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Our aim was to try to generalize some theorems about the saturation of ultrapowers to reduced powers. Naturally,
we deal with saturation for types consisting of atomic formulas. We succeed to generalize “the theory of dense
linear order (or 7' with the strict order property) is maximal and so is any pair (7', A) which is SOP5”, (where
A consists of atomic or conjunction of atomic formulas). However, the theorem on “it is enough to deal with
symmetric pre-cuts” (so the p = t theorem) cannot be generalized in this case. Similarly the uniqueness of the
dual cofinality fails in this context.
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1 Introduction
1.1 Background, questions and answers

We know much on saturation of ultrapowers, see Keisler [3], [22, Ch. IV, ] and later mainly works of Malliaris and
the author, e.g., [9], [10]. But we know considerably less on reduced powers. For transparency, let T denote a first
order complete countable theory with elimination of quantifiers and M will denote a model of T'. For D a regular
filter on A > 8y we may ask: when is M* /D A*-saturated? For D an ultrafilter, Keisler [2] proves that this holds
for every T iff D is A T-good iff this holds for T = theory of Boolean algebras, such T is called <|; -maximal.

By [21, Ch. VI, 2.6] the maximality holds for T = theory of dense linear orders or just any 7 with the strict
order property and by [24], any T with the 3-strong order property, SOP3 is <J; -maximal.

What about reduced powers for A-regular filter D on A? By [19], M* /D is A*-saturated for every T (of cardinal-
ity < 1) iff D is A*-good and Z(A)/D is a At -saturated Boolean algebra. Parallel results hold when we replace
AT -saturated by (AT, 14, (L;(r)))-saturated. We shall concentrate on (A%,atomic)-saturated and introduce the
related partial order <)’, see definitions below.

Concerning ultrapowers, lately Malliaris and Shelah [9] proved that a regular ultrafilter D on a cardinal A is
At-good iff for any linear order M we have M”* /D has no symmetric pre-cut with cofinality < A. This was proved
together with the theorem p = t and “for a f.o. complete countable T, being SOP, suffices for <, -maximality”.
In a later work [11], it is proved that at least for a relative < (cf. [24]) this is “iff” assuming a case of G.C.H.,
relying also on works with Dzamonja [1], and with Usvyatsov [25]. Part of the proof is axiomatized by Malliaris
and Shelah [8].

Note also that [17] deals with saturation but only for ultrapowers by ¥ -complete ultrafilters for ¢ a compact
cardinal; and also with w-ultra-limits.

Now what do we accomplish here?

First, in § 2 we axiomatize the proof of [21, Ch. VI, 2.6], i.e., we define when r = (M, A) is a so called RSP
and for it prove that the relevant model N; is (min{p,, t.}, A)-saturated. Second, in § 3 we prove, of course, that
[21, Ch. VI, 2.6] follows, but also we show that the axiomatization of RSP is by Horn sentences. Hence we can
apply it to reduced powers. So T is <’-maximal if 7 = Th(Q, <) and moreover for every 7 having the SOP5;
lastly we comment on models of Peano Arithmetic.
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In § 4 we try to sort out when for models of 7" we get the relevant atomic saturation.

Can we generalize also results [9] to reduced powers? The main result of § 5 says that no. We also sort out the
parallel of goodness, excellence and morality for filters and atomic saturation for reduced powers. In a hopeful
continuation [15], we shall try to sort out the order <I'*, and in particular consider non-maximality and parallel
statements for infinitary logics (cf. [17]).

The reader can ignore Boolean ultrapowers (i.e., Definitions 1.12 and 1.13, Claim 1.14) for §§ 2, 3 and can
in first reading deal only with first order logic (so ¥ = Ry), and the assumptions concerning the completeness of
filters disappear.

Note that by Conclusion 3.10

Conclusion 1.1 If (T, A) has the SOPs, then it is <. -maximal.

Question 1.2 Do we have: if D is (A, T')-good and regular then D is (1|, T)-good when X; < A, (or more)?

1.2 Further questions

Convention 1.3 1. Let T be a theory with elimination of quantifiers if not said otherwise. Let Modr be the
class of models of T .

2. The main case is for T a countable complete first order theory with elimination of quantifiers, moreover,
with every formula equivalent to an atomic one.

So it is natural to ask
Conjecture 1.4 The pair (T, A) is Qp,-maximal iff (T, A) has the SOPs.

So which T (with elimination of quantifiers) are maximal under <1rkp? That is, when for every regular filter D on
A, M /D is (A, atomic)-saturated iff D is AT-good? Is Ti.q maximal? (cf. [23], it is a proto-typical non-simple T,
but see more in [18]) As we have not proved this even for ultrafilters, the reasonable hope is that it will be easier
to show non-maximality for <;”. Also in light of [10] for simple theories we like to prove non-maximality with
no large cardinals. We may hope to use just NSOP,, but still it would not settle the problem of characterizing the
maximal ones as, e.g., SOP, = SOP; is open for such T'; for pairs (7, ¢(X, y)) they are different.

Note that for first order 7', it makes sense to use p*-saturated models and D is u*-complete.

Also the “T stable” case should be resolved.

Conjecture 1.5 M* /D is (N} /D, atomic)-saturated when.:

(a) T atheory asin 1.3;
(b) T is stable without the fcp;
(c¢) D is a regular filter on .

Remark 1.6 Maybe given a 1-¢-type p C {¢(x, @) : @ € "(M!/D)} of cardinality < A in M /D, we try just to
find a dense set of A € D™ such that in M!/(D + A) the 1-¢-type is realized. Then continue; opaque.

1.3 Preliminaries

Notation 1.7 1. T denotes a f.o. theory, usually complete.
2. Let T denote a vocabulary, tTr = t(T') denotes the vocabulary of the theory T
3. We use M, N to denote models, 1y = t(M) is the vocabulary of M and PM, FM denote the interpretation
of P, F respectively.
4. let L(t) denote the f.0. language for the vocabulary t.

5. We allow function symbol F € T to be interpreted in a T-model M as a partial function, but with domain
PY, with Py € t a predicate with the same arity.
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Notation 1.8 1. Let B denote a Boolean algebra, comp(B) its completion, BT = B\{0x}, uf (B) the set
of ultrafilters on B, fil(B) the set of filters on B. For a € B let a' ™) = a'D pe a and let a'™15®) = a/'(®
be 1% — a.
1A. Let B < B, mean that B is a subalgebra of B,, and moreover a complete one, which means that
every maximal antichain of B is a maximal antichain of *B,.
2. For a model M let tyy = t(M) be its vocabulary.
3. ForafilterDonasetlletD™ ={BCI:1\B ¢ D).

Now about cuts (they are closed to but different than gaps, see [12]).

Definition 1.9 1. For a partial order .7 = (7, <), we say (C;, () is pre-cut when (but we may in this
paper omit the “pre”):
(a) CyUCGC;, is asubset of .7 linearly ordered by < 7;
(b) ifa; € Ci,a; € Cythena; <z as;
(c) fornoce  dowehavea, € Ci, = a; <gcanday € C; = ¢ <7 a.
2. Above we say (C;, (») is a (k1, kp)-pre-cut when in addition:
(d) C; has cofinality «;
(e) C;, the inverse of C,, has cofinality «,;
(f) so«, Ky are regular cardinals (here we ignore the 0,1 if not said otherwise).
2A. Above we call k1, k7 the cofinalities of the pre-cut (C, C,). We say that the pre-cut is symmetric when
k| = Kk, and then we may say « is its cofinality,
3. We may replace C, by a sequence d, if not said otherwise such that a; is < z-increasing and @, is < -
decreasing.
4. We say (Cy, Cy) is a (k1, kp)-linear-cut of .7 when it is a (k1, k»)-pre-cut and C; U C, is downward closed,
so natural for .7 a tree.
5. We say (C}, () is a weak pre-cut when (b),(c) of part (1) holds.

Remark 1.10 1. If .7 is a (model theoretic) tree, k; > 0 and (Cy, C>) is a (k1, k7 )-pre-cut then it induces one
and only one (x|, «»)-linear-cut (C}, C}), i.e., one satisfying C; € Cj, C, € C; such that C; U C; is cofinal
inCj UC,.

2. In 1.11 below, if L = IL(t) then ¥ = 8y, 0 = 1 suffice, but not so in more general cases.

Definition 1.11 1. We say M is fully (4, @, o, L)-saturated (may omit the fully); where L C £ (1)) and ¥
is a logic; we may write . if L = £ (t);), when:

if I" is a set of < A formulas from L with parameters from M with < 1 + o free variables, and I
is (< v)-satisfiable in M, then I' is realized in M.

2. We say “locally” when using one ¢ = ¢(X, ) € .Z with £g(X) < 1 + o, i.e., all members of I have the
form' (X, D).

3. Saying “locally/fully (A, -£)-saturated” the default values (i.e., we may omit) of o is o = ¢, of (o, ¥) is
¥ =Ry Ao = R and of .Z is L (first order logic) and of L is .. Omitting A means A = ||M].

4. If (%, 7) € L(ty) and a € DM then o(M, a) := {b € “OM : M = ¢[b, a]}.

5. Let Xy = (xs: 5 € u).

In Definitions 1.12, 1.13, and 1.14 we shall deal with complete Boolean algebras and ultrapowers, and then we
define an order between theories.

Definition 1.12 Assume we are given a Boolean algebra ‘B usually complete and a model or a set M and D a
filter on comp(®B), the completion of 8.

U In[17] weusea L C Ly, v a compact cardinal and if o > ¢ we use a slightly different version of the definition of local and of the
default value of o was ¥
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1. Let M be the set of partial functions f from B+ into M such that for some maximal antichain (a; : i < i(x))
of B, dom(f) includes {a; : i < i(x)} and is included in? {a € B : (Fi)(a < a;)} and f is a function into
M and f[{a € dom(f) : a < a;} is constant for each i.
1A. Naturally for fi, f> € M? we say f1, f> are D-equivalent, or f; = f> mod D when for some b € D

we have a; € dom(f1) Aay € dom(fr) AaiNa; Nb >0 = fi(a)) = fo(az).

2. We define M%/D naturally, as well as TV (¢(fo, - .. , fu_1)) € comp(B) when ¢(xo, ... ,x,—1) € L(ty)
and fo, ..., fa-1 € M?® where
(a) TV stands for truth value;

(b) TVu(p(fo, .- s fu-1)) =supla € B :an,_, Dom(fy) : M = (¢(fo(a), . .. , fum1(@))};

(¢) M is defined by letting, for ¢ an atomic formula, M /D = ¢[fy/D,..., f,_1/D] iff
TVu(e(fo, ..., fa-1)) € D.

2A. Abusing notation, not only M®' € M®> but M®'/D; € M®>/D, when B, < B,, D, € fil(8,) for
£=1,2and D; =B, N D,. Also [f1, f> € MP = fi=f, mod D; < fi = f, mod D;]. So for
f € M®' we identify f/D; and f/D;.

3. For complete 8, we say (a, : n < w) represents f € N when (a, : n < w) is a maximal antichain of B (so
a, = Oy is allowed) and for some f' € N¥ which is D-equivalent to f (cf. Definition 1.12(1A)) we have
f/(an) =n

4. We say ((a,, k,) : n < w) represents f € N® when:

(a) the k, are natural numbers with no repetition;
(b) (a, : n < w) is a maximal antichain;
(©) flan) = ky.

5. If .# is a maximal antichain of B and M = (M, : a € .#) is a sequence of T-models, then we define M~ be
the set of partial functions f from B+ to U{M,, : a € .#} such that for some maximal antichain {(a; : i < i(*))
of B refining .7 (i.e., (Vi < i(x))(3b € I )(a; <x b)) we have:

(@) {a;:i < i(x)} Cdom(f) C{becB":b <y a;forsomei < i(x)};
(b) ifa € dom(f) and a < qg; then f(a) = f(a,);
(c) ifa; <us b, b € Z then f(a;) € M,

6. For M, B, .7 as above and a filter D on B we define M™ /D as in part (2) replacing M there by M™ here,
see part (7).

7. For M, B, .% as above, ¢ = ¢(X) = ¢(X0, ... , x,—1) € L(tyy) and f = (f; : £ < n) where fy, ..., fu_1 €
M™ ,1et TV(¢[f]) = TV(¢[f], M®)be sup{a € B+:if £ < nthena € dom(f;)anda < b € .# then M), |=
elfod), ..., far (D)1}

8. We say *B is (< o )-distributive when it is ¥-distributive for every @ < o, where
8A. B is ¥-distributive when: if for a < ¥, .%, is a maximal antichain of ‘B then there is a maximal an-

tichain of B refining every .%,(a¢ < ©); this holds, e.g., when B = (L) or just there is a dense
Y € B closed under intersection of .

Definition 1.13 1. Let 5B be a complete Boolean algebra and D a filter on 8. We say that D is (u, ¥ )-regular
when for some (¢, iz) we have:

(a) ¢ = (¢, : @ < ) is a maximal antichain of 8;
(b) i = (uy : o < o) with ug € []<7;
(c) if i < p then supfe, : « satisfies i € u,} € D.
2. Afilter D is called A-regular when it is (A, 8g)-regular; the filter D on a set [ (that is the Boolean algebra
Z(1)) is called regular when it is a filter on a set [ and it is |/|-regular.

Claim 1.14 Assume B is a complete Boolean algebra which is (< A)-distributive and D a filter on B and

® = cf(¥) < A

2 For the D; € uf(B,) ultra-product, without loss of generality B is complete, then without loss of generality f[{a; : i < i(*)} is one to

one. But in general we allow a; = Oss, those are redundant but natural in Definition 1.12(3).
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1. Assume D is a V-complete ultrafilter. The parallel of Los theorem holds for Ly y and if D is A-complete
even for 1L, y which means: if M = (M), : b € .¥) is a sequence of T-models, .% is a maximal antichain of
the complete Boolean algebra ‘B and e < ¥, ¢ = (1) € Ly p(v) and f; € M? for¢ < s then M™ /D |=
“ol(fe/D: ¢ < )" iff TVu(el{f: /D : ¢ < &)]) belongs to D.

2. Ifin addition D is (A, ©)-regular and M, N are Ly y-equivalent then M?® /D, N?® /D are L;+ y-equivalent.

Definition 1.15 1. Assume Ay is a of set atomic formulas in (7 (7})). Then we say (71, A}) ﬂ;‘?ﬁ (T, A>y)

when: if D is a (A, ©)-regular filter on A and M, is a A*-saturated model of 7; for £ = 1, 2 and M;/D is
(AT, ¥, Ay)-saturated then M%/D is (A1, 9, Ay)-saturated.

2. Forgeneral Aj, Ay wedefine (Ty, A1) <7 (Tz, A) as meaning (177, AT) <P (15", AT) where (as Mor-
ley [13] does):
(a) Tfr =T, U{(VX)(p(X) = P,(X)) : p(X) € A} with (Pé 1@ € Ay) new pairwise distinct predicates

with suitable number of places;

(b) Af = {Pé(fw) t@ € Ayl

3. In(2), Ty <, T means A, = the set of atomic Ly » (t7,)-formulas.

Observation 1.16 Assume A C LL(tr) is closed under 3 and A. A model M of T is (u*, u*, A)-saturated iff
itis (ut, 1, A)-saturated.
Question 1.17 1. Under <, characterize the minimal/maximal pairs (T, A)
2. What about the parallel of <** (cf. [11, 23])?

2 Axiomatizing [22, Ch. VI, 2.6]

Note that while the notation £(.7") is obviously natural the notation p(.7") is really justified just by the results here.

Definition 2.1 1. For a partial order 7 = (7, <g) let ps = p(7) be min{k| + k3 : (k1, k2) € €7} and

Py (7)) = min{k| + k3 : (K1, k2) € €7.5}; where:

2. €5(7) = {(x1, k2): the partial order 7 has a (k1, kp)-cut and k1 >, k > Ro}. If & = Ry then we may
omit ¥, (yes, when ¥ > 8 this is not symmetric).

3. For a partial order 7 let t5 = t(.7) be the minimal ¥ > R such that there is a < o-increasing sequence
of length « with no < & -upper bound.

4. Letp*, = p*(7) be minft7, p7}.

5. py—sym(T) = minfx : (k, k) € €y(F)}. and if ¥ = Ry we may write pjym(f)

6. In Definition 2.2 below let t, = tg, pr = Py, (F).

Definition 2.2 For ¢ = 1, 2 (the difference is only in closed (i)), we say r or (M, A) is a (&, 1)-realization’
spectrum problem, in short (¥, ¢)-RSP or (¢, t) — 1-RSP when r consists of (if ¢ = 2 we may omit it, similarly
if ¥ = Rp; we may omit A and write M when A is the set of atomic formulas in L(ty,, ), see below, so M below
= M,, etc.):

(a) M a model,

(b) for the relations 7 = IM, 5(7:5% of M (i.e., 7, < are predicates from 1)) we have .7 = (J, <)
a partial order (so definable in M) with root ¢ = 1t(.7), so ¢ € 1y is anindividual constantandt € .7 =—>
rt(J) < t; as in other cases we may write .7;, <, for .7, < &; we do not require 7 to be a tree; but do
requiret € J =t <z t;

(c) amodel N = N, = Ny, with universe PY, t(N) C t(M) such that
i Qery = 0" =0
ii. Fety= FY=FM, (we understand F¥, F" to be partial functions), so every ¢ € L(ty) can be

interpreted as ¢*! € L(ty,), all variables varying on P (include quantification); we may forget the [].

3 When P and 1y (hence N) are understood from the context we may omit them
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(d) the cardinal ¥ and A C {p : ¢ = ¢(x,7) € Ly »(zny)} which is closed under conjunctions meaning: if
@e(x,y¢) € Afor € = 1,2 then ¢(x, ¥}, ;) = ¢1(x, ) A ¢a2(X, ;) € A;

(e) RM C|N| x M so a two-place relation; and let RY = {b : bRMt} fort € TV,

(f) IN| x {rtz} S R, ie,RY 5 =IN[;

(g) if s <z tthena € N A aRt = aRs, i.e., RM D R,

(h) teT = R" 0,

() if s € 7, p(x,a) € ANN) := {p(x,d)) : ¢(x,7) € A and a € “O)N} and for some b € RM, N = ¢[b, a]
then there is # € 7 such thats <5 tand RY = {b € RY : N = ¢[b, al};
@)t if ¢ = 1 like clause (i) but* moreover t = Fé‘f’l (s, @) where F(% 0 T x BO(PMY T

() ift € F and (x, a) € A(N) and (N, a) # < then
(@) s= Ffz(t, a) is such that RY N ¢(N, d) # @ and s <7 1;
(B) ifs = Fé‘j’z(t, a),si <z tand RY N (N, a) # @ thens; <7 s.

(k) if 9 > R then in (.7, <) any increasing chain of length < ¢ which has an upper bound has a < & -lub.

Remark 2.3 We may consider adding: S a being successor, (but this is not Horn), i.e.:

(1) if c = 1 we also have S¥ = {(a, b) : B is a < s-successor of a which means
() ifa < b A a # bthen for some ¢, S(a, c) A c < b;
(B) if b € .7 \{rt7} then for some unique a we have S (a, b);
(y) S(a,b) = a < b;
(8) S(a,bi) AS(a,by) ANby # by = —(by < by);
(¢) in clause (j) we can add SM (s, 1).}

Remark 2.4 Presently, it may be thata <5 b <z a but a # b. Not a disaster to forbid but no reason.
How does this axiomatize realizations of types?

Claim/Definition 2.5 Let: = {1, 2}, ¥ is ¥ or just a regular cardinal.

1. For any model N and A C {¢ : ¢ = ¢(x, J) € Ly y(t7)} closed under conjunctions of < ¢, the canonical
(9, 1)-RSP, r = r}?,‘A defined below is indeed a ©-RSP.
2. r=r} , (if ¥ = Ry we may omit it) is defined by:
(a) Ay = A,N, =N and 9, = ¥;
b) Z={pe(x,a.):e<¢):¢ <9 and for every ¢ <¢ we have ¢.(x,d.)e€ A(N) and N =
(Fx)( /\ QDE(X, a. )N}k

e<t
(c) <,= being the initial segment relation on 7;;
(d) M = M, is the model with universe Z; U |N|; without loss of generality 7. N |[N| = &, with the rela-
tions and functions of N, .7, <, and
1. PM = |N|;
2.M=()e Ty
3.RM ={(b,t):beN,t = (@ :(x,a.): € < &) € T and N |= ¢, ¢(b, @) forevery & < & };
4. F)', as in Definition 2.2(j);
5.if ¢ = 1 then F% is as in Definition 2.2() .

Remark 2.6 If we adopt Remark 2.3 it is natural to add:
(e) fort=1,8" = (@1, $2) : §2 = @, {p(x, @) € I} for some (x,d) € A(N)}.
Proof. Obvious. g

4 We may not add a function, maybe it matters when we try to build r with Th(M,) nice first order
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Main Claim 2.7 1. Assume r is an RSP. If k = min{t;, p,} then the model N is (x, 1, Ay)-saturated, i.e.,
@ if p(x) € Ar(Ny) is finitely satisfiable in N, (= is a type in N;) of cardinality < « then p is realized in
Nr.
2. If 9 > Ry and r is a 9-RSP, then N; is (k, 1, Ay)-saturated where k = min{t,, p,.} recalling Defini-
tion 2.1(6), i.e., pr = P .
3. If9 > Ro, ris a®-RSP satisfying (k)™ below then Ny is (t;, 1, A,)-saturated when:
(k)" in (Z, <) any increasing chain which has an upper bound, has a < -lub.

Proof. This is an abstract version of [21, Ch. VI, 2.6] = [22, Ch. VI, 2.6]; recall that [21, Ch. VI, 2.7]
translates trees to linear orders.

1. LetN =N, A = A, etc.

Let p be a (A, 1)-type in N of cardinality < x. Without loss of generality p is infinite and closed under con-
junctions.
So let

()1 oy <k, p={ps(x,ay) @ < a,} S A(N), pis finitely satisfiable in N.
We shall try to choose 7, by induction on o < «, such that

(x)2 (@) ty, € Tand B <a =t <z 1,
(b) if B < a, then there is b € R such that N |= @4[b, dg]
() if B <athenb € RY => N = gylb, ).

If we succeed, this is enough because if # = 1,, is well defined then RM # & by Definition 2.2(h) and any
b € RM realizes the type by (x)2(c) and Definition 2.2(h). Why can we carry the definition?

Case 1: a = 0.

Let t, = rt>, hence Rﬁ‘f = |N| by Definition 2.2(f). Now clause (a) of (x), holds as t, € Z; and there is no
B < «a. Also clause (b) of (), holds because p is a type and Rff(y) = |Ny| by Definition 2.2(h).

Lastly, clause (c) of (x), holds trivially.

Case2:a =B + 1.

Ift =1lett = F(/’)‘: 1(tp, ag) and see clause (1) of Definition 2.2. If ¢ = 2 use clause (i) of the definition recalling
p is closed under conjunctions.

Case 3: « a limit ordinal.

As tgz > k > a, by the claim’s assumption (on t, cf. Definition 2.1(2)) necessarily there is s € .7 such that
B <a = t, <z s. We now try to choose s; by induction on i < &, such that

(%21 (@) si€ T
(b) B<a=15=7s;
© j<i=si <75}
(d) ifi= j+1then R} is not disjoint to ¢;(N, a,).
If we succeed, then s, satisfies all the demands on ¢, (e.g., ()2(b) holds by Definition 2.2(g) and (x),1(d)), so
we have just to carry the induction for &. Now if i = O clearly s) = sitasrequired. Ifi = j + 1lets; = Fé‘fz (sj,a;),
by Definition 2.2(j) it is as required. For i a limit ordinal use ¥ < p s hence to carry the induction on i so finish

case 3.
So we succeed to carry the induction on « hence (as said after (x),) get the desired conclusion.

2. Similar, except concerning case 3. Note that without loss of generality ¢ > R by part (1).

Case 3A: « is a limit ordinal of cofinality > ¢
As in the proof of part (1).
Case 3B: « is a limit ordinal of cofinality < ¢.
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Again there is an upper bound s of {tg : 8 < «}. Now by clause (k) of Definition 2.2, without loss of generality
sis a <g-lub of {tg : B < a}. So easily for every i < a, Fg,z(s, a;) is > tg for B < o hence is equal to s, so
sy = s is as required.

3. Similarly. g

Discussion 2.8 1. What about “(A ", n, A)-saturation”? We can repeat the same analysis or we can change
the models to code n-tuples. More generally, replacing ¢(Xjz1, ¥) by ¢ ({F; (x) : ¢ < &), y), using F; € Ty
(though not necessarily F; € ty,), so we can allow infinite &.

2. Hence the same is true for (A, Ry, A)-saturation, e.g., A *-saturated by an assumption.

3 Applying the axiomatized frame

Consider a filter D on a set I and cardinals A > 1. We may ask for a model M of cardinality > u, whether M!/D
is (A, atomic)-saturated, varying M.

We here apply § 1 to show that: when D is an ultrafilter, the model (“~ u, <) is the hardest, this is 2.1, we then
(in 2.2) show that § 1 has axiomatization which is Horn theory. Hence we can prove results like Conclusion 3.1
below for filters D (not just for ultrafilters),

Conclusion 3.1 1. If D is an ultrafilter on a set I,N a model, jn = ||N| + Tyl and (®>u, <) /D is
(At atomic)-saturated then N' /D is A+ -saturated.
2. Instead of “(“*> 1, Q)! /D is (A, 1, atomic)-saturated” we can demand “J' /D is (A, 1,atomic)-saturated”

where J is the linear order with set of elements {—1, 1} x ®~ u ordered by (11, n1) < (12, n2) iff t1 < (2 or
u=—-l=uAn <exmortyy=—-l=uAn <ex n-

Proof. 1.LetN; = N.As D is an ultrafilter without loss of generality, Th(}) has elimination of quantifiers
and even every formula is equivalent to an atomic formula. Let A = L(ty), by Claim/Definition 2.5 r; := ry, A
is an RSP. Let N, = N{/D and let M; = My, M, = M| /D and let r; be the RSP(M, , A). Clearly r; is an RSP as
the demands in Definition 2.2 are first order (see more in Claim 3.2).

Now

) Ty = (7, Q).

[Why? Cf. Claim/Definition 2.5(2).]

)2 T, = (%) /D is (A ,atomic)-saturated.

[Why? By an assumption.]

()3 UF), p(T,) = AT

[Why? Follows by (x);.]
Hence by the Main Claim 2.7, N, is (AT, 1, 1, A)-saturated which means N, = (N;)!/D is A*-saturated.
2. Easy (or cf. [21, Ch. VI, 2.7], or cf. [20]). O

To apply the criterion of the Main Claim 2.7 to reduced products we need:

Claim 3.2 If A is the set of conjunctions of atomic formulas (no negation!) in L(vy) and Tt =
{(7,<7,RPcyU{F,i:9 € Aandl =2or{l =1 if relevant} U 1 (disjoint union, recall c is rtz ), then there
is a set T of Horn sentences from 1L(t) such that for every t-model M: (M, A) is a RSP (i.e., 2-RSP) iff M =T.

Proof. Consider Definition 2.2. For each clause we consider the sentences expressing the demands there.
Clause (a): Obvious.
Clause (b): Clearly the following are Horn:

l.x<gy—> Tx),x<g7y—> J(),
2. xZgyYANy<gz1—>xZ77
3. I(ty)and T(s) — 1ty <s,
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4. T(x) > x <7 x.

Note that (.7, < &) being a tree is not a Horn sentence but is not required.
Clause (c):

1. O(xo, ..., Xn)—1) = P(x¢) when Qis an n(Q)-place predicate from 7 (N) and £ < n(Q); clearly it is Horn;

2. for any n-place function symbol F € 1y the sentence: P(xp) A ... A P(x,—1) — P(F(xp,...,x,—1)) and
y=F(xo,...,Xx—1) = P(xp).

Clause (d): nothing to prove—see the present claim assumption on A.
Recall that for ' € ty, F stand for a partial function symbol with domain Pr.
Clause (e): yRs — Z (s), yRs — P(y) are Horn.
Clause (f): P(x) — xR(rtz) is Horn.
Clause (g): s <z t A xRt — xRs is Horn.
Clause (h): (V1)(3x)(.7 (t) — xRrt) is Horn.
Clause (i): Let ¢(x, y) € A.
First assume ¢ = 1. Note the following are Horn: for any ¢(x, y) € A

I. T AxRs A, DA N\ PO)At=F,1(5,5) > Tt)As<gt;
L<lg(y)

2. T AXRs Ao, ) A N\ PQOe) At =F,1(s,5) — XRt;
t<tg(y)
3. T(s) AXRs AXRF, (s, 5) = ¢, y).

This suffices. The proof when ¢ = 2 is similar.
Clause (j): Similarly but we give details.
Let ¢ = ¢(x,7) € A, so the following are Horn:

Lo, ) APXD)A N\ PO As=F,s(t,5) = s <zt

L<tg(y)
2. px1, M APxDA N\ PO As=F,a(t,5) = @x)(xRs A ¢(x, ¥));
L<tg(¥)
3. PN N POOIAsS=F2t,) AN2<7t AXRZA@(x,7) > 2 =7 5.
L<tg(y)
Clause (k): As ¢ = R this is empty.
This suffices. O

Claim 3.3 Also for 9 > R (cf. Definition 2.2(2)) Claim 3.2 holds but some of the formulas are in Ly 5.

Proof. Clause (k): When % > R,.
Should be clear because for each limit ordinal § < «, the sentence

a<f<s

Ys = (VX0 .. Xas - .-, x5)(Fy) (V2) (( N Xa<z7x<7y=<z xa) A

( N Xo <7 xp Syz§,7y§,7x§—>Y=Z>)

a<f<s

is a Horn sentence and it expresses “any < o-increasing chain of length 6 has a <-lub”. U

Conclusion 3.4 1. Assume
(a) D be a filter on I,
(b) N amodel, .. = ||N|| + |tn|, A the set of atomic formulas (in L(ty)),
(c) T =(F,<7):=(“"x /D,
(d) k =p% =minfts, py (7))}, ¢f. Definition 2.1(6).
Then the reduced power N' /D is (k, 1, A)-saturated.
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2. Assume’

(a) D is a®-complete filter on I, 9 = cf(¥) > Ry,
(b) N is (¥, A)-saturated, A a set of atomic formulas,
(¢) J:= ("% D,
(d) « = min{tz, py(J1)}
Then N'/D is (k, 9, 1, A)-saturated.
3. We can above replace N'/D by N /D where D is a filter on the complete Boolean algebra 8 which has

(< 9)-distributivity when ¥ > R.

Proof. 1. Let® =Rgpandry = (My, A) be r}fm from Claim/Definition 2.5, so ¢, = .

By Claim/Definition 2.5, M, is an RSP hence by Claim 3.2 also M = M} /D is an RSP. Now apply the
Main Claim 2.7(1).

2. Similarly using the Main Claim 2.7(2).
3. Similarly. g

Remark 3.5 1. No harm in assuming A = {Q(9) : Q a predicate}. Note that allowing bigger A is problem-
atic except in trivial cases (¢ and —¢ are equivalent to Horn formulas), see proof of clauses (i), (j) of
Definition 2.2.

2. Using Conclusion 3.4(1) above, if D is an ultrafilter, not surprisingly we get [22, Ch. VI, 2.6], i.e., the
theory of dense linear orders is <J-maximal (well, using the translation from dense linear orders to trees in
Conclusion 3.1(2) equivalently [22, Ch. VI, 2.7]). The new point here is that Conclusion 3.4 does this also
for reduced powers, i.e., for D a filter.

3. So anatural question is: can we replace the strict property by SOP,? We shall show that for reduced power
we have also non-peculiar cuts, see § 4.

4. Why is the reduced power of a tree not necessarily a tree? Let M be the tree (“~ w, <).Letn; <, <413 € ““w
and let A1, Ay € D" be disjoint and define f; : [ — *”w for £ = 1, 2, 3 by:

(@) fz(s)=mn3forsel,

(b) fo(s)is ny if s € A, and 7 otherwise;

(©) fi(s)is m if s € A and n otherwise.

Clearly if N = M!/D then in N we have:

(@) fi/D<f3/D;

() f2/D< f3/D;

(¢) =~(fi/D< f>/D);

(d) —(f2/D < f1/D);

(e) ~(fi/D = f>/D).
Conclusion 3.6 N’ /D is (k, 1, Ay)-saturated and k > ¥ when:
() (a) D is a v-complete filter on I;

(b) A C{p:ex,y) e Ly y(ty) is atomic (hence € L(ty))};

(c) Ay =cl_y(A) = the closure of A under conjunction of < ¥ formulas;

(d) N is (9, A)-saturated, i.e., if p(x) € AN) = {p(x, @) : ¢(x,7) € A, a € ®9M} has cardinality < ©
and is finitely satisfiable in N then p is realized in N;
(e) k =min{p7, ty(F)} where T = (">, Q) /D and » ="~ (|N|| + |A]).

Proof. Letr= rf,yA] recalling Claim/Definition 2.5 and My = M,..
Now apply the Main Claim 2.7(2) noting that:

3 Note that « here may be bigger than in part (1)
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()1 Ny = Né /D satisfies: every set of < ¢ formulas from A(N) which is finitely satisfiable in N; is realized
in N] .
[Why? Let (@ (x, fo.0/D, ..., funw@-1/D):a < a,) be finitely satisfiable in Ny and o, < ¥, @ < o0, =
@o € A. For every finite u C o, we have Ny = (3x)(\ @u(x, fo.0/D, ..., fan@)—1/D)) hence the set

odeu

Iu = {S el: Nl |: (H.X) /\(pot(xs fa,O(s)a e fa,n(a)fl(s))}

[ 4573

belongs to D. But D is ©-complete, hence I, = N{I, : u C «, is finite} belongs to D. Now for each s € I,, the set

Ps = 1{0a (X, f0.008), ..., fan@)-1(8)) : o < e} is finitely satisfiable in N, hence is realized by some a, € N. Let
g € 'N be such that s € I, = g(s) = aj; clearly g/D realizes p, so we are done.]
Similarly

(%), in .7 = (">, Q)//D we have
(a) every increasing sequence of length < ¢ has an upper bound;
(b) any increasing sequence of length < ¢# with an upper bound has a lub;
(c) there is no infinite decreasing sequence so (1, k) € €(T) = kp = 1.
[Why? For clause (a) note that (Vxo, ... , Xy, - - Ja<s (AN N\ X <z Xg —> A\ Xo <o y)isaHornsen-

a<f<d a<d
tence. For clause (b) cf Claim 3.3, i.e., proof of clause (k) in Claim 3.3.]

(¥)3 M; = ML/Dis a ®-RSP.
[Why? See above recalling Claims 3.2 and 3.3.]

(x)4 if ® > R, then r satisfies (k)™ from the Main Claim 2.7(3).
[Why? Easily as D is a ®;-complete ultrafilter.]

So we are done by the Main Claim 2.7(3). O
It is natural to wonder
Question 3.7 Assume A > ¢ = cf(¥) > Ry.

1. Is there a ¥-complete (A, ©¥)-regular ultrafilter D on A such that A < (("> ¢, <)*/D)?
2. Similarly for filters.

3. Use <g=dor<g=4?

4. If » = A=", D a fine normal ultrafilter on I = [A]<”, we get A < ("¢, <)/D.

Remark 3.8 Now [10, § 5] answers Question 3.7(1) positively for ¥ a supercompact cardinal.

Conclusion 3.9 Let B be a complete Boolean algebra and D a filter on *5.

1. For every model N, letting ». = ||N|| + |tv|, we have N¥ /D is (u*,atomic)-saturated if
u* < min{p((“7 A, )® /D)), t(“7 4, P /D)),

2. Assume B is (< O)-distributive (e.g., for some dense Y C B, for every decreasing sequence® in B of
elements from Y of length < ¥ has a positive lower bound), and D is a ©-complete filter on B. If N is (u™,
atomic)-saturated then N® /D is t((’> A, <)® /D)-atomic saturated.

Proof. As,e.g., in Conclusion 3.6 above or in Conclusion 3.13 below. O

Conclusion 3.10 Assume (T, ¢(X, ¥)) has SOP3. Then, recalling Definition 1.15, T is Slip -maximal for every
X and even (T, {¢ (X, y)}) is.

Proof. Should be clear. O

On the connection to Peano arithmetic and to Pabion [14], cf. Malliaris and Shelah [11]. We repeat some results
of [12] in the present context; but first recalling:

% One can weaken the demand.
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Definition 3.11 1. PA, Peano arithmetic, is the f.o. theory consisting of:
(a) the obvious axiomson 0, 1,x <y, x+y, xy

(b) all the cases of the induction scheme, i.e., for every f.o0. ¢:
“if {x : @(x, y)} is not empty then is has a first member”,

2. BPA, the bounded Peano arithmetic, is defined similarly, but in clause (b), the formulas ¢ is bounded, i.e.,
all the quantifications inside it are of the form (Vx < y) or (Ix < y).

Definition 3.12 1. N = BPA is boundedly «-saturated up to (¢, c2) where ¢y, ¢c; € N when: if p(x) U {x <
c1} is a type in N (= finitely satisfiable) of cardinality < « consisting of bounded formulas but with pa-
rameters < ¢, then p(x) U {x < ¢} is realized in N.

2. If above c; = ¢ = ¢, we may write ¢ instead of (cy, ¢2). We say N is strongly boundedly «-saturated up to
¢ when it holds for (c, ¢;), c; = 00, i.e., we do not bound the parameters.

3. Omitting “up to ¢” in part (3) means for every ¢ € N.
Conclusion 3.13 Assume N be a model of BPA.

1. Assume a, € N is non-standard and the power in the N-sense ¢ exists for every ¢ € N.
For any uncountable cardinal « the following conditions are equivalent:

(a) N is boundedly k-saturated up to c for any c € N
(b) if (Cy, Cy) is a cut of N of cofinality (k1, k2) and k1, k» are infinite (so C, C;, # 0) then k| + k» > k.
(c) like clause (b) but k| = k3, that is restricting ourselves to symmetric cuts.

2. We can weaken the assumption of part (1) by fixing c, as well as N, a,. That is, assume N = “n < a, andc, =
)" exist” for every standard n from N. For every uncountable cardinal k the following are equivalent:

(a) N is boundedly k-saturated up to c, for each n
(b) if (Cy,Cy) is a cut of N of cofinality (i1, k3) with k1, k| infinite such that ¢, € C, for some n then
K1 +kKky >k
(c) like clause (b)’ but k1 = K.
3. Moreover we can add in part (2):
(c) N is strongly boundedly k-saturated up to c.
Proof. 1. By(2).
2. (a)) = (b)": Trivial.
(b)Y == (a)’: Without loss of generality c is not standard (in N) andn = 0. Let N* = (N, ¢, a,) and T+ =
T(Nt)=t(N)U{c,a.} and A = {p(x, ) Ax <c A Ay < c:x¥) € L(zy) is a bounded formula}.
¢

We define r naturally - the tree of sequences of length < a, of members of A(N<.) possibly non-standard
but of length < a,. Now apply the Main Claim 2.7.
(b)) = (c¢)': Obvious.
(¢) == (b)": By [9].
3. We just repeat the proof of the Main Claim 2.7, or cf. Claim 3.16 below. U

Question 3.14 Is a, necessary in Conclusion 3.13(1)? We conjecture that yes.

A partial answer:

Fact 3.15 If N is a model of PA, then N is k-saturated iff cf(|N|, <) > k and N is boundedly «-saturated.
Claim 3.16 If (A) then (B) where:

A. (a) ryisan RSP fora < §;
(b) Ay, = Ais a set of quantifier free formulas;
(c) %, = i, and Ny, is increasing with o;
(d) Q € T(Ny,) and Q" = Qo;

www.mlq-journal.org ©2021 Wiley-VCH GmbH



30 S. Shelah: Atomic saturation of reduced powers

(¢) if p(x,¥) € Ay, and b € ““O)(N,,) then ¢(Ny,, b) S QM
(f) K= min{pa(‘%‘o)v t('%‘o)};
B. the model U{N;, : o < 8} is (k, 1, A)-saturated.

Proof. Asinthe Main Claim 2.7. O

4 Criterion for atomic saturation of reduced powers

Malliaris and Shelah [9] have dealt with such problems for ultrafilters (on sets). The main case here is ¥ = Nj.

Definition 4.1 Assume D is a filter on the complete Boolean algebra B, T an Ly »(tr)-theory, A C L(tr)
and u > |A]. Wesay Disa (u, 9, e!, A, T)-moral filter on B (writing ¢ instead ¢! means for every ¢’ < 1 + ¢;if
B = (1) we may say good instead of moral): when for every D-(u, 9, ¢!, A, T)-problem there is a D-(u, 9 )-
solution where:

(a) aisaD-(u, 9, ¢!, A, T)-(moral)-problem when:

(Ol) a= (au ‘ue [:U“]<l9);

(B) a, € D (hence € BT);

(y) ais C-decreasing, thatisu C v € [u]<Y = a, < a, and agz = 1y;

(8) for some sequence (@, (X}, Vo) : @ < ) of formulas from A for every a € B and u C u of cardi-
nality < © we can find M |= T and b, € “*U“)M for a € u such that:

(x) forevery v C uwehavea <a, => M & “(3x) /\ @o (X1, by )” and

oev

a<l—a,=— ME“=3%) /\ ¢, b);
oEV
(b) bis a D-(u, ©)-(moral)-solution of the D-(u, 9, &!, A, T )-(moral)-problem a when
(@) b= (b, :ueul");
(B) b, e Dand by = 1s;
(y) b, <ay
8) bis multiplicative, i.e., b, = N{by} : @ € u} and by = 1.
Remark 4.2 1. The ¥ here means “a type is (< ¢})-satisfiable”.
2. The use of “e!” is to conform with Definition 1.11.

Recall (from Definition 1.11)

Definition 4.3 Let t be a vocabulary and A C {¢ € L(7) : ¢ = ¢(&, ¥)} but (X, y) € A means we can add to
X dummy variables. Let A > ¥ (dull otherwise).

A t-model M is (A, ¥, ¢!, A) -saturated when: if p C {@(X(e1, @) : @(X[e1, §) € A, a € “*9'M} has cardinality
< XA and is (< ¥) satisfiable in M, then p is realized in M.

Claim 4.4 1. Fora (u, ¥)-regular v -complete ultrafilter D on a set I and ¥ -saturated or just (U, Ro, !, A)-
saturated model M, a cardinal j and A = Ly y(ty), the following conditions are equivalent:

(a) Dis (u,?, !, A, T)-moral ultrafilter on the Boolean algebra Z(I),
(b) if M € Mody, then M' /D is (u, ¥, €!, A)-saturated.
2. Similarly for D a ultrafilter on a (< 9 )-distributive (cf. Definition 1.12(8)) complete Boolean algebra B.
Proof. Similar to Claim 4.5, it actually follows from it because as D is an ultrafilter, we can start with
M = T,expanditto M by adding a predicate to any definable relation and apply Claim4.5to 7T = Th(M™). O
Claim 4.5 1. If (A), then (B) <= (C) where:
A. (a)B = 2(),
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(b) D is a ¥ -complete (., ¥ )-regular filter on *B;
(c) 0 > ecorjustut > ¢;
(d) T is an Ly y(t)-theory;
(e) A is a set of conjunctions of < ¥ atomic formulas from Ly »(t);
B. Disa (u,9,¢!, A, T)-moral filter on B;
C. if My is amodel of T fors € I then [ [ M;/D is (u*, 9, e!, A)-saturated.
sel
2. If (A), then (B') <= (C') where
A (a) B is a (< v)-distributive (cf. Definition 1.12(8)) complete Boolean algebra;
(b)-(e) as above (on regularity cf. Definition 1.13);
(d)t T is a complete Ly (1 )-theory;
B'. as (B) above;
C'. (a)if M is amodel of T, then M%/D is (u*, 0, g!, A)-saturated;
(b) if F is a maximal antichain of B and M = (M), : b € .7 is a sequence of T-models, then M® /D
is (u*, ¢, g!, A)-saturated.

Proof. 1. Proving (B) = (C): Let N =][M,/D let X=X, o = ¥u(X,¥,) and assume that
sel
P = {po (%, by) 1 @ < @} is (< ¥)-satisfiable in N and |a.| < u, so without loss of generality o, = u;
without loss of generality let ¢, = @, (%, Jig,1) SO by € Eﬂ(]_[ M;).
sel
Letby = (fus/D: & < &,) where f,: € [[M; and for s € I let by ; = (fy:(s) : & < &,); now for u € [u]="

sel
we let

(*)0 a, = {S el: Ms '= (3)2) /\ (0()27 Z)a,s)}-

acu

Now
(*); a=(a,:uec[ul")isaD-(u,?,¢e!, A, T)-problem.

[Why? We should check Definition 4.1, clause (a): now (a)(«) is trivial; also a, C [ holds_by the choice of
a,.. Toward clause (a)(8) fix a set u € [1]<”; some ¢ € °N realizes the type PuXe) = {@a (X, by) : ¢ € u} in N
because p(%) is (< ¥ )-satisfiable in N, cf. Definition 4.3, solet¢ = (g, /D : ¢ < ¢) forsome g, € [[ M, for¢ < ¢

sel

and let & = (g;(s) : ¢ < &) € “(My). So |, = {s € I : M |= @, [, bs]} belong to D because N = ¢,[¢, by] by
the definition of N if ¢, is atomic, but recalling D is ¥ -complete also for our ¢,, remembering clause (A)(e) of
Claim 4.5(1). As D is ¢ -complete clearly, a), = ﬂ{a;a} : o € u} belongs to D and by our choices, a/, < a,, hence
a, € D so subclause (a)(8) of Definition 4.1 holds indeed.

By the choice of a,, a is C-decreasing so subclause (a)(y) of Definition 4.1 holds.

Lastly, subclause (a)(8) of Definition 4.1 holds by the definition of a,’s recalling p(¥) is (< ¢)-satisfiable (and
o ¢ D).]

(%), there is b, a D-(u, ¥)-solution of a in B.

[Why? Because we are presently assuming clause (B) of Claim 4.5 which says that D is (u, ¢, ¢!, A, T)-good,
cf. Definition 4.1.]

(*)3 without loss of generality s € ] = {@ < 1 : 5 € by} has cardinality < ¢.

[Why? As D is (u, ©)-regular.]

Nextfors € Iletuy, = {o < : s € by} but b is multiplicative (cf. Definition 4.1(b)(8)) so b, = Nib : @ €
us} = N{b,: the ordinal « satisfies s € by} hence s € b, hence (cf. Definition 4.1(b) recalling that |u,| < ¢ by
(*)2) we have s € a, hence (by the choice of a, ) there is a; € *(M;) realizing {p (X, (fu.e, (5) : ¢ < &)) : a € uy}.
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Let a, = (a,; : £ < &). Now for £ < & = £g(%) let g, € [[ M, be defined by g.(s) = a,, € M, and let a =
sel
(gc/D: ¢ < e)noting g, /D € [[M;/D = N.Hence forevery @ < p, {s € I : M = ¢, ({g:(s): ¢ <€), bys)} 2
sel
by € Dso N = ¢la, by].

Hence a realizes p(X) in N as promised.

Proving (C) = (B): To prove clause (B), let a be a D-(u, ¥, €!, A, T)-problem and let ¢ = (@4 (Xi¢), Vo) :
a < u) be a sequence of formulas from A as in clause (a)(§) of Definition 4.1.

As D is (A, ¥)-regular, we can choose w = (w; : s € I) a sequence of subsets of u each of cardinality < ¢
suchthate < p = {sel:aew,)eD. Forue[u]<’ lete,={sel:uC w,, soclearly ¢, € D and (c, :
u € [A]<") is multiplicative.

For each s € I applying Definition 4.1(a)(§) to a = {s} and u = w, we can find a model M, of T and b, €
800 (M) for a € wy satisfying (x) there.

Now choose by, also for s € I, a € u\wj, as any sequence of members of M, of length £g(7, ). Now for every
o < pand j < €g(3,) we define g, ; € [ M, by gu.;(s) = (bs.a);-

sel
Hence go;/D € [[M;/D = Nand by = (g4.:/D : { < £g(F)) € “U«)N and consider the set p = {@y (X, by ) :

sel
o < p}.Is pa(< ¥)-satisfiable type in N? We shall prove that Yes, so letu € [u]=?, then recall co={sel:uc
W} e Dands € ¢, Na, =>_{<pa (X(e]» bs.o) - @ € u} is realized in My, [why? by the choice of (b, : o € wy).]
So let the type {@q(Fpe1, bse) @ @ € wy} be realized a; = {a, : ¢ < ¢); for s €1 and let f,, € [[ M, be

sel

Ja,c(8) = ay ;. Basily (f, ;j/D : ¢ < ¢) realizes {¢, (X)) : @ € u} because a, N¢, € D. Hence p(Xj)) is (< ¥)-
satisfiable indeed.

Next, we apply clause (C) we are assuming hence p(%j.)) is realized in N. So let @ = (a; : { < &) € °N realize
pand let a; = h; /D where h; € [ M, and lastly let

sel
b, ={s€l: M = ¢,[{h:(s): ¢ < &), bs,lforevery & € uand s € ¢,}.

Now check that (b, : u € [A]=") is as required, recalling (¢, : u € [A]=") is multiplicative. So the desired con-
clusion of Definition 4.1(B) holds indeed so we are done proving (C) = (B).
2. Similarly; e.g., for clause (a) let p(X) be as there but

Jog € M? is supported by the maximal antichain (Coziti<ila,&))

(x)o a, = supfc: we have acunt <& = (3d)(d e dom(fye) Ac<d) and M =
Fxe) N @Feps (foz(©) 1 & < &)}

oeu

(*); a=(a,:uec[u]")isaD-(u,?,¢e!, A, T)-problem.
[Why? As there.]
()2 let b be a D-(u, ©)-solution.

[Why does b exist? By (B)’ recalling Definition 4.1.]
Also the rest is as above. 0

Remark 4.6 If .7 C [u]<? is cofinal, u € [u]=" = | P (u) N .| < ¥ we may consistently replace []<"
by .7 and 2”1 by ;.

Definition 4.7 1. A filter D on a complete Boolean algebra ‘B is (u, ¥ )-excellent when: if a=(a,:ue
[]=7) is a sequence of members of B, (yes! not necessarily from D), then we can find b which is a
multiplicative refinement of a for D, meaning:

(@) b= (b, :ue[u]");
() b, <a,and b, =a, mod D;
(c) ifa, Na,, =a,n, modD,thenb, Nb, =b,n,.

2. ForaBoolean algebra B and filter D on *B we say ais a D-(u, ¥ )-problem (ora D — (u, ¥ )-moral problem)
when clauses (a)(«), (8), (y) of Definition 4.1 holds.
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3. A filter D on a complete Boolean algebra B is (u, ©)-good when every D — (i, ¥ )-problem has a D —
(u, ¥)-solution

Claim 4.8 1. Assuming (x) below, the filter D on I (i.e., on the Boolean algebra £ (1)) is (u, 9, &!, A, T)-
moral iff the filter Dy on B is (u, ¥, €!, A, T)-moral where:

(*) (a) B is a complete Boolean algebra;
(b) j is a homomorphism from P (I) onto B,;
(c) Do={A C1:j(A) = 1y} is a (u, ©)-excellent filter on I;
(d) D is a filter on B;
(e¢) D={AC1I:j(A) € D}. is afilter on |
2. We can replace P (1) by a complete Boolean algebra B,.

Proof. 1. The “if” direction: We assume D; is (u, ¢, ¢!, A, T)-moral and should prove it for D. So let
A= (A, uec[ul=")beaD-(u,?, ¢!, A, T)-problem and we should find a D-(j, ©#)-solution B of it.

Clearly a,:=jA,)eB" and a=(a,:uc[ul"")=({A):ue[ul’) is a D — (u,?, e\, A T)-
problem.

Hence by our present assumption (D is (u, ¥, ¢!, A, T')-moral) there is a D; — (i, ¥)-solution b of a, let
b = (b, : u € [u]=?) soin particular u € [u]=” = b, € Dy.Foru € [1]=” choose B! C I such that j(B!) = b,,,
possible because j is a homomorphism from 2(I) onto B;. So B' = (B! : u € [1]=”) is a multiplicative modulo
Dy, i.e., (Bl/Dy : u € [£]=") is a multiplicative sequence of members of Z(I)/Dy.

Let B2 =Bl NA,, let

1. B}t C A, mod Dy.
[Note that we have written B! and not B2. So why this statement holds? As j(B!) = b, < a, = j(A,).]

i. B2 C B! and B2 C A, mod Dy;
ii. B2 €D;
iii. (B2:u e [u]=") is multiplicative modulo Dy (cf. Definition 4.7).

By Definition 4.7(1) applied to (Bﬁ cu € [u]=?) recalling clause (c) of the assumption of the claim, we can
find B = (B, : u € [©]=”) which is a multiplicative refinement of B? and is multiplicative, and B, € D because
B, = Bﬁ modulo Dy € D and Bi eD.

So we are done for the “if”” direction.

The “only if” direction: So we are assuming D is a (u, ¥, €!, A, T')-good filter on I and we have to prove D,
is (u, 9, e!, A, T)-moral.

SoletabeaD; — (u, 9, ¢!, A, T)-moral problem (on B;), we have to find a solution. For u € [1]<? choose
Al C I'suchthat j(A!) =a,, so Al € D (by clause (e)) andu C v € [u]=? — Al C A! modulo Dy. Now by Defi-
nition 4.7, i.e., clause (b) of the assumption of the claim there is A> = (A2 : u € [u]=”) suchthatA2 C A}, A2 = A}
mod Dy hence A2 € D and A” is C-decreasing [Why? Because A is C-decreasing modulo Dy as a is decreasing
hence A? is C-decreasing.]

As D is (u, 9, €!, A, T)-good filter on I there is a D-multiplicative refinement (B2 : u € [u]=") of (A2 :u €
[1]="). Letb, = j(B2), now (b, : u € [u]=") is as required.

2. Similarly. g

Claim 4.9 Let D be a filter on I.

1. Dis (u, 9)-excellent implies D is (., ¥)-good, cf. Definition 4.7(3).
2. Dis (u, v)-good implies D is (u, V', €, A, T)-moral.

Proof. 1. Soleta=(a,:u € [u]<") be a D-problem and we should find a D-(ut, ¥ )-solution b below a.
As D is (u, 9)-excellent we apply this to a and b as in Definition 4.7(2). Easily it is as required.

2. Just read the definitions: there are fewer problems. g

Remark 4.10 We may wonder, e.g., in Claim 4.5(1): can we remove the regularity demand on the filter D from
clause (A) to clause (B)? The answer is yes for most 7°’s.

www.mlq-journal.org ©2021 Wiley-VCH GmbH



Sh:1064

34 S. Shelah: Atomic saturation of reduced powers

Claim 4.11 The filter D is (u, ¥ )-regular when:

A. (a) B =2),
(b) D is a 9-complete ultrafilter on *B;
(c) ¥ > e, is natural but not actually required;
(d) T isacompletelLy y(t)-theory, e.g., T = Thy, ,(M), M a ¥-saturated model (note that T = TOW] where
Ty = Thho.xo (M), i.e., T is determined by Ty and ¥ );
B. T has a model M and p = {@q (%[, by) 1o < [}, @y (X(ep» Vo) € Ly w9, by € UM such that: for every g C
p, q is realized in M iff |q| < ¥;
C. if My is amodel of T fors € I, then || M/D is (u™", 9, €!, A)- saturated.

Proof. Should be clear. (]

5 A counter example

In § 3 we generalize [22, Ch. VI, 2.6] to filters, using the class of relevant RSP’s r being closed under reduced
powers (being a Horn class; cf. Claim 3.2). Can we generalize the result of Malliaris and Shelah [9]? Here we give
a counter-example.

For this we have to find

(%); D a filter of A such that the partial order N, = (Q, <)’\/D satisfies p*(N)) = k| +x2 < ut <
p:ym(Nl), K1 # K2, (K1, k2) € € (INy), so in fact N| has no (¥, ©,)-cut when ¢, = cf () = ¥, < u and
when ¢ > u™ A %5_ € {0, 1};

(x), preferably: A = pu;

(*); or at least for some dense linear order M|, there is a complete Boolean algebra B and a filter D on B such
that Ny = M(()B /D is as above.

We presently deal with the (main) case = R( and carry this out. It seems reasonable that we can prove, e.g.,
Tieq #Arp Tora but we have not arrived to it; cf. [18] on Tieq and [23] on the closely related Ti.q. Later we hope to
say more. Clearly we can control the set of non-symmetric pre-cuts.

Convention 5.1 T, is the first order theory of (Q, <); cf. Definition 5.4(1)(d).
Definition 5.2 Let « be a regular cardinal.

1. Let K> be the class of m such that:
(@ m=(B,D) = (Bm, Dm);
(b) *B is a complete Boolean algebra satisfying the x-c.c.;
(c) Dis afilter on ‘B.
2. Let <% be the following two-place relation on K** : m <% n iff
(@) m,n € K>
(b) Bm < Bu;
(¢) Dp = D, N B,
3. Let SEH be the class of §Ea-increasing continuous sequences m which means:
() m = (m, : o < {g(m));
(b) m, € K
(c) ifa < B < £g(im), then m, <" my;
(d) if B < £g(m) is a limit ordinal, then:
(a)B, is the completion of U{By,, : a < B};
(B)Dnm, is generated (as a filter) by U{Dyy,, : @ < B}.
4. If k = 8; we may write K, <! . S, and if k = co we may write KZ,, <i,, S, or K2, <b §b%,
5. We say m is of cardinality A when By, is of cardinality A.
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Claim 5.3 1. For every X there is m € K™ of cardinality .=*.

2. <M is a partial order on K**.

3. Ifm=(m,:a <38)isa < increasing continuous sequence, then for some ms, the sequence M’ms is

SEa-increasing continuous.

Proof.

1. E.g., By, is the completion of a free Boolean algebra generated by L =" elements.

2. Easy.

3. If cf(8) > «, then By, = | Bm,, if cf(8) < « it is the (pendantically a) completion of the union. Dy, is

<6
the filter generated by U{Dy,, : o < §}. Classically «-c.c. is preserved. U

Definition 5.4 Letm € Kga and k1, k; are (infinite) regular cardinals.

1

. We say a is a Tyq-(k1, k2)-moral problem in m when:

(a) me Klfa, (actually already assumed).

(b) I = I(ky, k) is the linear order I; + I, where
LI = Li(x1) = ({1} x k1),
2.L = hka) = ({2} x &3);

(c) a=(ay; 1S <y .« ) is a sequence of members of Dp,;

(d) if u C1is finite, t : u x u — {0, 1} and ﬂ{aif?(s”)) :s,t € u} > Oy, then there is a function f : u —
{0, ..., |u] — 1} such that:
Lif s, t € u, then t(s, 1) = 1iff f(s) < f(¢);

(e) hence s; <; 52 <7 52 = a,, 5, N A5 <A, and we stipulate a,; = 1, a;; = a,, whens <; 1.

2. We say b is a solution of a in m where a is as above when:

(@ b= (b, :sel);
(b) bs; € Dp;
(c) if sy € 11,82 € b, thenbg, Nb,, <ay, .

Definition 5.5 1. For: =1, 2 let S, be the class of tuples s = (I, Dy, j, ‘B, D;, D) such that:

(a) j is a homomorphism from £?(I) onto the complete Boolean algebra 25;
(b) Dj is afilter on ‘B;
() Do ={A C1:j(A)= 1%} (orsee§4);
(d D={AC1:jA)eDi};
(e) the pair (°5, D) belongs to K; ;
2. Fors € S let mg = (*Bg, D).
3. We say s € S is (u, ¥)-excellent (if ¥ = Ry may omit) when Dy is an excellent filter on I, cf. Defini-
tion 4.7(2).
4. Wesay s € Sis (u, 9)-regular (if 9 = Ry we may omit ) when Dy is a (i, ¥ )-regular filter.
5. Let Siw be the class of (i, ¥ )-excellent (u, ¥)-regular s € S;; we may omit ¢ if ¥ = .

6. LetS, » . be the class of s € Sfm such that By satisfies the «-c.c.

Claim 5.6 1. Assume m = (B, D) € Ky, and k1, k, are infinite and regular cardinals. Then for some M €

MOdT(

2. Let p > Ro = 0. Ifs € S, sois p-excellent and pu-regular and k, ky > R are regular and k1 + k2 < W,
then the following conditions are equivalent:

M® /D has a (k1, k2)-pre-cut iff some Toa-(k1, k2)-moral problem in m has no solution.

ord ?

(a) for some linear order M, M'® /Dg has a (k\, k»)-pre-cut;
(b) for every infinite linear order, M'® /Dg has a (k1 k»)-pre-cut;

(c) not every To-(k1, k2)-moral problem in mg has a solution.

Proof. Asin in the proof of Claim 4.5(1), relying on Definition 5.4 instead of Definition 4.1; recalling
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B if M} for s € I,1 € {1, 2} are z-models, |t| < u, D a u-regular filter on / and MSI,MS2 are elementarily
equivalent, then Ny = [[ M, 3 /D,N, =[] Mf /D are L+ ,+-equivalent (and more, cf. Kennedy and Shelah

sel sel
[4], [5] and Kennedy, Shelah, and Viéédninen [6] on the subject). O

Observation 5.7 Assume m € Klfa and a is a Tyq-(k1, k1)-moral problem for m so (cf. Definition 5.5(5))
Ig = Ig(/cg)forﬂ = 1, 2.
1. IfI; C L is cofinalin I, and I, C L is co-initial in I, then @ has a solution inm iffa’ = al(I} + I,) = (a,, :
s <;tands,t €I} + L) has a solution in m.
IA. Also, above, ifb is a solution of a in m, then b[(I| + I}) is a solution of @'.
IB. Also above, if b is a solution of @, then b is a solution of a when:
(a) ifs €I, andt € I is minimal such that s <; t, then by =b; Na,, if s <; t and by = b} ifs =1;
(b) like (a) replacing I, I}, s <; t,a,, by L, I, t <; s, & ;.
2. Ifbis a solution ofainmandb, € D Ab, < b, fors € I; + b, then (b, : s € I) is a solution of a for m.
Proof. 1. Easy using the proofs of Claims 4.5 and 5.6 or using (1A), (1B).
2. Check. U

A key point in the inductive construction is:.

Claim 5.8 There is no solution to a in mg when:

(a) M= (m, :a <) eSE;

(b) ais a Tyq-(k1, k2)-moral problem in my;

(c) ifa < 4, then a has no solution in m,;

(d) cf(8) # k1 or cf(8) # ks

Proof. Letm, =(%5,,D,)for y < §; by symmetry without loss of generality cf(§) # «; and toward con-

tradiction assume b = (by : s € I + 1) is a solution of a in my.
Hence b, € D. Now D; is not necessarily equal to |_J D; but recalling Definition 5.2(3)(d)(8) and (D, : y < §)

y <6
being increasing, clearly every member of D is above some member of | J D, .
y <8
So by Observation 5.7(2) without loss of generality s € [, + L, = b, € |J D, € | B,.
y<é y<é

As cf(8) # ki, for some y < § we have k1 = sup{a < ky : b(1.o) € B, },ie., {s €l : by € B,} is co-final in
I;. So by Observation 5.7(1) without loss of generality

(a) selj = b, €B,.
As D, = Ds N5, by Definition 5.2(2)(c) clearly
(b) se = b,eD,.

Fort € I, letb; = min{b € B, : Bs |=b, < b}, well defined because B,, is complete.
Now

(c) bjeD, fort € .

[Why? Clearly b, € B; as b is a solution of a in m; and b, < b;, b, € B, by its choice. Also b, € D;s because
b; < b; Ab; € Ds and D; is a filter on ®Bs and lastly b, € D, as D, = Ds N%5,,.]

d) ifsel,t € b, thenb,Nb, < a,,.

[Why? Note Bs = “b; Nb, < afyi , because b is a solution of a in B; hence b, < a,;; U (1 — by) and the later
€ B, . So by the choice of b, b} < a,, U (1 — by) hence b, N'b; < a,.]

(e) (by:sel)b,:teh)solvesain B,

[Why? By (a) 4 (b) + (c) + (d).]
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But this contradicts an assumption. O

Definition 5.9 Assume m € Kga and a is a (k, k2)-moral problem in m. We say n is a simple a-solving
extension of m when:

(a) B, is the completion of ‘B where

(b) By is the Boolean algebra generated by By, U {y; : s € I(k, k2)} freely except the equations which holds
inByand 'y = {y;, Ny, < a5 51 € Li(kr)and s, € L(ky)};

(c) D, is the filter on *B,, generated by Dy, U {y, : s € I(k1, k2)}.

Claim 5.10 Assume a is a Tyq-(k1, k2)-moral problem in m € K,E’a and’k = cf(k) > k1 + K.

1. Thereisn € K}ja which is a simple a-solving extension of m, unique up to isomorphism over By,.
2. Abovem <" n (son € K").

3. Ifa* is a Tyw- (91, U2)-moral problem of m with no solution in m and 9 ¢ {k1, K2} or ¥, ¢ {K1, K2}, then
a* has no solution in n.

Proof. 1.Asaboveletly = I)(k;)forl =1,2and] =1, + b.
First

()1 the set of equations I'; is finitely satisfiable in By,.
Why? We shall prove two stronger statements (each implying (x);).
()11 ift; € I, then we can find (b, : s € I) € 98 such that:
(@ b, €Dy S B,if (s <, 1)V (seh);
(b) if s; € I1, s, € I, then b/s1 N b/Sz < ay -
[Why? Let b/, be:
1. ag,ifs </t (sosel)
2. A s ifs e V43
3. Opifty <;sel.
Now clause (a) is obvious (recalling a;, ;, = lgs,, and as for clause (b), let s; € I}, s, € L, now if t; <
s1 € I, then b;l N b;z =05, N b;z = 0g, < ay , andifs; <; 1, then b;l N b;z = a,, 4, Nay, , whichis
< a,, 5, by Definition 5.4(1)(d),(e).]
(x)12 ift, € I, then we can find (b, : s € I) € 98 such that
(a) b/‘ €D, CBhifseljort <L S;
(b) ifs; € b, s, € I, then bil N biz < ag -
[Why? Similarly.]
Now (x); is easy: if I" C I'; is finite let ¢, € I; be such that: if ¢ € I} and y, appears in "/, then ¢ < t,.
Choose (b, : s € I) as in (x);; for f, and let & be the function y, — b| for s € I. Now think, so (x);
holds indeed.
Clearly it follows by («); that
(*¥)2 (a) there is a Boolean algebra B¢ extending ‘B, as described in clause (b) of Definition 5.9;
(b) there is a Boolean algebra 28, as described in (a) of Definition 5.9: the completion of ‘Bg;
(c) Dy ischosen as the filter on 28, generated by Dy, U {y; : s € [}; satisfies Dy, = Dy, N B, in particular
O%m ¢ Dy;
(d) B, satisfies the x-c.c.;
(e) Dy is generated (as a filter) by Dy N *BY.
[Why? Clauses (a),(b) follows by (*); and for clauses (c),(d) see ()4 and (x)s in the proof of (2), respec-
tively; in particular O ¢ Dp.]
Together we have n = (8, Dy) € Kga, as for m <y, n, see part (2).

2. Now (by part (1) we have ‘B, € B, but we shall show that moreover)

7 It seems that min{x;, k2} < « suffice; the only difference in the proof is in proving (x)s.
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(*)3

(*)4

(*)s

B < By,.

[Why?If not, then some d € B is disjoint to b for a dense subsetof b € B . Letd = o (yy), .-, y5,_,, )

where o is a Boolean term, sg <; ... <; 5,1 and ¢ is from B,. We may replace d by any d’ € %: satis-

fyingd’ <o d. Hence without loss of generality d = N{y'") : £ < n} N ¢ > 0, where ¢ € B, 1(£) €

{0, 1} for £ < n; also without loss of generality for every l,k<nwehave sy e[ Aspelh =— (¢ <

as[,sk) VN a5, 5 = O‘B,,)-

We now define a function & from {y, : s € I} into By, as follows: h(yy)is:

i cif s=spAnl)=1;

ii. O, if otherwise.

Now

iii. ifty €1, € b, then By, = “h(y,) Nh(y,) < a,,”.

[Why? If h(t)) = Oss,, Vv h(tz) = Ogs,, this is obvious, otherwise for some £(1) < £(2) < n we have

t = S¢1), b = Se2) and n(€(1)) = 1 = n(£(2)). So it suffice to prove ¢ = ¢ N ¢ < a,, ,, but otherwise by

the choice of ¢, c N a,, ;, = 0, hence recalling Definition 5.9(b) we have B, = “y,, Ny, N ¢ = 0" con-

tradiction to our current assumption B, = “d > 07; so (iii) holds indeed.]

By the choice of I'; and of B, recalling By, is complete, by the choice of 4 and (iii) there is a projection

i from B, onto By, extending A, so clearly iz(d) = c and this implies¢; € B A0 <c¢c; <c= B, =

“crNd > OZ’BH contradicting the choice of d. So indeed ()3 holds.]

Dy, = Dy, N By,

[Why? Otherwise there are ¢; € Dy, ¢ € B\Dm and s <; ... <; s,—1 suchthat B, &= “ )y, Ncy <
l<n

¢’ As a;, ;, € Dy, fort) <; tp, without loss of generality ¢; < a,, 5, for{ <k <n,s; € I, s¢ € b.

Now letting ¢ = ¢; — ¢, we continue as in the proof of (x); defining /,  and apply the projection % to

“NysNer = e’

l<n

B, satisfies the x-c.c.

[Why? If not, then there are pairwise disjoint, positive d; € B, for i < «. So as in the proof of (%)3,
without loss of generality d; = ﬂ{ylsf(iﬁé)"e)) : € < n(i)} N ¢; where ¢; € B, n(i, £) € {0, 1} and s(i, 0) <;
s(i, 1) <7 ... <y s(i,n(i) — 1). Let m(i) < n(i) be such that for every £ < n(i) we have s, € I; iff £ <
m(i).
Again as there, without loss of generality for every £ < m(i) < k < n(i) we have (ay; ¢)six) < ¢i)V
(Asi.0).56.0 Nei =0)son(@, £) =1 =n(, k) Al <m(i) <k < n(i) = ¢; < ay.0).56.0)-
As k =cf(k) > k1 + 2 by an assumption of Claim 5.10without loss of generality n(i) = n, m(i) =
mn(i, £) = n(¢) and s(i, £) = s, for i < k, £ < n and as B, satisfies the k-c.c. we can find i < j < «
such that B, = “0 < ¢; N c/]./ and let ¢ = ¢; N ¢; so we can continue as before.]

So together by (%)3, (*)4, (x)s we have m <P n € K** as promised.

3. LetI" = I(D, o), I = 11(D), I; = L(¥2) and recall @* = (aj, : s <« t) is a Ta-(P1, ¥2)-moral problem
in m. Toward a contradiction assume that the sequence b = (b, : t € I') solve the problem a* in n so b, € D,
and let b, = 0; (Vs(1,0) - - - » Ystn(t)=1)s €105 « -+ » Comt)—1) With ¢, x € B, s(¢, £) € I and without loss of generality
s(t, ) <y s(t, L+ 1)forl < n(t) —1sos(t,k) el fork < n().

The reader may wonder: we have to prove that there is no solution in B, , not just in B¢ , so how can we

use finitary terms? The point is that though B, is the completion of ‘B¢, the filter D, is generated (as a filter) by
B2 N Dy.

By symmetry without loss of generality

()6 & {K1, K2}

Recalling Observation 5.7, we can replace b, by any b, < b, which is from Dy, so as A\ ys.¢) € Dn,
¢

without loss of generality £ < n(t) = b; < yy.¢), S0 without loss of generality

()7 by = N{yse.e) : € < n(t)} N ¢, for some ¢; € Dy, recalling Dy, = Dy N By,

By the A-system lemma (recalling Observation 5.7(1)) without loss of generality
@ if 9 > N, then
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(@)t € If = n(t) = n(x);
(b)ift € I, then s(t, £) € I} <= £ < £(x);
(c) {{s(t, £) : £ < n(x)) : t € I{) is an indiscernible sequence in the linear order I = I(ki, k»), for
quantifier free formulas.
But we shall not use @. As v # ki, k2, by Observation 5.7(1),(1A) it follows that
without loss of generality for some s7, s5 we have:
(x)g sy €ly,s5 € bands(t, £) ¢ [s7, s5]; forevery t € If, £ < n(2).
Again by Observation 5.7(2) without loss of generality
(k) ift € I, then b, < Yso N Yss.
We now define a function 4 from {y, : s € I} into By, (yes! not By,) by:
()10 A(yy) is:
(a) as..v’]‘ N as‘l’,s‘; if s <1 ST;
(b) as]‘,x my‘v n as,s; ifs € Ia S? </ S =p S;;
(C) a.,-f]gs; n a.,-;,s if S; <7 S.
Note
()11 h(ys) € Dyfors e 1.
[Why? Because a,; € Dy, for S € I;,t € I)2 and y; € Dy, for s € 1.]
()12 h(ys,) Nh(yy,) < ay, 5, forsy € Iy, 52 € b.
[Why? If 51, 52 € [s7, s5]; this holds by the definition of By, i.e., as h(y;,) < ys,, h(yy,) < ys, and By, =
“Yo, Nys, < af .
If 51 <p- 85 N85 <p+ 52, then ()1 says: a; ;s Nag g Nag, <ag which obviously holds (as a is a
Tora-(k 1, k2 )-problem in m).
Ifs; < 87 A sz € [57, 851 then this means: (a5, N as»l,si) N (a5, Nys, N ami) < a,, 5,; butas we have
a, ¢ Nag s, < ay , this holds.
If 51 € [s7, 5515+ and s5 <« s, this means (ay;,sl Nys Nag 5)N (alez,s; N asszzﬂx.) < a,, 5, which holds for
similar reasons. So (%), holds indeed.]
By the choice of B, and B, there is a homomorphism h from $B,, into B, extending idss,, and extending
h. Now easily iz(b,) € D for t € I" because b, = N{y1.¢) : £ < n(t)} Ncs, ¢; € Dy hence ﬁ(c,) =c¢ €
Dy, and by ()10 we have il(ys(g,,)) € Dp,.
Now (iz(b,) : t € I*) still form a solution of a* and by ()7 4 (x)s + ()10 we have t € I} = h(b;) €
B, hence without loss of generality:
()13 t€lf = b, € By
Now define b; for t € I* by: by is:
(a) b, ift e I}
(b) ¢ ift e L.

It suffices to prove that (b : ¢ € I*) solves a* inm. Clearly t € I* = b, € Dy, solett; € I, 1, € I;. We have

to prove that b, N'b; < a, ;, but we know only that b, N'b;, < a;,,, which means a, ;, > b, N ( [ Ysr,.0)N
l<n(ty)
cn) = (), OB N s : € < n()).
Let h, be a projection from B, onto By, such that A, (ys,.r) = ¢ if £ <n(t) and h,(ys) = Op, if s €
I\{s(t2, £) : £ < n(t,)}, as earlier it exists and applying it we get the desired inequality. 0

Theorem 5.11 For any A and regular ¥y, ¥, < A such that ¥ + 9, > R there is a regular filter D on A such
that:

(a) forevery dense linear order M, in M” /D there is a (91, 0»)-pre-cut but no (k1, k> )-pre-cut when k1, k> are
regular < A and {0, 92} € {k1, K2}
(b) if M is (*>2,<)"/D, then t(M) > \™.

Remark 5.12 1. Why do we need 9, + ¥, > R(? To prove (k).
2. In fact, this demand is necessary; cf. Observation 5.14 below.
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Proof. We prove clause (a), which is the main result, clause (b) holds by 5.15. Let « = A ™.

(*); there are mg, a such that:
(@) my € K™

(b) ais a Tyq-(¥, ¥2)-moral problem in mg not solved in it.

[Why? By [22, Ch. VI, § 3] there is an ultrafilter D on A such that in (Q <)*/D there is a (%, ¥, )-cut. Define
m by B, = (L), Dn = D, now check. E.g., as k = A", easily the Boolean algebra By, satisfies the «-c.c.;
alternatively let *B,, be generated by {a,, : s € I}, t € b} freely; and let D, be the ultrafilter on B, generated by
{as; : s el),t € L}. Now check.]

Let (W, : a < 2%) be a partition of 2* to sets each of cardinality 2* such that W, Na = @.

(*)2 we can choose m,, and (a, : y € W,) by induction on o < 2* such that:
(a) m, € K™ has cardinality < 2%,
(b) (mg:p <a)esH
(c) mgisasin (x);;
(d) (a, : y € W,) be such that a, is a Ti,4-(ky,1, &y 2) problem in m, and «, i, k, > are regular < A and
{91, 1} SZ {ky 1, ky 2} and any such a appears in the sequence;
(e) if @ = y + 1, then necessarily y € Wg for some 8 < « and in m,, there is a solution for a,;
(f) in my, there is no solution to a*.

[Why can we carry the induction?
Now for @ = 0 use (%), for a limit use Claim 5.8 and for « successor use Claim 5.10.]

(%)3 letting m = my. we have By, = U{Bp, : @ < 2*} and Dy, = U{Dpy, : o < 2*}.

[Why? Because (m,, : o < 2*) € " and cf(2*) > «.]

(x)4 there is a regular excellent filter Dy on A and homomorphism j from £2() onto By,.

[Why? Cf. [7].]

(*)s let D =j ' (Dm).

So D is a filter on A, and by 4.8 for ¥ = 8 (or Malliaris and Shelah [7]) we are done. O

Conclusion 5.13 [f 1 > R, the results of Malliaris and Shelah [9] cannot be generalized to reduced powers
(atomic types, of course),that is (clause (A) is in contrast to [9, Th.10.25 (b) = (d)]; clause (B) is in contrast to
[9, Th.10.1], and clause (C) is in contrast to [9, Th.3.1])

A. If A = Ry, then for some regular filter D on A we have: in ultrapowers of infinite linear orders we have a
pre-cut with small cofinalities, but no symmetric pre-cut, that is:

(a) in the ultrapower (Q, <)*/D there is a (81, Ro)-pre-cut;
(b) in this ultrapower, there is no symmetric pre-cut of cofinality o for o < A;

B. treetops: we can add above above that in (*>w, <)*/D every increasing sequence of length < A has an
upper bound;

C. if A < R, then we can add in part (A), there are two pre-cuts with the same small left cofinality but different
small right cofinalities, e.g., R from the left and R,, R from the right.

Proof. Forclause (A) we apply clause (a) of Theorem 5.11 choosing the pair (¢, ¥,) as (R, Ry).

For clause (B) apply clause (b) of Theorem 5.11.

For clause (C) we repeat the proof of Theorem 5.11 but starting (with k = A" as there) and choose as there
my € K, of cardinality < 2* such that some (X, 8¢)-moral problem and (X, 8;)-moral problem in my are not
solve. Then continue as there. O

Observation 5.14 [fm € K,E’a, then any Tyq-(Ro, Ro)-problem a in m has a solution.
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Proof. Let b(l.n) = b(z.,l) =b, := ﬂ{a(l_g)_(zqk) 2Lk <nj, clearly s € IRy, N9) = by, e D and (s,1t) €
I(1,R0) x 1(2,%0) = b;Nb, < a,,. O
Claim 5.15 In M® /D, any increasing sequence of length < «* has an upper bound when (A) or (B) holds,
where:
A (a) M, =(""pn, Q)

(b) B is a complete Boolean algebra which is (< ¥ )-distributive
(c) Disa (u, v)-regular, ¥-complete filter on 5

(d) (Q, <)®/D has no (o, o)-pre-cut for any regular o < k

(e) m = (B, D)

(a)-(c) as above.

(d) every Ty-(o, 0 )-moral problem in m has a Ti.-(0, 0 )-moral solution in m where:
() ais a T,,-moral problem when:

i.a=(ap:a<pB <o)
ii. a8 € D;

iii. if u C o is finite and ¢ € B, then for some 7 = (1, : o € u) we have n, € "> |u| for a € u and ¢ <

Ay = Nq IAngandcNayp =0p = —(ny A ng)fora < P fromu;

(B) b= (b, : @ < o) is a Ty-(co)-solution of a when b, € D and by, Nbg <aypfora <p <o.

Proof. Ifclause (A), asin[21, Ch. VI, 2.7] or [9].
If clause (B), as above. O
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