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2 S. SHELAH

§ 0. Introduction

We are interested here in the class Klf of locally finite groups; the subject natu-
rally use finite group theory and infinte combinatorics, see the book Kegel-Wehfritz
[KW73].

Wehrfritz asked about the categoricity of the class Kexlf of exlf (existentially
closed, locally finite, see 0.2) groups in any λ > ℵ0. This was answered by
Macintyre-Shelah [MS76] which proved that in every λ > ℵ0 there are 2λ non-
isomorphic members of Kexlf

λ . This was disappointing in some sense: in ℵ0 the
class is categorical, so the question was perhaps motivated by the hope that also
general structures in the class can be understood to some extent.

A natural and frequent question on a class of structures is the existence of rigid
members, i.e. ones with no non-trivial automorphism. Now any exlf group G ∈
Kexlf has non-trivial automorphisms - the inner automorphisms (recalling it has a
trivial center). So the natural question is about complete members where a group
is called complete iff it has no non-inner automorphism.

Concerning the existence of a complete, existentially closed locally finite group
of cardinality λ: Hickin [Hic78] proved one exists in ℵ1 (and more, e.g. he finds a
family of 2ℵ1 such groups pairwise far apart, i.e. no uncountable group is embed-
dable in two of them). Thomas [Tho86] assumed G.C.H. and built one in every
successor cardinal (and more, e.g. it has no Abelian or just solvable subgroup of
the same cardinality). Related are Macintyre [Mac76], Giorgetta-Shelah [GS84],
Shelah-Zigler [SZ79], which investigate the so called KG∗ . Recall that we assume
that G∗ is a countable existentially closed group and KG∗ is the class of groups
such that every finitely generated subgroup is embeddable into G∗.

On the existence and non-existence of universal members see Grossberg-Shelah
[GS83].

The paper [ST97] investigate the group of permutation of the natural numbers,
and ask: what can be the set of regular cardinals θ such that the group is θ-
indecomposable (called there θ ∈ CF(G)); the result is that essentially there are
some so called pcf restriction (on pcf see [She94]) and those essentially are all the
restrictions.

Lately has finally appeared [She17] which connect to stability theory, in particu-
lar though the class Kexlf is very unstable it has many definable complete quantifier
free type. One application was to use this to to build canonical extensions of a lo-
cally finite group which are existentially closed and of the same cardinality. Another
was to build so called complete extension in λ for G ∈ Kexlf

λ for many cardinals λ.
Here we deal more specifically with the density of so called θ-idecomposable

extensions of the same cardinality, simultaneously for almost all relevant regular
cardinals θ, essentially best possible. Observe that for a regular cardinal θ, a group
G of cardinality λ is trivially θ-indecomposable if θ > λ and is not so if θ = λ or
just θ is equal to the cofinality of λ. Those are almost the only restrictions. The
problematic case is θ 6= cf(µ) < µ, µ+ = λ and more, see 1.5, 1.7

We prove that essentially for every locally finite group G there is a locally finite
group H extending G of the same cardinality which is κ-indecomposable for every
regular κ 6= cf(|G|) and sometimes κ 6= cf(µ) when cf(µ) < µ, µ+ = λ).

In addition of being of self interest, this helps in [Shea], in proving that: for
µ strong limit singular of cofinality ℵ0, there is a universal locally finite group
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DENSITY OF INDECOMPOSABLE LOCALLY FINITE GROUPS SH1181 3

of cardinality µ iff there is a canonical such group. The results apply to many
other classes (in general for so-called abstract elementary classes) which has enough
indecomposable members.

The result here also help in [Sheb], in proving results of the form “any locally
finite group of cardinality λ > ℵ0 can be extended to a complete one of the same
cardinality (not just its successor as in earlier proofs)”.

The current work and [Shea] were original part of [Sheb] but were separated by
requests. In 2019, the existence of θ-indecomposable in λ (see 1.5) were considerably
improved after Corson-Shelah [CS20] deal with indecomposable groups (while we
are dealing with locally finite groups). The improvement was that earlier it was for
many rather than all cardinals;. The aim of [CS20] was to prove the existence of
strongly bounded groups

It is fitting that this work is dedicated to Laszlo: he has been the father of model
Abelian group theory and much more; his book [Fuc73] made me in 1973 start to
work in group theory (in particular, on Whitehead problem (in [She74], [She75] and
the old better versions of the general compactness theorem in [She19]).

We thank the referee for helping to make the paper more reader friendly and
Mark Poor for pointing out a problem.

The following started in Todorcevic [Tod87] and is used in the proof of 1.5.

Claim 0.1. 1) µ+ → [µ+]2λ+ except possibly when λ = µ+, µ singular limit of
(possibly weakly) inaccessibles.
2) If λ > ℵ0 is regular, then Pr1(λ+, λ+, λ+,ℵ0).
3) ℵ1 9 (ℵ1;ℵ1)2ℵ1 .

Proof. 1) By Todorcevic [Tod87] and [She88, 3.1,3.3(3)].
2) By [Shear, Ch.IV], see history and the definition of Pr1 there.
3) By Moore [Moo06]. �0.1

Definition 0.2. 1) Let Klf be the class of locally finite groups
2) Let Klf

λ be the class of G ∈ Klf which are of cardinality λ
3) For a group G and a set A of elements of G let sb(A,G) be the subgroup of G
generated by A
4) Kexlf , the class of locally finite existentially closed groups, is the class of locally
finite groups G, such that for every finite groups H1 ⊆ H2 and embedding f1 of H1

into G there is an embedding f2 of H2 into G extending f1.
5) Let Kexlf

λ be the class of G ∈ Kexlf of cardinality λ.

Convention 0.3. 1) k = (Kk,≤k) denote an a.e.c., see [She09]. with Kk being a
class of structures and ≤k a partial order on it (the reader can ignore this or use
≤k being a sub-structure)
2) A major case here is k being a universal class (see below).

where

Definition 0.4. 1) We say K is a universal class when :

(a) for some vocabulary τ,K is a class of τ -models;

(b) K is closed under isomorphisms;

(c) for a τ -model M,M ∈ K iff every finitely generated submodel of M belongs
to K.
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4 S. SHELAH

The following result from [She17] is quoted in this work but only superficially,
however in application this is important.

Theorem 0.5. Let S be as in [She17] and λ be any cardinal ≥ |S|.
1) For every G ∈ K lf

≤λ there is HG ∈ Kexlf
λ which is λ-full over G (hence over

any G′ ⊆ G; see Definition [She17, 1.15=La33]) and S-constructible over it (see
[She17, 1.19=La37]).
2) If H ∈ Klf

<λ is λ-full over G(∈ Klf
≤λ) then HG from above can be embedded into

H over G, see [She17, 1.23(4)=La41(4)].

Notation 0.6. 1) Let G,H,K denote groups, usually locally finite
2) Let δ denote a limit ordinal; k, `,m, n natural numbers; i, j, α, β, γ ordinals and
λ, µ, κ, θ cardinals
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§ 1. Indecomposability

Here we show the density of indecomposable locally finite groups, moreover for
any λ > ℵ0 and locally finite group G of cardinality λ there is an extension H of
the same cardinality which is θ-indecomposable for almost all regular cardinals θ,
noting that for θ > λ this trivially holds and for θ = cf(λ) it trivially fail. The
only additional exclusion is that for λ a successor a of singular, we may exclude the
singular’s cofinality. This is proved in 1.5(3)(b); before this in 1.4 we show how to
use a colouring c : [λ]2 → λ to build a group extension. Lastly in 1.7 we justify the
excluded cardinal.

Definition 1.1. 1) We say M is θ-decomposable or θ ∈ CF(M) when : θ is regular
and if 〈Mi : i < θ〉 is ⊆-increasing with union M , then M = Mi for some i.
2) We say M is Θ-indecomposable when it is θ-indecomposable for every θ ∈ Θ.
3) We say M is ( 6= θ)-indecomposable when : θ is regular and if σ = cf(σ) 6= θ then
M is σ-indecomposable.
4) We say c : [λ]2 → S is θ-indecomposable when : if 〈ui : i < θ〉 is ⊆-increasing
with union λ then S = {c{α, β} : α 6= β ∈ ui} for some i < θ; similarly for the
other variants.
5) If we replace ⊆ by ≤k where k is an a.e.c., then we write “θ− k-indecomposable”
or θ ∈ CFk(M) .

Note that group G may be indecomposable as a group or as a semi-group; the
default choice is semi-group; but note that for locally finite groups the two are the
same.

Definition 1.2. We say G is θ-indecomposable inside G+ when the following hold:

(a) θ = cf(θ);

(b) G ⊆ G+;

(c) if 〈Gi : i ≤ θ〉 is ⊆-increasing continuous and G ⊆ Gθ = G+ then for some
i < θ we have G ⊆ Gi.

The point of the definition of indecomposable is the following observation, 1.3.
Using cases of indecomposability, see 1.5, help elsewhere to prove density of

complete members of Klf
λ and improve characterization of the existence of universal

members in e.g. cardinality iω.
Below recall that δ is here a limit ordinal.

Observation 1.3. 1) Assume 〈Mi : i < δ〉 is ≤k-increasing with union M , each
Mi+1 is θ− k-indecomposable or just each M2i+1 is θ− k-indecomposable in M2i+2.
If cf(δ) 6= θ, then M is θ − k-indecomposable.
2) If for ` = 1, 2 the sequence 〈M `

i : i < θ〉 is ≤k-increasing and
⋃
i

M1
i = M =

⋃
i

M2
i

and each M1
i is θ−k-indecomposable or just M1

2i+1 is θ-indecomposable inside M1
2i+2

for i < θ, then
∧
i<θ

∨
j<θ

M1
i ≤k M

2
j .

3) If for ` = 1, 2 the sequence 〈M `
i : i ≤ δ〉 is ≤k-increasing continuous and each

M `
i+1 is θ− k-indecomposable or just M `

2i+1 is θ-indecomposable in M `
2i+2 for i < δ

and M1
δ = M2

δ and θ = cf(δ) > ℵ0, then {i < δ : M1
i = M2

i } is a club of δ.
4) If M is a Jonsson algebra of cardinality λ, then M is ( 6= cf(λ))-indecomposable.
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6 S. SHELAH

5) Assume J is a directed partial order, 〈Ms : s ∈ J〉 is ⊆-increasing and J∗ := {s ∈
J : Ms is θ−k-indecomposable} is cofinal in J . Then

⋃
s∈J

Ms is θ−k-indecomposable

provided that:

(∗) if
⋃
i<θ

Ji ⊆ J is cofinal in J and 〈Ji : i < θ〉 is ⊆-increasing, then for some

i, Ji is cofinal in J or at least
⋃
s∈Ji

Ms =
⋃
s∈J

Ms.

6) Assume G is a model (e.g. a group), α∗ < θ = cf(θ), Gα ⊆ G ⊆ H for α < α∗
and ∪{Gα : α < α∗} generate G. If each Gα is θ-indecomposable inside H then G
is θ-indecomposable inside H.
7) G is θ-indecomposable iff G is θ-indecomposable inside G.
8) If G1 ⊆ G2 ⊆ H2 ⊆ H1 and G2 is θ-indecomposable inside H2 then G1 is
θ-indecomposable inside H1.

Proof. Should be clear but we elaborate, e.g.:
5) Toward contradiction let 〈Ni : i < θ〉 be ⊆-increasing with union

⋃
s∈J

Ms. For

each s ∈ J∗ there is i(s) < θ such that Ni(s) ⊇ Ms. Let Jj = {i(s) : s ∈ J∗ and
i(s) ≤ j} for i < θ. Clearly 〈Ji : i < θ〉 is as required in the assumption of (∗),
hence for some i < θ we have

⋃
s∈J

Ms =
⋃
s∈Ji

Ms, so necessarily Ni ⊇
⋃
s∈J

Ms}, and

thus equality holds. �1.3

We turn to Klf .

Proposition 1.4. 1) Assume I is a linear order and c : [I]2 → U is θ-indecomposable
(hence onto U , see Definition 1.1(4)) G1 ∈ Klf and ai ∈ G1(i ∈ U ) are1 pairwise
commuting and each of order 2 (or 1).

Then there are G1, b̄ such that:

(a) G2 ∈ Klf extends G1;

(b) G2 is generated by G1 ∪ b̄ where b̄ = 〈bs : s ∈ I〉;
(c) bs has order 2 for s ∈ I;

(d) if s1 6= s2 are from I then ac{s1,s2} ∈ sb({bs1 , bs2}) and moreover ac{s1,s2} =
[bs1 , bs2 ]

(e) G1 ⊆ G2, moreover G1 ⊆S G2, for S = Ω[Klf ] (used only in [Sheb], we
can use much smaller S, see [She17, Def. 0.9=La14, 1.4=La18, Claim
1.16=La34]; )

(f) sb({ai : i ∈ U }, G1) (the subgroup of G1 generated by {ai : i ∈ U }) is
θ-indecomposable inside G2; see Definition 1.2. ,

2) Assume G1 ∈ Klf and I a linear order which is the disjoint union of 〈Iα : α <
α∗〉, uα ⊆ Ord and cα : [Iα]2 → uα is θα-indecomposable for α < α∗, 〈uα : α < α∗〉
is a sequence of pairwise disjoint sets with union U and 0 /∈ U and aε ∈ G1 for
ε ∈ U and aε, aζ commute for ε, ζ ∈ uα, α < α∗ and each aε has order 2 (or 1),
and we let a0 = e.

Let c : [I]2 → U ∪ {0} extend each cα and be zero otherwise.
Then there are G2, b̄, d̄ such that:

1The demand “the ai’s commute in G1” is used in the proof of (∗)8, and the demand “aβi has

order 2 (or 1)” is used in the proof of (∗)7.
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DENSITY OF INDECOMPOSABLE LOCALLY FINITE GROUPS SH1181 7

(a)-(c) as above

(d)’ if ε 6= ζ ∈ uα then ac{,ε,ζ} = dαa
′
c{ε,ζ}d

−1
α = dα[bε, bζ ]d

−1
α

(e) as above

(f)’ if α < α∗ then sb({aε : ε ∈ uα}, G2) is θα-indecomposable inside G2.
(g) d̄ = 〈dα : α < α∗〉 is a sequence if pairwise commuting and distinct elements

of order 2
(h) if ε ∈ uα, ζ ∈ uβ , and α 6= β the bε, bζ commute

3) In parts (1), (2)

(a) The cardinality of G2 is |G1|+ |I| (or both are finite)
(b) If we omit the assumption “c is θ-indecomposable” then still clauses (a)-(e)

of part (1) holds.
(c) Moreover, in part (1), if σ is a regular cardinal and c is σ-indecomposable

then sb({ai : i ∈ U }, G1) is σ-indecomposable in G2.
(d) Moreover, in part (2), if α < α∗ and cα is a σ-indecomposable function,

then sb({as : s ∈ Iα}, G1) is σ-indecomposable in G2 .

Proof. 1) Let

(∗)1 X = {(u, a) : u ⊆ I is finite and a ∈ G1}.

We shall choose below members hc,, hs ∈ Sym(X ) for c ∈ G1, s ∈ I.
First,

(∗)2 for c ∈ G1 we choose hc ∈ Sym(X ) as follows: for u ∈ [I]<ℵ0 and a ∈ G1

let hc(u, a) be
• (u, ac−1)

Now clearly,

(∗)3 (a) indeed hc ∈ Sym(X ) for c ∈ G1

(b) the mapping c 7→ hc is an embedding of G1 into Sym(X ).
(c) so without loss of generality this embedding is the identity

Next

(∗)4 for t ∈ I we define ht : X → X by defining ht(u, a) by induction on |u|
for (u, a) ∈X as follows:

(a) if u = ∅ then ht(u, a) = ({t}, a)

(b) if u = {s} then ht(u, a) is defined as follows:
(α) if t <I s then ht(u, a) = ({t, s}, a)

(β) if t = s then ht(u, a) = (∅, a)

(γ) if s <I t then ht(u, a) = ({s, t}, d) where :
• we have d = aac{s,t})

(c) if s1 < . . . < sn list u ∈ [I]n and k ∈ {0, . . . , n} and s ∈ (sk, sk+1)I
where we stipulate s0 = −∞, sn+1 = +∞ then
ht(u, a) is equal to:
•1 (u ∪ {t}, aac{s1,t} . . . ac{sk,t})
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8 S. SHELAH

(d) if s1 < . . . < sn list u ∈ [I]n and k ∈ {0, . . . , n− 1} and t = sk+1 then
ht(u, a) is equal to2

• (u\{t}, aa−1c{sk,t}, . . . , a
−1
c{s2,t}ac−1{s1,t})

Note that

(∗)5 (a) (∗)4(b)(α) is the same as (∗)4(c) for n = 1, k = 0
(b) (∗)4(b)(β) is the same as (∗)4(d) for n = 1, k = 0
(c) (∗)4(b)(γ) is the same as (∗)4(c) for n = 1, k = 1
(d) (∗)4(a) is the same as (∗)4(c) for n = 0, k = 0.

(∗)6 (a) indeed ha, hs are permutations of X
(b) let G2 be the subgroup of Sym(X ) generated by Y = {ha, hs : a ∈

G1, s ∈ I}
(c) the group G2 is locally finite

[Why? Clause (a), just check and clause (b) is a definition. For clause (c), let
Z be a finite subset of Y , without loss of generality for some finite subgroup H of
G1 and finite subset J of I the set Z is included in the set {ha, hs : a ∈ H, s ∈ J}.
Without loss of generality {c{s, t} : s 6= t ∈ J} ⊆ H. It suffice to prove that
for every pair (u, a) ∈ X the closure of {(u, a)} under {hd, hs : d ∈ H, s ∈ J} is
not just finite but has at most 2|J| × |H| elements. Now this closure is obviously
included in the set {((u \ v)∪w, c) : v = J ∩ u,w ⊆ J \ u, c ∈ (aH)} which satisfies
the inequality.]

Now clearly:

(∗)7 if t ∈ I then ht ∈ Sym(X ) has order 2

[It is enough to prove ht(ht(u, a)) = (u, a). We divide to cases according to “by
which clause of (∗)4 is ht(u, a) defined”.

If the definition is by (∗)4(a) then ht(∅, a) = ({t}, a) and by (∗)4(b)(β)

htht(∅, a) = ht({t}, a) = (∅, a).

If the definition is by (∗)4(b)(β), the proof is similar.

If the definition is by (∗)4(b)(γ) then recalling (∗)4(d)

ht(ht(u, a)) = ht(ht({s}, a)) = ht({s, t}, aac{s,t}) = ({s}, aac{s,t}a−1c{s,t}). = (u, a)

If the definition is by (∗)(b)(α), the proof is similar.
If the definition is by (∗)4(c), then recall (∗)4(d) and compute similarly to the two
previous cases, recalling 〈ac{s,t} : s ∈ I〉 are pairwise commuting of order 2 (or 1).

If the definition is by (∗)4(d) - this is just like the last case.
So (∗)7 holds indeed]

(∗)8 if s 6= t ∈ I then [hs, ht] = hai in G2 where i = c{s, t}

2The a−1
s and inverting the order are more natural but immaterial as long as we are assuming

the “of order 2” and “pairwise commuting, but those are now used in fewer points.
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[Why? We have to check by cases; here we use “the ai’s are pairwise commuting
in G1 for i ∈ U ” Without loss of generality s <I t, we shall now checked four
representative cases (the point is that for (u, c), the members of u\{s, t} have little
influence).

First

(∗)8.1 how is (∅, c) mapped?
(a) h−1s h−1t hsht(∅, c) = by (∗)4(a)
(b) h−1s h−1t hs({t}, c) = by (∗)4(b)(α)
(c) h−1s h−1t ({s, t}, c) = by (∗)4(b)(γ)
(d) h−1s ({s}, ca−1c{s,t}) = by (∗)4(a)

(e) (∅, ca−1c{s,t}) = by (∗)2
(f) hc{s,t}(∅, c)

Second

(∗)8.2 how is ({s}, c) mapped?
(a) h−1s h−1t hsht({s}, c) = by (∗)4(b)(γ)
(b) h−1s h−1t hs({s, t}, cac{s,t}) = by (∗)4(d) with (s1, s2) = (s, t), k = 0

(c) h−1s h−1t ({t}, cac{s,t}) = by (∗)4(b)(β)

(d) h−1s (∅, cac{s,t}) = by (∗)4(a)
(e) ({s}, cac{s,t}) = by “every ai has order 2”

(f) ({s}, ca−1c{s,t}) = by (∗)2
(g) hc{s,t}({s}, c)

Third

(∗)8.3 how is ({t}, c) mapped?
(a) h−1s h−1t hsht({t}, c) = by (∗)4(b)(β)
(b) h−1s h−1t hs(∅, c) = by (∗)4(a)
(c) h−1s h−1t ({s}, c) = by (∗)4(d) with (s1, s2) = (s, t), k = 1
(d) h−1s ({s, t}, ca−1c{s,t}) = by (∗)4(d) with (s1, s2) = (s, t), k = 0

(e) ({t}, ca−1c{s,t}) = by (∗)2
(f) hc{s,t}({t}, c)

Fourth and lastly

(∗)8.4 how is ({s, t}, c) mapped?
(a) h−1s h−1t hsht({s, t}, c) = by (∗)4(d) with (s1.s2) = (s, t), k = 1
(b) h−1s h−1t hs({s}, ca−1c{s,t}) = by (∗)4(b)(β)

(c) h−1s h−1t (∅, ca−1c{s,t}) = by (∗)4(b)(β)

(d) h−1s ({t}, ca−1c{s,t}) = by (∗)4(c) with (s1, s2) = (s, t), k = 0

(e) ({s, t}, ca−1c{s,t}) = by (∗)2
(f) hc{s,t}({s, t}, c)

]

(∗)9 sb({ai : i ∈ S}, G1) is θ-indecomposable inside G2.

[Why? Because the function c is θ-indecomposable by an assumption of the propo-
sition and (∗)8.]

Together we are done proving part (1).
2) First
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10 S. SHELAH

(∗)11 we can find a pair (G2, d̄) such that (this G2 is not the final one):
(a) G2 ∈ Klf

λ

(b) d̄ = 〈dα : α < α∗〉
(c) d̄ is a sequence of members of G2, pairwise commuting each of order

2, and letting du be the product 〈dα : α ∈ u〉 for finite u ⊆ α∗ we have
du = e iff u = ∅

(d) the group G2 extend G1 and is generated by G1 ∪ 〈dα : α < α∗〉
(e) the sequence 〈d−1u G1du : u ∈ [α∗]

<ℵ0〉 is a sequence of pairwise com-
muting subgroups, with the intersection of any two being {e}

(f) (follows) G1 ≤S G2 , (see clause (e) of 1.4(1)))

[Why? Let X = [α∗]
<ℵ0 ×G1. For c ∈ G1 we define the permutation hc of X

by: hc(u, s) = (u, ac−1) if u = ∅ and hc(u, a) = (u, a) otherwise. Next for α < α∗
we define hα, a permutation of X by: hα((u, a)) = (u∆{α}, a) where ∆ is the
symmetric difference.

Easy to check.]
Now let a′i = d−1α aidα for i ∈ uα; so clearly they are pairwise commuting, each

of order 2 (or 1). So we can apply part (1) with G2, 〈a′i : i ∈ U 〉, c : [I]2 → U ∪{0}
here standing for G1, 〈ai : i ∈ U 〉, c : [I]2 → U there. We get G3, 〈b2s : s ∈ I〉.

Let b̄ = b̄2 and we shall show that the triple (G2, b̄, d̄) is as require, this suffice.
Clauses (a)-(c), (e) are obvious. As for clause (f), fix α < α∗, and let 〈G2,i : i < θ〉

be an increasing sequence of subgroups ofG2 with union G2. Recalling cα = c�[Iα]2,
as in the proof of part (1) for some i < θα the set {a′s : s ∈ Iα} is included
in G2,i. Without loss of generality dα ∈ G2,i hence for every s ∈ Iα we have
aα = dαa

′
sd
−1
α ∈ G2,i so we are done.

For clasue (h) consider ε ∈ Iα, ζ ∈ Iβ , α < β, so c{ε, ζ} = 0 hence a′{ε,ζ} = a′0 =

d−10 a0d0 = d−10 ed0 = e hence by clause (d) of the first partwe have [bε, bσ] = e
which means that they are commuting.

For clause (d)’, let ε 6= ζ ∈ uα so a′α = d−1α aαdα and [bε, bζ ] = a′α. Together
clause (d)’ holds

Lastly clause (g) holds by (∗)11.
3) By the proofs of parts (1) and (2). �1.4

Our main result is 1.5, in particular part (3).

Theorem 1.5. 1) If G1 ∈ Klf
≤λ then for some G2 ∈ Klf

λ extending G1 and a`α ∈ G2

for ` ∈ {0, 1, 2}, α < λ we have:

⊕ (a) sb({a`α : ` ∈ {0, 1, 2}, α < λ}, G2) includes G1

(b) if ` ∈ {0, 1, 2} then 〈a`α : α < λ〉 is a sequence of pairwise distinct
commuting elements of order 2 of G2

(c) G2 is generated by {a`α : α < λ, ` ∈ {0, 1, 2}}.
(d) G1 ≤S G2, like clause (e) of 1.4(1)

2) If λ ≥ µ and c : [λ]2 → µ is θ-indecomposable and G1 ∈ Klf
≤µ then there is

G2 ∈ Klf
λ extending G1 such that G1 is θ-indecomposable inside G2 and G1 ≤S G2,

like clause (e) of 1.4(1).
3) If λ ≥ ℵ1 and we let Θ = Θλ = {cf(λ)} except that Θ = Θλ = {cf(λ), ∂} when
(c)λ,∂ below holds, then (a),(b) holds

(a) some c : [λ]2 → λ is θ-indecomposable for every θ = cf(θ) /∈ Θ
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(b) for every G1 ∈ Klf
≤λ there is an extension G2 ∈ Kexlf

λ which is θ-indecomposable

for every regular θ /∈ Θ ( and G1 ≤S G2, see clause (e) of 1.4(1))

(c)λ,∂ for some µ, λ = µ+, µ > ∂ = cf(µ) and µ = sup{θ < µ : θ is a regular
Jonsson cardinal}.

Remark 1.6. 1) 1) Note that given λ ≥ ℵ1 the demand (c)λ.∂ determine ∂ and
implies λ > ℵω
2) We intend to sharpen (c)λ,∂ in [Sheb]

Proof. 1) Without loss of generality the group G1 is generated by its set of elements
of order 2 (see [KW73] or [She17], but for clause (d) of 1.4(1) only the later). Let
ā = 〈ai : i < λ〉 list the elements of G1 of order 2, possibly with repetitions.

Let α∗ = λ, I = λ× {1, 2} lexicographically ordered, Iα = {α} × {1, 2}, a′1+α =
aα, uα = {1 + α},U = {1 + α : α < α∗}, cα{(α, 1), (α, 2)} = 1 + α and apply
1.4(2) getting G2 and 〈bs : s ∈ I〉 and 〈dα : α < λ〉. Letting a`α = b(α,`) for

α < λ, ` ∈ {1, 2} and a0α = dα we are done.
In particular:
Clause (a) of ⊕

It holds by clause (d)’ of 1.4(2)
Clause (b) of ⊕

We split the proof by cases. First if ` = 1, 2 then 〈a`α : α < λ〉 = 〈b(α,` : α < λ〉 is
a sequence of pairwise commuting elements of order 2 (or 1) by clause (h) of 1.4(2).

Second, if ` = 0 then 〈a`α : α < λ〉 = 〈dα : α < λ〉 is a sequence of pairwise
commuting elements of order 2 (or 1) by clause (g) of 1.4(2)

Clause (c) of ⊕
By our choices.
Clause (d) of ⊕

By 1.4(2((e).
2) Let G′0 = G1, by part (1) with µ here for λ there is G′1 ∈ Klf

µ ≤S-extending G′1
with 〈a`α : ` ∈ {0, 1, 2}, i < µ〉 as there. Next choose G′2 ∈ Klf

λ ≤S-extending G′1.
Now the pair (G′2, 〈a1i : i < µ〉) satisfies the assumptions in 1.4(1) hence there is

G′3 ∈ Klf
λ ≤S-extendingG′2 such thatH1 = sb({a1i : i < µ}), G′2) is θ-indecomposable

in G′3. Similarly there is G′4 ∈ Klf
λ ≤S-extending G′3 such that H2 = sb({a2i :

i < µ}), G′2) is θ-indecomposable inside G′4 and H0 = sb({a0i : i < µ}), G′2) is
θ-indecomposable inside G′4. Now H = sb(H0 ∪ H1 ∪ H2, G

′
2) include G′1 and

recalling the previous sentences, by 1.3(6), it is θ-indecomposable inside G′4 but
G1 = G′1 ⊆ H hence by 1.3(8) also G1 is θ-indecomposable inside G′4, so letting
G2 = G′4 we are done.
3) For proving it:

(∗)1 it suffices to prove clause (a).

Why? So we are given G1 ∈ Klf
≤λ. Let Θ′ = {θ ≤ λ : θ = cf(θ)}\Θ and σ = cf(λ) so

it is a regular cardinal ≤ λ. Let ∂ = |Θ′| so it is a cardinal ≤ λ and let 〈θε : ε < ∂〉
list Θ′. We choose G2,i by induction on i ≤ ∂σ (∂σ is ordinal product) such that:

(∗)1.1 (a) G2,i ∈ Kexlf
λ

(b) 〈G2,j : j ≤ i〉 is increasing continuous

(c) G2,0 extends G1
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(d) if i = δj + ε, ε < ∂ then G2,i is θε-indecomposable inside G2,i+1

(d) Gi ≤S Gi+1 see clause (e) of 1.4(1))

We can carry the induction, e.g. for i = ∂j + ε + 1 by 1.5(2), well for having
Gi ∈ Kexlf

λ we use 0.5, (recalling 1.3(8). By 1.3, G2 := G2,∂σ is as required.
We shall now prove clause (a) by induction on λ.

Case 1: λ = ∂+, ∂ regular
Recall 0.1(1).

Case 2: λ a limit cardinal and λ > θ
Let 〈λi : i < cf(λ)〉 be an increasing sequence of regular cardinals with limit λ,

now let:

(∗)2 (a) ci+1 : [λ++
i ]2 → λ++

i

(b) 〈cj : j ≤ i〉 is ⊆-increasing

(c) ci is θ-indecomposable, for every regular θ 6= λ++
i .

Arriving to i use Case 1 knowing that ci�[
⋃
j<i

λ++
j ]2 does not matter.

Now c = ∪{ci : i < cf(λ)} is as required by 1.3(8), and 1.3(5).

Case 3: λ = µ+, µ > κ = cf(µ) 6= θ and µ > θ
Let 〈λi : i < κ〉 be an increasing sequence of cardinals > θ with limit µ, each a

successor of regular.
Let ci : [λi]

2 → λi witness λi 9 [λi]
2
λi

.
Let λ<i = ∪{λj : j < i}.
For ε < λ let fε be a one-to-one function from µ(1 + ε) onto µ. Now define

c : [λ]2 → λ such that:

(∗)3 (a) if α 6= β belongs to the interval [µ(1 + ε) + λ<i, µ(1 + ε) + λi) then
c{α, β} = f−1ε

(
ci{α− µ(1 + ε), β − µ(i+ ε)}

)
.

(b) if not then c{α, β} = 0.

Then

(∗)4 it suffices to prove c witness the desired conclusion.

So let θ be a regular cardinal not from Θ , without loss of generality θ < λ; hence
θ < µ so for some i(∗) < κ we have θ < λi(∗).

(∗)5 let h : λ → θ and we should prove that for some ε < θ, {c{α, β} :
h(α), h(β) < ε} is equal to λ.

Now for each γ < λ and i < κ, we define a function hγ,i : λi → θ by:

(∗)6 hγ,i(α) = h((1 + γ)µ+ α) for α < λi.

By the choice of ci:

(∗)7 for γ < λ, i < κ there is εγ,i < θ such that the set {ci({α, β} : α, β < λ and
hγ,i(α), hγ,i(β) < εγ,i} is equal to λi.

[Why εγ,i exists? By the choice of ci.]

(∗)8 for each γ < λ there is εγ < θ such that κ = sup{i < κ : εγ,i ≤ εγ}.
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[Why? Because κ, θ are regular cardinals and κ 6= θ.]

(∗)9 there is ε < θ such that λ = sup{γ < λ : εγ ≤ ε}.

[Why ε exists? Because λ is a regular cardinal > θ.]
Now by the choices of the fγ ’s and of c we can finish.

Case 4: λ = µ+, µ > κ = cf(µ) = θ but µ not a limit of Jonsson cardinals.
Let S = {δ < λ : cf(δ) = θ, δ divisible by µ for transparency} and let C̄ be such

that:

�1 (a) C̄ = 〈Cδ : δ ∈ S〉
(b) (α) Cδ is a club of δ

(β) Cδ is of order type κ if κ > ℵ0 and µ if κ = ℵ0
(γ) 0 ∈ Cδ
(δ) each α ∈ Cδ\{0} is a limit ordinal

(c) if E is a club λ then for some δ ∈ S ∩ E we have:

• for every σ < µ we have µ = sup{α ∈ nacc(Cδ) : cf(α) > σ and
α ∈ C; moreover, α = sup(E ∩ α)}

[Why such C̄ exists? See [She94, Ch.III,§1].

�2 choose

(a) ē = 〈eα : α < λ〉, eα a club of α of order type cf(α)

(b) c∂ : [∂]<ℵ0 → ∂ witness ∂ 9 [∂]<ℵ0∂ for ∂ a regular non-Jonsson
cardinal from (∂∗, µ) for some ∂∗ ∈ [θ, µ]

(c) f̄ = 〈fα : α ∈ [µ, λ)〉, fα is a function from µ onto α.

Now a major point is the choice of c : [λ]2 → λ:

�3 we choose c : [λ]2 → λ such that if (A) then (B) where:

(A) (a) δ2 ∈ S and δ1 ∈ S ∩ δ2
(b) β = min{β : δ1 < β ∈ Cδ2} so necessarily β ∈ nacc(C2); recall-

ing nacc(C) = {α ∈ C : α > sup(C ∩ α)}
(c) cf(β) > ∂∗

(d) u = {γ ∈ eβ : for some α ∈ Cδ1 , γ = suceβ (α)}; recalling
suce(α) = min{β ∈ e : β > α}

(e) otp(u) is ζ + n, ζ is zero or a limit ordinal

(f) γ0 < . . . < γn−1 list the last n members of u

(g) ∂ = cf(β)

(B) c({δ1, δ2}) = fδ2(c∂({otp(eβ ∩ γ`) : ` < n})).

Now

�4 there is indeed c as in �3.

[Why? The point is proving that for any δ1 < δ2 from S, at most one case of (A)
of �3 holds, i.e. there is at most one sequence pair(β, 〈γ` : ` < n〉) as there. But
this is obvious from the way �3(A) is stated.]

So it suffices to prove:
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14 S. SHELAH

�5 c is θ-indecomposable, moreover it witnesses λ9 [λ]2λ
�6 let h : λ → θ and it suffices to prove (∃ζ < θ)[λ = {c{α, β} : α 6= β < λ

and h(α), h(β) < ζ}].

Let

�6.1 (a) let χ = [2λ]+ :<∗χ a well ordering of H (χ)

(b) M̄ = 〈Mα : α < λ〉 is ≺-increasing continuous

(c) Mα ≺ (H (χ),∈, <∗χ) and Mα has cardinality ≤ µ for α < λ

(d) c, ē, C̄ and h belong to M0 hence to Mα for α < λ

(e) M̄�(α+ 1) ∈Mα+1.

Next

�6.2 (a) let E1 = {α < λ : Mα ∩ λ = α}
(b) let E2 = {δ ∈ E2 : otp(E1 ∩ δ) = δ}.

Now

�7 there is δ2 such that:

(a) δ2 ∈ E2 ∩ S
(b) for every σ < µ we have:

δ2 = sup(Aσ) where Aσ = {α ∈ nacc(Cδ2) : α ∈ E2 and cf(α) > σ}.

The rest is as in [She03]. �1.5

Can we eliminate the exceptional θ in 1.5(3)(b)? By the following claim we
cannot, at least as long as the following famous open problem is unresolved (it is
whether every successor of singular cardinality a Jonsson algebra.

Claim 1.7. 1) If λ = µ+, µ singular and λ is a Jonsson cardinal, then every
G ∈ Klf

λ is cf(µ)-decomposable.
2) Moreover this holds for every model M with universe λ and vocabulary of cardi-
nality < µ.

Proof. Easy and it will not be used; in short let M be a model with countable
vocabulary and universe λ coding enough set theory. By the assumption on λ there
is a proper elementary submodel N of M of cardinality λ. For α < µ let Nαbe the
Skolem hull of N ∪ α inside M . We know that each Nα is not equal to M , is non
decreasing with α and the union of 〈Nα : α < µ〉 is equal to M . �1.7
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[She88] , Was Sierpiński right? I, Israel J. Math. 62 (1988), no. 3, 355–380. MR 955139

[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford
University Press, New York, 1994. MR 1318912

[She03] , More Jonsson algebras, Arch. Math. Logic 42 (2003), no. 1, 1–44, arXiv:

math/9809199. MR 1953112
[She09] , Classification theory for elementary abstract classes, Studies in Logic (London),

vol. 18, College Publications, London, 2009, [Title on cover: Classification theory for

abstract elementary classes], Mathematical Logic and Foundations arXiv: 0705.4137 Ch.
I of [Sh:h]. MR 2643267

[She17] , Existentially closed locally finite groups (Sh312), Beyond first order model the-

ory, CRC Press, Boca Raton, FL, 2017, arXiv: 1102.5578, pp. 221–298. MR 3729328
[She19] , Compactness in singular cardinals revisited, Sarajevo J. Math. 15(28) (2019),

no. 2, 201–208, arXiv: 1401.3175. MR 4069744
[Shear] , Non-structure theory, Oxford University Press, to appear.

[ST97] Saharon Shelah and Simon Thomas, The cofinality spectrum of the infinite symmetric

group, J. Symbolic Logic 62 (1997), no. 3, 902–916, arXiv: math/9412230. MR 1472129
[SZ79] Saharon Shelah and Martin Ziegler, Algebraically closed groups of large cardinality, J.

Symbolic Logic 44 (1979), no. 4, 522–532. MR 550381

[Tho86] Simon Thomas, Complete universal loclly finite groups of large cardinality, 277–301.
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