THE INDEPENDENCE OF GCH AND A COMBINATORIAL PRINCIPLE RELATED TO BANACH-MAZUR GAMES

WILL BRIAN, ALAN DOW, AND SAHARON SHELAH

Abstract

It was proved recently that Telgársky's conjecture, which concerns partial information strategies in the Banach-Mazur game, fails in models of $\mathrm{GCH}+\square$. The proof introduces a combinatorial principle that is shown to follow from GCH $+\square$, namely: ∇ : Every separative poset \mathbb{P} with the κ-cc contains a dense sub-poset \mathbb{D} such that $\mid\{q \in \mathbb{D}: p$ extends $q\} \mid<\kappa$ for every $p \in \mathbb{P}$. We prove this principle is independent of GCH and CH , in the sense that ∇ does not imply CH, and GCH does not imply ∇ assuming the consistency of a huge cardinal.

We also consider the more specific question of whether ∇ holds with \mathbb{P} equal to the weight- \aleph_{ω} measure algebra. We prove, again assuming the consistency of a huge cardinal, that the answer to this question is independent of ZFC + GCH.

1. Introduction

Telgársky's conjecture states that for each $k \in \mathbb{N}$, there is a topological space X such that the player NONEMPTY has a winning $(k+1)$-tactic, but no winning k-tactic, in the Banach-Mazur game on X. Recently, the first two authors, along with David Milovich and Lynne Yengulalp, proved that it is consistent for this conjecture to fail [1]. The proof introduces the following combinatorial principle, which implies the failure of Telgársky's conjecture:
∇ : Every separative poset \mathbb{P} with the κ-cc contains a dense sub-poset \mathbb{D} such that $\mid\{q \in \mathbb{D}: p$ extends $q\} \mid<\kappa$ for every $p \in \mathbb{P}$.
In [1], the consistency of ∇ is proved from $\mathrm{GCH}+\square$ via the construction of what are called κ-sage Davies trees, which are defined in Section 2 below. The existence of arbitrarily long κ-sage Davies trees implies ∇ holds for κ-cc posets. It is also proved in [1] that ∇ implies $\mathfrak{b}=\aleph_{1}$, or more generally that ∇ implies there is no decreasing sequence of length ω_{2} in $\mathcal{P}(\omega) /$ fin. Therefore ∇ is independent of ZFC.

[^0]But this raises the question of the relationship between ∇ and GCH , specifically whether either of these statements implies the other. The purpose of this paper is to answer this question in the negative by showing that GCH does not imply ∇, and ∇ does not imply CH .

In Section 2, we prove that when Cohen reals are added by forcing, the existence of arbitrarily long κ-sage Davies trees in the ground model suffices to guarantee that ∇ holds for κ-cc posets in the extension. Thus adding Cohen reals to a model of $\mathrm{GCH}+\square$ produces a model of $\nabla+\neg \mathrm{CH}$.

On the other hand, we show in Section 3 that the Chang conjecture $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ implies that ∇ fails. This is done by directly constructing a ccc poset \mathbb{P} (a modified product of \aleph_{ω} Hechler forcings) and then using $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ to show it violates ∇. As $\mathrm{GCH}+\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ is consistent relative to a huge cardinal [5], this shows that GCH does not imply ∇ unless huge cardinals are inconsistent. We note that finding a model of $\mathrm{GCH}+\neg \nabla$ requires large cardinals. In fact, the proof of the consistency of ∇ in $[1]$ only uses $\mathrm{GCH}+\square$-for-singulars, and the consistency of GCH plus the failure of \square at any singular cardinal is known to have significant large cardinal strength [2].

In Section 4 we consider the more specific question of whether ∇ holds with \mathbb{P} equal to the weight- \aleph_{ω} measure algebra. We prove that the answer to this question is also independent of ZFC +GCH . Once again Chang's conjecture for \aleph_{ω} comes into the proof, and so the result is established modulo the consistency of a huge cardinal.

2. ∇ DOES NOT IMPLY CH

A Davies tree is a sequence $\left\langle M_{\alpha}: \alpha<\nu\right\rangle$ of countable elementary submodels of some large fragment H_{θ} of the set-theoretic universe such that the M_{α} enjoy certain coherence and covering properties. (These sequences are called "trees" because they are usually constructed by enumerating the leaves of a tree of elementary submodels of H_{θ}.) These structures provide a unified framework for carrying out a wide variety of constructions in infinite combinatorics. They were introduced by R. O. Davies in [3], and an excellent survey of their many uses can be found in Daniel and Lajos Soukup's paper [10].

Also in [10], the Soukups construct a countably closed version of a Davies tree called a "sage Davies tree" using GCH $+\square$. These structures were generalized in [1] by constructing $<\kappa$-closed versions of these trees for uncountable κ, called κ-sage Davies trees. Roughly, κ-sage Davies trees of length ν allow us to take an object of size ν with "critical substructures" of size $<\kappa$ (such as a ν-sized poset with the κ-cc), and to approximate the large object $(\operatorname{size} \nu)$ with a sequence of smaller ones (size κ). It was proved in [1] that GCH $+\square$ implies the existence of arbitrarily long κ-sage Davies trees for every regular cardinal κ.

In this section, we show that if we begin with a model of set theory containing arbitrarily long κ-sage Davies trees, then, after adding any number of Cohen reals by forcing, ∇ holds in the extension for separative κ-cc posets. It follows that ∇ is consistent with any permissible value of $2^{\aleph_{0}}$.

Given a poset \mathbb{P}, recall that the Souslin number of \mathbb{P}, denoted $S(\mathbb{P})$, is the minimum value of κ such that \mathbb{P} has no antichains of size κ. Erdős and Tarski proved in [4] that $S(\mathbb{P})$ is a regular cardinal for every poset \mathbb{P}.

For every poset \mathbb{P}, let $\nabla(\mathbb{P})$ denote the statement that ∇ holds for \mathbb{P}, i.e., that there is a dense sub-poset \mathbb{D} of \mathbb{P} with $\mid\{d \in \mathbb{D}: p$ extends $d\} \mid<S(\mathbb{P})$ for every $p \in \mathbb{P}$.

In what follows, H_{θ} denotes the set of all sets hereditarily smaller than some very big cardinal θ. Given two sets M and N, we write $M \prec N$ to mean that (M, \in) is an elementary submodel of (N, \in). A set M is called $<\kappa$-closed if $M^{<\kappa} \subseteq M$. If M satisfies (enough of) ZFC, this is equivalent to the property $[M]^{<\kappa} \subseteq M$.

Definition 2.1. Let κ, ν be infinite cardinals and let p be some set. A κ-sage Davies tree for ν over p is a sequence $\left\langle M_{\alpha}: \alpha<\nu\right\rangle$ of elementary submodels of $\left(H_{\theta}, \in\right)$, for some "big enough" regular cardinal θ, such that
(1) $p \in M_{\alpha}, M_{\alpha}$ is $<\kappa$-closed, and $\left|M_{\alpha}\right|=\kappa$ for all $\alpha<\nu$.
(2) $[\nu]^{<\kappa} \subseteq \bigcup_{\alpha<\nu} M_{\alpha}$.
(3) For each $\alpha<\nu$, there is a set \mathcal{N}_{α} of elementary submodels of H_{θ} such that $\left|\mathcal{N}_{\alpha}\right|<\kappa$, each $N \in \mathcal{N}_{\alpha}$ is $<\kappa$-closed and contains p, and

$$
\bigcup_{\xi<\alpha} M_{\xi}=\bigcup \mathcal{N}_{\alpha} .
$$

(4) $\left\langle M_{\xi}: \xi<\alpha\right\rangle \in M_{\alpha}$ for each $\alpha<\nu$.
(5) $\bigcup_{\alpha<\nu} M_{\alpha}$ is a $<\kappa$-closed elementary submodel of H_{θ}.

The following fact is proved in [1, Theorem 3.20]:
Theorem 2.2. Assume $\mathrm{GCH}+\square$. Let κ, ν be infinite regular cardinals with $\kappa<\nu$. For any set p, there is a κ-sage Davies tree for ν over p.

In fact, the proof in [1] uses a weak version of \square related to the Very Weak Square principle articulated by Foreman and Magidor in [6]. The following fact, which we will use below, is Lemma 3.7 in [1].

Lemma 2.3. Let κ, ν be regular cardinals with $\kappa<\nu$, let p be any set, and let $\left\langle M_{\alpha}: \alpha<\nu\right\rangle$ be a κ-sage Davies tree for ν over p. If $\alpha<\beta<\nu$, then

$$
\alpha \in M_{\beta} \quad \Leftrightarrow \quad M_{\alpha} \in M_{\beta} \quad \Leftrightarrow \quad M_{\alpha} \subseteq M_{\beta} .
$$

In addition to the five properties listed above that define a κ-sage Davies tree, it will be convenient here to have trees with one additional property:
(6) For every $\alpha<\nu$, there is a well ordering \sqsubset_{α} of M_{α} with order type κ such that if $\alpha<\beta<\mu$ and $\alpha \in M_{\beta}$, then $\sqsubset_{\alpha} \in M_{\beta}$.
It turns out that this property of κ-sage Davies trees is already a consequence of properties (1) through (5).

Lemma 2.4. Let κ, ν be regular cardinals with $\kappa<\nu$ and let p be some set. Every κ-sage Davies tree for ν over p satisfies property (6).

Proof. First observe that if $\alpha<\nu$ then $M_{\alpha} \in M_{\alpha+1}$. This is because $\left\langle M_{\xi}: \xi<\alpha+1\right\rangle \in M_{\alpha+1}$ by definition, and this implies $M_{\alpha} \in M_{\alpha+1}$ because M_{α} is definable from $\left\langle M_{\xi}: \xi<\alpha+1\right\rangle$.

Because $\left|M_{\alpha}\right|=\kappa$, there is (in H_{θ}) a well ordering of M_{α} with order type κ. By elementarity, there is some such well ordering of M_{α} in $M_{\alpha+1}$. For each $\alpha<\mu$, fix a well ordering \sqsubset_{α} of M_{α} with order type κ such that $\sqsubset_{\alpha} \in M_{\alpha+1}$. If $\alpha<\beta<\nu$ and $\alpha \in M_{\beta}$, then $\alpha+1 \in M_{\beta}$ and therefore $M_{\alpha+1} \subseteq M_{\beta}$ by the previous lemma. In particular, $\sqsubset_{\alpha} \in M_{\beta}$.

It will be convenient to work with complete Boolean algebras rather than arbitrary posets when proving ∇ holds in Cohen extensions. This restriction is justified by the following lemma.

Lemma 2.5. ∇ holds if and only if it holds for every poset of the form $\mathbb{P}=\mathbb{B} \backslash\{\mathbf{0}\}$, where \mathbb{B} is a complete Boolean algebra.

Proof. This is proved in [1, Lemma 2.10]. Roughly, the "only if" direction is obvious because posets of the form $\mathbb{B} \backslash\{\mathbf{0}\}$ are always separative, and the "if" direction is proved by showing that if \mathbb{P} is separative, then $\nabla(\mathbb{P})$ is equivalent to ∇ (the Boolean completion of \mathbb{P}).

Given a complete Boolean algebra $\mathbb{B}, S(\mathbb{B})$ denotes the Souslin number of the poset $\mathbb{B} \backslash\{\mathbf{0}\}$. Given $J \subseteq \mathbb{B}, \bigwedge J$ denotes the infimum of J in \mathbb{B} and $\bigvee J$ denotes the supremum of J in \mathbb{B}.

Lemma 2.6. Let \mathbb{B} be a complete Boolean algebra and let $J \subseteq \mathbb{B}$. Then there is some $J^{\prime} \subseteq J$ with $\left|J^{\prime}\right|<S(\mathbb{B})$ such that $\bigwedge J^{\prime}=\bigwedge J$ and $\bigvee J^{\prime}=\bigvee J$.

Proof. If we delete the "and $\bigvee J^{\prime}=\bigvee J^{\prime}$ from the end of the lemma, then it becomes a special case of [1, Lemma 3.2]. If we delete the " $\wedge J^{\prime}=\bigwedge J$ and" instead, then it follows from the previous sentence via de Morgan's laws. Thus given $J \subseteq \mathbb{B}$, there is some $J_{\wedge}^{\prime} \subseteq J$ with $\left|J_{\wedge}^{\prime}\right|<S(\mathbb{B})$ such that $\bigwedge J_{\wedge}^{\prime}=\bigwedge J$, and there is some $J_{\vee}^{\prime} \subseteq J$ with $\left|J_{\vee}^{\prime}\right|<S(\mathbb{B})$ such that $\bigvee J_{\vee}^{\prime}=\bigvee J$. Then $J^{\prime}=J_{\wedge}^{\prime} \cup J_{\vee}^{\prime}$ satisfies the conclusion of the lemma.

Lemma 2.7. Let \mathbb{B} be a complete Boolean algebra and let $X \subseteq \mathbb{B}$ with $|X|=S(\mathbb{B})$. Then there is some $Y \subseteq X$ with $|X \backslash Y|<S(\mathbb{B})$ such that $\Lambda Y=\Lambda(Y \backslash Z)$ for every $Z \subseteq Y$ with $|Z|<S(\mathbb{B})$.

Proof. Let $\kappa=S(\mathbb{B})$. Fix $X \subseteq \mathbb{B} \backslash\{\mathbf{0}\}$ with $|X|=\kappa$, and let $\left\{b_{\alpha}: \alpha<\kappa\right\}$ be an enumeration of X with order type κ. Let $c_{\alpha}=\bigwedge\left\{b_{\xi}: \xi \geq \alpha\right\}$ for each $\alpha<\kappa$, and note that $\alpha \leq \alpha^{\prime}$ implies $c_{\alpha} \leq c_{\alpha^{\prime}}$. By Lemma 2.6, there is some $\beta<\kappa$ such that $\bigvee\left\{c_{\alpha}: \alpha<\kappa\right\}=\bigvee\left\{c_{\alpha}: \alpha<\beta\right\}$. (This uses the fact that κ is regular: as mentioned above, the Souslin number of a poset is always a regular cardinal.) Because the c_{α} form a non-decreasing sequence in \mathbb{B}, this
means $c_{\alpha}=c_{\beta}$ for all $\alpha \geq \beta$. Let $Y=\left\{b_{\xi}: \xi \geq \beta\right\}$. If $Z \subseteq Y$ with $|Z|<\kappa$, then there is some α with $\beta \leq \alpha<\kappa$ such that $Z \subseteq\left\{b_{\xi}: \xi<\alpha\right\}$. But then

$$
c_{\beta}=\bigwedge Y \leq \bigwedge(Y \backslash Z) \leq \bigwedge\left\{b_{\xi}: \xi \geq \alpha\right\}=c_{\alpha}=c_{\beta}
$$

Therefore $\bigwedge(Y \backslash Z)=c_{\beta}$ for any $Z \subseteq Y$ with $|Z|<\kappa$.
If \mathbb{F} is a forcing poset and A is a set, recall that a nice name for a subset of A is a subset \dot{X} of $A \times \mathbb{F}$ such that for each $a \in A,\{p \in \mathbb{F}:(a, p) \in \dot{X}\}$ is an antichain in \mathbb{F}. Given $B \subseteq A, \dot{X} \upharpoonright B=\dot{X} \cap(B \times \mathbb{F})$. We adopt the convention of deleting a dot to denote the evaluation of a name. For example, if \dot{X} is a nice \mathbb{F}-name for a subset of μ, then we write $\mathbf{1}_{\mathbb{F}} \Vdash$ " $X \subseteq \mu$."

Lemma 2.8. Let \mathbb{F} be a ccc notion of forcing, let $\dot{\unlhd}$ be an \mathbb{F}-name for a relation on some infinite cardinal μ, and suppose that $\mathbf{1}_{\mathbb{F}} \Vdash$ " (μ, \unlhd) is a complete Boolean algebra with $S(\mu, \unlhd)=\kappa$." Let $p \in \mathbb{F}$ and let \dot{X} be a nice name for a subset of μ. If $p \Vdash "|X|=\kappa$ " then there is some $\dot{Y} \subseteq \dot{X}$ with $|\dot{Y} \backslash \dot{X}|<\kappa$ such that $p \Vdash$ " $\bigwedge Y=\bigwedge(Y \backslash Z)$ for any $Z \subseteq \mu$ with $|Z|<\kappa$."

Proof. As μ is infinite, κ must be a regular uncountable cardinal. Because \mathbb{F} has the ccc, we know that for every \mathbb{F}-name \dot{W} for a subset of μ, if $q \in \mathbb{F}$ and $q \Vdash$ " $|W|<\kappa$ ", then there is some $A \subseteq \mu$ (in the ground model) such that $|A|<\kappa$ and $q \Vdash$ " $W \subseteq A$."

By Lemma 2.7, and the existential completeness lemma, there is a name \dot{Y}_{0} for a subset of μ such that $p \Vdash$ " $Y_{0} \subseteq X$ and $\left|X \backslash Y_{0}\right|<\kappa$ and $\bigwedge Y_{0}=$ $\bigwedge\left(Y_{0} \backslash Z\right)$ for every $Z \subseteq Y$ with $|Z|<\kappa$." By the previous paragraph, there is some $A \subseteq \mu$ (in the ground model) such that $|A|<\kappa$ and $p \Vdash$ " $X \backslash Y_{0} \subseteq A$." Furthermore, $p \Vdash " \bigwedge((X \backslash A) \backslash Z)=\bigwedge X \backslash(A \cup Z)=\bigwedge Y_{0}=\bigwedge Y_{0} \backslash A=$ $\bigwedge X \backslash A$ for any $Z \subseteq \mu$ with $|Z|<\kappa$."

Let $\dot{Y}=\dot{X} \upharpoonright(\mu \backslash A)$. Clearly $\dot{Y} \subseteq \dot{X}$ and $p \Vdash " Y=X \backslash A$." Because \dot{X} is a nice name and \mathbb{F} has the ccc, $\{q \in \mathbb{F}:(q, a) \in \dot{X}\}$ is countable for every $a \in A$; therefore $|\dot{X} \backslash \dot{Y}| \leq \aleph_{0} \cdot|A|<\kappa$. Finally, because $p \Vdash " Y=X \backslash A "$, the last assertion of the lemma follows from the last sentence of the previous paragraph.

Given a cardinal λ, let $\operatorname{Fn}(\lambda, 2)$ denote the poset of finite partial functions $\lambda \rightarrow\{0,1\}$, the standard forcing poset for adding λ Cohen reals.

Theorem 2.9. Suppose V is a model of $\mathrm{GCH}+\square$ (or, more generally, suppose V is a model satisfying the conclusion of Theorem 2.2). If λ is any cardinal and G is $\operatorname{Fn}(\lambda, 2)$-generic over V, then $V[G] \vDash \nabla$.
Proof. Let μ, κ be infinite cardinals, and let $\dot{\unlhd}$ be a $\operatorname{Fn}(\lambda, 2)$-name such that $\emptyset \Vdash "(\mu, \unlhd)$ is a complete Boolean algebra with $S(\mu, \unlhd)=\kappa$." Note that this implies κ is regular and uncountable. Let ν be a regular uncountable cardinal with $\lambda, \mu \leq \nu$ and with $\kappa<\nu$. Without loss of generality, we may and do assume that 0 (the ordinal) is equal to $\mathbf{0}$ (the \unlhd-least element of μ). More precisely, we assume $\emptyset \Vdash " 0_{(\mu, \unlhd)}=0$."

We work momentarily in the ground model. Applying Theorem 2.2, let $\left\langle M_{\alpha}: \alpha<\nu\right\rangle$ be a κ-sage Davies tree for ν over ($\mu, \unlhd \dot{)}$. Applying Lemma 2.4, fix for each $\alpha<\nu$ some well ordering \sqsubset_{α} of M_{α} with order type κ such that if $\alpha<\beta<\nu$ and $\alpha \in M_{\beta}$, then $\sqsubset_{\alpha} \in M_{\beta}$.

For each $x \in \bigcup_{\alpha<\nu} M_{\alpha}$, the level of x, denoted $\operatorname{Lev}(x)$, is defined as the least $\alpha<\nu$ such that $x \in M_{\alpha}$. Let \sqsubset denote the well-order of $\bigcup_{\alpha<\nu} M_{\alpha}$ defined as follows:

$$
\begin{aligned}
& \circ \text { if } \operatorname{Lev}(x)<\operatorname{Lev}(y) \text {, then } x \sqsubset y . \\
& \circ \text { if } \operatorname{Lev}(x)=\operatorname{Lev}(y)=\alpha \text {, then } x \sqsubset y \text { if and only if } x \sqsubset_{\alpha} y .
\end{aligned}
$$

We write $x \sqsubseteq y$ to mean that either $x \sqsubset y$ or $x=y$.
We now define, via recursion, a sequence $\left\langle d_{\gamma}: \gamma<\mu\right\rangle$ of members of μ. Simultaneously, we also define a sequence $\left\langle I_{\gamma}: \gamma<\mu\right\rangle$ of $\langle\kappa$-sized subsets of μ, and a sequence $\left\langle\dot{J}_{\gamma}: \gamma<\mu\right\rangle$ of nice names. These definitions take place in the extension $V[G]$, and we do not claim that any of these sequences is a member of the ground model V. For the base case, let $d_{0}=0$ and let $I_{0}=\dot{J}_{0}=\emptyset$. For the recursive step, fix $\gamma<\mu$ and suppose that d_{β}, I_{β}, and \dot{J}_{β} are already defined for each $\beta \sqsubset \gamma$. If there is some $\beta \sqsubset \gamma$ such that $0 \neq d_{\beta} \unlhd \gamma$, then set $d_{\gamma}=0$ and set $I_{\gamma}=\dot{J}_{\gamma}=\emptyset$. If there is no such β, then let I_{γ} denote the \sqsubseteq-minimal set in the ground model V with the following two properties:
$\circ I_{\gamma}$ is a $<\kappa$-sized subset of μ.
\circ In $V[G]$, there is some $J \subseteq I_{\gamma}$ such that $0 \neq \bigwedge J \unlhd \gamma$.

Note that I_{γ} is well-defined because $\{\gamma\} \in V$ and $\{\gamma\}$ has both these properties. (Note that this implies $I_{\gamma} \sqsubseteq\{\gamma\}$.) Because of the second property of I_{γ} listed above, there is a nice name \dot{J} in the ground model V for a subset of I_{γ} such that, for some $p \in G$, we have $p \Vdash$ " $(\dot{J})_{G}=J \subseteq I_{\gamma}$ and $0 \neq \bigwedge J \unlhd \gamma$." Let \dot{J}_{γ} denote the \sqsubseteq-minimal nice $\operatorname{Fn}(\lambda, 2)$-name in V with this property. Finally, let $d_{\gamma}=\bigwedge\left(\dot{J}_{\gamma}\right)_{G}$.
(Note: Because the I_{γ} 's and the \dot{J}_{γ} 's are defined in the extension, we have in the ground model a name \dot{I}_{γ} and a name \ddot{J}_{γ} for a nice name for a subset of \dot{I}_{γ} that is forced (by \emptyset) to be the $\gamma^{\text {th }}$ element of the sequence constructed above. In particular, $p \Vdash$ " $\left(\ddot{J}_{\gamma}\right)_{G}=\dot{J}_{\gamma} \subseteq I_{\gamma}=\left(\dot{I}_{\gamma}\right)_{G}$ " for some $p \in G$. Recall our convention of deleting a dot to denote the evaluation of a name!)

Let $\mathbb{D}=\left\{d_{\gamma}: \gamma<\mu\right.$ and $\left.d_{\gamma} \neq 0\right\}$. We claim that this set \mathbb{D} is a witness to the fact that $\nabla(\mu, \unlhd)$ holds in $V[G]$.

To see that \mathbb{D} is a dense subset of (μ, \unlhd), fix some nonzero $\gamma<\mu$. If $d_{\gamma} \neq 0$, then $d_{\gamma} \in \mathbb{D}$ and $d_{\gamma} \unlhd \gamma$. If $d_{\gamma}=0$, then this means there is some $\beta \sqsubset \gamma$ such that $0 \neq d_{\beta} \unlhd \gamma$, and so $d_{\beta} \in \mathbb{D}$ and $d_{\beta} \unlhd \gamma$. Either way, some member of \mathbb{D} is $\unlhd \gamma$. As γ was arbitrary, \mathbb{D} is dense.

For the more difficult part of the proof, we must show that every $\delta \in \mu \backslash\{0\}$ has the property that $|\{d \in \mathbb{D}: \delta \unlhd d\}|<\kappa$. Aiming for a contradiction, let
us suppose otherwise. Fix some $\delta \in \mu \backslash\{0\}$ such that $|\{d \in \mathbb{D}: \delta \unlhd d\}| \geq \kappa$. Let $S=\left\{\gamma<\mu: d_{\gamma} \in \mathbb{D}\right.$ and $\left.\delta \unlhd d_{\gamma}\right\}$.

Observe that $\beta \neq \gamma$ implies $d_{\beta} \neq d_{\gamma}$ whenever $d_{\beta}, d_{\gamma} \in \mathbb{D}$. (This is because if $\beta \sqsubset \gamma$, then $d_{\gamma} \neq 0$ implies $d_{\beta} \nexists \gamma$ while $d_{\gamma} \unlhd \gamma$.) Therefore the map $\gamma \mapsto d_{\gamma}$ is injective on S, and we may think of S simply as an indexing set for $\{d \in \mathbb{D}: \delta \unlhd d\}=\left\{d_{\gamma}: \gamma \in S\right\}$.

Claim. There is some $I \subseteq \mu$ such that $I_{\gamma}=I$ for $\geq \kappa$-many $\gamma \in S$.
Proof of claim. Aiming for a contradiction, let us assume the claim is false. Let ζ denote the least ordinal $<\nu$ with the property that $\operatorname{Lev}\left(I_{\gamma}\right)<\zeta$ for $\geq \kappa$-many $\gamma \in S$. Some such ζ must exist because $|S| \geq \kappa$ and ν is a regular cardinal with $\kappa<\nu$.

By part (3) of our definition of a κ-sage Davies tree, there is a collection \mathcal{N} of $<\kappa$-closed elementary submodels of H_{θ} such that $|\mathcal{N}|<\kappa$ and $\bigcup \mathcal{N}=\bigcup_{\xi<\zeta} M_{\xi}$. By our choice of ζ and the regularity of κ, some $N \in \mathcal{N}$ has the property that $I_{\gamma} \in N$ for $\geq \kappa$-many $\gamma \in S$. Fix some such N, let $S_{N}=\left\{\gamma \in S: I_{\gamma} \in N\right\}$, and let $\mathbb{D}_{N}=\left\{d_{\gamma}: \gamma \in S_{N}\right\}$. Note that $\wedge \mathbb{D}_{N} \neq 0$ because $\delta \unlhd \bigwedge \mathbb{D} \unlhd \bigwedge \mathbb{D}_{N}$.

Applying Lemma 2.6, there is some $T \subseteq S_{N}$ with $|T|<\kappa$ such that $\bigwedge \mathbb{D}_{N}=\bigwedge\left\{d_{\gamma}: \gamma \in T\right\}$. Let $I_{0}=\bigcup\left\{I_{\gamma}: \gamma \in T\right\}$. Then I_{0} is a subset of $N \cap \mu$ in $V[G]$, and $\left|I_{0}\right|<\kappa$. Because $\operatorname{Fn}(\lambda, 2)$ has the ccc, there is a subset I of $N \cap \mu$ in V with $I_{0} \subseteq I$ and $|I| \leq\left|I_{0}\right| \cdot \aleph_{0}<\kappa$. Because N is $<\kappa$-closed in V, we have $I \in N$.

For each $\gamma \in T$, there is a subset $J_{\gamma}=\left(\dot{J}_{\gamma}\right)_{G}$ of I_{γ} with $\bigwedge J_{\gamma}=d_{\gamma}$. Note that $\bigwedge\left\{d_{\gamma}: \gamma \in T\right\}=\bigwedge_{\gamma \in T} \wedge J_{\gamma}=\bigwedge\left(\bigcup_{\gamma \in T} J_{\gamma}\right)$, and let $J=\bigcup_{\gamma \in T} J_{\gamma}$. Now $J \subseteq I$, and $\bigwedge J=\bigwedge\left\{\bigwedge J_{\gamma}: \gamma \in T\right\}=\bigwedge\left\{d_{\gamma}: \gamma \in T\right\}=\bigwedge \mathbb{D}_{N}$. Furthermore, $0 \neq \bigwedge \mathbb{D}_{N} \unlhd d_{\gamma}$ for each $\gamma \in S_{N}$. Thus, for each $\gamma \in S_{N}$, there is a subset J of I such that $0 \neq \bigwedge J \unlhd d_{\gamma} \unlhd \gamma$.

This shows that I satisfies the conditions in the definition of I_{γ} whenever $\gamma \in S_{N}$. It follows that $I_{\gamma} \sqsubseteq I$ for all $\gamma \in S_{N}$. Now, our definition of \sqsubseteq entails that I has $<\kappa$-many \sqsubseteq-predecessors in $\operatorname{Lev}(I)$, and each predecessor $I^{\prime} \sqsubseteq I$ has $<\kappa$-many $\gamma \in S_{N}$ with $I_{\gamma}=I^{\prime}$ (by our assumption at the beginning of the proof of this claim). Therefore $\operatorname{Lev}\left(I_{\gamma}\right)=\operatorname{Lev}(I)$ for only $<\kappa$-many $\gamma \in S_{N}$. As $\operatorname{Lev}\left(I_{\gamma}\right) \leq \operatorname{Lev}(I)$ for all $\gamma \in S_{N}$ and $\left|S_{N}\right| \geq \kappa$, it follows that $\operatorname{Lev}\left(I_{\gamma}\right)<\operatorname{Lev}(I)$ for $\geq \kappa$-many $\gamma \in S_{N}$. But $\operatorname{Lev}(I)<\zeta$, because $I \in N \subseteq \bigcup_{\xi<\zeta} M_{\xi}$, so this contradicts our choice of ζ.

Fix some $I \subseteq \mu$ with $|I|<\kappa$ that satisfies the conclusion of the above claim. By replacing S with a size- κ subset of $\left\{\gamma \in S: I_{\gamma}=I\right\}$ if necessary, we may (and do) assume that $|S|=\kappa, I_{\gamma}=I$ for all $\gamma \in S$, and $\delta \unlhd d_{\gamma}$ for all $\gamma \in S$.

Let ζ denote the least ordinal $<\nu$ such that there are κ-many $\gamma \in S$ with $\operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\zeta$. (Some such ζ must exist because ν is a regular cardinal with
$|S|=\kappa<\nu$.) By replacing S with $\left\{\gamma \in S: \operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\zeta\right\}$ if necessary, we may (and do) assume that $\operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\zeta$ for all $\gamma \in S$.

Recall that the sequence $\left\langle\dot{J}_{\gamma}: \gamma<\mu\right\rangle$ was defined in the extension, not in the ground model. In the ground model, we have a sequence $\left\langle\ddot{J}_{\gamma}: \gamma<\mu\right\rangle$ of names for nice names, representing the sequence $\left\langle\dot{J}_{\gamma}: \gamma<\mu\right\rangle$ constructed in the extension, meaning that $\emptyset \Vdash$ " $\left(\ddot{J}_{\gamma}\right)_{G}=\dot{J}_{\gamma}$ for each $\gamma<\mu$."

We now work in the ground model V. Let \dot{S} be a nice $\operatorname{Fn}(\lambda, 2)$-name for S, and fix some $p \in \operatorname{Fn}(\lambda, 2)$ such that

$$
\begin{array}{ll}
p \Vdash & |S|=\kappa, \\
& I_{\gamma}=I \text { for all } \gamma \in S, \\
& \delta \unlhd d_{\gamma} \text { for all } \gamma \in S, \\
& \operatorname{Lev}\left(\left(\ddot{J}_{\gamma}\right)_{G}\right)<\zeta \text { for all } \gamma \in S, \text { and } \\
& \text { if } \zeta^{\prime}<\zeta \text { then }\left|\left\{\gamma \in S: \operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\zeta^{\prime}\right\}\right|<\kappa .
\end{array}
$$

Let q be an arbitrary extension of p in $\operatorname{Fn}(\lambda, 2)$.
Claim. There is a nice name $\dot{S}^{\prime}=\left\{\left(\gamma_{\alpha}, q_{\alpha}\right): \alpha<\kappa\right\} \subseteq \dot{S}$, a condition $r \supseteq q$, and a sequence $\left\langle\dot{K}_{\gamma_{\alpha}}: \alpha<\kappa\right\rangle$ (in the ground model V) of nice names for subsets of I, such that $\operatorname{dom}\left(q_{\alpha}\right) \cap \operatorname{dom}\left(q_{\beta}\right)=\emptyset$ for all $\alpha \neq \beta$ in κ, and

$$
r \Vdash \quad\left|S^{\prime}\right|=\kappa \quad \text { and } \quad \dot{J}_{\gamma}=\left(\ddot{J}_{\gamma}\right)_{G}=\dot{K}_{\gamma} \text { for all } \gamma \in S^{\prime} .
$$

Furthermore, if \dot{T} is any size- κ subset of \dot{S}^{\prime} and $t \supseteq r$, then the above statement remains true when \dot{S}^{\prime} is replace by \dot{T} and r is replaced by t.
Proof of claim. Because \dot{S} is a nice name for a subset of μ and $\operatorname{Fn}(\lambda, 2)$ has the ccc, we may write $\dot{S}=\left\{\left(\gamma_{\alpha}, p_{\alpha}\right): \alpha<\kappa\right\}$, where $\gamma_{\alpha}<\mu$ and $p_{\alpha} \in$ $\operatorname{Fn}(\lambda, 2)$ for all α, and where any particular ordinal appears only countably many times among the γ_{α}, i.e., $\left|\left\{\alpha<\kappa: \gamma_{\alpha}=\gamma\right\}\right| \leq \aleph_{0}$ for every $\gamma<\mu$.

Letting $\dot{S}_{1}=\dot{S} \backslash\left\{\left(\gamma_{\alpha}, p_{\alpha}\right): p_{\alpha} \perp q\right\}$, it is clear that $q \Vdash S_{1}=S$. Note that $\left|\dot{S}_{1}\right|=\kappa$, because $q \Vdash$ " $S_{1}=S$ and $|S|=\kappa$."

For every $\left(\gamma_{\alpha}, p_{\alpha}\right) \in \dot{S}_{1}, p_{\alpha}$ is compatible with q and $q \cup p_{\alpha} \Vdash$ " $\left(\ddot{J}_{\gamma_{\alpha}}\right)_{G}$ is a nice name (in V) for a subset of I and $\operatorname{Lev}\left(\left(\ddot{J}_{\gamma_{\alpha}}\right)_{G}\right)<\zeta$." For each such α, we may therefore choose some $q_{\alpha}^{0} \supseteq q \cup p_{\alpha}$ that decides $\ddot{J}_{\gamma_{\alpha}}$; that is, we choose some $q_{\alpha}^{0} \supseteq q \cup p_{\alpha}$ and some nice name $\dot{K}_{\gamma_{\alpha}} \in V$ with $\operatorname{Lev}\left(\dot{K}_{\gamma_{\alpha}}\right)<\zeta$ such that $q_{\alpha}^{0} \Vdash " \dot{J}_{\gamma_{\alpha}}=\left(\ddot{J}_{\gamma_{\alpha}}\right)_{G}=\dot{K}_{\gamma_{\alpha}}$."

By the Δ-system lemma, there is some $D \subseteq\left\{\alpha:\left(\gamma_{a}, p_{\alpha}\right) \in \dot{S}_{1}\right\}$ with $|D|=\kappa$ such that $\left\{\operatorname{dom}\left(q_{\alpha}^{0}\right): \alpha \in D\right\}$ is a Δ-system with root R. (We allow for the possibility that this is a "degenerate" Δ-system with $\operatorname{dom}\left(q_{\alpha}^{0}\right)=R$ for all $\alpha<\kappa$.) By the pigeonhole principle, there is some $r: R \rightarrow 2$ and some $E \subseteq D$ with $|E|=\kappa$ such that $q_{\alpha}^{0} \upharpoonright R=r$ for all $\alpha \in E$. Note that $r \supseteq q \supseteq p$,
because $q_{\alpha}^{0} \supseteq q$ for each α. Let $\dot{S}_{2}=\left\{\left(\gamma_{\alpha}, q_{\alpha}^{0}\right): \alpha \in E\right\}$. By relabelling and re-indexing the members of \dot{S}_{2}, we may write $\dot{S}_{2}=\left\{\left(\gamma_{\alpha}, q_{\alpha}^{0}\right): \alpha<\kappa\right\}$. Finally, let $q_{\alpha}=q_{\alpha}^{0} \backslash r$ for all α and let $\dot{S}^{\prime}=\left\{\left(\gamma_{\alpha}, q_{\alpha}\right): \alpha<\kappa\right\}$. It is clear that $r \Vdash$ " $\dot{S}^{\prime}=\dot{S}_{2} "$, and this implies $r \Vdash$ " $\dot{J}_{\gamma}=\left(\ddot{J}_{\gamma}\right)_{G}=\dot{K}_{\gamma}$ for all $\gamma \in S^{\prime}$." Clearly $\operatorname{dom}\left(q_{\alpha}\right) \cap \operatorname{dom}\left(q_{\beta}\right)=\emptyset$ for all $\alpha \neq \beta$ in κ.

Finally, suppose $\dot{T} \subseteq \dot{S}^{\prime}$ with $|\dot{T}|=\kappa$, and fix $t \in \operatorname{Fn}(\lambda, 2)$ with $t \supseteq r$. That $t \Vdash|T|=\kappa$ follows from the fact that the domains of the q_{α} 's are pairwise disjoint (so that any generic filter must include κ of the q_{α} 's), together with the fact that any particular ordinal appears only countably many times among the γ_{α}. We have $t \Vdash$ " $\dot{J}_{\gamma}=\left(\ddot{J}_{\gamma}\right)_{G}=\dot{K}_{\gamma}$ for all $\gamma \in T$ " because $r \Vdash$ " $\dot{J}_{\gamma}=\left(\ddot{J}_{\gamma}\right)_{G}=\dot{K}_{\gamma}$ for all $\gamma \in S^{\prime \prime}$, and $t \Vdash$ " $T \subseteq S^{\prime}$."

Fix some nice name \dot{S}^{\prime} as in the claim above.
By part (3) of our definition of a sage Davies tree, there is a collection \mathcal{N} of $<\kappa$-closed closed elementary submodels of H_{θ} with $|\mathcal{N}|<\kappa$ such that $\bigcup \mathcal{N}=\bigcup_{\xi<\zeta} M_{\xi}$. By the pigeonhole principle, some $N \in \mathcal{N}$ has the property that $\dot{K}_{\gamma_{\alpha}} \in N$ for κ-many $\alpha<\kappa$. Fix some such N.

Let $\dot{S}_{N}^{\prime}=\left\{\left(\gamma_{\alpha}, q_{\alpha}\right) \in \dot{S}^{\prime}: \dot{K}_{\gamma_{\alpha}} \in N\right\}$. Applying Lemma 2.8, there is some $\dot{T} \subseteq \dot{S}_{N}^{\prime}$ with $\left|\dot{S}_{N}^{\prime} \backslash \dot{T}\right|<\kappa$ such that

$$
\begin{aligned}
r \Vdash & \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\}=\bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T \backslash Z\right\} \\
& \text { for any } Z \subseteq \mu \text { with }|Z|<\kappa .
\end{aligned}
$$

By re-labelling and re-indexing the q_{α} and γ_{α} one final time, let us write $\dot{T}=\left\{\left(q_{\alpha}, \gamma_{\alpha}\right): \alpha<\kappa\right\}$.

Claim. For any $\alpha<\kappa$ and any s compatible with q_{α}, if $s \Vdash$ " $i \in K_{\gamma_{\alpha}}$ " then $q_{\alpha} \cup s \Vdash$ "for any $j \in I$ with $j \nexists i$, there is some $i^{\prime} \in I$ such that $j \nexists i^{\prime}$ and $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$."

Proof of claim. For the proof of this claim, it is more convenient to work in a generic extension. Suppose s is compatible with q_{α} and $s \Vdash$ " $i \in K_{\gamma_{\alpha}}$ ", and let $V[H]$ be an arbitrary $\operatorname{Fn}(\lambda, 2)$-generic extension of V with $q_{\alpha} \cup s \in H$.

Fix $j \in I$ with $j \nexists i$. Because $q_{\alpha} \in H$, we have $\gamma_{\alpha} \in T$. Therefore $\bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\} \unlhd \bigwedge K_{\gamma_{\alpha}} \unlhd i$. As $j \nexists i$, we have $j \nexists \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\}$. By our choice of T, we also have $j \nexists \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T \backslash Z\right\}$ for any $<\kappa$-sized $Z \subseteq T$. This implies there are κ-many $\gamma \in T$ such that $j \nexists \wedge K_{\gamma}$. For each such γ, there is some $i^{\prime} \in I$ such that $i^{\prime} \in K_{\gamma}$ and $j \nexists i^{\prime}$. By the pigeonhole principle, using the fact that $|I|<\kappa$, there is some particular $i^{\prime} \in I$ with $j \nexists i^{\prime}$ such that $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$.

Thus any generic extension $V[H]$ with $q_{\alpha} \cup s \in H$ satisfies "for any $j \in I$ with $j \nexists i$, there is some $i^{\prime} \in I$ such that $j \nexists i^{\prime}$ and $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$." The claim follows.

Given $i \in I$ and $\alpha<\kappa$, we write $" i \in \operatorname{supp}\left(\dot{K}_{\gamma_{\alpha}}\right)$ " to mean $(i, s) \in \dot{K}_{\gamma_{\alpha}}$ for some $s \in \operatorname{Fn}(\lambda, 2)$. Let

$$
I_{\kappa}=\left\{i \in I: i \in \operatorname{supp}\left(\dot{K}_{\gamma_{\alpha}}\right) \text { for } \kappa \text {-many values of } \alpha\right\} .
$$

Note that $I_{\kappa} \subseteq N$ (because each $\dot{K}_{\gamma_{\alpha}}$ is in N). Let

$$
\dot{K}=\left\{(i, s) \in N: i \in I_{\kappa} \text { and } s \Vdash " i \in K_{\gamma} \text { for infinitely many } \gamma \in T "\right\} .
$$

Notice that $\dot{K} \subseteq N$, although we cannot claim $\dot{K} \in N$. The following claim gives us the next best thing to having $\dot{K} \in N$.

Claim. There is a nice name \dot{J} for a subset of I, with $\dot{J} \in N$, such that $\emptyset \Vdash " J=K$."

Proof of Claim. For each $i \in \operatorname{supp}(\dot{K})$, fix an antichain \mathcal{A}_{i} in $\operatorname{Fn}(\lambda, 2) \cap N$ such that $s \Vdash$ " $i \in K$ " for every $s \in \mathcal{A}_{i}$, and \mathcal{A}_{i} is maximal with respect to this property (i.e., if $t \in \operatorname{Fn}(\lambda, 2) \cap N$ and $t \Vdash$ " $i \in K$ ", then t is compatible with some member of \mathcal{A}_{i}). Let $\dot{J}=\left\{(i, s): i \in \operatorname{supp}(\dot{K})\right.$ and $\left.s \in \mathcal{A}_{i}\right\}$.

Clearly \dot{J} is a nice name for a subset of I. Note that $i \in \operatorname{supp}(\dot{K})$ implies $i \in N$. So if $(i, s) \in \dot{J}$, then $i, s \in N$, which implies $(i, s) \in N$. Thus $\dot{J} \subseteq N$. Also $|I|<\kappa$ and $\left|\mathcal{A}_{i}\right|=\aleph_{0}<\kappa$ for each i, which implies $|\dot{J}|<\kappa$. Because N is $<\kappa$-closed, $\dot{J} \in N$.

It is clear from our construction that $\emptyset \Vdash$ " $J \subseteq K$." For the other direction, suppose $t \in \operatorname{Fn}(\lambda, 2)$ and $t \Vdash$ " $i \in K$." Let t^{\prime} be any extension of t. Because $\dot{K} \subseteq N$, it is clear that $t^{\prime} \Vdash$ " $i \in K$ " implies $t^{\prime} \cap N \Vdash " i \in K$." By our choice of \mathcal{A}_{i}, this means $t^{\prime} \cap N$ is compatible with some $s \in \mathcal{A}_{i}$; but $s \in N$, so t^{\prime} is also compatible with s. Hence $t^{\prime} \psi^{"} i \notin J$." Because this is true for every $t^{\prime} \supseteq t$, this shows $t \Vdash$ " $i \in J$." Hence any condition forcing $i \in K$ also forces $i \in J$. It follows that $\emptyset \Vdash$ " $K \subseteq J$ " as claimed.

If $t \supseteq r$ and, for some $i \in I \cap N, t \Vdash$ " $i \in K_{\gamma}$ for infinitely many $\gamma \in T$ ", then $t \cap N \Vdash$ " $i \in K_{\gamma}$ for infinitely many $\gamma \in T$." To see this, note first that $t \Vdash$ " $i \in K_{\gamma}$ for infinitely many $\gamma \in T$ " just means that for any $t^{\prime} \supseteq t$, there are infinitely many values of α such that there is some t_{α} compatible with t^{\prime} and $\left(t_{\alpha}, i\right) \in \dot{K}_{\gamma_{\alpha}}$. But because $\dot{K}_{\gamma_{\alpha}} \subseteq N$ for every α (which means that the t_{α} 's in the previous sentence are always in N), this fact evidently does not change when we replace t with $t \cap N$.
Claim. For each $\alpha<\kappa, q_{\alpha} \cup r \Vdash " \bigwedge K \unlhd \bigwedge K_{\gamma_{\alpha}}$."
Proof of Claim. Fix $\alpha<\kappa$. Let $i, j \in I$, and let s be any extension of $q_{\alpha} \cup r$ such that $s \Vdash " i \in K_{\gamma_{\alpha}}$ and $j \nexists i$." By a previous claim, $q_{\alpha} \cup s=s \Vdash$ "for any $j^{\prime} \in I$ with $j^{\prime} \nexists i$, there is some $i^{\prime} \in I$ such that $j^{\prime} \nexists i^{\prime}$ and $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$." In particular, $s \Vdash$ "there is some $i^{\prime} \in I$ such that $j \nexists i^{\prime}$ and $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$."

Let s^{\prime} be any extension of s. There is some $t \supseteq s^{\prime}$ that decides the value of i^{\prime} in the previous paragraph: i.e., there is some particular $i^{\prime} \in I$ such that
$t \Vdash$ " $i^{\prime} \in K_{\gamma}$ for κ-many $\gamma \in T$." Thus $i^{\prime} \in I_{\kappa}$, and $t \Vdash{ }^{\prime} i^{\prime} \in K_{\gamma}$ for infinitely many $\gamma \in T$." By the paragraph preceding this claim, $t \cap N \Vdash$ " $i \in K_{\gamma}$ for infinitely many $\gamma \in T$." Hence $\left(t \cap N, i^{\prime}\right) \in \dot{K}$. In particular, $t \Vdash{ }^{\prime} i^{\prime} \in K$." But also $t \Vdash " j \nexists i i^{\prime \prime}$, and so $t \Vdash " j \nsubseteq \bigwedge K$." Thus for any $s^{\prime} \supseteq s$, some extension of s^{\prime} forces " $j \not \Perp \bigwedge K$." It follows that $s \Vdash " j \nexists \bigwedge K$."

But s was an arbitrary extension of $q_{\alpha} \cup r$ having the property that, for some $i, j \in I, s \Vdash " i \in K_{\gamma_{\alpha}}$ and $j \nexists i$." Therefore $q_{\alpha} \cup r \Vdash$ "if $i, j \in I$ and $i \in K_{\gamma_{\alpha}}$ and $j \nexists i$, then $j \nexists \bigwedge K$." This implies $q_{\alpha} \cup r \Vdash " \bigwedge K \unlhd \bigwedge K_{\gamma_{\alpha}}$."

In a generic extension $V[H]$ with $r \in H$, we have $\gamma \in T$ if and only if $q_{\alpha} \in H$ for some $\alpha<\kappa$ with $\gamma_{\alpha}=\gamma$, in which case $\dot{J}_{\gamma}=\dot{K}_{\gamma_{\alpha}}$ and (by the previous claim) $\bigwedge K \unlhd \bigwedge K_{\gamma_{\alpha}}$. Therefore

$$
\begin{equation*}
r \Vdash \quad \bigwedge K \unlhd \bigwedge J_{\gamma} \text { for all } \gamma \in T \tag{*}
\end{equation*}
$$

Claim. $r \Vdash " \delta \unlhd \bigwedge K$."
Proof of Claim. We will prove separately that $r \Vdash$ " $\delta \unlhd \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\} "$ and that $r \Vdash " \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\} \unlhd \bigwedge K$."

For the first of these assertions, note that $p \Vdash$ " $\delta \unlhd \bigwedge\left(\dot{J}_{\gamma}\right)_{G}$ for all $\gamma \in S$ ", that $r \supseteq p$, and that $r \Vdash$ " $\dot{J}_{\gamma}=\dot{K}_{\gamma}$ for all $\gamma \in T$ and $T \subseteq S$." It follows that $r \Vdash " \delta \unlhd \bigwedge K_{\gamma}$ for all $\gamma \in T$ ", and therefore $r \Vdash " \delta \unlhd \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\}$."

For the second assertion, first note that, by the definition of \dot{K}, if $i \in I$ then $r \Vdash$ "if $i \in K$ then $i \in K_{\gamma}$ for infinitely many $\gamma \in T$." Hence for every $i \in I, r \Vdash$ "if $i \in K$ then $\bigwedge\left\{K_{\gamma}: \gamma \in T\right\} \unlhd i$ "; so $r \Vdash$ "for all $i \in I$, if $i \in K$ then $\bigwedge\left\{K_{\gamma}: \gamma \in T\right\} \unlhd i$." Hence $r \Vdash " \bigwedge\left\{\bigwedge K_{\gamma}: \gamma \in T\right\} \unlhd \bigwedge K$."

From the last few claims, we see that there is a nice name $\dot{J} \in N$ for a subset of I such that

$$
r \Vdash \quad J=K \text { and } 0 \neq \delta \unlhd \bigwedge K \unlhd \bigwedge J_{\gamma} \unlhd \gamma \text { for all } \gamma \in T
$$

So $r \Vdash$ "if $\gamma \in T$, then \dot{J} satisfies all the criteria in the definition of \dot{J}_{γ}." Consequently, $r \Vdash$ " $\dot{J}_{\gamma} \sqsubseteq \dot{J}$ for all $\gamma \in T$." However, we also have $\mid\{x: \operatorname{Lev}(x)=\operatorname{Lev}(\dot{J})$ and $x \sqsubseteq \dot{J}\} \mid<\kappa$, and $\dot{J}_{\gamma} \sqsubseteq \dot{J}$ implies $\operatorname{Lev}\left(\dot{J}_{\gamma}\right) \leq$ $\operatorname{Lev}(\dot{J})$. Therefore

$$
r \Vdash \quad \operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\operatorname{Lev}(\dot{J}) \text { for all but }<\kappa \text {-many } \gamma \in T .
$$

Also $r \Vdash " T \subseteq S$ and $|T|=\kappa$ " and therefore

$$
r \Vdash \quad \operatorname{Lev}\left(\dot{J}_{\gamma}\right)<\operatorname{Lev}(\dot{J}) \text { for } \kappa \text {-many } \gamma \in S
$$

But $\dot{J} \in N \subseteq \bigcup_{\xi<\zeta} M_{\xi}$, which implies that $\operatorname{Lev}(\dot{J})<\zeta$. This contradicts our choice of ζ and p, because p forces the minimality of ζ, and $r \supseteq p$.

Corollary 2.10. $\nabla+\neg \mathrm{CH}$ is consistent relative to ZFC .
The proof of Theorem 2.9 uses a hypothesis stronger than ∇ in V in order to show that ∇ holds in $V[G]$. This leaves open the question of whether such a strong hypothesis in the ground model is really necessary.

Question 2.11. Is ∇ preserved by Cohen forcing?

3. GCH does not imply ∇

In this section we show that GCH does not imply ∇. As mentioned in the introduction, large cardinals are necessary for constructing a model of $\mathrm{GCH}+\neg \nabla$. Another feature of our proof is that the poset \mathbb{P} for which we show $\nabla(\mathbb{P})$ fails has size $\aleph_{\omega+1}$. This feature is also necessary, in the sense that no smaller poset can work in the presence of GCH. While in certain models there are smaller posets where ∇ fails (∇ can fail for a size- \aleph_{2} poset [1, Theorem 4.1], although ∇ always holds for posets of size $\leq \aleph_{1}$ [1, remark 2.9]), GCH implies that ∇ holds for all posets of size $\leq \aleph_{\omega}$.

Consider the following statement:
For every model M for a countable language \mathcal{L} that contains a unary predicate A, if $|M|=\kappa^{+}$and $|A|=\kappa$ then there is an elementary submodel $M^{\prime} \prec M$ such that $\left|M^{\prime}\right|=\mu^{+}$and $\left|M^{\prime} \cap A\right|=\mu$.
This statement, abbreviated by writing $\left(\kappa^{+}, \kappa\right) \rightarrow\left(\mu^{+}, \mu\right)$, is an instance of Chang's conjecture. In this section we will consider the case $\kappa=\aleph_{\omega}$, $\mu=\aleph_{0}$. This particular instance of Chang's conjecture is known as Chang's conjecture for \aleph_{ω} and is abbreviated $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

The usual Chang conjecture, which is the assertion $\left(\aleph_{2}, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$, is equiconsistent with the existence of an ω_{1}-Erdős cardinal. Chang's conjecture for \aleph_{ω} requires even larger cardinals. $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ was first proved consistent relative to a hypothesis a little weaker than the existence of a 2-huge cardinal in [8]. Recently this was improved to a huge cardinal in [5]. The precise consistency strength of $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ is an open problem, but significant large cardinal strength is known to be needed. This is because $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ implies the failure of $\square_{\aleph_{\omega}}$ (see [9], in particular Fact 4.2 and the remarks after it), and the failure of $\square_{\aleph_{\omega}}$ carries significant consistency strength (see [2]).

Theorem 3.1. If $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ holds, then ∇ fails.
Proof. We will describe a separative ccc poset \mathbb{P}, and then use the Chang conjecture $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ to prove that this poset violates ∇. The members of \mathbb{P} have the form (p, f, A), where

- $p \in \mathbb{H}^{\aleph_{\omega}}$, where $\mathbb{H}^{\aleph_{\omega}}$ denotes the finite-support product of \aleph_{ω} Hechler forcings. The product is indexed by the ordinal ω_{ω}.
- f is a function $\omega \rightarrow \omega$, but not the constant function $n \mapsto 0$.
- A is a countably infinite subset of ω_{ω} and $A \supseteq \operatorname{supp}(p)$.

Given $(q, g, B),(p, f, A) \in \mathbb{P}$, we say that (q, g, B) extends (p, f, A) whenever - q extends p in $\mathbb{H}^{\aleph_{\omega}}$,

- $g(n) \geq f(n)$ for all $n \in \omega$,
- $B \supseteq A$,
- if $\alpha \in A \cap(\operatorname{supp}(q) \backslash \operatorname{supp}(p))$, then $q(\alpha)$ extends $\langle\emptyset, f\rangle$ in \mathbb{H}.

Alternatively, one may think of \mathbb{P} as a sub-poset of the countable support product of \aleph_{ω} Hechler forcings, consisting of those conditions r with infinite support such that for all but finitely many coordinates of $\operatorname{supp}(r)$, the $r(\alpha)$'s are all required to have an empty working part and the same side condition. Under this interpretation, a condition $(p, f, A) \in \mathbb{P}$ corresponds to the condition r in $\mathbb{H}_{\text {ctbl }}^{\aleph_{\omega}}$ having countable support A, and with $r(\alpha)=\langle\emptyset, f\rangle$ for all $\alpha \in A \backslash \operatorname{supp}(p)$.

We begin by verifying that \mathbb{P} is a separative ccc poset.
Claim. \mathbb{P} is separative.
Proof of claim. Let $(q, g, B),(p, f, A) \in \mathbb{P}$ and suppose that (q, g, B) is not an extension of (p, f, A). As there are four parts to the definition of "extension" in \mathbb{P}, this can mean one of four things.

If q does not extend p in $\mathbb{H}^{\aleph_{\omega}}$, then because $\mathbb{H}^{\aleph_{\omega}}$ is separative, there is some $r \in \mathbb{H}^{\aleph_{\omega}}$ that extends q but is incompatible with p. By extending r further if necessary, we may assume $r(\alpha)$ extends $\langle\emptyset, g\rangle$ for all $\alpha \in \operatorname{supp}(r)$, and thereby ensure that (r, g, B) is an extension of (q, g, B). Clearly (r, g, B) is incompatible with (p, f, A), because r is incompatible with p.

If $B \nsupseteq A$, then let $\alpha \in A \backslash B$. Let h be any condition in \mathbb{H} incompatible with $\langle\emptyset, f\rangle$. (Note that some such h exists because f is not the constant function $n \mapsto 0$.) Let $q^{\prime}=q \cup\{(\alpha, h)\}$ and $B^{\prime}=B \cup\{\alpha\}$. Then ($\left.q^{\prime}, g, B^{\prime}\right)$ is a condition extending (q, g, B); but our choice of α and h guarantees that $\left(q^{\prime}, g, B^{\prime}\right)$ is incompatible with (p, f, A).

If $B \supseteq A$ but $g(n)<f(n)$ for some $n \in \omega$, then let $\alpha \in A \backslash(\operatorname{supp}(p) \cup$ $\operatorname{supp}(q))$ and let h be any condition in \mathbb{H} extending $\langle\emptyset, g\rangle$ but incompatible with $\langle\emptyset, f\rangle$ (e.g., $h=\langle g \upharpoonright(n+1), g\rangle)$. Let $q^{\prime}=q \cup\{(\alpha, h)\}$. Then $\left(q^{\prime}, g, B\right)$ is a condition extending (q, g, B), but it is incompatible with (p, f, A).

Finally, suppose there is some $\alpha \in A \cap(\operatorname{supp}(q) \backslash \operatorname{supp}(p))$ such that $q(\alpha)$ does not extend $\langle\emptyset, f\rangle$ in \mathbb{H}. Then, because \mathbb{H} is separative, there is some $r \in \mathbb{H}$ that extends $q(\alpha)$ but is incompatible with $\langle\emptyset, f\rangle$. Define $q^{\prime} \in \mathbb{H}^{\aleph_{\omega}}$ to be identical to q, except that $q^{\prime}(\alpha)=r$. Then $\left(q^{\prime}, g, B\right)$ extends (q, g, B) and is incompatible with (p, f, A).

Claim. \mathbb{P} has the ccc.
Proof of claim. Suppose \mathcal{A} is an uncountable collection of conditions in \mathbb{P}. Let $\mathcal{B}=\{p:(p, f, A) \in \mathcal{A}$ for some f and $A\}$ denote the corresponding collection of conditions in $\mathbb{H}^{\aleph \omega}$. Because $\mathbb{H}^{\aleph_{\omega}}$ has the ccc, some two conditions in \mathcal{B} are compatible in $\mathbb{H}^{\aleph_{\omega}}$. But then the two corresponding conditions in \mathcal{A} are also compatible: for if $(q, g, B),(p, f, A) \in \mathbb{P}$ and r is a common extension of p and q in $\mathbb{H}^{\aleph \omega \omega}$, then we may further extend r, if necessary, so that for each $\alpha \in \operatorname{supp}(r), r(\alpha)$ is an extension of both $\langle\emptyset, f\rangle$ and $\langle\emptyset, g\rangle$. Then $(r, \max \{f, g\}, A \cup B)$ is a common extension of (q, g, B) and (p, f, A) in \mathbb{P}.

It remains to show that $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ implies that for any dense $\mathbb{D} \subseteq \mathbb{P}$, there is some condition in \mathbb{P} that extends uncountably many members of \mathbb{D}. Let \mathbb{D} be a dense sub-poset of \mathbb{P}.

To begin, note that for each countable $A \subseteq \omega_{\omega}$, some member of \mathbb{D} extends a condition of the form (p, f, A). This implies that

$$
\left\{B \subseteq \omega_{\omega}:(q, g, B) \in \mathbb{D} \text { for some } q \in \mathbb{H}^{\aleph_{\omega}} \text { and } g \in \omega^{\omega}\right\}
$$

is cofinal in the poset $\left(\left[\omega_{\omega}\right]^{\omega}, \subseteq\right)$. The cofinality of this poset is well-known to be $>\aleph_{\omega}$. Hence $|\mathbb{D}| \geq \aleph_{\omega+1}$.

Let $H=\omega_{\omega} \cup\left(\mathbb{H}^{\aleph_{\omega}} \times \omega^{\omega}\right)$, and note that $|H|=\aleph_{\omega}$.
Let (M, \in) be a model of (a sufficiently large fragment of) ZFC such that $H \subseteq M, \mathbb{D} \in M$, and $|M|=|M \cap \mathbb{D}|=\aleph_{\omega+1}$. (Such a model can be obtained in the usual way, via the downward Löwenheim-Skolem Theorem.) Let $\phi: M \rightarrow M \cap \mathbb{D}$ be a bijection, and consider the model (M, \in, ϕ, H) for the 3 -symbol language consisting of a binary relation, a unary function, and a unary predicate. Applying the Chang conjecture $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$, there exists some $M^{\prime} \subseteq M$ such that $\left|M^{\prime}\right|=\aleph_{1}, H^{\prime}=M^{\prime} \cap H$ is countable, and $\left(M^{\prime}, \in, \phi, H^{\prime}\right) \prec(M, \in, \phi, H)$.

Let $\mathbb{D}^{\prime}=\mathbb{D} \cap M^{\prime}$. By elementarity, the restriction of ϕ to M^{\prime} is a bijection $M^{\prime} \rightarrow \mathbb{D}^{\prime}$, and so $\left|\mathbb{D}^{\prime}\right|=\aleph_{1}$.

Let $B=\omega_{\omega} \cap M^{\prime}$. As $B \subseteq H^{\prime}$, we have $|B|=\aleph_{0}$. Note that $(p, f, A) \in \mathbb{D}^{\prime}$ implies $A \in M^{\prime}$, and therefore (because A is countable, and M^{\prime} models (enough of) ZFC) $A \subseteq M^{\prime}$. Therefore $(p, f, A) \in \mathbb{D}^{\prime}$ implies $A \subseteq B$.

Furthermore, $(p, f, A) \in \mathbb{D}^{\prime}$ implies $(p, f) \in M^{\prime}$, which implies $(p, f) \in H^{\prime}$. Therefore

$$
\left\{(p, f):(p, f, A) \in \mathbb{D}^{\prime} \text { for some } A \subseteq B\right\}
$$

is countable. But \mathbb{D}^{\prime} is uncountable, so by the pigeonhole principle, there is some pair $(p, f) \in \mathbb{H}^{\aleph_{\omega}} \times \omega^{\omega}$ such that $\left\{A \subseteq B:(p, f, A) \in \mathbb{D}^{\prime}\right\}$ is uncountable.

Finally, note that (p, f, B) is a condition in \mathbb{P}, and that (p, f, B) extends (p, f, A) whenever $A \subseteq B$. Therefore (p, f, B) extends uncountably many conditions in \mathbb{D}.

Corollary 3.2. GCH $+\neg \nabla$ is consistent relative to a huge cardinal.

4. The measure algebra of weight \aleph_{ω}

In [1, Section 4], it is observed that MA implies ∇ fails for the weight- \aleph_{0} measure algebra. In fact, this was the first known example of a poset for which ∇ consistently fails. The results contained in this section and the previous one grew from trying to discover whether $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ implies ∇ fails for the weight- \aleph_{ω} measure algebra. As mentioned in the previous section, $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ does not imply the failure of ∇ for any poset of size $\leq \aleph_{\omega}$, so this makes the weight $-\aleph_{\omega}$ measure algebra a natural place to look. We still do not know whether $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ implies the failure of ∇ for the weight- \aleph_{ω} measure algebra. But we show
below that $\mathrm{GCH}+\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ is consistent with the failure of ∇ for the weight- \aleph_{ω} measure algebra.

Given some set $A, 2^{A}$ denotes the set of all functions $A \rightarrow 2$. The product measure μ on 2^{A} is defined by setting

$$
\mu\left(\left\{f \in 2^{A}: f(\alpha)=0\right\}\right)=\mu\left(\left\{f \in 2^{A}: f(\alpha)=1\right\}\right)=\frac{1}{2}
$$

for all $\alpha \in A$. More precisely, this coordinate-wise assignment extends naturally to a pre-measure on the clopen subsets of 2^{A}, and this extends, via Carathéodory's Theorem, to a countably additive measure on the smallest σ-algebra containing all the clopen subsets of 2^{A}. We denote this σ-algebra by \mathcal{B}_{A}.

Now suppose $A=\kappa$ is an infinite cardinal number, and let M_{κ} denote the quotient of \mathcal{B}_{κ} by the ideal of sets having μ-measure 0 . Then M_{κ} is a σ-complete Boolean algebra, called the measure algebra of weight κ.

Given $X \subseteq 2^{\kappa}$ and $A \subseteq \kappa$, we say that X is supported on A if there is some $Y \subseteq 2^{A}$ such that $X=Y \times 2^{\kappa \backslash A}$. It is easy to check that if $X \neq \emptyset$ and X is supported on every A in some collection $\mathcal{A} \subseteq \mathcal{P}(\kappa)$, then X is supported on $\bigcap \mathcal{A}$. Therefore there is a smallest $A \subseteq \kappa$ on which X is supported, and we denote this set by $\operatorname{supp}(X)$.

Lemma 4.1. Every member of \mathcal{B}_{κ} is supported on a countable subset of κ. In fact, $X \in \mathcal{B}_{\kappa}$ if and only if $X=Y \times 2^{\kappa \backslash A}$ for some countable $A \subseteq \kappa$ and some Borel $Y \subseteq 2^{A}$.

Proof. Let \mathcal{B} denote the set of all X such that $X=Y \times 2^{\kappa \backslash A}$ for some countable $A \subseteq \kappa$ and some Borel $Y \subseteq 2^{A}$. It is clear that \mathcal{B} is a σ-algebra containing all the basic clopen subsets of 2^{κ}; hence $\mathcal{B}_{\kappa} \subseteq \mathcal{B}$. Conversely, if $A \subseteq \kappa$ is countable, then \mathcal{B}_{κ} contains $C \times 2^{\kappa \backslash A}$ for every clopen $C \subseteq 2^{A}$, because $C \times 2^{\kappa \backslash A}$ is clopen in 2^{κ}. It follows that \mathcal{B}_{κ} must contain $Y \times 2^{\kappa \backslash A}$ for every Borel $Y \subseteq 2^{A}$. Hence $\mathcal{B} \subseteq \mathcal{B}_{\kappa}$.

Let \mathbb{A} denote the amoeba forcing. Conditions in \mathbb{A} are open subsets of 2^{ω} with measure $<\frac{1}{2}$, and the extension relation on \mathbb{A} is \subseteq. Let \mathbb{A}^{ω} denote the finite support product of ω copies of \mathbb{A}.

Lemma 4.2. Let V be a model of ZFC and let G be an \mathbb{A}^{ω}-generic filter over V. In $V[G]$, there is a countable collection \mathcal{C} of non-null closed subsets of 2^{ω} such that if B is any non-null Borel subset of 2^{ω} whose Borel code is in V, then there is some $C \in \mathcal{C}$ such that $C \subseteq B$.

Proof. Each $p \in G$ is a sequence of open subsets of 2^{ω} in V, all but finitely many of which are \emptyset. For each $p \in G$ and $n \in \omega$, let $\widetilde{p}(n)$ denote the reinterpretation of $p(n)$ in $V[G]$; i.e., $\widetilde{p}(n)$ is the $V[G]$-interpretation of the Borel code of $p(n)$ in V. For each $n \in \omega$, define $U_{n}=\bigcup_{p \in G} \widetilde{p}(n)$, and let $\mathcal{C}=\left\{2^{\omega} \backslash\left(U_{n} \cup U_{m}\right): m, n \in \omega\right\}$.

It is straightforward to show that each U_{n} is an open set with measure $\frac{1}{2}$. Fix $m, n \in \omega$. The set of all $p \in \mathbb{A}^{\omega}$ with $p(m) \cap p(n) \neq \emptyset$ is dense. Therefore
$U_{m} \cap U_{n} \neq \emptyset$, and because both these sets are open, $\mu\left(U_{m} \cap U_{n}\right)>0$. Hence

$$
\begin{aligned}
\mu\left(2^{\omega} \backslash\left(U_{m} \cup U_{n}\right)\right) & =1-\mu\left(U_{m} \cup U_{n}\right) \\
& =1-\left(\mu\left(U_{m}\right)+\mu\left(U_{n}\right)-\mu\left(U_{m} \cap U_{n}\right)\right) \\
& =\mu\left(U_{m} \cap U_{n}\right)>0
\end{aligned}
$$

Thus \mathcal{C} is a countable collection of non-null closed subsets of 2^{ω}.
Let B be a non-null Borel set in V. Then $\mu\left(2^{\omega} \backslash B\right)<1$, and this implies there is an open $W \subseteq 2^{\omega}$ such that $\mu(W)<1$ and $2^{\omega} \backslash B \subseteq W$. Any open set of measure <1 can be split into two open sets of measure $<\frac{1}{2}$, so in particular there are open $V_{1}, V_{2} \subseteq 2^{\omega}$ such that $\mu\left(V_{1}\right)<\frac{1}{2}, \mu\left(V_{2}\right)<\frac{1}{2}$, and $V_{1} \cup V_{2}=W$. Now the set of all $p \in \mathbb{A}^{\omega}$ with $p(m)=V_{1}$ and $p_{n}=V_{2}$ for some $m, n \in \omega$ is dense. Therefore there exist some $m, n \in \omega$ and some $p \in G$ such that $p(m)=V_{1}$ and $p(n)=V_{2}$. Letting $\widetilde{B}, \widetilde{V}_{1}$, and \widetilde{V}_{2} denote the $V[G]$-interpretations of the Borel codes for B, V_{1}, and V_{2}, respectively, we have $2^{\omega} \backslash \widetilde{B} \subseteq \widetilde{V}_{1} \cup \widetilde{V}_{2} \subseteq \widetilde{p}(m) \cup \widetilde{p}(n)$. Hence $\widetilde{B} \supseteq 2^{\omega} \backslash\left(U_{n} \cup U_{m}\right) \in \mathcal{C}$.

Theorem 4.3. It is consistent, relative to a huge cardinal, that GCH holds and that ∇ fails for $M_{\aleph_{\omega}}$.

Proof. Let V be a model of GCH plus $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$. Recall that the existence of such a model is consistent relative to a huge cardinal.

Let \mathbb{A} denote the amoeba forcing, and let \mathbb{P} denote the length- ω_{1}, finite support iteration of \mathbb{A}^{ω}. Let G be a V-generic filter on \mathbb{P}. We claim that $V[G]$ is the desired model of GCH where $\nabla\left(M_{\aleph_{\omega}}\right)$ fails.

A standard argument shows $V[G] \vDash G C H$. Therefore, to prove the theorem we must show that $\nabla\left(M_{\aleph_{\omega}}\right)$ fails in $V[G]$. Because $M_{\aleph_{\omega}}$ has the ccc, this amounts to showing that for any dense sub-poset \mathbb{D} of $M_{\aleph_{\omega}} \backslash\{\mathbf{0}\}$, some member of $M_{\aleph_{\omega}} \backslash\{\mathbf{0}\}$ has uncountably many members of \mathbb{D} above it.

We observe that \mathbb{P} has the ccc, and it is known that $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$ is preserved by ccc forcing. (This fact is considered folklore, but a proof can be found in $\left[5\right.$, Lemma 13].) Hence $V[G] \vDash\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

It follows from Lemma 4.1 that every $X \in \mathcal{B}_{\omega_{\omega}}$ can be represented in a canonical fashion by a pair (A, a), where $A=\operatorname{supp}(X)$ is countable, and a is some canonical code for the Borel subset Y of 2^{A} such that $X=Y \times 2^{\omega_{\omega} \backslash A}$. Let us call the pair (A, a) the code for X.

For each $\alpha<\omega_{1}$, let G_{α} denote (as usual) the restriction of G to the first α coordinates of \mathbb{P}. For each $\alpha<\omega_{1}$, let $B_{\omega_{\omega}}^{\alpha}$ denote the set of all those members of $B_{\omega_{\omega}}$ whose code is in $V\left[G_{\alpha}\right]$. For every $X \in \mathcal{B}_{\omega_{\omega}}$, the code for X consists of a countable set of ordinals and a countable sequence of integers. This implies there is some $\alpha<\omega_{1}$ such that the code for X is a member of $V\left[G_{\alpha}\right]$. Hence $B_{\omega_{\omega}}=\bigcup_{\alpha<\omega_{1}} B_{\omega_{\omega}}^{\alpha}$.

Working in $V[G]$, let \mathbb{D} be a dense sub-poset of $M_{\aleph_{\omega}}$. In what follows, it is easier to work with members of $\mathcal{B}_{\omega_{\omega}}$ rather than with their equivalence classes in $M_{\aleph_{\omega}}$. For each $Z \in \mathbb{D}$, fix some $X_{Z} \in \mathcal{B}_{\omega_{\omega}}$ representing Z. Let
$\mathbb{E}=\left\{X_{Z}: Z \in \mathbb{D}\right\}$, and observe that $|\mathbb{E}|=|\mathbb{D}|$. Because every dense subposet of $M_{\aleph_{\omega}}$ has cardinality $>\aleph_{\omega}$ (see e.g. [7, Theorem 6.13]), $|\mathbb{E}|>\aleph_{\omega}$. Also $|\mathbb{E}| \leq 2^{\aleph_{\omega}}=\aleph_{\omega+1}$, and therefore $|\mathbb{E}|=\aleph_{\omega+1}$.

Because $B_{\omega_{\omega}}=\bigcup_{\alpha<\omega_{1}} B_{\omega_{\omega}}^{\alpha}$ and $|\mathbb{E}|=\aleph_{\omega+1}$, there is some $\alpha<\omega_{1}$ such that $\left|\mathbb{E} \cap B_{\omega_{\omega}}^{\alpha}\right|=\aleph_{\omega+1}$. Fix some such α, and let $\mathbb{E}_{\alpha}=\mathbb{E} \cap B_{\omega_{\omega}}^{\alpha}$.

Let (M, \in) be a model of (a sufficiently large fragment of) ZFC such that $\omega_{\omega} \subseteq M, \mathbb{E}_{\alpha} \in M$, and $|M|=\left|M \cap \mathbb{E}_{\alpha}\right|=\aleph_{\omega+1}$. (Such a model can be obtained in the usual way, via the downward Löwenheim-Skolem Theorem.) Let $\phi: M \rightarrow M \cap \mathbb{E}_{\alpha}$ be a bijection, and consider the model $\left(M, \in, \phi, \omega_{\omega}\right)$ for the 3 -symbol language consisting of a binary relation, a unary function, and a unary predicate. Applying the Chang conjecture $\left(\aleph_{\omega+1}, \aleph_{\omega}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$, there exists some $M^{\prime} \subseteq M$ such that $\left|M^{\prime}\right|=\aleph_{1}, M^{\prime} \cap \omega_{\omega}$ is countable, and $\left(M^{\prime}, \in, \phi, \omega_{\omega}\right) \prec\left(M, \in, \phi, \omega_{\omega}\right)$.

Let $\mathbb{E}_{\alpha}^{\prime}=\mathbb{E}_{\alpha} \cap M^{\prime}$. By elementarity, the restriction of ϕ to M^{\prime} is a bijection $M^{\prime} \rightarrow \mathbb{E}_{\alpha}^{\prime}$, and so $\left|\mathbb{E}_{\alpha}^{\prime}\right|=\aleph_{1}$.

Let $A=\omega_{\omega} \cap M^{\prime}$. If $X \in \mathbb{E}_{\alpha}^{\prime}$, then $\operatorname{supp}(X) \in M^{\prime}$, and therefore (because $\operatorname{supp}(X)$ is countable, and M^{\prime} models (enough of) ZFC$) \operatorname{supp}(X) \subseteq M^{\prime}$. Hence $X \in \mathbb{E}_{\alpha}^{\prime}$ implies $\operatorname{supp}(X) \subseteq A$.

By Lemma 4.2 , in $V[G]$ there is a countable collection \mathcal{C} of non-null closed subsets of 2^{A} such that if B is any non-null Borel subset of 2^{A} whose Borel code is in $V\left[G_{\alpha}\right]$, then there is some $C \in \mathcal{C}$ such that $C \subseteq B$. (Strictly speaking, our lemma gives us such a family in $V\left[G_{\alpha+1}\right]$. But by reinterpreting the Borel codes of the members of that family in $V[G]$, we obtained the desired collection \mathcal{C}.) In particular, every $X \in \mathbb{E}_{\alpha}^{\prime}$ contains $C \times 2^{\omega_{\omega} \backslash A}$ for some $C \in \mathcal{C}$. By the pigeonhole principle, there is some particular $C \in \mathcal{C}$ such that $X \supseteq C \times 2^{\omega_{\omega} \backslash A}$ for uncountably many $X \in \mathbb{E}_{\alpha}^{\prime}$.

Moving from representatives back to equivalence classes, $\left[C \times 2^{\omega_{\omega} \backslash A}\right] \neq[\emptyset]$ because C is non-null in 2^{A}, and $\left[C \times 2^{\omega_{\omega}} \backslash A\right] \leq[X]$ for uncountably many $X \in \mathbb{E}_{\alpha}^{\prime}$. Hence $\left[C \times 2^{\omega_{\omega} \backslash A}\right] \in M_{\aleph_{\omega}} \backslash\{\mathbf{0}\}$ and $\left[C \times 2^{\omega_{\omega} \backslash A}\right]$ extends uncountably many members of \mathbb{D}. Because \mathbb{D} was an arbitrary dense sub-poset of $M_{\aleph_{\omega}}$, and because $M_{\aleph_{\omega}}$ has the ccc, we conclude that $\nabla\left(M_{\aleph_{\omega}}\right)$ fails.

References

[1] W. Brian, A. Dow, D. Milovich, and L. Yengulalp, "Telgársky's conjecture may fail," to appear in Israel Journal of Mathematics; preprint available at https://arxiv.org/abs/1912.03327.
[2] J. Cummings and S. D. Friedman, " \square on the singular cardinals," Journal of Symbolic Logic 73 (2008), pp. 1307-1314.
[3] R. O. Davies, "Covering the plane with denumerably many curves," Journal of the London Mathematical Society 38 (1963), pp. 433-438.
[4] P. Erdős and A. Tarski, "On families of mutually exclusive sets," Annals of Mathematics (2) 44 (1943), pp. 315-329.
[5] M. Eskew and Y. Haiyut, "On the consistency of local and global versions of Chang's Conjecture," Transactions of the American Mathematical Society 370 (2018), pp. 2879-2905.
[6] M. Foreman and M. Magidor, "A very weak square principle," Journal of Symbolic Logic 62 (1997), pp. 175-196.
[7] D. H. Fremlin, "Measure algebras," in Handbook of Boolean Algebras, vol. 3, North Holland, Amsterdam (1989), pp. 877-980.
[8] J. P. Levinski, M. Magidor, and S. Shelah, "Chang's conjecture for \aleph_{ω}," Israel Journal of Mathematics 69 (1990), pp. 161-172.
[9] A. Sharon and M. Vialle, "Some consequences of reflection on the approachability ideal," Transactions of the American Mathematical Society 362, (2009), pp. 42014212.
[10] D. Soukup and L. Soukup, "Infinite combinatorics plain and simple," Journal of Symbolic Logic 83(3) (2018), pp. 1247-1281.

Will Brian, Department of Mathematics and Statistics, 9201 University City Blvd., Charlotte, NC 28223

Email address: wbrian.math@gmail.com
URL: wrbrian.wordpress.com
Alan Dow, Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223

Email address: adow@uncc.edu
Saharon Shelah, Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

Email address: shlhetal@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: 2010 Mathematics Subject Classification. 03E05, 03E35, 03E65, 28A60.
 Key words and phrases. Cohen forcing, Chang's conjecture, measure algebra, \square, ∇.
 Research partially supported by third author's NSF grant no 136974 and the Israel Science Foundation grant 1838/19.

