1α(b) is:
(b)′ uα,n+1 = uα,n∪{β<α∗ : for some i ∈ ∂\wβ,

ηβ(i) = {ηγ(j) :γ∈uα,n, j<∂}}. 0.8

Question 0.10: (1) If μ is strong limit ℵ0 = cf(μ) < μ (but not necessarily

μ ∈ C), can we get the freeness results of [She13a]?

(2) In the cases we have, can we strengthen the χ-BB by having F : Λx → χ

and demand ηm(i) ∈ F (η̄ � (m,< i))?

(2A) Is this preserved by products?
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1. Black boxes

We generalize the k-dimensional black box from [She07], where we deal with

the special case when � < k⇒ ∂� = ℵ0 because this seems natural for Abelian

groups; the black boxes earlier to [She07] were for k = 1.

But here, for Abelian groups the most interesting cases are when

{∂� : � < k} ⊆ {ℵ0,ℵ1}.
In the cases we prove existence, the k-dimensional black box is the product of

black boxes, i.e., those for k = 1.

The main result is Theorem 1.25 telling us that there are k-dimensional black

boxes which are quite free.

The central notion here is combinatorial parameters, those objects (x) consist-

ing of the relevant finitely many cardinals (〈∂� : � < k〉) and sets (〈S� : � < k〉)
and a family (Λ) of sequences 〈η� : � < k〉 with η� a sequence of length ∂� of

members of S�. Such objects are used in the construction of Abelian groups G.

The point is that, on the one hand, the relevant (algebraic) freeness of the

Abelian group G is deduced from (set theoretic) freeness of x, i.e., of Λ, and on

the other hand, e.g., Hom(G,Z) = 0 is deduced by using the x having a black

box (which is used in the construction). See more in 1.4.

Convention 1.1: (1) ∂̄ will denote a sequence 〈∂� : � < k〉 of regular cardinals or
just limit ordinals of length k ≥ 1 and then ∂(�) = ∂�, but note that k = k− 1

was used in [She07]; a major case is ∂̄ is constant, i.e.,
∧

� ∂� = ∂ for some ∂.

(2) Let x,y, z denote combinatorial parameters; see Definition 1.5 below.

Notation 1.2: (0) Here S̄ = 〈S� : � < k〉 and ∂̄ = 〈∂� = ∂(�) : � < k〉.
(1) Let S̄[∂̄] =

∏
�<k

∂(�)(S�) and S̄[∂̄,u] =
∏

�∈u
∂(�)S� for u ⊆ {0, . . . ,k− 1},

and if each S� is a set of ordinals let S̄<∂̄> = {η̄ ∈ S̄[∂̄]: each η� is increasing}
and similarly S̄<∂̄,u>.

(2) If η̄ ∈ S̄[∂̄],m < k and i < ∂m, then3 η̄ � (m, i) = η̄ �x (m, i) is 〈η′� : � < k〉
where η′� is η� when � < k ∧ � �= m and is η��{i} if � = m; this is close to

but not the same as in [She07].4 Also for w ⊆ ∂m, η̄ � (m,= w) is defined

3 It is sometimes natural to replace “i < ∂�” by “i a subset of ∂� from some family P� and

η′� = η��i when � = m”, say using Jbd
ℵ1

∗ Jbd
ℵ1

as in [She13b]. In [She07] this version was

used.
4 But if we use a tree like Λ ⊆ S̄[∂̄], see 1.2(6), the difference is small; what we use there

is called here η̄ � (m,= i).
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10 S. SHELAH Isr. J. Math.

as 〈η′� : � < k〉 where η′� = η� if � < k ∧ � �= m and η′� = η��w if � = m.

Let η̄ � (m) = 〈η� : � �= m, � < k〉.
(3) If Λ ⊆ S̄[∂̄],m < k and i < ∂m, then Λ �x (m, i) = {η̄ � (m, i) : η̄ ∈ Λ};

we define similarly Λ �x (η,= w).

(4) If Λ⊆ S̄[∂̄], m < k and i ≤ ∂m, then Λ �x (m,< i)= ∪{Λ � (m, i1) : i1 < i}.
(5) Λx,∈u = ∪{Λx � (m, i) : m ∈ u, i < ∂m} for u ⊆ {0, . . . ,k − 1}.

We may write “< m” instead of “∈ m” when “u = {0, . . . ,m − 1}” and

let Λx,m = Λx,∈{m}.
(6) We say Λ ⊆ S̄[∂̄] is tree-like when η̄, ν̄ ∈ Λ, η̄ � (m, i) = ν̄ � (m, j) implies

ηm�i = νm�j, so in particular it implies i = j.

(7) We say Λ ⊆ S̄<∂̄> is normal when: if η̄, ν̄ ∈ Λ,m < k, i, j < ∂m and

ηm(i) = νm(j), then i = j (hence each νm is one-to-one; this follows from being

tree-like).

We now define in Definition 1.3 the standard x, as it is more transparent than

the general case (in 1.5), but we will not use it as the ZFC-existence results

are not standard; see explanation after Definition 1.3. The main difference is

that in the general (i.e., not necessarily standard) version, we have the extra

parameter J�, ideal on ∂�.

Definition 1.3: (1) We say x is a standard ∂̄-c.p. (combinatorial ∂̄-parameter)

when

x = (k, ∂̄, S̄,Λ) = (kx, ∂̄x, S̄x,Λx)

and it satisfies:

(a) k ∈ {1, 2, . . .} and let k = kx = k − 1 (this is to fit the notation

in [She07]),

(b) ∂̄ = 〈∂� : � < k〉 is a sequence of regular cardinals, so ∂� = ∂x,�,

(c) S̄ = 〈S� : � < k〉, S� a set of ordinals, so S� = Sx,�,

(d) Λ ⊆ S̄[∂̄] =
∏

�<k
∂(�)(S�), see 1.2(1).

(2) If � < k ⇒ ∂� = ∂, we may write ∂ instead of ∂̄ in (k, ∂̄, S̄,Λ) and may

say combinatorial (∂,k)-parameter. If � < k ⇒ ∂� = ℵ0, we may omit ∂̄ and

write “x is a combinatorial k-parameter”. If � < k⇒ S� = S, we may write S

instead of S̄. Also we may write k(x) for kx.

(3) We say x (or Λ) is ordinary when (each S� is a set of ordinals and)

η̄ ∈ Λ ⇒ each η� is increasing. We say x (or Λ) is weakly ordinary when

η̄∈Λ ∧m < �g(η̄)⇒ηm is one-to-one. We say x is disjointwhen 〈Sx,m : m < k〉
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is a sequence of pairwise disjoint sets. We say x is ordinarily full when it is

ordinary and

Λx = {〈η� : � < k〉 : η� ∈ ∂(�)(S�) is increasing for � < k}.
Similarly for weakly ordinary.

(4) We say y is a permutation of x when for some permutation π of

{0, . . . ,k− 1} we have m < k ⇒ ∂x,m = ∂y,π(m) and m < k ⇒ Sx,m = Sy,π(m)

and

Λy = {〈ηπ(m) : m < k〉 : 〈ηm : m < k〉 ∈ Λx}.
(5) We say π̄ is an isomorphism from x onto y when:

(a) ky = kx call it k,

(b) π̄ = 〈πm : m ≤ k〉,
(c) πk is a permutation of {0, . . . ,k− 1},
(d) ∂x,m = ∂y,πk(m) for m < k,

(e) πm is a one-to-one function from Sx,m onto Sy,πk(m) for m < k,

(f) 〈νm : m < k〉 ∈ Λy iff for some 〈ηm : m < k〉 ∈ Λx we have

νπk(m) = 〈πm(ηm(i)) : i < ∂x,m〉.
Discussion 1.4: It may be helpful to the reader to indicate how such x helps

to construct, e.g., Abelian groups; for simplicity each ∂� is ℵ0 (this suffices for

constructing an ℵω·n-free G, which already is new).

First, let 〈xη̄ : η̄ ∈ Λx � (m, i) for some m and i〉 freely generate an Abelian

group G0 and for such η̄ ∈ Λx we add elements like

yη̄,n = Σ
{( i!

n!

)
(xη̄�(m,i) + aη̄,mxνη̄ ) : m < kx, i finite ≥ n

}

for some νη̄ ∈ Λx1,<k, n < ω and aη̄,m ∈ Z getting G1 ⊇ G0. Now, on the

one hand, we like G1 to be θ-free and, on the other hand, we like it, e.g., to

have no non-zero homomorphism into Z. For the second task, we need a BB

(black box) property, that is, for each possible νη̄ to have, for each η̄ ∈ Λ, a

homomorphism hη̄ from Σ{Zxη̄�(m,i) : m < k, i finite} ⊕ Zxνη̄ into Z such that

{hη̄ : η̄ ∈ Λ} is dense (or see Definition 1.7(1), called ᾱη̄ there) and choose

the aη̄,n’s to “defeat hη̄”, i.e., to ensure no h ∈ Hom(G1,Z) extends hη̄.

Concerning the first task, we like to ensure x is θ-free, meaning that for any

Λ ⊆ Λx of cardinality < θ we can list its members as 〈η̄α : α < α∗〉 such that

for every α for some m, i we have j ≥ i ⇒ η̄α � (m, j) /∈ {η̄β � (m, j) : β < α};
see Definition 1.7(3).
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In the existence proofs the novel main point is getting enough freeness relying

on the pcf theory, i.e., in §1 we prove the existence of suitable c.p.x.

Definition 1.5: (1) We say x is a ∂̄-c.p. (combinatorial ∂̄-parameter) when

x = (k, ∂̄, S̄,Λ, J̄) = (kx, ∂̄x, S̄x,Λx, J̄x)

and they satisfy (in the standard case Jm = {w ⊆ ∂� : w is bounded}):
(a) ∂̄ = 〈∂m : m < k〉, a sequence of limit ordinals,

(b) J̄ = 〈Jm : m < k〉,
(c) Jm is an ideal on ∂m ,

(d) S̄ = 〈Sm : m < k〉, Sm a set of ordinals unless stated otherwise,

(e) Λ ⊆ S̄[∂̄].

(2) We adopt the conventions and definitions in 1.3(2)–(5).

Convention 1.6: (1) If x is clear from the context, we may write k for k(x), k

for k(x) and S,Λ, J̄ instead of kx, kx, S̄x,Λx, J̄x respectively.

(2) If not said otherwise x is weakly ordinary; see 1.3(3).

Definition 1.7: Assume x is a ∂̄-c.p.

(1) We say x has (χ̄,k, 1)-Black Box or χ̄-pre-black box when some ᾱ is

a (χ̄,k, 1)-black box for x or (x, χ̄)-pre-black box, which means:

(a) χ̄ = 〈χm : m < kx〉 is a sequence of cardinals,

(b) ᾱ = 〈ᾱη̄ : η̄ ∈ Λx〉,
(c) ᾱη̄ = 〈αη̄,m,i : m < kx, i < ∂m〉 and αη̄,m,i < χm,

(d) if hm : Λx,m → χm for m < kx recalling 1.2(5), then for some η̄ ∈ Λx

we have: m < kx ∧ i < ∂m ⇒ hm(η̄ � 〈m, i〉) = αη̄,m,i.

(2) For Λ ⊆ Λx we define x�Λ naturally as (kx, ∂̄x, S̄x,Λ, J̄).

(3) We may write ᾱ as b, a function with domain

{(η̄,m, i) : η̄ ∈ Λx,m < k, i < ∂m}

such that

bη̄(m, i) = b(η̄,m, i) = αη̄,m,i.

We may replace χ̄ by χ if χ̄ = 〈χ : � < kx〉 or by C̄ = 〈C� : � < k〉 when
|C�| = χ�, and we demand Rang(h�) ⊆ C�. We may replace x by Λ = Λx (so

say ᾱ is a (Λ, χ̄)-pre-black box).
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(4) Omitting the “pre” in part (1) means that there is a partition

Λ̄ = 〈Λα : α < |Λx|〉
of Λx such that each x�Λα has a χ̄-pre-black box and some 〈ν̄α : α < |Λx|〉
witnesses it, which means that:

(a) {ν̄α : α < |Λx|} = Λx,

(b) letting μ be maximal such that (∀� < k)2<μ ≤ χ� we have

α < β < α+ μ⇒ ν̄α = ν̄β ,

(c) if α≤β< |Λx|, (α, β) �=(0, 0) and η̄∈Λβ then να,k−1<ηk−1 mod Jx,k−1.

(5) We may write BB instead of black box.

(6) We say x essentially has a χ̄-black box when some (Λ̄,n) witnesses it,

which means:5

(a) Λ̄ = 〈Λα : α < |Λx|〉 is a sequence of pairwise disjoint subsets of Λx,

(b) x�Λα has a χ̄-pre-black box,

(c) n = 〈ν̄α : α < |Λx|〉,
(d) if ν̄ ∈ Λx then ν̄ ∈ {ν̄α : α < |Λx|},
(e) if μ = sup{μ : 2μ < min{|Sx,�| : � < kx}, then α < β < α+μ⇒ ν̄α = ν̄β

and α ≤ β < λ∧ η̄ ∈ Λxα ⇒ να,k−1 <Jx,�
ηk−1 (we can use a variant of

this), but this suffices presently.

We shall use freely

Observation 1.8: If (A) then (B):

(A) x is a ∂̄-c.p. and (Λ̄,n) witness x essentially have a χ̄-black box,

(B) there is y = x�Λ for some Λ ⊆ Λx which has a χ̄-black box.

Proof. We choose Ωn ⊆ Λx by induction on n by:

(∗) (a) if n = 0 then Ω0 = Λ0 ∪ {ν̄0}
(b) if n = m+ 1 then Ωn = ∪{Λα : α < λ = |Λx| and ν̄α ∈ Ωm} ∪Ωm.

Now x�
⋃

n Ωn is as required. 1.8

Observation 1.9: (1) In Definition 1.7(4) we may use Λx as the index set

of Λ̄ instead of |Λx|.
(2) If x is a ∂̄-c.p., χ̄ = 〈χ� : � < kx〉 and |Λx| = max{χ� : � < kx}, then x

has a χ̄-black box iff x has a χ̄-pre-black box.

5 See the proof of 2.10(2).
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Remark 1.10: Concerning the variants below our aim is to have “x is (θ)-free”,

but to get it we use the other versions.

Definition 1.11: (1) For Λ∗ ⊆ S̄[∂̄], we say “x is (θ, u)-free over Λ∗” when x is

weakly ordinary,6 u ⊆ {0, . . . ,kx − 1} and for every Λ ⊆ Λx\Λ∗ of cardinality

< θ there is a list 〈η̄α : α < α∗〉 of Λ such that: for every α for some m ∈ u and

w ∈ Jx,m we have7

ν̄ ∈ {η̄β : β < α} ∪ Λ∗ ∧ ν̄ � (m) = η̄α � (m) ∧ j < ∂x,m ∧ i ∈ ∂x,m\w
⇒ νm(j) �= ηα,m(i).

(2) If θ > |Λx| we may (in part (1)) write (∞, u)-free or u-free; we may omit

“over Λ∗” when Λ∗ = ∅.
(3) If u = {0, . . . ,k− 1} we may omit it.

(4) Suppose we are given cardinals θ1 ≤ θ2, combinatorial ∂̄-parameter x, Λ∗
(usually ⊆ Λx) and u ⊆ {0, . . . ,kx − 1} and k.

We say x is (θ2, θ1, u, k)-free over Λ∗ when:

(a) θ2 ≥ θ1 ≥ 1,

(b) 1 ≤ k ≤ kx, if k = 1 we may omit it,

(c) u ⊆ {0, . . . ,kx − 1} has ≥ k members

(d) for every Λ ⊆ Λx\Λ∗ of cardinality < θ2 there is a witness (Λ̄, g, h̄)

which means:

(α) Λ̄ = 〈Λγ : γ < γ(∗)〉 is a partition of Λ to sets each of cardinality

< θ1, so γ(∗) is an ordinal < θ2.

(β) g : γ(∗) → [u]k; when k = 1 we usually use g′ : γ(∗) → u where

g(γ) = {g′(γ)} for γ < γ(∗) or even use g′′ : Λ → [u]1 where

g′′(η̄) = g′(γ) when η̄ ∈ Λγ . Occasionally (when the meaning of

η̄β is clear) we may write g(η̄β) or g
′(η̄β) instead of g(β) and g′(β)

(so we consider Λx as the domain of g, g′ instead of γ(∗)).
(γ) η̄, ν̄ ∈ Λγ ∧m ∈ (kx\g(γ))⇒ ηm = νm.

(δ) h̄ = 〈hm : m ∈ u〉.
(ε) hm : Λ→ Jm; really just

hm�{η̄ ∈ Λ : if γ < γ(∗) and η̄ ∈ Λγ then m ∈ g(γ)}
matters. Here again, we may write hm(β) instead of hm(η̄β)

6 so if kx is 1, then “x is (θ, {0})-free” has a closer meaning to “{η : 〈η〉 ∈ Λx} is [θ, Jx,0]-

free” than to (θ, Jx,0)-free; see Definition 0.8.
7 If Λx is normal, we can restrict ourselves to i = j and this is the usual case.
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(ζ) if η̄ ∈ Λβ and m ∈ g(β) and ν̄ ∈ ∪{Λα : α < β} ∪ Λ∗ and

ν̄ � (m,= ∅) = η̄ � (m,= ∅), then i ∈ ∂m\hm(η̄)⇒ ηm(i) �= νm(i).

(5) In (4), if θ2 > |Λx| we may write (∞, θ1, u, k)-free; we may omit Λ∗
if Λ∗ = ∅ and if k = 1 we may omit k.

(6) We say x is (θ, u)-free over Λ∗ respecting Λ̄ (so we may write k in-

stead of u = {� : � < k} and θ-free instead of (θ, {� : � < k})) when

Λ̄ = 〈Λν̄ : ν̄ ∈ Λx〉,Λν̄ ⊆ Λx, and for every Λ ⊆ Λx\Λ∗ of cardinality < θ there

is a list 〈η̄α : α < α∗〉 of Λ such that:

•1 if η̄α ∈ Λν̄ so ν̄ ∈ Λx, then ν̄ ∈ {η̄β : β < α} ∪ Λ∗,
•2 for every α < α∗, for some m ∈ u and w ∈ Jx,m, we have

ν̄∈{η̄β : β < α}∪Λ∗∩ν̄ �(m) = η̄α � m∧j∈∂x,m\w∧i < ∂x,m ⇒ νm(i) �= ηm(j).

(7) For x, θ1, θ2,Λ∗, u as in Definition 1.11(4) and a sequence Λ̄∗=〈Λ∗
ρ̄ : ρ̄∈Λx〉

of subsets of Λx, we say x is (θ2, θ1, u, k)-free over Λ∗ respecting Λ̄∗, when clauses

(a)–(d) of Definition 1.11(4) hold and we add to clause (d)

(η) if η̄ ∈ Λα and η̄ ∈ Λ∗
ρ̄ then ρ̄ ∈ ∪{Λβ : β < α} ∪ Λ∗.

Claim 1.12: Assume x is a ∂̄-c.p. and u ⊆ {0, . . . ,kx − 1} is not empty.

(1) x is (θ2, 2, u, 1)-free over Λ∗ iff x is (θ2, u)-free over Λ∗, θ2 ≥ 2.

(2) If ∂ > max{∂� : � < kx},x is (θ, ∂, u)-free over Λ∗ and for each � ∈ u,x

is (∂, 2, {�})-free, then x is (θ, 2, u)-free over Λ∗ (equivalently (θ, u) free

over Λ∗).

Proof. Should be clear but we elaborate.

(1) It is enough to deal with the case |Λx\Λ∗| < θ2. First, assume θ2 ≥ 2

and x is (θ2, u)-free over Λ∗, let 〈η̄α : α < α∗〉 listing Λx\Λ∗ be as in Definition

1.11(1). Let Λα = {η̄α} for α < α∗ and define g′ : α∗ → u by g′(α) = the

minimal m ∈ u such that for some w ∈ Jm the condition in Definition 1.11(1)

holds. By the assumption that x is (θ2, u)-free over Λ∗, g′ is well defined. Let

g : α∗ → [u]1 be g(α) = {g′(α)}. Also we define hm : α∗ → Jm for m ∈ u such

that: if α < α∗ andm = g′(α) then hm(α) is any w ∈ Jm such that the condition

in Definition 1.11(1) holds. Now clearly in Definition 1.11(4), clause (a) holds

(letting θ1 = 2 as θ2 ≥ 2 = θ1), clause (b) holds as k = 1 ∈ [1,kx] and clause (c)

is obvious. We shall check clauses (d)(α)–(ζ) hence finishing proving the “if”

implication.
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Let γ(∗) = α∗ and Λ̄ = 〈Λα : α < α∗〉. This definition takes care of (d)(α)

and the above definition of g, g′ ensures (d)(β). Clause (d)(γ) is immediate

since each Λα is a singleton. Clauses (d)(δ), (d)(ε) follow from the definition of

the hm’s. Finally, clause (d)(ζ) follows from Definition 1.11(1).

Second, assume x is (θ2, 2, u, 1)-free and let (Λ̄, g, h̄) witness this so θ1 = 2;

note that θ2 ≥ 2, since θ1 = 2 and θ2 ≥ θ1 by Definition 1.11(4)(a). So

Λ̄ = 〈Λα : α < α∗〉 and h̄ = 〈hm : m ∈ u〉 and g : α∗ → [u]1, so for some

function g′ : α∗ → u we have α < α∗ ⇒ g(α) = {g′(α)}. As |Λα| < θ2 = 2 we

have |Λα| ≤ 1; without loss of generality
∧

α Λα �= ∅, hence there is a unique

η̄α ∈ Λx\Λ∗ such that Λα = {η̄α}. So 〈η̄α : α < α∗〉 lists Λx\Λ∗, and it suffices

to check that for every α < α∗ the condition in Definition 1.11(1) holds. We

choose m = g′(α) so m ∈ u and we choose w = hm(α) so w ∈ Jm indeed,

and the condition there holds for m,w by clause (d)(ζ) of Definition 1.11(4) as

Λα = {η̄α}, β < α⇒ Λβ = {η̄β}.
(2) As x is (θ, ∂, u)-free over Λ∗ there is a triple (Λ̄∗, g∗, h̄∗) witnessing it,

as in Definition 1.11(4), and let Λ̄∗ = 〈Λ∗
α : α < α∗〉 and h̄∗ = 〈h∗

m : m ∈ u〉.
For each � ∈ u and α < α∗ we know that x is (∂, 2, {�})-free and Λ∗

α is a subset

of Λx\Λ∗ of cardinality < ∂, hence there is a triple (Λ̄α, gα, h̄α) witnessing it.

Let Λ̄α = 〈Λα,β : β < βα〉 and so |Λα,β | < 2 and without loss of gener-

ality Λα,β �= ∅, so let Λα,β = {η̄α,β} and (as k = 1, see end of 1.11(5))

gα(β) = {g′α(β)}, where g′α : βα → u and let h̄α = 〈hα,m : m ∈ u〉.
Let γα = Σ{βα1 : α1 < α} for α < α∗, so clearly 〈γα : α ≤ α∗〉 is increasing

continuous and γ0 = 0 and let γ∗ = γα∗ ; we define η̄γ for γ < γ∗ by: if

γ = γα + β, β < βα, then we let η̄γ = η̄α,β . Also let g′ : γ∗ → [u]1 be

defined by g′�[γα, γα+1) is constantly {g∗(α)}, let Λ̄ = 〈Λγ : γ < γ∗〉 where
Λγ = {η̄γ}, and let h̄ = 〈hm : m ∈ u〉, hm : γ∗ → Jm be hm(γα + β) = hα,m(β)

if α < α∗, β < βα. So it is enough to check that (Λ̄, g′, h̄) witnesses Λx is

(θ, 2, u)-free over Λ∗, e.g., why clause (ζ) of Definition 1.11(d) holds.

Let η̄ ∈ Λγ ,m ∈ g′(γ) and ν̄ ∈ ∪{Λα : α < γ}∪Λ∗. So η̄ = η̄γ and one of the

following cases occurs, letting γ = γα + β, β < βα.

Case 1: ν̄ ∈ ∪{Λ∗
α′ : α′ < α} ∪ Λ∗.

Use “(Λ̄∗, g∗, h̄∗) witness Λx is (θ, ∂, u)-free over Λ∗”.

Case 2: ν̄ ∈ Λ∗
α.

Use “(Λ̄α, gα, h̄α) witness Λα is (∂, 2, {�})-free” for � = g∗(α). 1.12
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Definition 1.13: We say (x, Λ̄) witness BB3
k(λ,Θ, χ̄, ∂̄) when:

(a) x is a ∂̄-c.p. with |Λx| = λ and k = kx, i.e., = �g(∂̄),

(b) Λ̄ = 〈Λν̄ : ν̄ ∈ Λx〉 is a sequence of pairwise disjoint subsets of Λx,
8

(c) x�Λν̄ has χ̄-pre-black box for every ν̄ ∈ Λx

(d) Θ is a collection of cardinals and pairs of cardinals,

(e) if θ ∈ Θ, then x is (θ,k)-free respecting Λ̄, see 1.11(6), which means

that in the list 〈η̄α : α < α∗〉 in Definition 1.11(1), we have

(α > 0) ∧ η̄α ∈ Λν̄ ⇒ ν̄ ∈ {η̄β : β < α},
(f) if (θ2, θ1) ∈ Θ then x is (θ2, θ1,k, 1)-free respecting Λ̄, see 1.11(7).

Remark 1.14: Note that in Definition 1.13 necessarily we have

Σ{χ� : � < k} ≤ |Λx|.
Clearly

Claim 1.15: Assume μ is strong limit > cf(μ) = ∂,F ⊆ ∂μ has cardinality

λ = 2μ and F is θ-free (i.e., (θ, Jbd
∂ )-free); moreover, [θ, Jbd

∂ ]-free and weakly

ordinary, see 0.7(1),(2),(6).

Then there is a 〈∂〉-c.p. x with Λx = F which is θ-free and has the λ-BB

(i.e., (〈λ〉, 1, 1)-BB).
Proof. The point is that the set of functions from ∂>μ to λ has cardinality

λ = |F |, see more in [She13b, 2.2=Ld.6]. 1.15

Claim 1.16: (1) Assume x is a k-c.p.,

θ2 ≥ θ1 = cf(θ1) > max{∂x,� : � < kx}
and

u ⊆ {0, . . . ,kx − 1}, |u| = k ≥ 1.

The following conditions (A),(B),(C) on x, θ2, θ1, u, k are equivalent:

(A) x is (θ2, θ1, u, k)-free over Λ∗,
(B) as in Definition 1.11(4) omitting clause (d)(γ), in this case we call (Λ̄, g, h̄)

an almost witness,

(C) for every Λ ⊆ Λx\Λ∗ of cardinality < θ2 there is a weak witness (g, h̄)

which means: clauses (δ), (ε) of 1.11(4)(d) and

8 In [She07] we use Λx,<k as index set which, if k = 1, may have smaller cardinality; so

far not a significant difference.
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(β)′ g : Λ→ [u]k,

(ζ)′ if η̄1 ∈ Λ and m ∈ u then for all but < θ1 of the sequences η̄2 ∈ Λ

we have

• if η̄1 �= η̄2, η̄1 � (m,= ∅) = η̄2 � (m,= ∅) and m ∈ g(η̄1) ∩ g(η̄2)

and i ∈ ∂m\(hm(η̄1) ∪ hm(η̄2)), then

η1,m(i) �= η2,m(i),

(η)′ if η̄1 ∈ Λ and η̄2 ∈ Λ∗, then • of (ζ)′ holds demanding onlym ∈ g(η̄1).

(2) If in addition x is normal (see 1.2(7)) we can add:

(D) like (C) but we replace • inside (ζ)′ (and similarly in (η)′) by
• if η̄1 �= η̄2 ∈ Λ, η̄1 � (m,= ∅) = η̄2�(m, ∅) and m ∈ g(η̄1) ∩ g(η̄2)

and i, j ∈ ∂m\(hm(η̄1) ∪ hm(η̄2)), then

η1,m(i) �= η2,m(j).

(3) If in addition Λ∗ ⊆ Λx and each Jx,� is σ-complete, then

{Λ : Λ ⊆ Λx\Λ∗ is (θ2, θ1, u, k)-free over Λ∗}
is a σ-complete ideal on Λx\Λ∗.

Proof. (1) (A)⇒(B):

Obvious by the formulation of (B).

(B)⇒(C):

Let Λ ⊆ Λx\Λ∗ have cardinality < θ2; by clause (B) we can choose (Λ̄, g, h̄),

an almost witness (for Λ). As |u| = k, necessarily g is constantly u, so let

g′ : γ(∗) → [u]k be constantly u, hence it is enough to prove that (g′, h̄) is

a weak witness; clearly clause (β)′ of (C) holds. So by the phrasing of (B)

and (C) it is enough to prove clauses (ζ)′, (η)′ of (C). But clause (η)′ follows
from clause (ζ) of (B), i.e., (d)(ζ) of Definition 1.11(4). Now for clause (ζ)′,
let Λ̄ = 〈Λγ : γ < γ(∗)〉 and assume η̄ι ∈ Λβι for ι = 1, 2 and β1 �= β2 < γ(∗)
and m ∈ u and it suffices to prove • of (ζ)′. Clearly m ∈ g′(β1) ∩ g′(β2). So

assuming

η̄1 � (m,= ∅) = η̄2 � (m,= ∅)
and i ∈ ∂m\(hm(η̄1) ∪ hm(η̄2)) we should prove that η1,m(i) �= η2,n(i). By the

symmetry without loss of generality β1 < β2 and we apply clause (ζ) of (B)

with η̄1, η̄2, β1, β2,m here standing for ν̄, η̄, β,m there and get η1,m(i) �= η2,m(i)

as promised.
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(C)⇒(A):

So assume that Λ ⊆ Λx\Λ∗ has cardinality < θ2 and let (g, h̄) be a weak

witness for it (actually we have no further use of |Λ| < θ2); again necessarily g

is constantly u. So for m ∈ u, i < ∂m and every η̄ ∈ Λ let

Ω1
i,m,η̄ = {ν̄ ∈ Λ : ν̄ � (m,= ∅) = η̄ � (m,= ∅)

and i ∈ ∂m\hm(ν̄) and ν̄m(i) = η̄m(i)}.
By the choice of (g, h̄) and the definition of Ω1

i,m,η̄ we have:

•1 if ν̄, ρ̄ ∈ Ω1
i,m,η̄, then ν̄�(m,= ∅) = ρ̄ � (m,= ∅) and η̄m(i) = ν̄m(i) and

i ∈ ∂m\(hm(ν̄) ∪ hm(ρ̄)),

hence applying clause (ζ)′ of (C) to any η̄1 ∈ Ωi,m,η̄ we have

•2 Ω1
i,m,η̄ has < θ1 members.

Let

Ω1
η̄ = ∪{Ω1

i,m,η̄ : m ∈ u, i < ∂m} ∪ {η̄},
so recalling the claim assumption θ1 = cf(θ1) >

∑
m ∂m clearly

•3 if η̄ ∈ Λ then Ω1
η̄ has cardinality < θ1.

By transitivity of equality

•4 if ν̄ ∈ Ω1
η̄ then m < k ∧m /∈ u⇒ ν̄m = η̄m.

For η̄ ∈ Λ let Ω2
η̄ be the minimal subset Ω of Λ such that η̄ ∈ Ω and

ν̄ ∈ Ω⇒ Ω1
ν̄ ⊆ Ω,

so recalling θ1 is regular necessarily |Ω2
η̄| < θ1.

Let 〈η̄∗γ : γ < γ(∗)〉 list Λ. We now choose Λ1
γ for γ < γ(∗) by

Λ1
γ = ∪{Ω2

η̄∗
β
: β ≤ γ}

so {η̄∗γ} ⊆ Λ1
γ ⊆ Λ, so clearly ∪{Λ1

γ : γ < γ(∗)} = Λ.

Lastly, let Λ2
γ = Λ1

γ\ ∪ {Λ1
β : β < γ}, so obviously Λ̄2 = 〈Λ2

γ : γ < γ(∗)〉 is a
partition of Λ. Let g∗ : γ(∗)→ [u]k be constantly u and h̄ = 〈hm : m ∈ u〉, and
we shall show that the triple (Λ̄2, g∗, h̄) is as required in 1.11(4)(d).

Now clauses (α)–(ε) hold by our choices noting that by •4 we have: if η̄, ν̄ ∈ Λ2
γ

and m < k,m /∈ u then η̄m = ν̄m. As for clause (ζ) let η̄ ∈ Λβ,m ∈ g(β), α < β

and ν̄ ∈ Λ2
α, ν̄ � (m,= ∅) = η̄ � (m,= ∅) and i ∈ ∂m\hm(η̄) and we should

prove that ν̄m(i) �= η̄m(i). But otherwise η̄ ∈ Ω1
ν̄ ⊆ Ω2

η̄∗
α
⊆ ∪{Λ2

α1
: α1 ≤ α},

contradiction.

(2) Similarly.
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(3) By part (1), as we can use as definition clause (C) of (1), assume that

Λ =
⋃

i<i(∗) Λi ⊆ Λx\Λ∗ and i(∗) < σ and hi,m : Λ → Jm and (gi, h̄i) weakly

witnesses Λi. As |u| = k necessarily g0 :=
⋃

i gi is the constant function from Λ

into {u} and let hm : Λ→P(∂m) be

hm(η̄) = ∪{hi,m(η̄) : i < i(∗) and η̄ ∈ Λi}.
Now hm is into Jm as Jm is a σ-complete ideal and i(∗) < σ. Lastly, clearly

(g0, 〈hm : m ∈ u〉) is a weak witness for Λ so we are done. 1.16

Remark 1.17: Why the demand |u| = k in the claim?

Our problem is: in (A) we promise that the function g gives (for a fixed one γ)

for all η̄ ∈ Λγ the same u whereas in clause (C) this is not the case, in fact,

not well defined. It is natural then to divide Λγ to ≤ 2k cases according to the

value of g, but then it is not clear that clause (ζ) of (A) holds. To avoid this

we assume |u| = k. Maybe 1.16(3) helps but this is not crucial.

Definition 1.18: If �g(∂̄ι) = kι and xι is a combinatorial ∂̄ι-parameter for

ι = 1, 2, 3 then we say x1 × x2 = x3 when:

(a) ∂̄3 = ∂̄1ˆ∂̄2 hence k3 = k1 + k2,

(b) J̄x3 = J̄x1ˆJ̄x2 ,

(c) S̄x3 is S̄x1ˆS̄x2, that is

• Sx1,� if � < k1,

• Sx2,�−k1 if � ≥ k1,

(d) Λx3 is the set of η̄ ∈ ∏
�<k3

∂3(�)(Sx3,�) such that for some ν̄ ∈ Λx1 and

ρ̄ ∈ Λx2 we have:

• if � < k1, then η� = ν�,

• if � ≥ k1, then η� = ρ�−k1 .

Explanation 1.19: What is the role of the next claim? We shall prove

for (∂, J) = (ℵ0, Jbd
ω ) and (ℵ1, Jbd

ℵ1
× Jbd

ℵ0
), that for many strong limit

singular μ, there is a 1 − c.p.x such that (∂x,0, Jx,0) = (∂, J) and x has 2μ-

BB and x is quite free. But we do not know how to get one which is even

just ℵω+1-free. But such freeness is needed in §2! However, using long enough

finite products we can get enough freeness. More fully, first by 1.20, the prod-

uct gives a combinational parameter of the expected length (the sum) and weak

ordinariness, ordinariness and normality are preserved.

Second, by 1.21 the products have the appropriate (pre-)black box if each

product has one.
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Third, in 1.21–1.24 we get that if each x� satisfies enough cases of (θ2, θ1, u)-

freeness conditions then their product satisfies more.

Fourth, in Theorem 1.25 we prove the existence of x� (� < k) as required

relying on [She13a].

Lastly, in Conclusion 1.27 we get the desired conclusion used in §2.

Claim 1.20: (1) If xι is a combinatorial ∂̄ι-parameter for ι=1, 2, then there

is one and only one combinatorial parameter x3 such that x1 × x2 = x3.

(2) The product in Definition 1.18 is associative.

(3) If x1×x2 = x3, then x2×x1 is a permutation of x3; see Definition 1.3(4).

(4) If in Definition 1.18, x1,x2 are (weakly) ordinary and/or normal,

see 1.3(3), 1.2(7), then so is x3.

Proof. Straightforward. 1.20

Claim 1.21: (1) x3 has χ̄3-pre-black box when:

(a) xι is a combinatorial ∂̄ι-parameter for ι = 1, 2, 3,

(b) x1 × x2 = x3,

(c) xι has χ̄ι-pre-black box for ι = 1, 2,

(d) χ̄3 = χ̄1ˆχ̄2,

(e) if � < �g(∂̄2) then χ2,� = (χ2,�)
|Λx1 |.

(2) Moreover, x3 has a χ̄3-black box when in addition

(c)+ x2 has a χ̄2-black box and χ2,n = (χ2,n)
|Λx1 |.

Proof. (1) For each m < kx2 let F̄m = 〈Fm
α : α < χ2,m〉 list

{F : F a function from Λx1 into χ2,m}.

By clause (e) of the assumption, such sequence exists. Let ᾱ1 be a χ̄1-pre-black

box for x1 and let ᾱ2 be a χ̄2-pre-black box for x2; they exist by clause (c) of

the assumption.

Lastly, we define ᾱ = 〈ᾱη̄ : η̄ ∈ Λx3〉 where

ᾱη̄ = 〈αη̄,m,i : m < kx3 , i < ∂m〉

as follows: for η̄ ∈ Λx3 ,m < kx3 and i < ∂x3,m we let:

• if m < kx1 then αη̄,m,i = α1
η̄�k(x1),m,i,

• if m = kx1 + � and � < kx2 then αη̄,m,i = Fm
α2

ν̄,�,i
(η̄�kx1), where

ν̄ = η̄�[kx1 ,kx3), i.e., ν̄ = 〈ηk(x1)+n : n < kx2〉.
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Clearly ᾱ is of the right form, but is it really a χ̄3-pre-black box? So as-

sume hm : Λx3,m → χ3,m for m < kx3 and we should find η̄ ∈ Λx3 as in

Definition 1.7(1). Now first we define h2
m : Λx2,m → χ2,m for m < kx2 as

follows: h2
m(ν̄) is the unique α < χ2,m such that:

ρ̄ ∈ Λx1 ⇒ hk(x1)+m(ρ̄ˆν̄) = Fm
α (ρ̄),

possible by the choice of F̄m above. As ᾱ2 is a χ̄2-pre-black box, clearly there

is ν̄ ∈ Λx2 such that

m < kx2 ∧ i < ∂x2,m ⇒ h2
m(ν̄ � (m, i)) = α2

ν̄,m,i.

Fix a sequence ν̄ ∈ Λx2 as in the former paragraph. Now for m < kx1

we define h1
m : Λx1,m → χ1,m by h1

m(ρ̄) = hm(ρ̄ˆν̄) for ρ̄ ∈ Λx1,m, it is well

defined by our assumptions on hm, it has domain Λx1,m and, as ν̄ ∈ Λx2 ,

clearly ρ̄ˆν̄ ∈ Λx3,m by the definition of x3. As ᾱ
1 is a χ̄1-pre-black box for x1

there is ρ̄ ∈ Λx1 such that m < kx1 ∧ i < ∂x1,m ⇒ h1
m(ρ̄) = α1

ρ̄,m,i. We shall

show that

η̄ := ρ̄ˆν̄

is as required.

First, η̄ ∈ Λx3 because x3 = x1 × x2, ρ̄ ∈ Λx1 and ν̄ ∈ Λx2 .

Second, if m < kx1 ∧ i < ∂x3,m = ∂x1,m then

(∗) (a) hm(η̄ � (m, i)) = h1
m(ρ̄ � (m, i)) by the choices of η̄ and h1

m,

(b) h1
m(ρ̄ � (m, i)) = α1

ρ̄,m,i by the choice of ρ̄,

(c) α1
ρ̄,m,i = αη̄,m,i by the choice of αη̄,m,i, so together

(d) hm(η̄ � (m, i)) = αη̄,m,i.

Third, if m ∈ [kx1 ,kx3) ∧ i < ∂x3,n, then m = kx1 + �, � < kx2 for some �

and use the choices of αη̄,m,i and of ν̄.

(2) We have to deal with the black box case. So recalling Definition 1.7(4)

we are assuming:

(∗) (a) Λ̄2 = 〈Λ2
γ : γ < |Λx2 |〉 is a partition of Λx2 ,

(b) if γ < |Λx2 |, then x2�Λ2
γ has a χ̄2-pre-black box.

Now repeating the proof above, note:

(c) 〈ν̄α : α < |Λx2 |〉 list Λx as required in Definition 1.7(4).

We can choose ᾱ2 such that not only is it a χ̄2-pre-black box, but also

ᾱ2�Λ2
γ = 〈ᾱ2

ν̄ : ν̄ ∈ Λ2
γ〉

is a χ̄2-pre-black box for each γ < |Λx2 |.
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Having defined ᾱ = 〈ᾱη̄ : η̄ ∈ Λx〉 note that:

(∗) |Λx1 | ≤ χx2,0 (by clause (e) of the claim) and χx2,0 ≤ |Λx2 | (by 1.14)

and |Λx2 | is infinite (otherwise the χ̄2-black box fails), hence

|Λx3 | = |Λx2 | × |Λx2| = |Λx2 |,
(∗) letting Λγ = Λx1 × Λ2

γ the sequence 〈Λγ : γ < |Λx3 |〉 is a partition

of Λx3 .

Mainly we need to prove that: if γ < |Λx3 | then ᾱ�Λγ is a χ̄-pre-black box.

This proof is exactly as in the proof of the first part.

Lastly, we choose 〈ν̄α : α < |Λx3 |〉 as required. Toward this let

μι = max{μ : (∀� < kι)(2
<μ ≤ χι,�)};

note that necessarily |Λx2 | = |Λx3 | and μ1 ≤ |Λx1 | < μ2. Now choose

〈ν̄1α : α < |Λx1 |〉 such that

{ν̄1α : α < |Λx1 |} = Λx1

and

α ≤ β < α+ μ1 ⇒ ν̄1α = ν̄1β .

To finish, define 〈ν̄α : α < |Λx3 |〉 by:
• if γ = |Λx1 | · α+ β and β < |Λx1 |, then ν̄γ = ν̄1βˆν̄

2
γ .

Recalling γ1 < γ2 < γ1 + μ2 ⇒ ν̄2γ1
= ν̄2γ2

we are easily done. 1.21

The following Definition is somewhat similar to [She07], with different nota-

tion than earlier.

Definition 1.22: Let x = (k, ∂̄, S̄,Λ, J̄) be disjoint for notational transparency

(see 1.3(3)).

(0) For u ⊆ {0, . . . ,k− 1} let u⊥ = {� < k : � /∈ u}.
(1) For U ⊆ ⋃

�<k
∂(�)(Sx,�) let

ΛU = Λx,U = Λx(U ) = {η̄ ∈ Λx : η� ∈ U for every � < k}.
(2) For U ⊆ ⋃

�<k
∂(�)(Sx,�) and u ⊆ {0, . . . ,k− 1} let:

(a) addx(u) = {u :u ⊆ ⋃
�∈u

∂(�)(Sx,�)

satisfies |u ∩ ∂(�)(Sx,�)| = 1 for � ∈ u},
note that u ∈ addx(u)⇒ |u| = |u|,
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(b) for u ∈ addx(u) let

ΛU ,u = Λx(U ,u) := {η̄ ∈ Λx : for some m ∈ u we have

� < k ∧ � �= m⇒ η� ∈ (U ∪ u) ∩ ∂(�)(Sx,�)

and � < k ∧ � = m⇒ η� ∈ U ∩ ∂(�)(Sx,�)},

(c) Λ∗
x(U ,u) := Λx(U ∪u)\Λx(U ,u); this set is interesting, i.e., non-

empty only when U ∩ u = ∅ and then it is equal to

{η̄ ∈ Λx : if � ∈ u then η� ∈ u and if � ∈ k\u then η� ∈ U }.

(3) For non-empty u ⊆ {0, . . . ,k − 1} we say x is θ-(u, k)-free when: if

U ⊆ ⋃
�<k

∂(�)(Sx,�) has cardinality < θ and u ∈ addx(u
⊥) is dis-

joint to U then Λx(U ∪ u) is (∞, 2, u, k)-free over Λx(U ,u) recalling

1.11(4),(5).

(3A) If θ > |Λx| we may write ∞ instead of θ in part (3).

(4) For non-empty u ⊆ {0, . . . ,k−1} we say x is (θ2, θ1)-(u, k)-free when: if

U ⊆ ⋃
�<k

∂(�)(Sx,�) and u ∈ addx(u
⊥) is disjoint to U then Λx(U ∪u)

is (θ2, θ1, u, k)-free over Λx(U ,u) recalling 1.11(4).

Observation 1.23: (1) In Definition 1.22(3), the conclusion is equivalent to

“Λ∗
x(U ,u) = Λx(U ∪ u)\Λx(U ,u) is (∞, 2, u, k)-free”.

(2) Similarly in 1.22(4); that is, assume u⊆{0, . . . ,k−1}, U ⊆⋃
�<k

∂(�)(Sx,�)

and u ∈ add(u⊥) is disjoint to U , then: Λx(U ∪ u) is (θ2, θ1, u, k)-free over

Λx(U < u) iff Λ∗
x(U ,u) = Λx(U ∪ u)\Λx(U ,u) is (θ2, θ1, u, k)-free..

(3) If x is θ-(u, k)-free, then x is (θ, u, k)-free; see Definition 1.22(3), 1.11(4),

(5) respectively.

(4) If x is (θ2, θ1)-(u, k)-free, then x is (θ2, θ1, u, k)-free; see Definition 1.22(4),

1.11(4) respectively.

Proof. (1) If η̄ ∈ Λx(U ∪ u)\Λx(U ,u) and ν̄ ∈ Λx(U ,u) as u ∈ addx(u
⊥) it

follows that (∃m ∈ u⊥)[ηm �= νm].

(2) Similarly.

(3), (4) Straightforward. 1.23

The gain in the following theorem is that taking products of combinatorial

parameters, we gain new cases of freeness.
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The Freeness Theorem 1.24: If � below holds, then x is (θm, θ+0 )-(u, 1)-

free. If, in addition, every x� is θ+0 -free, then x is (θm, u)-free:

� (a) x� is a combinatorial 〈∂�〉-parameter for � < k,

(b) x = x0 × · · · × xk−1,

(c) u ⊆ {0, . . . ,k− 1} and m = |u| > 0, hence m ≤ k,

(d) θ0 < θ1 < · · · < θm are regular except possibly θ0,

(e) ∂x�
≤ θ0 for � < k,

(f) xk is (θm+1, θ
+
m)-free when k ∈ u ∧m < m.

Proof. Without loss of generality x is disjoint, i.e., the sets S� := Sx,� are

pairwise disjoint for � < k. We prove the claim by induction on m (so fix k

but we vary u and the θm’s). So let u ∈ addx(u
⊥) and U ⊆ ⋃

�<k
∂�(S�) has

cardinality < θm and we shall prove that Λ∗
x(U ,u) is (∞, θ+0 , u, 1)-free. Clearly

this suffices for the first phrase and the second follows recalling 1.12(2), 1.23(2).

Case 1: m = 1

So |u| = 1 and let u = {�}, hence η̄ �→ η� is a one-to-one function from

Λ∗
x(U ,u) onto

U� := U ∩ Λx�
.

We know that x� is (θ1, θ
+
0 )-free and |U�| < θ1, hence there is a partition

〈U�,α : α < α(∗)〉 of U� to sets each of cardinality ≤ θ0, α(∗) ≤ |U�| < θ1 and

h� : U� → Jx�
such that

α < β < α(∗) ∧ η ∈ U�,α ∧ ν ∈ U�,β ∧ ∂� > i /∈ h�(ν)⇒ η(i) �= ν(i).

For α < α(∗) let
Λα = {η̄ ∈ Λ∗

x(U ,u) : η� ∈ U�,α};
clearly 〈Λα : α < α(∗)〉 is a partition of Λ∗

x(U ,u) to sets each of cardinal-

ity ≤ θ0. Let the function g from α(∗) to [u]1 = {{�}} be defined by g(α) = {�};
clearly the partition 〈Λα : α < α(∗)〉 and the functions g, h� witness that

Λ∗
x(U ,u) is (θm, θ+0 )-free, as required.

Case 2: m > 1

Let m=m−1; as m>1, clearly m is≥1. So for k∈u the c.p. xk is (|U |+, θ+m)-

free and let Uk = U ∩ ∂(k)(Sk) ⊆ Λxk
, and by the induction hypothesis,

without loss of generality |U |≥!θm. Hence as in earlier cases (see 1.16(1)(C))

we can find a function h∗
k : Uk → Jxk

such that in the directed graph (Uk, Rk)
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each node has out-degree ≤ θm, that is, (∀η ∈ Uk)(∃≤θmν ∈ Uk)[ηRkν],

where

(∗)1 Rk = Rk,hk
= {(η, ν) :η, ν ∈ Uk and for some i < ∂k

we have i /∈ h∗
k(ν), η(i) = ν(i)},

(∗)2 let Λ∗ be Λ∗
x(U ,u) = Λx(U ∪ u)\Λx(U ,u),

and let

(∗)3 R∗ = {(η̄, ν̄) :η̄, ν̄ ∈ Λ∗ and for some k ∈ u

we have ηkRkνk and � < k ∧ � �= k ⇒ η� = ν�}.
Clearly

(∗)4 (Λ∗, R∗) is a directed graph with each node having out-degree ≤ θm.

Let Λ̄ = 〈Λγ : γ < γ(∗)〉 be such that:

(∗)5 (a) Λ̄ is a partition of Λ∗,
(b) Λγ has cardinality ≤ θm,

(c) if η̄ ∈ Λβ , ν̄ ∈ Λγ and β < γ < γ(∗), then ¬(η̄R∗ν̄); that is
• if � ∈ u and η̄ � (�, < 0) = ν̄ � (�, < 0), then ¬(η�R�ν�).

[Why? Let 〈η̄α : α < |Λ∗|〉 list Λ∗ with no repetition. For α < |Λ∗| we define

uα,n ∈ [|Λ∗|]≤θm by induction on n, increasing with n by

uα,0 = {α}, uα,n+1 = {β : for some γ ∈ uα,n we have η̄γR∗η̄β or β = γ}.
So uα =

⋃
n uα,n ∈ [|Λ∗|]≤θm , α ∈ uα and [η̄βR∗η̄γ ∧ β ∈ uα ⇒ γ ∈ uα]. Let

Λα = {η̄γ : γ ∈ uα but (∀β < α)(γ /∈ uβ)}, now check that Λ̄ = 〈Λα : α < |Λ∗|〉
is as required.]

(∗)6 It is enough to prove for each γ < γ(∗) that Λγ is (∞, θ+0 , u, 1)-free.

[Why? It is enough to prove Λ∗ is (∞, θ+0 , u, 1)-free.

By the assumption of (∗)6 for each γ < γ(∗) let Λ̄γ , gγ , h̄γ witness that Λγ is

(∞, θ+0 , u)-free, that is (recall Definition 1.11(4); for k = 1, see 1.11(5)):

• Λ̄γ = 〈Λγ,ε : ε < εγ〉 is a partition of Λγ

• Λγ,ε has cardinality ≤ θ0,

• gγ : εγ → u,

• if η̄, ν̄ ∈ Λγ,ε and k ∈ u ⊆ k, k �= gγ(ε) then ηk = νk,

• h̄γ = 〈hγ,k : k ∈ u〉,
• hγ,m is a function from Λγ into Jm,

• if η̄ ∈ Λγ,ε and ν̄ ∈ ∪{Λγ,ξ : ξ < ε},m = gγ(ε), ν̄ � (m) = η̄ � (m) and

i ∈ ∂k\hγ,k(η̄) then ηk(i) �= νk(i).
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Let

• ζγ =
∑

β<γ εβ for γ ≤ γ(∗),
• Λ′

ε = Λγ,ε−ζγ when ε ∈ [ζγ , ζγ+1],

• g is the function with domain ζγ(∗),
• g(ε) = gγ(ε− ζγ) when ε ∈ [ζγ , ζγ+1) and γ < γ(∗),
• hk is the function with domain Λ∗ defined by: if η̄ ∈ Λζ , ζ = ζγ + ε and

ε < εγ then hk(η̄) = hγ,k(η̄) ∪ h∗
k(η̄).

Now check Definition 1.11(4).]

Fix γ < γ(∗) and we shall prove for it the condition from (∗)6. If |Λγ | < θm the

desired statement follows from the induction hypothesis, so assume |Λγ | = θm.

Let 〈ηγ,α : α < θm〉 list {νk : ν̄ ∈ Λγ and k ∈ u}.
For β < θm let Uγ,β = {ηγ,α : α < β} and let k(β) be the unique k ∈ u such

that ηγ,β ∈ ∂k(Sk). Clearly |Uγ,β | < θm. Also 〈Uγ,β : β < θm〉 is ⊆-increasing
continuous with union ∪{Λ∗

x(Uγ,β ,u) : β < θm} = Λγ .

By induction on β < θm we choose 〈Λ̄β , gβ, h̄
β) such that

(∗)7 (a) Λ̄β = 〈Λγ,ε : ε < εβ〉 is a partition of Λ∗
x(Uγ,β ,u) so

α < β ⇒ Λ̄α � Λ̄β,

(b) each Λγ,ε has cardinality ≤ θ0,

(c) gβ : εβ → u such that α < β ⇒ gα ⊆ gβ,

(d) h̄β = 〈hβ
k : k ∈ u〉,

(e) hβ,k : Λx(Uγ,β ,u)→ Jk and α < β ⇒ hα
k ⊆ hβ

k ,

(f) if ε < εβ, η̄ ∈ Λγ,ε, gβ(η̄) = k so k ∈ u and ν̄ ∈ ∪{Λγ,ζ : ζ < ε} and
ν̄ � (k,< 0) = η̄ � (k,< 0), then

i ∈ ∂x,k\hβ,k(η̄)⇒ νk(i) �= ηk(i).

For β = 0, Λ∗
x(Uγ,β ,u) = ∅ so this is obvious. For β limit take unions.

Lastly, for β = β∗+1, it is enough to show that Λ∗
x(Uγ,β ,u) is (∞, θ+0 , u)-free

over Λ∗
x(Uγ,β∗ ,u). Now

Uγ,β\Uγ,β∗ = {ηγ,β∗}, ηγ,β∗ ∈ ∂k(β∗)(Sk(β∗)),

hence ηγ,β∗∈U . So let uγ,β=u\{k(β∗)}, uγ,β=u∪{ηγ,β∗}, so uγ,β∈addx(u⊥
γ,β),

uγ,β ⊆ {0, . . . ,kx − 1} has m members because |u| = m = m+ 1. Recall

Λ∗
x(Uγ,β ,uγ,β) = Λ∗

x(Uγ,β ,u)\Λ∗
x(Uγ,β∗ ,u)
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and by the induction hypothesis on m we know Λ∗
x(Uγ,β ,uγ,β) is (∞, θ+0 , uγ,β)-

free so there is a witness (Λ̄∗
γ,β, g

∗
γ,β, h̄

∗
γ,β), i.e., it is as in 1.11(4)(d) for k = 1,

in particular:

(∗)8 Λ̄∗
γ,β = 〈Λ∗

γ,β,ζ : ζ < ζγ,β〉 is a partition of Λ∗
x(Uγ,β ,uγ,β).

We define

(∗)9 • εβ = εβ∗ + ζγ,β,

• Λεβ∗+ζ = Λ∗
γ,β,ζ for ζ < ζγ,β,

• gβ(εβ∗ + ζ) = g∗γ,β(ζ) for ζ < ζγ,β, i.e., gβ is the function with

domain εβ extending gβ∗ and defined on [εβ∗ , εβ) as above,

• hβ,k is a function with domain Λ∗
x(Uγ,β,u) = ∪{Λε : ε < εβ}

extending hγ,β∗,k,

• hβ,k(η̄) = h∗
γ,β,k(η̄) if η̄ ∈ Λ∗

x(Uγ,β,uγ,β).

Now check. Notice that if ξ<εβ∗≤ε<εβ and ν̄∈Λγ,ξ and η̄∈Λγ,ε=Λ∗
γ,β,ε−εβ∗

and m = gβ(ε) = g∗β,γ(ε−εβ∗), then m �= k(β∗) and ηk(β∗) �= νk(β∗), so no prob-

lem arises and the rest should be clear. 1.24

In what follows we assume � < k⇒ ∂� = ∂ to simplify; anyhow we have not

sorted out what occurred to (B)(d) when ∂̄ is not constant

Theorem 1.25: If (A) then (B) where:

(A) (a) ∂̄ = 〈∂� : � < k〉 such that � < k⇒ ∂� = ∂ = cf(∂),

(b) μ� ∈ C∂�
for � < k, see 0.2, 0.3,

(c) μ� < μ�+1 for � < k,

(d) χ� = 2μ� ,

(e) for some regular σ,
∧

� σ<∂� and J�=Jbd
σ  Jbd

∂�
for � < k;

(B) there is x such that:

(a) x is a combinatorial ∂̄-parameter of cardinality ≤ χk−1 with

Jx,� = J�,

(b) x has a χ̄-black box

(c) x is (θ∗, θ+)-free when n(∗) ≥ 1, θ = cf(θ) ≥ ∂, θ∗ = θ+(∂·n(∗)) < μ0

and 3n(∗) + 4 < k,

(d) x is θ∗∗-free when θ∗∗ = ∂+(∂·n(∗)+∂) < μ0, 3n(∗)+4 < k, n(∗) ≥ 1.

Remark 1.26: Note that the proof is somewhat easier when θ+∂(n(∗)+1) < μ0

and the loss is minor.
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Proof. For each � < k we can choose x� such that:

⊕ (a) x� is a combinatorial 〈∂�〉-parameter,

(b) x� is (θ+∂+1, θ+4)-free when ∂ ≤ θ < μ0 and Jx,e = Je,

(c) x� has a χ�-pre-black box, moreover,

(c)+ x� has a χ�-black box,

(d) Λx�
has cardinality χ�,

(e) x� is ∂+-free.

Why? By [She13a, 0.4,0.5,0.6=y19,y22,y40], when we weaken clause ⊕(c)+
to x� has a χ�-pre-black box; anyhow we elaborate (also when ∂ = ℵ0 we have

to say a little more) so let � < k and μ = μ�, λ = χ�.

First, assume that there is a (μ+, Jbd
∂ )-free subset F of ∂(μ) of cardinality

λ = 2μ. We define x� by Λx�
= {〈η〉 : η ∈ F}, Jx�

= Jbd
∂ .

Now x� has a λ-black box (by [She13b, §3]); easy as the number of functions

from ∂>(μ) to λ is λμ = λ.

Note also that x� is tree-like; this is enough for ⊕(a), (b), (c), (d), (e).

Without loss of generality there is a list 〈ηα : α < λ〉 of the elements of F

such that α < β ⇒ ηα <Jbd
∂

ηβ (see the proof of [She13b, 3.10=L1f.28]. Let

〈Uα : α < λ〉 be a sequence of pairwise disjoint subsets of λ each of cardinality λ

such that

min(Uα) > μω · α
and let Fα = {ηβ : β ∈ Uα} and να = ηβ when α ∈ [μ · β, μ · β + μ) and

F∗ =
⋃

α Fα. Now we choose

Λx�
= {〈η〉 : η ∈ F∗}, Λ∗

α = {〈η〉 : η ∈ Fα}

so 〈να : α < λ〉 witness x� has a χ̄-black box.

Second, assume that there is no F as above; it follows that λ = 2μ is regular

(see [She13a, 0.4] or [She13b, §3] using the “no hole claim”). Note that if there

is a 〈∂〉-c.p. x which is (θ2, θ1)-free, Λx ⊆ ∂μ pedantically Λx ⊆ {〈η〉 : η ∈ ∂μ}
and |Λx| = 2μ, J and ideal on ∂, J ⊇ Jx = Jbd

∂ , then there is such y with

Jy = J and as above both have the λ-BB.

Now as λ = cf(λ) = 2μ, μ ∈ C∂ , there is a sequence 〈λi : i < ∂〉 of regular
cardinals < μ and (see [She96, 6.5]) the ∂-complete ideal J = Jbd

∂ such that

χ = tcf

(∏
i<∂

λi, <J

)
,
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so let 〈ηα : α < χ〉 be <J -increasing cofinal in (
∏

i<∂ λi, <J). By [She13a,

0.1=L41] there is S ∈ Ǐθ+ [λ] such that: if δ < λ ∧ cf(δ) ≥ θ+4 then

{δ1 < δ : cf(δ1) = θ+3 and S ∩ δ1 is a stationary subset of δ1}
is stationary in δ; note that there cf(δ) = θ+4, but the general case of cf(δ) ≥ θ+4

follows.

Recall λ = cf(λ), S ⊆ λ, sup(S) = λ and we recall some things from [She13a];

f̄ = 〈fα : α < λ〉 is <J -increasing, J an ideal on ∂, fα : ∂ → Ord and uα ⊆ α

for α < λ, we say f̄ obeys the sequence of sets ū = 〈uα : α < λ〉 when for

every βuα we have
∧

γ<∂ fβ(γ) < fα(γ) and if α ∈ S is a limit ordinal then

fα(γ) = supβ∈uα
(fβ(γ) + 1) for every γ < ∂.

For θ = cf(θ) < λ, we say ū as above is a witness for S ∈ Ǐθ[λ] when:

• α ∈ S ⇒ cf(α) = θ,

• α < λ⇒ |uα| < θ,

• α ∈ uβ ⇒ uα = uβ ∩ α,

• there is a club E of λ such that if δ ∈ S ∩ E then uα is an unbounded

subset of α of order type θ.

We say f̄ is good in a limit ordinal δ < λ when there are u ⊆ δ = sup(δ) and

w̄ = 〈wα : α ∈ u〉 ∈ uJ such that

α ∈ u ∧ β ∈ u ∧ α < β ∧ i ∈ ∂\(wα ∪ wβ)⇒ fα(i) < fβ(i).

So without loss of generality f̄ obeys a witness for S ∈ Ǐ∂+ [λ], hence is good

in δ when: δ ∈ S or (S ∩ δ) is a stationary subset of δ and cf(δ) ∈ (θ, θ+∂).

Let S• ∈ Ǐσ [λ] be stationary such that δ ∈ S• ⇒ μω|δ and for δ ∈ S•
we let ρδ ∈σ δ be increasing with limit δ. Now let f ′

δ ∈σ δ be such that

i < ∂ ∧ j < σ⇒f ′
δ(σi + j)=μfδ(i) + ρδ(j). Hence {f ′

α : α < λ} is (θ+∂+1, θ+4)-

free for every θ ≥ ∂, see [She13a, 0.4=Ly19]; in more detail, in [She13a,

0.4=Ly19] we conclude (A) or (B), now (A) there is covered by “first” whereas

if (B) there holds see [She13a, 0.6(e)=Ly40(e)].

Together we are done except for ⊕(c), (c)+ which is proved by [She13a, 0.6(g),

(g’)].

So we have finished proving ⊕.
Let x = yk, where for m ∈ {1, . . . ,k} we let ym = x0 × x1 × · · · × xm−1 and

we shall show it is as required.

Clause (B)(a), which says “x is a combinatorial ∂̄-parameter of cardinality

χk−1”, holds by 1.20(1), i.e., we can prove “ym is a 〈∂� : � < m〉-c.p. of cardi-
nality χm−1” by induction on m = 1, . . . ,k.
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Clause (B)(b), which says “x has a χ̄-BB” holds by 1.21, that is, again by

induction on m = 1, . . . ,k we can prove that ym has the 〈χ� : � < m〉-BB.
We now shall prove:

Clause (B)(c): we deduce it from 1.24+⊕(b). We are given θ, n(∗) as there.
Let 〈θm : m ≤ m(∗)〉 be defined by: m(∗) = 3n(∗)+4, θι := θ+ι for ι = 0, 1, 2, 3

and θ3+3m+ι := (θ3+3m)+(∂+ι) for ι = 1, 2, 3 when m < n(∗) and
θm(∗) := θ+∂+1

3n(∗)+4 < μ0;

the “≤ μ0” holds by the assumption of clause (B)(c). Note that if θm+1 = θ+m
then “x� being (θm+1, θ

+
m)-free” is trivial.

To apply Theorem 1.24 with x� as in ⊕ above, x as above, m = m(∗),
u = {0, . . . ,k−1} has m members and θ� for � ≤m as above, we have to verify

clauses (a)–(f) of � of 1.24.

Now clause (a) stating x� is a combinatorial 〈∂�〉-parameter holds by ⊕(a).
Now clause (b) stating x = x0 × · · ·xk−1 holds by the choice of x above.

Clause (c) stating “u ⊆ {0, . . . ,k− 1} and m = |u| > 0” holds by the choice

of u and the assumption on m(∗).
Clause (d) stating “θ0 < · · · < θm” holds by the choice of the θ�’s above.

Notice that each θ�(� > 0) is a successor and hence regular.

Clause (e) stating “∂x�
≤θ0 for �<k” holds because θ0=θ≥∂=∂� for �<k.

Clause (f) stating “x� is (θm+1, θ
+
m)-free”, “when � ∈ u,m < m”, holds; we

check this by cases.

Case 1: θm+1 = θ+m, (f) holds trivially.

Case 2: m = 3, (θm+1, θ
+
m) = (θ+(∂+1), θ+4) holds by clause (b) of ⊕.

Case 3: m = 3n+ 3 where n < n(∗) so (θm+1, θ
+
m) = (θ∂·(n+1)+1, θ∂·n+4).

By clause (b) of ⊕ above applied to θ = ∂+∂·n.
So all clauses of � of Theorem 1.24 hold, hence its conclusion which says x is

(θm, θ+0 )-free but θm=θ∗ and θ0=∂, so we are done proving clause (c) of 1.25(B).

Clause (B)(d) says that “x is θ∗ free” assuming θ∗ = ∂+(∂·n(∗)+∂) < μ0,

3m+4 < k and
∧

�<k ∂� = ∂. We will deduce it from clause (B)(c) by applying

it choosing θ′∗ = θ+∂·n(∗)+4, θ = ∂ andm(∗) = m. The assumptions in clause (c)

hold: θ = ∂+ so θ ≥ ∂ and θ′∗ is as θ∗ is there and θ′∗ < μ0 by an assumption of

clause (d) which also says 3n(∗) + 4 < k.

So the conclusion of clause (c) holds, i.e., x is (θ′∗, θ)-free. But θ∗ ≤ θ′∗ so x

is (θ∗, ∂+)-free. Also each x� is ∂+-free by �(e) hence by 1.12 the last two

statements imply x is θ∗-free. 1.25
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Conclusion 1.27: (1) If σ < ∂ are regular and χ ≥ ∂ and n ≥ 1, then there

is an ℵ∂·n-free, m-c.p. x for some m which has the χ-BB and |Λx| < �∂·ω(χ)
and Jx,m = Jbd

∂  Jbd
σ .

(2) If σ = ∂ is regular and χ ≥ ∂ and n ≥ 1, then there is an ℵ∂·n-free
m-c.p. (for some m), x has the χ-BB which is not free (really follows) and Λx is

not even the union of ≤ χ free subsets and x has cardinality < �∂·ω(χ)+�ω1(χ)

and Jx,m = Jbd
∂ .

(3) If m = 3n + 5, σ = cf(σ) < ∂ = cf(∂) < χ < μ0 < · · · < μm−1 and

μ� ∈ C∂ for � < m, λ� = cf(2μ�), S� ⊆ {δ < λ� : cf(δ) = σ} stationary from

Ǐσ [λ�] and J = Jbd
∂ × Jbd

σ , then we have (A) or (B), where:

(A) for some �

(a) there is an F ⊆ ∂(μ�) of cardinality 2μ� which is μ+
� -free, i.e., is

(μ+
� , J

bd
∂ )-free, see Definition 0.7(1), hence (μ+

� , J)-free,

(b) hence letting x be the 1.-c.p. such that Λx = {〈η〉 : η ∈ F}, it is a

2μ�-BB for x which is μ+
� -free and Jx = J ;

(B) we can choose x = x0 × · · · × xm−1,x� as a 1-c.p., Λx�
= {η�,δ : δ ∈ S�},

limJx�
(η�,δ) = δ, moreover η�,δ is increasing with limit δ and Jx�

= J∂ Jσ

and x� has the χ-BB if χ < μ�.

(4) Given n,m, σ < ∂ < χ as in part (3), we can find μ� (and λ�, S�) as there

such that:

(a) if ∂ > ℵ0 then μ� = �∂·(1+�)(χ), we’ll have “x is θ∗-free” we need χ ≥ θ,

(b) if ∂ = ℵ0 for some club E of ω1 and μ� ∈ {�δ(χ) : δ ∈ E} are O.K.

Proof. (1) Let k=3n+5 and for �<k we let ∂�=∂, μ�=�∂·(1+�)(∂
+(∂·n+1) + χ)

and χ� = 2μ� . So each μ� is strong limit of cofinality ∂ = cf(∂) > σ ≥ ℵ0;
recalling 0.3 we have μ� ∈ C∂�

, i.e., clause (A)(b) of Theorem 1.25 holds.

Clauses (A)(a),(c),(d),(e) of 1.25 are obvious, hence there is x as in clause (B)

of 1.25, in particular it is ∂+(∂·n+1)-free. Also ∂+(∂·n+1) < �∂·ω(χ), hence also

μ� = �∂·(n+2)(∂
+(∂n+1) + χ) is < �∂·ω(χ), hence |Λx| ≤ 2μk−1 < �∂·ω(χ), so

we are done.

(2) If ∂ > ℵ0, the proof of part (1) holds and |Λx| < �∂·ω(χ). If ∂ = ℵ0, we
know (see [She94]) that there is a club E of ω1 consisting of limit ordinals such

that δ ∈ E ⇒ �δ(χ) ∈ C∂ . We define k, ∂� as above and for � < k let δ� be

the �-th member of E and let μ� = �δ�(χ), and we continue the proof in [Shee],

and anyhow not used.
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(3) This is straightforward by [She13b] but we elaborate to some extent. First

assume that for some � < k clause (A)(a) of 1.27(3) holds, so x from (A)(b) is

a well defined 1-c.p. and is μ+
� -free, and letting χ = 2μ� there is a χ-BB for x

because the number of h : ∂>(μ�)→ χ is ≤ χμ� = χ, and diagonalizing we can

choose a χ-pre-BB for x (see 1.15). To get a χ-BB we work as in the proof of

1.21(2).

So assume there is no such �. Then for each �, we know that λ� = 2μ� is regular

(see [She13b, 3.10(3)=L1f.28, p. 39]). By the proof of ⊕ in the beginning of the

proof of 1.25, there is x�,1 as there, so as Λx�,1
⊆ ∂(μ�). By [She13b, 3.6=L1f.21],

we know that α < λ� ⇒ |α|σ < λ�, hence obviously there is a stationary set

S� ⊆ Ǐσ[λ�] (in fact, {δ < λ� : cf(δ) = σ} belongs to Ǐσ[λ�]), see [She93a, Claim

2.14]) and without loss of generality δ ∈ S� ⇒ μω
� |δ.

Hence we can find ν̄ = 〈νδ : δ ∈ S�〉 such that:

• νδ ∈ σδ is increasing with limit δ,

• νδ1(i1) = νδ2(i2)⇒ �1 = �2 ∧ νδ1�i1 = νδ2�i2,
• νδ(i) is divisible by μ�.

Let 〈ρδ : δ ∈ S�〉 list Λx�,1 and for δ ∈ S� let ηδ ∈ ∂δ be: if i < ∂, j < σ then

ηδ(σi + j) = νδ(j) + ρδ(i).

We define x� by Λx�
= {ηδ : δ ∈ S�}, Jx�

= Jσ � Jδ
∂ , etc. Now

(∗) x� is a 〈∂〉-pre-BB of cardinality χ�, with the freeness properties from

1.25.

What about χ-pre-BB? By [She13b, §3] this holds whenever χ < μ�, which is

enough for applying. To get χ-BB let 〈δ(ζ) : ζ < λ〉 list S� in increasing order

and let 〈Sα : α < λ�〉 be a sequence of pairwise disjoint stationary subsets of S�

such that min(Sα) > δ(α). Let νξ = ηδ(ζ) when ζ · μ ≤ ξ < ζ · μ+ μ.

We define Λα = Λ�
α = {ηδ : δ ∈ Sα} so for each α there is a χ�-pre-BB for Λα

and we continue as in the proof of 1.25. We now continue as in part (1) within

the proof of 1.25.

(4) By the proofs above this should be clear. 1.27

Discussion 1.28: (1) The following statement appears in [She13a, 0.4=Ly19]. If

σ = cf(σ) < κ = cf(κ) and μ ∈ Cκ, then at least one of the following holds:

(A) there exists a μ+-free F ⊆ κμ of cardinality λ = 2μ,

(B) λ = 2μ is regular and there is a (λ, μ, σ, κ) − 5-solution.
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If (A) holds, then we get more than promised (i.e., μ+
� -freeness). Hence we

may assume, without loss of generality, that (B) holds. We shall return to this

point (and then recall the definition of 5-solution).

(2) We can vary the definition of the BB, using values in χ or using models.

(3) We can use just a product of two combinatorial parameters but with

any kx. At present this makes no real difference.

Discussion 1.29: Assume x is a combinatorial ∂̄-parameter, ∂̄ = ∂̄x and

∂̄′ = 〈∂′
� : � < kx〉 is a sequence of limit ordinals such that

� < k⇒ cf(∂′
�) = ∂�.

It follows that there is y such that:

(∗) (a) y is a combinatorial ∂̄′-parameter,

(b) Sy,� = {∂′
�α+ i : α ∈ Sx,� and i < ∂′

�},
(c) Λy = {g(η̄) : η̄ ∈ Λ}, where
(d) g : S̄

[∂̄]
x → S̄

[∂̄′]
y is defined as follows: for each � < k for some

increasing continuous sequence 〈ε�,i : i ≤ ∂�〉 of ordinals with

ε�,0 = 0, ε�,∂�
= ∂′

� we have g(η̄) = ν̄ iff η̄ = 〈η� : � < k〉,
ν̄ = 〈ν� : � < k〉 and

ε�,i ≤ ε < ε�,i+1 ⇒ ν�(ε) = ∂′
� · η�(i) + ε

(of course, we could have “economical”),

(e) if x has χ̄− BB and χ� = χ
∂′
�

� for � < k then y has χ̄− BB.

Definition 1.30: We say a k-c.p. x is (θ, σ)-well orderable (χ̄,k, 1)-BB when

there is a witness Λ̄ which means:

(a) Λ̄ = 〈Λα : α < δ〉,
(b) Λ̄ is increasing continuous,

(c) cf(δ) ≥ σ and δ is divisible by θ,

(d) if α < δ then x�(Λα+1\Λα) has a χ̄-pre-black box

(e) if α < δ, η̄ ∈ Λα+1\Λα and m < k then the following set belongs to

Jx,m:

• {i < ∂x,m: for some ν̄ ∈ Λα we have η̄ � (m, i) = ν̄ � (m, i)}.
Claim 1.31: (1) In Theorem 1.25, for any θ = cf(θ) ≤ χk−1 Clause (B)(b)

can be strengthened to: x has a θ-well orderable χ̄-black box.

(2) Parallel to Conclusion 1.27.
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2. Building Abelian groups and modules with small dual

For transparency we restrict ourselves to hereditary rings.

Convention 2.1: (1) All rings R are hereditary, i.e., if M is a free R-module

then any pure sub-module N of M is free.

(2) An alternative is to interpret “G is a θ-free ring” by demanding cf(θ) > ℵ0
and in the game of choosing An ∈ [G]<θ increasing with n, the even player can

guarantee the sub-module 〈⋃n An〉G of G is free.

We shall try to use a ∂̄-BB to construct Abelian groups and modules. In 2.2

we present a quite clear case: the case
∧

� ∂� = ℵ0, the ring is Z (and the

equations are simple). Note that the addition of z (in 2.2(1)(b), 2.4(1)(a))

is natural when we are trying to prove h ∈ Hom(G,Z) ⇒ h(z) = 0 which

is central in this section, but is not natural for treating some other questions.

When dealing with TDCλ we may restrict ourselves to G simply derived from x,

see 2.2(3), so can ignore 2.2(1A),(2).

Definition 2.2: Let x be a tree-like9 (see Definition 1.2(1)) combinatorial ∂̄-

parameter and let k = kx.

(1) If k < kx ⇒ ∂� = ℵ0, then we say an Abelian group G is derived from x

when

(a) G is generated by X ∪ Y where:

(α) X = {xη̄�(m,n) : η̄ ∈ Λx,m < kx and n ∈ N} ∪ {z},
(β) Y = {yη̄,n : η̄ ∈ Λx and n ∈ N};

(b) moreover, generated freely except the following set of equations:

Ξx = {(n+1)yη̄,n+1 = yη̄,n−Σ{xη̄�(m,n) : m < k}−aη̄,nzη̄ : η̄ ∈ Λx and n ∈ N},

where

•1 zη̄ ∈ Σ{Zxη̄�(m,n) : η̄ ∈ Λx,m < k, n ∈ N} ⊕ Zz,

•2 aη̄,n ∈ Z.

(1A) We say the Abelian group G is canonically derived from x when above

we omit the zη̄’s equivalently aη̄,n = 0. If we omit z we say strictly derived.

9 In [She07] this was not necessary, as the definition of η � (m,n) there is η � (m,<n+1) here.
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(2) We say the derivation of G in part (1) is well orderable (or “G or

〈zη̄ : η̄ ∈ Λx〉 universally respect x”) when we replace •1 above by:

•′1 there is a list 〈η̄α : α < α∗〉 of Λx such that

zη̄α ∈ Σ{Zxη̄β�(m,n) : β < α,m < k} ⊕ Zz

for every α < α(∗); such a sequence is called a witness.

(3) We add simply (derived from x) when zη̄ = z for every η̄.

Remark 2.3: (1) We can replace (n+1)yη̄,n+1 by kη̄,nyη̄,n+1 with kη̄,n∈{2, 3, . . .}.
(2) By combining Abelian groups, the “simply derived” is enough for cases

of the TDCλ. Instead of “simply derived” we may restrict 〈zη̄ : η̄ ∈ Λx〉 more

than in 2.2(2).

A more general case than 2.2 is:

Definition 2.4: (1) We say an R-module G is derived from a combinatorial

∂̄-parameter x when (R is a ring and):

(a) G∗ is an R-module freely generated by

X∗ = {xη̄�(m,i) : m < kx, i < ∂m and η̄ ∈ Λx} ∪ {z},
(b) the R-module G is generated by ∪{Gη̄ : η̄ ∈ Λx} ∪X∗, also G∗ ⊆ G,

(c) G/G∗ is the direct sum of 〈(Gη̄ +G∗)/G∗ : η̄ ∈ Λx〉,
(d) Zη̄ ⊆ X∗ ⊆ G∗ for η̄ ∈ Λx; if Zη̄ = {zη̄} we may write zη̄ instead of Zη̄,

(e) if η̄ ∈ Λx, then the R-submodule Gη̄ ∩ G∗ of G is generated (not only

included in the submodule generated) by

{xη̄�(m,i) : m < kx and i < ∂x,m} ∪ Zη̄ ⊆ X∗.

(1A) We say x is an R-construction or (R,x)-construction when it con-

sists of x, R,G∗, G, 〈xη̄ : η̄ ∈ Λx,<k〉, 〈Gη̄, Zη̄ : η̄ ∈ Λx〉 as above and we shall

write Λx = Λx, G
x
∗ = G∗, Gx = G,Gx,η̄ = Gη̄, etc. (so in 2.2(1) we have a Z-

construction with Gη̄/(Gη̄ ∩G∗) being isomorphic to (Q,+)). We may say x is

for x but we may write G rather than Gx, etc. when x is clear from the context.

(1B) For an R-construction x we say: “universally respecting x” or “x is well

orderable” when we can find Λ̄ which x obeys meaning:

(f) (α) Λ̄ = 〈Λα : α ≤ α∗〉 is increasing continuous,

(β) Λα∗ = Λx and Λ0 = ∅,
(γ) if η̄ ∈ Λα+1\Λα and m < k then

{i < ∂m : (∃ν̄ ∈ Λα)(η̄ � (m, i) = ν̄ � (m, i)} ∈ Jx,m,

(δ) if η̄ ∈ Λα+1\Λα then Zη̄ ⊆ 〈{Gν̄ : ν̄ ∈ Λα} ∪ {z}〉G.
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(1C) We may say “G is derived from x” and x is derived from x.

(1D) We add “simple” or “simply derived” when zη̄ = z, hence Zη̄ = {z} for
every η̄ ∈ Λ.

(1E) We say x is almost simple if |Zη̄\{z}| ≤ 1.

(2) Above we say x is a locally free derivation or locally free or G in part (1)

is freely derived when in addition:

(g) if η̄ ∈ Λx,m < k and w ∈ Jx,m, then (Gη̄/Gη̄,m,w) is a free R-module

where Gη̄,m,w is the R-submodule of G generated by

{xη̄�(m1,i1) : m1 < k, i1 < ∂m1 and m1 = m⇒ i1 ∈ w} ∪ Zη̄

so Gη̄ = G⊥
η̄,m,w ⊕ Gη̄,m,w for some R-submodule G⊥

η̄,m,w and let x

determine it.

(3) Above we say x is (< θ)-locally free or x is a free (< θ)-derivation when10

in addition to part (1):

(g)+ like (g) but the quotient Gη̄/Gη̄,m,w is θ-free,

(h) x is θ-free.

(4) We say x is a canonical R-construction or canonical (R,x)-construction

when η̄ ∈ Λx ⇒ Zη̄ = ∅. We say canonically∗ when we omit z and we write G−
x .

(5) We say x or just (x, Z̄) where Z̄ = 〈Zη̄ : η̄ ∈ Λx〉 is θ-well orderable when
for every Λ ⊆ Λx of cardinality < θ there is 〈η̄α : α < α∗〉,Λ′ ⊇ Λ witnessing

which means:

(a) η̄α ∈ Λx with no repetitions,

(b) if η̄ ∈ Λ then

• η̄ = η̄α for some α,

• Zη̄ ⊆ {η̄β : β < α},
• for some m∗ < k and w ∈ Jx,m we have

i ∈ ∂m∗\w⇒ η � (m∗, i) /∈ {η̄β � (mi, j) : m < k, j < ∂m}.
Remark 2.5: In Definition 2.4, we may like inGη̄ to have more elements fromG∗.
This can be accomplished by replacing xν̄ , ν̄ ∈ Λx,<k by xν̄,t for t ∈ Tm,i when

ν̄ = η̄ � (m, i), η̄ ∈ Λx.

However, we can just as well replace ∂� by ∂′
�=γ·∂� for some non-zero ordinal γ

(and J� by J ′
�={w⊆∂′

� : for some u∈J� we have w⊆{γi+β :β<γ and i∈u}}).
10 So “x is locally free” does not imply “x is θ-free” because of clause (h).
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Claim 2.6: Assume x is a simple R-construction (see 2.4(1A),(1D)) which is a

(< θ)-locally-free (see 2.4(2) respectively) and G = Gx so it is derived from x

and x is θ-free.

(1) G is a θ-free R-module.

(2) If in addition (R,+), that is R as an additive (so Abelian) group, is

free, then (G,+), G as an Abelian group, is θ-free.

(3) In part (2) it suffices that (R,+) is a θ-free Abelian group.

(4) In (1),(2),(3) we can replace “derived” by “(< θ)-derived”.

(5) Instead, assuming “x is simply derived” we can demand “x is well or-

derable and almost simple”; see Definition 2.4(1B),(1E).

Proof. (1) Let X ⊆ G have cardinality < θ. By the Definition 2.4(1) there

are Λ ⊆ Λx of cardinality < θ and Λ∗ ⊆ Λx,<k of cardinality < θ such that

X ⊆ 〈{xη̄ : η̄ ∈ Λ∗} ∪ {Gη̄ : η̄ ∈ Λ}〉G, recalling {z} = Zη̄ ⊆ Gη̄ for every

η̄ ∈ Λx so, without loss of generality X = {xη̄ : η̄ ∈ Λ∗} ∪ {Yη̄ : η̄ ∈ Λ} where

Yη̄ ⊆ Gη̄, |Yη̄| < θ for η̄ ∈ Λ and [m < k ∧ i < ∂m ⇒ η̄ � (m, i) ∈ Λ∗].
As x is θ-free we can find the following objects:

(a) 〈η̄α : α < α∗〉 list Λ,
(b) mα < kx and wα ∈ Jx,mα for α < α∗,
(c) if α < β and i ∈ ∂x,mβ

\wβ then ηβ,m(i) �= ηα,m(i).

For α ≤ α(∗), let
Gα = 〈∪{Gη̄β

: β < α}〉G and Gα(∗)+1 = 〈Gα(∗) ∪ {xη̄ : η̄ ∈ Λ∗}〉G.
So 〈Gα : α ≤ α(∗) + 1〉 is an increasing continuous sequence of sub-modules,

G0 = 0 and Gα(∗)+1 includes X . Also Gα(∗)+1/Gα(∗) is free by their choice

above.

Lastly, if α < α(∗) then Gα+1/Gα is a θ-free R-module because it is isomor-

phic to Gη̄α/Gα = Gη̄α/Gη̄α,mα,wα which is θ-free by Definition 2.4(3)(g)+.

So clearly we are done.

(2), (3) Follow.

(4) Similarly.

(5) Let X,Λ and Λ∗ be as in the proof of part (1) and let 〈η̄α : α < α∗〉 list Λ.
Let Λ̄ witness the well orderability of x. Then (recalling Definition 2.4(1B))

there is a function h such that:

(d) h : α∗ → �g(Λ̄),

(e) if α < α∗ then η̄α ∈ Λh(α)+1\Λh(α).
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Let

(f) Zη̄α\{z} ⊆ {να} ⊆ {η̄β � (m, i) : n < k, i < ∂m and β < α} ⊆ Λ∗.

Also without loss of generality, as in §1,

(g) h is non-decreasing.

Now as Λ is θ-free, as in §1, looking carefully at 2.4(1B), without loss of gener-

ality |Λα+1\Λα| ≤ 1, so without loss of generality

(g)′ h is the identity.

The rest is as before. 2.6

Definition 2.7: (1) An Abelian group H is (θ2, θ1)-1-free when: if X ⊆ H ,

|X | < θ2 then we can find a Ḡ such that:

• Ḡ = 〈Gα : α < α(∗)〉 is a sequence of subgroups of G,

• G :=
∑

α<α(∗) Gα ⊆ H , both G and H include X ,

• Gα is generated by a set of < θ1 members,

• G =
⊕

α<α(∗) Gα.

(2) Similarly for R-modules when each Gη̄(η̄ ∈ Λx) has cardinality < θn.

Claim 2.8: (1) If x is a k-c.p., (θ2, θ1)-free (see 1.11) and x is a canonical (R,x)-

construction which is locally free simply derived from x, then G is (θ2, θ1)-1-free.

(2) Similarly for modules.

Proof. (1) By (2) using R = Z.

(2) Let G = Gx such that |Λ|, |Λ∗| < θ2 and let X ⊆ G be of cardinality < θ2.

Choose Λ,Λ∗ as in the proof of 2.6(1). As we are assuming “x is (θ2, θ1)-free”

and Λ ⊆ Λx has cardinality < θ2, there is a sequence 〈Λ̄, g, h̄〉 witnessing it,

see 1.11(4)(d), such that Λ̄ = 〈Λγ : γ < γ(∗)〉 and Λ =
⋃

γ Λγ . We define the

sequence 〈Gγ : γ ≤ γ(∗) + 1〉 as follows.
For γ < γ(∗) let Gγ be the submodule of Gx generated by

∪{G⊥
η̄,g(γ),hγ(η̄)

: η̄ ∈ Λγ}.
We may assume that G0 = {0}. For γ = γ(∗) let Gγ be the submodule of Gx

generated by

{xν̄ :ν̄ ∈ Λ∗ but for no γ < γ(∗), η̄ ∈ Λγ , i ∈ ∂x,g(γ)\hγ(η̄)

do we have ν̄ = η̄ � (g(γ), i)}.
Finally, for γ = γ(∗) + 1 let Gγ be

∑
β≤γ(∗)Gβ .
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For every γ ≤ γ(∗)+1 let G<γ be the submodule generated by ∪{Gα : α < γ}.
Notice that the sequence 〈G<γ : γ ≤ γ(∗) + 1〉 is increasing and continuous. It

suffices to prove that Gγ ∩ G<γ = {0}. If not, then for some n and pairwise

distinct η̄0, . . . , η̄n−1 ∈ Λγ ,(∑
�<n

G⊥
η̄�,g(γ),hγ(η̄�)

)
∩G<γ �= {0},

see 2.4(2).

If 0 �= x ∈ (
∑

�≤n G
⊥
η̄�,g(γ),hγ(η̄�)

)∩G<γ then there are x� ∈ G⊥
η̄0,g(γ),hγ(η̄�)

for

� < n such that x =
∑

�<n x�. Recalling

“Gx/G∗ = ⊕{Gη̄/(Gη̄ ∩G∗) : η̄ ∈ Λx}”
necessarily x ∈ G∗; moreover, recalling 2.4(1)(c) for each � < n we have x� ∈ G∗
so x� ∈ G⊥

η̄,g(γ),hγ(η̄γ)
∩G∗ which is

⊆ ⊕{xη��(m,i) : m = g(γ) and i ∈ ∂x,m\hγ(η̄�)} ⊕Rz,

see 2.4(2).

Hence

x =
∑
�<n

x� ∈ H1 := ⊕
{
xη̄��(m,i) : � < n,m = g(γ), i ∈

⋃
�1<n

hγ(η�1)

}
.

By the choice of (Λ̄, g, h̄),

H2:=G<γ ∩G∗⊆⊕{Rxν̄ :for some α<γ, η̄∈Λα, m=g(α), i<∂x,g(α), i /∈hα(η̄),

ν̄ = η̄ � (m, i)}.
Hence x ∈ H1 ∩H2 = {0}, contradiction. 2.8

Claim 2.9: Assume x is an (ℵ0,k)-c.p. with (ℵ0,k)-BB.
(1) There is canonical Z-construction x such that:

(a) G = Gx so G is an Abelian group of cardinality |Λx|,
(b) G is not Whitehead,

(c) G is θ-free if x is θ-free,

(d) G is (θ2, θ1)-1-free if x is (θ2, θ1)-free, see 2.7(1),

(e) G has a Z-adic dense subgroup of cardinality |Λx,<k|.
(2) We can add:

(b)+ Hom(G,Z) = 0.
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Remark 2.10: Recall that “b is a (χ,k)-BB” means b is a function with

range ⊆ χ, see Definition 1.7.

Proof. (1) Let G0 = ⊕{Zxη̄ : η̄ ∈ Λx,<k} ⊕ Zz and G1 be the Z-adic closure

of G0 so G1 is a complete metric space under the Z-adic metric.

For η̄ ∈ Λx and ā ∈ ωZ and n(∗), in G1 we let

yā,η̄,n(∗) =
∑

n≥n(∗)
(n!/n(∗)!)

( ∑
m<k

xη̄�(m,n) −
∑
m<k

b(η,m, n)z + anz

)
.

Let {bi : i < ω} list the elements of Z and let c̄ = 〈cη̄ : η̄ ∈ Λx〉 be an

(ℵ0,k)-BB with cη̄ a function from {η̄ � (m,n) : m < k, n < ω} to Z. Now for

each η̄ ∈ Λx let

G0
η̄ = Σ{Zxη̄�(m,n) : m < k, n < ω} ⊕ Zz

and hη̄ ∈ Hom(G0
η̄,Z, z) be such that hη̄(z) = z, hη̄(xη̄�(m,n)) = bcη̄(η̄�(m,n))z.

(∗)1 We can choose ā = ā[η̄] ∈ ωZ such that there is no extension

h1 ∈ Hom(G1
ā,η̄,Z) of hη̄ where G1

ā,η̄ = 〈G0
η̄ ∪ {yā,η̄,n : n < ω}〉G1 .

[Why? Well known but we elaborate. It suffices to prove that

A = {ā ∈ ω2 : hη̄ has an extension in Hom(G1
ā,η̄,Z) and a0 = 0 = a1}

is a countable subset of ωZ; we could have allowed ā ∈ ωZ but this seems

more transparent to restrict ourselves. For ā ∈ A let hā,η̄ be an extension

witnessing it.

Now

• For each b ∈ Z the set

Ab = {ā ∈ A ⊆ ω2 : hā,η̄(yη̄,0) = b and so a0 = a1 = 0}
has at most one member.

[Why? Toward contradiction assume ā1 �= ā2 ∈ Ab and let n be minimal such

that a1,n �= a2,n; now n = 0, 1 is impossible as ā1, ā2 ∈ Ab, so n ≥ 2. Now prove

by induction on � < n that hā1,η̄(yη̄,�) = hā2,η(yη̄,�); for � = 0, 1 use ā1, ā2 ∈ Ab

and for � = j+1 recall �yη,� = yη,j − (
∑

m<k xη̄�(m,j)+ aι,jz) for ι = 1, 2; apply

hāι,η̄ and use the induction hypothesis. Now on this equation for � = n, ι = 1, 2

apply hāι,η̄ and then substracting we get a1,n − a2,n is divisible by � and � ≥ 2

but a1,n − a2,n ∈ {1,−1}, contradiction.]
So clearly there is ā ∈ ω2\ ∪ {Ab : b ∈ Z} such that a0 = 0 = a1; it is as

required. So (∗)1 holds indeed.]
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Lastly,

(∗)2 let G1 = 〈G0 ∪ {yā[η̄],η̄,n : n < ω} : η̄ ∈ Λx}〉G1 .

Now G1 witnesses that G2 = G1/Zz is not a Whitehead group. [Why?

Let G2 = G1/Zz and let h∗ be the canonical homomorphism from G1 onto

G1/Zz, i.e., h∗(x) = x + Zz for x ∈ G1. Toward contradiction assume G2 is a

Whitehead group; this means that there is a homomorphism g∗ from G2 into G1

inverting h∗, that is, y ∈ G2 ⇒ h∗(g∗(y)) = y.

As Ker(g∗) = Zz clearly x ∈ G1 ⇒ g∗(h∗(x)) − x ∈ Zz, so let h� be the

unique function from Λx,<k into Z defined by h0(ν̄) = b iff ν̄ ∈ Λx,<k, k ∈ Z

and g∗(h∗(xν̄)) − xν̄ = bz. By the choice of b there is η̄ ∈ Λx such that

m < k ∧ n < ω ⇒ k(η̄,m, n) = h•(η̄ � (m,n)). So x �→ x − g∗(h∗(x)) defines a
homomorphism from Gā(η̄),η̄ onto Zz mapping z to itself and mapping xη̄�(m,n)

to bcη(η̄�(m,n))z, contradicting the choice of ā(η). So G2 = G1/Zz is Whitehead

indeed.

Now clearly for some canonical∗ Z-construction x, Gx = G−
x ⊕ Zz, and easily

G2
∼= G−

x and G2 is a direct summand of Gx so (by the well known group

theory) alsoGx is not a Whitehead group. The cardinality and freeness demands

are obvious.]

(2) For transparency we ignore the “Whitehead”. Recall we assume x has

the ℵ0-black box not just the ℵ0-pre-black box (see 1.7(1),(4)).

Let 〈Λα : α < |Λx|〉, 〈ν̄α : α < α∗〉 be as in Definition 1.7(4). Let 〈hη̄ : η̄ ∈ Λα〉
be an ℵ0-BB. We choose (Z,x)-construction x by choosing (zη̄, āη̄) for η̄ ∈ Λα

by induction on α such that:

•1 zη̄ = z0 = z if α = 0 (alternatively, omit z),

•2 zη̄ = zα = xν̄α if η̄ ∈ Λ1+α,

•3 āη̄ for η̄ ∈ Λα is chosen such that: there is no homomorphism h from

Gη̄ into Z such that (h(xη̄�(m,i)), h(zα)) is coded by hη̄(η̄ � (m, i)).

So if h ∈ Hom(Gx,Z) then α < α∗ ⇒ h(zα) = 0 but ⊕∑
α Zzα = G0, so h�G0

is zero but Gx/G0 is divisible hence h is zero.

Alternatively omitting “G = Gx”, this follows easily by repeated amalgama-

tion of the G constructed in part (1) over pure subgroups isomorphic to Z; see

the proof of 2.12(3) or, e.g., [She16, §3]. 2.9

∗ ∗ ∗
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Now Claim 2.9 as stated is enough when we use §1 to get ℵω·n-free x with

χ-BB (see 1.27(1),(2)) but not for ℵω1·n-free, because there we need for ∂ = ℵ1,
J = Jbd

κ  Jbd
σ , σ < κ regular, in particular (σ, κ) = (ℵ0,ℵ1). So we better use

the construction from Definition 2.4 rather than 2.2. Also we prefer to have

general R-modules and we formalize the relevant property of R, ∂̄, J̄ , θ. We

use RR to denote R as a left R-module.

Definition 2.11: (1) We say that (∂̄, J̄) does θ-fit R or the triple (∂̄, J̄ , θ)-fit R

(but if ∂̄ = ∂̄x, J̄ = J̄x then we may write x instead of (∂̄, J̄)) when:

(A) (a) R is a ring,

(b) k is a natural number ≥ 1,

(c) ∂̄ = 〈∂� : � < k〉,
(d) ∂� is a regular cardinal,

(e) J̄ = 〈J� : � < k〉,
(f) J� is an ideal on ∂�.

(B) If G0 = ⊕{Rxm,i : m < k, i < ∂m} ⊕ Rz and h ∈ Hom(G0,RR) and

h(z) �= 0, then there is G1 such that

(∗) (α) G1 is an R-module extending G0,

(β) G1 has cardinality < θ,

(γ) there is no homomorphism from G1 to RR (i.e., R as a left

R-module) extending h.

(1A) We replace “fit” by “weakly fit” when in clause (B) we further demand

on h, h(xm,2i) = h(xm,2i+1).

(2) We say (∂̄, J̄) freely θ-fits R or (∂̄, J̄ , θ)-fit R (but if ∂̄ = ∂̄x, J̄ = J̄x we

may replace (∂̄, J̄) by x) when:

(A) (a)–(f) as above,

(B) as above adding

(δ) if m∗ < k ∧ w ∈ Jm∗ , then G1 is free over

⊕{Rxm,i : m < k, i < ∂m and m = m∗ ⇒ i ∈ w} ⊕Rz.

(3) In part (1) above and also parts (4)–(6) below we may write (∂, J,k)

instead of (〈∂� :�<k〉, 〈J� :�<k〉) when �<k⇒∂�=∂ ∧ J�=J so we may write

(∂, J,k, θ). Also we may write J if m < k ⇒ Jm = J and omit J̄ when

�<k⇒J�=Jbd
∂�

.

(4) We may above replace “J� is an ideal on ∂�” by J� ⊆ P(∂�).

(5) We may omit θ when θ = |R|+ +max{∂+
m : m < k}.

(6) We replace fit by I-fit when:
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(a) I is a set of ideals of R closed under intersection of two including

I0 = {0R},
(b) replace Rz by (R/I)z, I ∈ I; the default value of I is

{{a : ab = 0} : b ∈ R},
(c) in (B)(∗), if x ∈ G1\{0} then ann(x,G1) = {a ∈ R : ax = 0} ∈ I.

Claim 2.12: (1) Assume x is a k-c.p., R is a ring, x does θ-fit R,

χ+ ≥ θ + |R|+ and x has (χ,k, 1)-BB.

There is x such that:

(a) x is an (R,x)-construction,

(b) G = Gx is an R-module of cardinality |Λx|,
(c) there is no h ∈ Hom(G,RR) such that h(z) �= 0,

(d) x is simple, that is, zη̄ = z for η̄ ∈ Λx.

(2) If in addition x freely θ-fits R, then we can add:

(e) G is σ-free if x is σ-free (holds always for σ = min(∂̄x)),

(f) G is (θ2, θ1)-1-free if x is (θ2, θ1)-free.

(3) In (2) we can add:

(g) Hom(G,RR) = 0.

(4) We can use above “weakly fit”.

Proof. Let G∗ = ⊕{Rxη̄ : η̄ ∈ Λx,<k} ⊕Rz. See more in [Shee].

(1) Let {(a1ε, a2ε) : ε < χ} list, possibly with repetitions, the members

of R × (R\{0R}) and let b be a (χ,k, 1)-BB for x and let b′,b′′ be defined

such that: ε = bη̄(m, i) implies b′
η̄(m, i) = a1ε,b

′′
η̄(m, i) := a2ε.

For η̄ ∈ Λx let G0
η̄ = Σ{Rxη̄�(m,i) : m < k, i < ∂m} ⊕Rz ⊆ G∗ and let hη̄ be

the unique homomorphism from G0
η̄ into RR satisfying hη̄(xη̄�(m,i)) = b′̄

η(m, i)

and hη̄(z) = b′′
η̄(0, 0) and let G1

η̄ be an R-module extending G0
η̄ such that

(G1
η̄, G

0
η̄, hη̄) here are like (G1, G0, h) in Definition 2.11(1)(B)(∗), so in par-

ticular there is no homomorphism from G1
η̄ into RR extending hη̄. Without loss

of generality G1
η̄ ∩G0 = G0

η̄ and 〈G1
η̄\G0

η̄ : η̄ ∈ Λx〉 is a sequence of pairwise dis-

joint sets. Let G be the R-module generated by ∪{G1
η̄ : η̄ ∈ Λx}∪G0 extending

each G1
η̄ and G∗, freely except this. Clearly we have defined an R-construction x

with xx = x, Gx = G, zx,η̄ = {z} and clauses (a),(b),(d) of the desired conclusion

hold. To prove clause (c) toward contradiction assume that h ∈ Hom(G,RR)

satisfies h(z) �= 0. Let g : Λx,<k → χ be defined by

g(ν̄) = min{ε < χ : (h(xν̄ ), h(z)) = (a1ε, a
2
ε)}.
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Clearly the function is well defined, hence as x has (χ,k, 1)-BB, that is by the

choice of b there is η̄ ∈ Λx such that m < k∧i < ∂m ⇒ g(η̄ � (m, i)) = bη̄(m, i).

We get easy contradiction.

What about the cardinality |G|? Note that |G1
η̄| < θ and θ ≤ χ+.

(2) In the proof of part (1), choosing G1
η̄ we add the parallel of clause (∗)(δ)

of 2.11(B). Now clause (e) of 2.12(2) holds by 2.6(1) and clause (f) by 2.8(2).

(3) Let G be as constructed in part (1), and let

Y = {y ∈ G : G/Ry is ℵ1-free or even min(∂̄)+-free}
(recall 2.6 + freeness of x).

So by part (2) the set Y generates G, let 〈G�, hρ : � ∈ ω>Y 〉 be such

that G� is an R-module, h� is an isomorphism from G onto G�, without loss of

generality 0G� = 0 for every � and G�1 ∩G�2 = {0} for �1 �= �2.

Let H1 = ⊕{G� : � ∈ ω>Y } and let H0 be the R-submodule of H1 gener-

ated by

X = {h�ˆ〈y〉(z)− h�(y) : � ∈ ω>Y and y ∈ Y }.
Let H = H1/H0 and we shall prove it is as required (on G), the main point

is proving Hom(H,RR). That is, toward contradiction f0 ∈ Hom(H,RR) is

not zero and f1 ∈ Hom(H1,RR) is defined by f1(x) = h(x + H0), so also f1

is not zero but x ∈ X ⇒ f1(x) = 0. By the choice of H1, there is � ∈ ω>Y

such that f1�G� is not zero. But recall that G is generated by Y , hence G� is

generated by {f1, h�(y) : y ∈ Y }, hence for some n ≥ 1 and y0, . . . , yn−1 ∈ Y

and b0, . . . , bn−1 ∈ R\{0R} we have f1(hρ(
∑

�<n b�, y�)) ∈ R\{0} hence for

some � < n,

0 �= f1(h�(b�y�)) = f1(b�h�(y�)).

So letting y = h�(y�) we have y ∈ G� and for some b ∈ R\{0},
c = f1(bh�(y�)) = f2(by).

As said above about f1 we have

f1(y) = f1(h�(y�)) = f1(h�ˆ〈y�〉(z))

so f1(h�ˆ〈y�〉(z)) = b ∈ R\{0}. So h�ˆ〈y�〉 ◦ f1 ∈ Hom(G,RR) maps z into

b ∈ R\{0}, contradiction.
(4) Similarly, but replacing xη̄(η̄∈Λx,<k) by xη̄,ζ(ζ < |R|+), but we elaborate.
Let 〈(ᾱε, aε) : ε < χ〉 list, possibly with repetitions, the members of

{(ᾱ, aε) : ᾱ = (α0, α1) such that α0 < α1 < χ and a ∈ R\{0R}},
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and b be a (χ,k, 1)-BB for x and let bι for ι = 0, 1, 2 be the functions with

the same domain as b (writing bι
η̄(m, i) or bη,ι(m, i) for bι(η̄,m, i)) such that

ε = bη̄(m, i) implies

(αε.0, αε,1, aε) = (b0
η̄(m, i),b1

η̄(m, i),b2
η̄(m, i)).

Let G0 = ⊕{Rxη̄,ε : η̄ ∈ Λx,<k and ε < χ} and

(∗)1 for η̄ ∈ Λx let

(a) G0
η̄ = Σ{Rxη̄�(m,i),ε : m < k, i < ∂m and ε < χ},

(b) G0,0
η̄ =Σ{R(xη̄�(m,i),bη̄,1(m,i)−xη̄�(m,i),bη̄,0(m,i)) :m<k, i<∂m}⊕Rz,

(c) G0,1
η̄ = G0,0 ⊕Rz,

(d) hη̄ be the homomorphism from G0,0
η̄ into R such that:

• hη̄�G0,0 is constantly zero,

• hη̄(z) is bη̄,2(0, 0) ∈ R\{0},
(e) hη̄ be the isomorphism from G0=⊕{Rxη̄�(m,i) :m<k, i<∂m}⊕Rη

onto G0,1
η̄ such that

hη̄(z) = z,hη̄(xm,i) = (xη̄�(m,i),bη̄,1(m,i) − xη̄�(m,i),bη̄,0(m,i)),

(f) G•
η̄,1 be an R-module extending the R-module G•̄

η such that the

triple (G•
0, Gη̄,1, h

•
η̄ ◦ hη̄) is as in 2.11(1)(B)(∗),

(g) h+
η̄ , G

1
η̄ be such that G1

η̄ is an R-module extending G0
η̄ and h+

η̄ is

an isomorphism from G•
η̄,1 onto G1

η̄ extending hη̄.

Lastly, let

(∗) without loss of generality G1
η̄ ∩ G0 = G0,0

η̄ , 〈G1
η̄\G0,0

η̄ : η̄ ∈ Λx〉 are

pairwise disjoint andG∗
1 is anR-module extendingG0 andG1

η̄ for η̄ ∈ Λx

and generated by their union freely (except the equations implicit in

“extending” above).

Note:

(∗) if h ∈ Hom(G,RR) satisfies h(z) �= 0R then we define a function

c : Λx,<k → χ as follows: c is the minimal ε < χ such that:

• h(xη̄,αε,0) = h(xη̄,αε,1),

• h(z) = aε.

The rest should be clear. 2.12

Remark 2.13: We can use a 2χ-BB b and then let c(η̄) code

(h�{xη̄,ε : ε < χ}, h(z)).
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Remark 2.14: (1) There is an alternative to the proof of 2.12(3), assume that x

has ℵ0-well orderable (χ,k, 1)-BB ᾱ as witnessed by Λ̄, see Definition 1.30. We

then can find a (R,x)-construction obeying Λ̄, see 2.4(1B).

(2) It may suffice for us to prove in 2.12 that x is simple and Rz is not a

direct summand of the R-module Gx. For this we can weaken the demand in

Definition 2.11(1)(B) demanding h(z) = 1R.

Claim 2.15: (1) Let ∂ = ℵ0, J = Jbd
∂ and k = 1; then (∂, J,k, θ) freely

fit R when:

⊕1 (a) R is an infinite ring,

(b) if d ∈ R\{0} and d̄ ∈ ωR, then we can find aιn ∈ R for

ι = 1, 2, 3 and n < ω such that the following set Γ of equa-

tions cannot be solved in R:

Γ = {anxn+2 = xn + dn + bnd : n < ω}.

(2) For ∂, J,k as above, (∂, J,k, θ) freely weakly fit R when:

⊕2 (a) as above,

(b) for every d ∈ R\{0} letting
∧

n dn = 0R, the demand in ⊕
above holds, i.e., there are an, bn ∈ R for n < ω such that

the following set Γ of equations is not solved in R:

• Γ = {anxn+1 = xn + bnd : n < ω}.
(3) If R is an infinite ring, then ⊕1 holds when:

⊕3 (a) as above,

(b) (R,+) is ℵ1-free or at least ∩{nR : n ≥ 2} = {0}.
Proof. (1) We should check all the clauses in Definition 2.11. First, Clause (A)

is obvious: R is a ring by ⊕1(a), k = 1 > 0 by assumption, of course, letting

∂̄ = 〈∂0〉, ∂0 = ∂, ∂ is regular being ℵ0 and J̄ = 〈J0〉, J0 = J is Jbd
∂ = Jbd

ℵ0
so

an ideal on ∂.

Second, toward proving Clause (B), assume

G0 = ⊕{Rxm,i : m < k = 1 so m = 0 and i < ∂} ⊕ Zz,

h0 ∈ Hom(G0,RR) and d := h0(z) �= 0R and let d − n = h(x0,n). We should

find G1 satisfying (∗) there. Let
〈(a•n, bn) : n < k〉

be as guaranteed by ⊕1(b) of the claim for d, 〈dn : n < ω〉 from above.
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For each i < ∂ let G∗
n = G0 ⊕ (Ryn) be an R-module; clearly there is an

embedding gn : G∗
n → G∗

n+1 such that gn�G0 = idG0 and

gn(yn) = a•nyn+1 + x0,n + bnz

where the an, bn ∈ R are from ⊕1(b) for our h.

Renaming without loss of generality G∗
n ⊆ G∗

n+1 and gn is the identity on G∗
n.

Lastly, let

G1 =
⋃
n

G∗
n

and it suffices to prove that (∗) of Definition 2.11 is satisfied. Clearly G1 is an

R-module extending G0, i.e., (∗)(α) holds. Also
|G1| ≤ ℵ0 + |G0| = ℵ0 + ℵ0 · |R| = |R| < |R|+ = θ,

recalling R is an infinite ring, so also (∗)(β) holds.
Lastly, to prove (∗)(γ), toward contradiction assume h2 ∈ Hom(G1,RR) ex-

tends h. Let cn := h2(yn) ∈ R. Now

(∗) (a) c̄ = 〈cn : n < ω〉 ∈ ωR,

(b) ancn+1 =anh1(yn+1) = h2(a
1
ηyn+1)

=h2(yn + x0,n + bnz) = h2(yn) + h1(x0,n) + bnh2(z)

=cn + dn + bnd.

So c̄ solves (in R) the set of equations

Γ = {anzn+1 = zn + dn + bnd : n < ω},
contradicting the choice of 〈(an, hn) : n < ω〉.
We still have to justify the “freely”, i.e., clause (δ) of 2.11(2). So let m∗ < k,

i.e., m∗ = 0 and w ∈ J0 = Jbd
∂ so w is finite and let

G0 = ⊕{Rx0,i : i ∈ w},
let n∗ be such that sup(w) < n∗ and we easily finish by noting:

(∗) the sequence 〈yn : n > n∗〉ˆ〈x0,m : m ≤ n∗〉ˆ〈z〉 generates G1.

[Why? Freely, it generates G1 because x0,m = anym+2 − bmym for m > n∗, use
yn = anyn+1 − x0,n − bnz by downward induction on n ≤ n∗; translating the

equations they become trivial.]

(2) Similarly but we choose gn such that

gn(yn) = anyn+1 + (x0,2n − x0,2n+1) + bnzn.

(3) Choose bn = 1R, an : n! · 1R. 2.15

Sh:1028



Vol. 240, 2020 ABELIAN GROUPS, PCF AND BLACK BOXES 49

Claim 2.16: (1) The quadruple (∂, J,k, θ) freely fit Z when:

(a) θ = ℵ2, ∂ = ℵ1 and k > 0

(b) J = Jbd
ℵ1
× Jbd

ℵ0
, but pedantically use the isomorphic copy

Jℵ1∗ℵ0 = {A : for some nα < ω for α < ω1, i∗ < ω1

we have A ⊆ {ω · i+ n : i < i∗ or n < nα}};
better, it is also O.K. to use J = Jbd

ℵ1
 Jbd

ℵ0
.

(2) The quadruple (ℵ1, J,k, θ) freely fits R when:

(a),(b) as above,

(c) θ = ℵ2,
(d) given bα,n ∈ R for α < ω1, n < ω and t ∈ R\{0R}, there are

pairwise distinct ρα ∈ ω2 for α < ω1 and aα,n, dα,n ∈ R such that

the following set of equations is not solvable in R:

• dα,n+1y
1
α,n+1 = y1α,n − y2ρα�n − bα,n − aα,nt.

(3) Similarly for “weakly” fit

Remark 2.17: (1) Probably we can use ∂̄ = 〈∂� : � < k〉 with ∂� ∈ {ℵ0,ℵ1} but

there is no real need so far.

(2) This is essentially [She80, §4] and [She13b, 4.10(C)=L5e.28].

Proof. (1) Proving clause (A) of 2.11(1) and clause (B)(δ) of 2.11(2) is easy as

in 2.15, so we concentrate on 2.11(1)(B).

So let G0, h be as in 2.11(1)(B). Choose pn by induction on n as follows:

p0 = 2, pn+1 the first prime > pn + n such that

pn+1!/(cn+1 − n) >
√
pn+1!,

where we let

cn =
∏
m<n

(pm!).

Now observe that:

� for n ≥ 100 there is Cn ⊆ {0, 1, . . . , (pn!) − 1} such that: if b ∈ Z and

t ∈ Z satisfies 0 < |t| < n, then for some a0, a1 ∈ Z we have

• b+ cna0t ∈ ∪{i+ (pn+1!− 1)Z : i ∈ Cn},
• b+ cna1t /∈ ∪{i+ (pn+1!)Z : i ∈ Cn}.

[Why? It suffices to consider b ∈ {0, . . . , pn!− 1}, t ∈ {�,−� : � ≤ n, � �= 0} and

let Ab,t = {b+ cnat : a ∈ Z} ∩ {0, . . . , pn+1!− 1}. Clearly
|Ab,t| = (pn!)/(cn · |t|) >

√
pn!.
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The family {Ab,t : b ∈ {0, . . . , pn+1! − 1}, t ∈ {�,−� : � ≤ n, � �== 0}} has at

most 2n(pn!) members. Easily the number of C ⊆ {0, . . . , pn! − 1} such that

(C ⊇ Ab,t) ∨ (C ∩ Ab,t) = ∅ for some pair (b, t) as above is11 < 2
√
p
n+1

!, hence

there is Cn as required.]

Let Ω ⊆ ω2 be of cardinality ℵ1 and 〈ρα : α < ω1〉 list Ω without repetitions.

Let G be generated by

{xm,α : α < ℵ1,m < k} ∪ {y1ρ,n : ρ ∈ Ω and n < ω} ∪ {y2� : � ∈ ω>2} ∪ {z}
freely except the equations:

(∗)1α,n pn!y
1
α,n+1 = y1α,n − y2ρα�n −

∑
m<k xm,ω·α+n − aα,nz

where aα,n ∈ Z are chosen below; let ā = 〈aα,n : α < ω1, n < ω〉, so really

G = Gā and let āα,<n = 〈aα,n1 : n1 < n〉.
Note that in G

(∗)2α,n y1α,0 = cny
1
α,n +

∑
n1<n cn1(y

2
ρα�n1

+
∑

m<k xm,ω·α+n + aα,n1z).

Define

(∗)3α,n bα,n =
∑

n1≤n h(
∑

m<k cn1 xm,ω·α+n) ∈ Z.

Recall G0, h are as in 2.11(1)(B). Let n∗ = |h(z)| so n∗ > 0. We choose

aα,n ∈ Z by induction on n such that: if n > |h(z)| then
(∗)5α,n ρα(n) = 1 iff (bα,n +

∑
n1≤n cn1aα,n1h(z)) is equal to some a ∈ Cn

modulo < pn!.

[Why possible? Arriving at n, the sum on the right side is

bα,n +
∑
n1<n

cn1aα,n1h(z)) + cnaα,nh(z) ∈ Z,

with the first two summands being already determined, i.e., they are computable

from āα,<n and |h(z)| ≤ n, applying � with

(n, h(z), bα,n +Σ{cn1aα,n1h(z) : n1 < n})
here standing for (n, t, b) there, so we get there a0, a1 and let aα,n be a0 if

ρα(n) = 0 and a1 if ρα(n) = 1. So for every n, aα,n is as required and can be

chosen.]

11 In other words, for each b, ta above a random C ⊆ {0, . . . , pn+1! − 1} has probability

≤ 2

2
|Ab,t| ≤ 2

2
√

pn! to include Ab,t or to be disjoint to it. So the probability that this

occurs for some pair (b, t) is ≤ 2 · |{Ab,t : b, t is as above}|/2
√

p
n
! ≤ 4n(pn!)/2

√
pn! which

is 
 1.
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Having chosen ā = 〈aα,m : α < ω1,m < ω〉, the Abelian group G = Gā

is chosen. Hence we just have to prove that G is as required in clause (B) of

2.11(1),(2). First, for 2.11(1)(B)

 toward contradiction assume that f ∈ Hom(G,Z) extends h and

n∗ = |f(z)| is > 0,

hence (for every α, n applying fn to the equation in (∗)2α,n):
(∗)6α,n f(y1α,0) =cn!f(y

1
α,n) +

∑
n1<n

cn1f(y
2
ρα�n1

)

+
∑
n1<n

∑
m<k

cn1f(xm,ω·α+n1) +
∑
n1<n

cn1aα,nf(z).

So recalling |h(z)| = n∗ for some ρ∗ ∈ n∗+1002 and a∗ ∈ Z we have |S| = ℵ1,
where

S = {α < ℵ1 : f(y1α,0) ≡ a∗ and ρα�(n∗ + 1)) = ρ∗}.
So choose α < β from S and let

n = min{� : ρα(�) �= ρβ(�)};
clearly we have n > n∗, hence n ≥ n∗ + 1 ≥ 2, and subtracting the equations

(∗)6α,n+1, (∗)6β,n+1, in the left side we get a multiple of cn+1, so a number divisible

by pn!, and in the right side we get the sum of the following four differences:

1 f(y1α,0) − (f(y1β,0) which is zero by the choice of S and the demand

α, β ∈ S,

2

∑
n1≤n cn1f(y

2
ρα�n1

)−∑
n1≤n cn1f(y

2
ρβ�n1

) which is zero as

n1 ≤ n⇒ ρα�n1 = ρβ�n1,

3

∑
n1≤n

∑
m<k cn1f(xm,ω·α+n) −

∑
n1≤n

∑
m<k cn1 f(xm,ω·β+n) which,

recalling (∗)3α,n+(∗)3β,n, is equal to bα,n−bβ,n by the choice of bα,n, bβ,n

as f, h agree on G0,

4

∑
n1≤n cn1aα,n1f(z)−

∑
n1≤n cn1aβ,n1f(z).

Hence (recalling f(z) = h(z))

� (bα,n +
∑

n1≤n cn1aα,n1fα(z))− (bβ,n +
∑

n1≤n cn1aβ,nf(z)) is divisible

by pn! in Z.

But by the choice of aα,n, i.e., by (∗)5α,n we know that(
bα,n +

∑
n1≤n

cn1aα,nf(z)

)
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is equal modulo pn! to some i ∈ Cn iff ρα(n) = 1. Similarly for β, but

ρα(n) �= ρβ(n), contradiction to �. So indeed,  leads to contradiction. This

means that the demand in 2.11(1)(B) is satisfied. Second, recall that we need

to verify the “freely fit”. This means that

�1 for ā as above and w ∈ J , the Abelian group Gā/ ⊕ {Zxα : α ∈ w} is

free,

�2 Gā is free.

[Why? Easy.]

Hence

�3 without loss of generality w = {wα + n : α < α∗ or α < ω1 � n < n∗
α}

for some α∗ < w1 and n∗
α < ω for α < ω1.

Now

�4 letting

G∗ =⊕ {Zy2� : � ∈ ω>2} ⊕
⊕
{ZXα : α < ωα∗},

Bω =⊕ {ZXα : α ∈ ω, α ≥ ωα∗}
we have

(a) Gω +G∗ = Gω ⊕G∗. [Why? Check.]

(b) It suffices to prove Gā/(Gω ⊕G∗) is free. [Why? By (a).]

(c) Gā/(Gω ⊕G∗) is the direct such of

H ′
α := 〈Hα + (Gω ⊕G∗〉/Gω ⊕G∗ : α ∈ [ωα∗, ω1]〉

where Hα is the subgroup of Gā generated by

{Xωα+n : n < ω} ∪ {y1α,n : n < ω} ∪ {y2ρα�n : n < ω}.
[Why? Check.]

(d) it suffices to prove each H ′
α is a free Abelian group. [Why? By (c).]

(e) H ′
α is isomorphic to

Hα/⊕ (∪{ZXωα,n : n < nα} ∪ {Zy2ρα�n : n < ω}).
[Why? Check]

(f) H ′
α is indeed free. [Why? By the same proof as in 2.15.]

So (∂, J,k, θ) freely fits Z indeed.

(2) We can fix G0 = ⊕{RXm,i : m < k, i < ∂m} ⊕ Rz, h ∈ Hom(G0,RR)

such that h(z) �= 0. Let Ω, 〈ρα : α < ω1〉 be as in the proof of part (1).
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We are given bα,n = h(xm,ωα+n(α < ℵ1, n ∈ N) and t = h(z) from R. We

shall choose 〈(aα,n, dα,m) : α < ω1, n < ω〉 and will let G be the R-module

generated by

{xm,α : α < ℵ1,m < k} ∪ {y1α,n : α < ℵ1 and n < ω} ∪ {y2� : � ∈ ω>2} ∪ {z}
freely except the equations

(∗)α,n dα,ny
1
α,n+1 = y1α,n + y2ρα�n +

∑
m<k xm,ω·α+n − aα,nz.

Hence

(∗)′α,n y1α,0 =

( ∏
�<n

dα,�

)
y1α,n +

∑
n1<n

( n−1∏
�=n1

dα,�

)
y2ρα��

+
∑
n1<n

∑
m<k

( n−1∏
�=n1

dα,�

)
xm,ω·α+n +

∑
n1<n

( n−1∏
�=n1

d�

)
aα,n1z.

Now continue as in the proof of part (1). 2.16

We now can put things together

Theorem 2.18: (1) For every k ≥ 1 there is an ℵω1·k-free Abelian group G

which is not Whitehead and even Hom(G,Z) = 0.

(2) If the ring R satisfies the demands in clause (c) part (2) from 2.16, then

for every k there is an ℵω1·k-free R-module such that

Hom(G,RR) = 0 and Ext(G,RR) �= 0.

Proof. (1) Given k we use 1.27 to find a c.p. x which is ℵω1·k-free and has χ-BB

where χ = |R| + ℵ1 and J = Jbd
ℵ1
 Jbd

ℵ0
. Now apply 2.16(1) so (ℵ1, J, k,ℵ1)

fits Z and by 2.12(1),(2) we get the desired conclusion.

(2) Similarly, but now we use 2.16(2) rather than 2.16(1). 2.18

3. Forcing

The main result of the former section is the existence in ZFC of ℵω1·n-free
Abelian groups G (for every n ∈ ω) such that Hom(G,Z) = 0. The purpose of

this section is to show that this result is best possible in the sense of freeness

amount. Assuming the existence of ℵ0-many supercompact cardinals in the

ground model, we shall force the following statement. For every ℵω1·ω-free
non-trivial Abelian group G,Hom(G,Z) �= 0.
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This section is divided into two subsections. In §3(A), like §1 is combinatorial,

we describe a general framework for dealing with freeness of R-modules (this

continues [She85], [She96] and [Shec]; but we have to work more).

In §3(B) we rely on forcing, we focus on R = Z (hence R-modules are simply

Abelian groups), and we prove the main consistency result in Theorem 3.9 which

relies on Magidor–Shelah [MS94]. The proof is based on the context of §1(A),

with double meaning.

3(A). Freeness classes.

Context 3.1: (1) R is a ring with no zero divisors and is hereditary (see

2.1(1A)).

(2) K is the class of R-rings closed under isomorphisms.

(3) K∗ will denote a class ⊆ K.

Definition 3.2: (0)Kw={M∈K :M a Whitehead module that is, Ext(M,RR)=0

equivalently, if N1 ⊆ N2 are R-modules,

N2/N1
∼= M and h1 ∈ Hom(N1,RR),

then there is h2∈Hom(N2,RR) extending h1}.
(1) We say K∗ is a λ-freeness class inside K when:

(a) K∗⊆ K<λ where for any cardinality θ we letK<θ := {M ∈K :‖M‖<θ},
(b) K∗ is closed under isomorphisms

(c) for simplicity λ > |R|.
(1A) We say K∗ is hereditary when K∗ is closed under pure submodules,

i.e., M ⊆pr N ∈ K∗ ⇒ M ∈ K∗. We may in (1) omit k when clear from the

context.

(2) We say M ∈ K is K∗-free when there is M̄ such that M̄ = 〈Mα : α ≤ α∗〉
is purely increasing continuous, M0 is the zero module and

α < α∗ ⇒Mα+1/Mα ∈ K∗ and Mα∗ = M.

(2A) M ∈ K is (λ,K∗)-free when every M ′ ⊆pr M of cardinality < λ is

K∗-free.
(3) K∗

<θ = K∗ ∩K<θ for any cardinal θ.

(4) The class K∗ is called a (λ, κ)-freeness class when: K∗ is a λ-freeness

class, K∗ is hereditary and if M ∈ K<λ\K∗, then there is N ⊆pr M from

K<κ\K∗.

The main example here is:
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Claim 3.3: Assume R = Z, λ ≥ ℵ1 and K = the class of R-modules, and let

Kwhu = K∗ = {M ∈ K<λ :M is a Whitehead module,

equivalently satisfies the condition inside 3.2(0)}
and Kfr = {M ∈ K<ℵ1 : M free}.

(0) Kfr is a hereditary ℵ1-freeness class.
(1) If λ > ℵ2 and MA<λ, then K∗ is a hereditary (λ,ℵ2)-freeness class.
(2) If M ∈ K is K∗-free, then M is a Whitehead group.

(3) If M1 ⊆pr M2 and M2/M1 is K∗-free and h1 ∈ Hom(M1,RR), then

there is h2 ∈ Hom(M2,RR) extending h1.

(4) If

K∗∗ = {M ∈ K<λ : for every c.c.c. forcing P1 for some c.c.c. forcing notion P2

satisfying P1 � P2

we have �P2 “M is a Whitehead group”}
then K∗∗ is (λ,ℵ2)-freeness class.

Proof. (0) Obvious as Z is countable.

(1) The first property in 3.2(4) holds trivially by the choice of K∗. As for

the second property it is well known that K∗ is a hereditary class; see [Fuc73].

The third property in 3.2(4) follows from the full characterization of being

Whitehead for Abelian group G of cardinality < λ when MA<λ holds (not just

proving “strongly ℵ1-free is enough”); in particular G is Whitehead if every

subgroup of cardinality ≤ ℵ1 is Whitehead; see [EM02].

(2) Follows by (3).

(3) Without loss of generality let M = M2/M1 and π ∈ Hom(M2,M) be onto

with kernelM1. Let 〈M ′
α : α ≤ α∗〉 be as in 3.2(4) forM and letNα = π−1(M ′

α),

so 〈Nα : α ≤ α∗〉 is purely increasing continuous, N∗
0 = M1, Nα∗ = M2 and

Nα+1/Nα ∈ K∗.
Given h1 ∈ Hom(M1,RR) by induction on α we choose fα ∈ Hom(Nα,RR)

increasing continuous with α. For α = 0 let fα = h1, for α limit let

fα = ∪{fβ : β < α}
and for α = β + 1 use Nα/Nβ

∼= M ′
α/M

′
β ∈ K∗ and the choice of K∗.

Lastly, h2 = fα∗ is as required.

(4) Easy. 3.3
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Now on those freeness contexts see [She75a] or better [Shec] and history there.

Note that we shall in §3(B) use 3.7(B)(c), and for this we need witnesses s from

those references. Recall (see [Shec])

Definition 3.4: (1) We say c is a pre-1-freeness context when c consists of:

(a) U is a fixed set (we shall deal with subsets of it) or U is an algebra

with universe U (maybe with empty set of functions); let c�c(A) be the

closure of the set A ⊆ U in the algebra U; but we may sometime say

U instead of U.

(b) F a family of pairs of subsets of U ; we may write “A/B is free” or “A

is free over B” for (A,B) in F .

(c) χ, μ will be fixed cardinals such that

|τ(U)| ≤ χ < μ ≤ ∞ and (A,B) ∈ F ⇒ |A|+ |B| < μ,

but if μ =∞ (equivalently, μ > |U |) we may omit it.

(2) We say “for the χ-majority of X ⊆ A,P (X)” (for a property P ) when

there is an algebra B with universe A and χ functions, such that any X ⊆ A

closed under those functions satisfies P . We can replace X ⊆ A by X ∈ P(A)

or X ∈ P<λ(A): alternatively we may say {X ⊆ A : P (A)} is a χ-majority.

(3) We say c is a freeness context when in addition to (a),(b),(c) of part (1)

it satisfies the following (adding a superscript + to an axiom means that when-

ever “A/B ∈ F” or its negation appears in the assumption, then we demand B

to be free over ∅. Of course, Fc = F, χc = χ, etc.):

Ax IIμ:

(a) A/B is free iff A ∪B/B is free.

(b)μ A/B is free when |B| < μ and A ⊆ B.

Ax III [2-transitivity]: If A/B and B/C are free and C ⊆ B ⊆ A, then A/C

is free.

Ax IVλ,μ [continuous transitivity]: If Ai(i < λ) is increasing, for i ≤ γ < λ

we have Aγ/
⋃

j<i Aj ∪B is free, λ < μ and |⋃i<λ Ai| < μ, then
⋃

i<λ Ai/B is

free.

Let Ax(IV<λ,μ) mean θ < λ⇒ Ax (IVθ,μ); and Ax IVμ will mean Ax IV<μ,μ

and IV means IV∞.

Ax VI: If A is free over B ∪ C, then for the χc-majority of X ⊆ A ∪ B ∪ C

the pair A ∩X/(B ∩X) ∪ C is free.
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Ax VII: If A is free over B, then for the χc-majority of X ⊆ A ∪ B the

pair A/(A ∩X) ∪B is free.

(4) We say c is a freeness+ context when in addition

Ax I∗∗: If A/B is free and A∗ ⊆ A, then A∗/B is free.

(5) We say c is a (λ, κ)-freeness context when: in addition χc ≤ κ, Ax I∗∗

and if A/B is not c-free and |A| < λ then for some A′ ⊆ A of cardinality

< κ,A′/B is not c-free

Definition 3.5: For a λ-freeness class K∗ and R-module G and χ ≥ |R|+ ℵ0 (if

equal, then χ may be omitted) we define what we call a pre-freeness context

c = cG = cK∗,G,χ (this is proved in 3.6) as the quadruple

(U ,A,F , χ) = (Ux,Ac,Fc, χc)

where:

(a) U = G as a set and A is an expansion of G by FA
a (a ∈ R) such that:

if G |= ax = y and y′ = Fa(y) then G |= ay′ = y, if y /∈ aG then

Fa(y) = 0,

(b) F = {A/B : B,A ⊆ U and 〈A ∪ B〉A/〈B〉A is K∗-free}, we may say

A/B is c-free so A/B stands for the formal quotient, so pedantically

is just the pair (A,B), where 〈B〉G is the minimal pure12 sub-module

of G which includes B,

(c) χc = χ so ≥ |R|+ ℵ0 (and μc =∞).

Fact 3.6: Assume K∗ is a hereditary λ-freeness class and χ = |R|+ ℵ0.
(1) Being K∗-free has compactness in singular cardinals > λ.

(2) For any R-module G∗, c = cK∗,G∗,χ defined in 3.5 above is a freeness

context and satisfies Ax I∗∗.
(3) If K∗ is moreover a (λ, κ)-freeness class (see 3.2(4)), then c is a (λ, κ)-

freeness context (see 3.4(5)).

Proof. (1) By part (2) and [Shec], see history there.

(2) Check.

(3) Easy. 3.6

12 Our modules are torsion free, i.e., a ∈ R ∧ x ∈ G ⇒ (ax = 0 ⇔ (a = 0R ∨ x = 0G)) holds

when R = Z; this is no problem. Otherwise, recall we have expanded G to an algebra A

such that A = c�U (A) ⇒ A ⊆pr G.
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Claim 3.7: If (A) then (B), where:

(A) (a) K∗ is a (λ, κ)-freeness class; see Definition 3.2(4),

(b) G ∈ K is (K∗, λ)-free not K∗-free, see Definition 3.2(2A); fix such

G of minimal cardinality called μ,

(c) c = cK∗,G,κ; see Definition 3.5(1).

(B) There is a witness s for G in the context c (see [She85, §2] and better

[She96, §3]) such that:

(a) Bs
<> = ∅, Bs

<>+ ⊆ G so λ(<>,Ss) ≤ ‖M‖,
(b) if η /∈ fin(Ss) then λs,η ≥ λ,

(c) if ηˆ〈δ〉 ∈ Ss then cf(δ) /∈ [κ, λ),

(d) if η ∈ fin(Ss) then Bs,η+\Bs,η has cardinality < κ.

Proof. By 3.6 we can apply 3.8 below. 3.7

Claim 3.8: If (A) then (B), where:

(A) (a) c is a freeness context satisfying Ax I∗∗

(b) c is (λ, κ)-freeness context,

(c) A/B is λ-free not free pair, and with |A| minimal.

(B) There is a witness s such that:

(a) Bs
<> = B and Bs

<>+ ⊆ A so λ(<>,Ss) ≤ |A| but ≥ λ,

(b) if η /∈ fin(Ss), then λs,η ≥ λ,

(c) if ηˆ〈δ〉 ∈ Ss, then cf(δ) /∈ [κ, λ),

(d) if η ∈ fin(Ss), then Bs,η+\Bs,η has cardinality < κ.

Proof. Now (see [She96, §3] or better yet see [Shea, 4.5=Ld15]), there is a dis-

joint witness s for A/B being non-c-free. So without loss of generality (n = n(s)

is well defined and) for some

λ̄∗ = 〈λ∗
� : � < n〉, κ̄∗ = 〈κ∗

� : � < n〉
we have:

(∗)1 (a) for each � < n one of the following holds:

(α) λ� is a regular cardinal and η ∈ Ss,� ⇒ λ(η, Ss) = λ∗
� ,

(β) λ� = ∗ and η ∈ Ss,� ⇒ λ(η, Ss) is (possibly weakly) inacces-

sible and � > 0,

(b) for each � < n, either κ� is a regular cardinal and

η ∈ Ss,� ∧ δ ∈W (η, Ss)⇒ cf(δ) = κ�

or κ� = ∗ and λ�+1 is ∗.
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See more there; naturally without loss of generality

(∗)2 s is minimal which means that (fixing A and B):

(a) n = n(s) is minimal,

(b) under (a), λ̄∗ is minimal under the lexicographical order,

(c) under (a) + (b), κ̄∗ is minimal under the lexicopgrahical order.

Now:

(∗)3 If η ∈ ini(Ss) then λ(η, Ss) ≥ λ.

[Why? Otherwise choose a counterexample η with λ(η, Ss) minimal so by the

definition of a witness as χc ≤ κ we have Bs
η+/Bs

≤η is not free (for c), Bs
η+\Bs

η

has cardinality λ(η, Ss) so < λ. Recalling “c is a (λ, κ)-freeness context”, see

Definition 3.4(5) and Fact 3.6(3), there is Cη ⊆ Bs
η+ of cardinality ≤ κ such that

Cη/B
s
≤η is not c-free. So (it follows by minimality of s) we get contradiction,

so λ(η, Ss) ≥ λ as promised in (∗)3.]
(∗)4 If ηˆ〈δ〉 ∈ Ss then cf(δ) /∈ [κ, λ).

[Why? As in the proof in [She85, She96] for each η∈Ss satisfying cf(δ)≥κ by

the minimality, cf(δ) ∈ {λ(ν, Ss) : ν ∈ Ss satisfies η�ν}, so (∗)4 follows by (∗)3.]
So we are done. 3.8

3(B). The main independence result. Below, it is reasonable to assume

that the ring R is Z and we assume this is the nice version. Note that we prove

that a non-Whitehead group has a non-free subgroup of small cardinality, not

necessarily a non-Whitehead one. This is connected to the black boxes here

having cardinality (much) bigger than the amount of freedom. For simplicity,

presently we deal with freeness only in hereditary cases.

Recall that μ is supercompact iff for every ∂ there exists an elementary em-

bedding j : V→M such that M is a transitive class satisfying ∂M ⊆M and ∂

is the critical cardinal.

Theorem 3.9: If inV there are ℵ0-many supercompact cardinals, then in some

forcing extension we have for μ∗ = ℵω1·ω:

⊕μ∗ (a) if G is a non-trivial μ∗-free Abelian group, then Hom(G,Z) �= 0,

(b) if G⊆H are Abelian groups andH/G is μ∗-free and h∈Hom(G,Z),

then h can be extended to a homomorphism from H to Z (this is

an equivalent definition of “H/G is Whitehead”, the reader may

use it here as a definition).
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This will be proved below. As usual in such a proof, we collapse a large

cardinal into quite small ones, so they cannot be really large but some remnant

of their early largeness remains and is enough for our purpose. This is the

rationale of Definition 3.10 below.

Definition 3.10: Let Prλ∗,μ∗,κ∗ mean13

(A) (a) λ∗ > μ∗ > κ∗,
(b) λ∗, κ∗ are regular uncountable cardinals

(c) μ∗ is a limit cardinal;

(B) if (a) then (b), where

(a) (α) λ is a regular cardinal ≥ λ∗,
(β) χ > λ and μ < μ∗ and x ∈ H (χ),

(γ) S ⊆ {δ < λ : cf(δ) < κ∗} is a stationary subset of λ,

(δ) uα ∈ [α]≤μ for α ∈ S;

(b) there are a regular λ′ ∈ (μ+ κ∗, μ∗) and an increasing continuous

sequence 〈αε : ε < λ′〉 of ordinals < λ such that the set

{ε < λ′ : αε ∈ S and uαε ⊆ {αζ : ζ < ε}}
is a stationary subset of λ′.

On the strong hypothesis above, see [She93b], it is a sufficient condition for

the SCH, that is,

∂ = cf(μ) ∧ 2∂ < μ⇒ μ∂ = μ+.

Definition 3.11: We say the universe V satisfies the strong hypothesis above λ

when: if ξ < cf(ξ) + λ+ μ then cf([χ]<μ1 ,⊆) ≥ χ+.

Theorem 3.12: (1) Assume in V0 there are infinitely many supercom-

pact cardinals > θ and θ = cf(θ) ∈ [ℵ1,ℵω1). Then for some forcing

notion Q not adding new subsets to θ,V1 = VQ
0 satisfies Prλ∗,μ∗,κ∗

where λ∗ = cf(λ∗) = μ+
∗ , μ∗ = ℵθ·ω and κ∗ = θ+.

(1A) We can (by preliminary forcing) assume that the universe V1 above

satisfies also G.C.H. above θ (we use just “above μ∗”) and ♦∗
λ holds for

every regular uncountable λ above μ∗.
(2) If Prλ∗,μ∗,κ∗ holds in V and the c.c.c. forcing P has cardinality λ∗, then

in VP still Prλ∗,μ∗,κ∗ holds.

(3) Part (1) holds for any freeness+ context (see Definition 3.4(3),(4)).

13 We may allow λ∗ = μ∗ here and in 3.13, but then we have to say somewhat more.
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Proof. (1), (1A) Similarly to [MS94, §4, Th. 1, p. 807]. As there, let 〈κn : n < ω〉
be an increasing sequence of supercompact cardinals. Without loss of gener-

ality G.C.H. holds above μ =
∑

n κn (called κ there) and ♦∗
χ holds for every

χ = cf(χ) > μ. Also for each n, the supercompactness of κn is preserved by

forcing notions which are κn-directed closed.

We proceed as there but now in the interval (κn−1, κn), the set of cardinals

we do not collapse has order type θ + 2.

(2), (3) Easy. 3.12

Proof of 3.9. Let V1 = VQ
0 be as in 3.12(1)(1A) with θ = ℵ1, so κ∗ = ℵ2,

μ∗ = ℵω1·ω, λ∗ = μ+∗ , and in V1 let P be a c.c.c. forcing notion of cardinality λ∗
such that �P “MA + 2ℵ0 = λ∗”. The result follows from Theorem 3.13 below.

Clause (d) there holds because

V = VP
1 ;

see 3.12(2). 3.9

Theorem 3.13: The statement ⊕μ∗ from 3.9 holds when V satisfies:

(a) the statement Prλ∗,μ∗,κ∗ from Definition 3.10,

(b) λ∗ = λ<λ∗∗ > μ∗,
(c) κ∗ = ℵ2,
(d) MA+2ℵ0 = λ∗ and V satisfies the strong hypothesis above λ∗; see 3.11

or [She93b].

Proof. We rely on 3.1–3.8. The first clause (b) of ⊕μ∗ implies clause (a); why?

because if H is a μ∗-free Abelian group, let x ∈ H\{0H} and without loss of

generality x is not divisible by any n ∈ {2, 3, . . .}, hence K := Zx is a pure

subgroup of H ; let h be an isomorphism from K onto Z. As H is μ∗-free easily
also H/K is μ∗-free, hence by ⊕μ∗(b) there is a homomorphism h+ from H to Z

extending h so h+(x) �= 0Z, hence h+ ∈ Hom(H,Z) is non-zero, as required.

So it suffices to prove clause (b) of ⊕μ∗ .

Let R = Z and let K,K∗ be as in Claim 3.3 for λ∗ so K∗ is a hereditary

(μ∗,ℵ2)-freeness class (see Definition 3.2(1),(1A),(4)) by 3.3(1). So toward con-

tradiction assume G ∈ K is a counterexample of minimal cardinality called

λ so G is μ∗-free. To get a contradiction and finish the proof it suffices to

assume G1 ⊆pr G2, G2/G1
∼= G and h1 ∈ Hom(G1,Z) and prove that there

is h2 ∈ Hom(G2,Z) extending h1. If G is K∗-free (see Definition 3.2(2)) then

by 3.3(3) a homomorphism h2 as required exists.
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Hence without loss of generality G is not K∗-free and let c = cK∗,G,θ, see

Definition 3.5, so by 3.6(3), c is a (λ∗, κ∗)-freeness context and by 3.7(2),(3)

(with λ∗, κ∗ here standing for λ, κ there) there is a witness s as there. By 3.3(1)

we have λ(〈〉, Ss) ≥ λ∗.
Let c1 = cKfr,G,θ; it is a (λ,ℵ1)-freeness context. (Why? By 3.6 with Kfr

(see 3.3) playing the role of K∗.)
Let S1 = W (<>,Ss), so for each δ ∈ S1, B

s
<δ+1>/B

s
<δ> is not free for c so

cannot be μ∗-free for c1 (as we have chosen a counter-example of minimal car-

dinality). Hence there is Aδ ⊆ Bs
<δ+1> of cardinality < μ∗ such that Aδ/B

s
<δ>

is not free for c1.

LetB′
δ⊆Bs

<δ> be of cardinality≤|Aδ|+κ∗ such thatB′
δ⊆B′⊆Bs

<δ>⇒Aδ/B
′

is not free for c1; it exists by properties of Abelian groups as Bs
〈δ〉 ⊆ Bs

〈δ+1〉 are
free (for c1) and Aδ/B

s
<δ> not free for c1.

So for some μ < μ∗ the set S2 = {δ ∈ S1 : |Aδ ∪B′
δ|+ κ∗ = μ} is a stationary

subset of λ(〈〉, Ss). Let h be a one-to-one function from λ(〈〉, Ss) onto Bs
<λ>

and let C := {δ < λ(〈〉, Ss) : h maps δ onto Bs
〈δ〉}; it is a club of λ(〈〉, Ss)

hence S3 := S2 ∩ C is a stationary subset of λ(〈〉, Ss). Also for δ ∈ S3 let

uδ = {α < δ : h(α) ∈ B′
δ}.

By clause (B)(c) of 3.7, i.e., the choice of s, without loss of generality one of

the following occurs:

(a) δ ∈ S3 ⇒ cf(δ) = κ1 for some regular κ1 < κ∗,
(b) every δ ∈ S3 has cofinality ≥ λ∗.

Case 1: κ1 < κ∗ is as in clause (a)

Just use Prλ∗,μ∗,κ∗ for λ, S3, 〈uδ : δ ∈ S3〉 to prove G is not a μ∗-free, a

contradiction.

Case 2: Clause (b) above holds

For δ ∈ S3 clearly |uδ| = |Aδ ∪B′
δ|+κ∗ = μ < μ∗ ≤ λ∗ ≤ cf(δ) hence there is

γδ < δ such that uδ ⊆ γδ, hence for some γ∗ < λ the set S4 = {δ ∈ S3 : uδ ⊆ γ∗}
is stationary.

Subcase 2A: cf([γ∗]≤μ∗ ,⊆) is < λ(〈〉, Ss).

So for some u∗ ∈ [γ∗]≤μ the set S5 = {δ < λ : uδ ⊆ u∗} is a stationary subset

of λ. Let S6 ⊆ S5 be of cardinality μ+ and let

A∗ = ∪{Aδ : δ ∈ S6} ∪ {h(α) : α ∈ u∗}.
Clearly A∗ ⊆ G is of cardinality < μ and A∗/∅ is not free for c1.
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So G has a non-free subgroup of cardinality < μ∗, contradiction to the as-

sumption “G = G2/G1 is μ∗-free”.

Subcase 2B: cf([γ∗]≤μ,⊆) ≥ λ(〈〉, Ss).

Note that becauseV satisfies the strong hypothesis (see [She93b]), necessarily

for some cardinal ∂ of cofinality < κ∗ we have λ(〈〉, Ss) = ∂+.

In any case clearly for every α ∈ [γ∗, λ), letting βα = min(S4\α), the pair

Aβα/B<α> is not c1-free. So renaming without loss of generality

α ≥ γ∗ ∧ cf(α) = ℵ0 ⇒ 〈α〉 ∈ S

and we continue as in Case 1, so this works also in Subcase 2A. 3.13
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