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Abstract. A permutation group G on a set A is κ-homogeneous

i� for all X,Y ∈
[
A
]κ

with |A\X| = |A\Y | = |A| there is a g ∈ G
with g[X] = Y . G is κ-transitive i� for any injective function f

with dom(f)∪ran(f) ∈
[
A
]≤κ

and |A\dom(f)| = |A\ran(f)| = |A|
there is a g ∈ G with f ⊂ g.

Giving a partial answer to a question of P. M. Neumann [6] we
show that there is an ω-homogeneous but not ω-transitive permu-
tation group on a cardinal λ provided
(i) λ < ωω, or
(ii) 2ω < λ, and µω = µ+ and �µ hold for each µ ≤ λ with

ω = cf(µ) < µ, or
(iii) our model was obtained by adding (2ω)+ many Cohen generic

reals to some ground model.
For κ > ω we give a method to construct large κ-homogeneous,

but not κ-transitive permutation groups. Using this method we
show that there exist κ+-homogeneous, but not κ+-transitive per-
mutation groups on κ+n for each in�nite cardinal κ and natural
number n ≥ 1 provided V = L.

1. Introduction

Denote by S(A) the group of all permutations of the set A. The
subgroups of S(A) are called permutation groups on A.
Let A be a set and κ ≤ |A| be a cardinal. We say that a permutation

group G on A is κ-homogeneous i� for all X, Y ∈
[
A
]κ

with |A \X| =
|A \ Y | = |A| there is a g ∈ G with g[X] = Y .
We say that a permutation group G on A is κ-transitive i� for any

injective function f with dom(f)∪ ran(f) ∈
[
A
]≤κ

and |A \dom(f)| =
|A \ ran(f)| = |A| there is a g ∈ G with f ⊂ g.
In this paper we give a partial answer to the following question which

was raised by P.N. Neumann in [6, Question 3]:
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2 S. SHELAH AND L. SOUKUP

Suppose that κ < λ are in�nite cardinals. Does there exist a per-
mutation group on λ that is κ-homogeneous, but not κ-transitive?

In section 2 we show that there exist ω-homogeneous, but not ω-
transitive permutation groups on λ < ωω in ZFC, and on any in�nite
λ if V = L (see Theorem 2.5).
In section 3 we develop a general method to obtain large κ-homogeneous,

but not κ-transitive permutation groups for arbitrary κ ≥ ω (see The-
orem 3.2). Applying our method we show that if κω = κ, λ = κ+n

for some n < ω, and �ν holds for each κ ≤ ν < λ, then there is a κ-
homogeneous, but not κ-transitive permutation group on λ (Corollary
3.12).
In section 4 �rst we show that if Martin's axiom holds for countable

posets, then every subgroup of Sω(ω1) with cardinality < 2ω can be ex-
tended to an ω-homogeneous, but not ω-transitive permutation group
on ω1. Based on this theorem we prove that after adding (2ω)+ Cohen
reals to any ground model in the generic extension for each in�nite λ
there exist ω-homogeneous, but not ω-transitive permutation groups
on λ (Corollary 4.9).

Our notation is standard.

De�nition 1.1. If λ is �xed and f ∈ S(A) for some A ⊂ λ, we take

f+ = f ∪ (id � (λ \ A)) ∈ S(λ).

Given a family of functions, G, we say that a function y is G-large i�

|y \
⋃
H| = |y|

for each �nite H ⊂ G.
We say that a permutation group on A is κ-intransitive i� there

is a G-large injective function y with dom(y) ∪ ran(y) ∈
[
A
]κ

and
|A \ dom(y)| = |A \ ran(y)| = |A|.
A κ-intransitive group is clearly not κ-transitive.

2. ω-homogeneous but not ω-transitive

De�nition 2.1. Given a set A we say that a family A ⊂
[
A
]ω

is nice
on A i� A has an enumeration {Aα : α < µ} such that

(N1) A is co�nal in
〈[
A
]ω
,⊂
〉
,

(N2) for each β < µ there is a countable set Iβ ∈
[
β
]ω

such that for

all α < β there is a �nite set Jα,β ∈
[
Iβ
]<ω

such that

Aα ∩ Aβ ⊂
⋃

ζ∈Jα,β

Aζ .

Theorem 2.2. Assume that λ is an in�nite cardinal, and A ⊂
[
λ
]ω

is
a nice family on λ. Then for each A ∈ A there is an ordering ≤A on
A such that
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κ-HOMOGENEOUS, BUT NOT κ-TRANSITIVE 3

(1) tp(A,≤A) = ω for each A ∈ A,
(2) if A,B ∈ A, then there is a partition {Ci : i < n} of A ∩ B into

�nitely many subsets such that ≤A� Ci =≤B� Ci for all i < n.

Proof. Fix an enumeration {Aβ : β < µ} of A witnessing that A is
nice.
We will de�ne ≤Aβ by induction on β < µ.
Assume that ≤Aα is de�ned for α < β.
By (N2) we can �x a countable set Iβ = {βi : i < ω} ∈

[
β
]ω

such
that for all α < β there is nα < ω such that

Aα ∩ Aβ ⊂
⋃
i<nα

Aβi .

Choose an order ≤Aβ on Aβ such that

(i) for each i < ω writing Di = Aβi \
⋃
j<iAβj we have

≤Aβ� (Aβ ∩Di) = ≤Aβi� (Aβ ∩Di);

(ii) tp(Aβ,≤Aβ) = ω.

By induction on β we show that (2) holds for Aα and Aβ for each
α < β. Assume that this statement holds for each β′ < β. To check
for β �x α < β.
To de�ne ≤β we considered a set Iβ = {βi : i < ω} ∈

[
β
]ω

such that
we had nα < ω with

Aα ∩ Aβ ⊂
⋃
i<nα

Aβi .

For i < nα let C ′i = Aα ∩ Aβ ∩ Di, where Di = Aβi \
⋃
j<iAβj . Then

{C ′i : i < nα} is a partition of Aα ∩ Aβ and

≤Aβ� C ′i =≤Aβi� C
′
i

by (i). By the inductive hypothesis, Aβi∩Aα has a partition into �nitely
many pieces {Ci,j : j < ki} such that ≤Aα� Ci,j =≤Aβi� Ci,j. Then the
partition

{C ′i ∩ Ci,j : i < n, j < ki}
of Aα ∩ Aβ works for α and β. Indeed,

≤Aα� C ′i ∩ Ci,j = ≤Aβi� C
′
i ∩ Ci,j = ≤Aβ� C ′i ∩ Ci,j.

�

Theorem 2.3. Assume that λ is an in�nite cardinal, A ⊂
[
λ
]ω

is a
co�nal family and for each A ∈ A we have an ordering ≤A on A such
that

(1) tp(A,≤A) = ω for each A ∈ A,
(2) if A,B ∈ A, then there is a partition {Ci : i < n} of A ∩ B into

�nitely many subsets such that ≤A� Ci =≤B� Ci for all i < n.

Then there is a permutation group on λ that is ω-homogeneous and
ω-intransitive.
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4 S. SHELAH AND L. SOUKUP

Proof. For A ∈ A let

GA = {f+ ∈ S(λ) : f ∈ S(A)∧there is a �nite partition {Ci : i < n} of A
such that f � Ci is ≤A-order preserving}.

Let G be the permutation group on λ generated by⋃
{GA : A ∈ A}.

Claim 2.3.1. G is ω-homogeneous.

Indeed, let X, Y ∈
[
λ
]ω

with |λ \X| = |λ \Y | = λ. Pick A ∈ A such
that X ∪ Y ⊂ A and |A \X| = |A \ Y | = ω.
Let c be the unique ≤A-monotone bijection between X and Y and d

be the unique ≤A-monotone bijection between A \X and A \ Y . Then
taking g = c ∪ d we have g+ ∈ GA ⊂ G and g+[X] = Y .

Claim 2.3.2. G is ω-intransitive.

Pick A ∈ A and choose B ∈
[
A
]ω

such that |A \B| = ω.
Let b0, b1, . . . be the ≤A-increasing enumeration of B. De�ne a bi-

jection y : B → ω as follows: for i < ω and j < 2i let

y(b2i+j) = b2i+1−j.

Observe that if c is ≤A-monotone then

|{i < ω : |{j < 2i : c(b2i+j) = r(b2i+j)}| ≥ 2}| ≤ 1.

Indeed, if |{j < 2i : c(b2i+j) = y(b2i+j)}| ≥ 2, then c should be ≤A-
decreasing, and if |{i : {j < 2i : c(b2i+j) = y(b2i+j)} 6= ∅}| ≥ 2, then y
should be ≤A-increasing.
So y can not be covered by �nitely many ≤A-monotone functions.

But for any h ∈ G, h ∩ (A × A) can be covered by �nitely many ≤A-
monotone functions by (2) and by the construction of G.
Thus y is G-large. �

To obtain nice families we recall some topological results. We say
that a topological space X is splendid (see [2]) i� it is countably com-
pact, locally compact, locally countable such that |A| = ω for each
A ∈

[
X
]ω
.

We need the following theorem:

Theorem (Juhasz, Nagy, Weiss, [2]). If

(i) κ < ωω, or
(ii) 2ω < κ, cf(κ) > ω and µω = µ+ and �µ hold for each µ < κ with

ω = cf(µ) < µ,

then there is a splendid space X of size κ.

Remark. In [2, Theorem 11] the authors formulated a bit weaker result:
if V = L and cf(κ) > ω then there is a splendid space X of size κ.
However, to obtain that results they combined �Lemmas 7, 9 and 16
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κ-HOMOGENEOUS, BUT NOT κ-TRANSITIVE 5

with the remark after Theorem 8� and their arguments used only the
assumptions of the theorem above.

If A is a family of sets, and X is a set, write

AdX = {A ∩X : A ∈ A}

and

Ad∗X = {
⋂
A′ ∩X : A′ ∈

[
A
]<ω}.

Lemma 2.4. If X is a splendid space, U is the family of compact open
subsets of X, and Y ⊂ X, then UdY is nice on Y .

Proof. Let A ∈
[
Y
]ω
. Then A is countable, so it is compact. Since a

splendid space is zero-dimensional, A can be covered by �nitely many
compact open set, and so A can be covered by an element of U . Thus
UdY is co�nal in

〈[
Y
]ω
,⊂
〉
.

To check (N2) observe that every U ∈ U is a countable compact
space, so it is homeomorphic to a countable successor ordinal. Thus
U has only countably many compact open subsets. Hence UdU is
countable which implies (N2) in the following stronger form:

(N2+) for each β < µ there is a set Iβ ∈
[
β
]ω

such that for all α < β
there is ζα ∈ Iβ such that

Aα ∩ Aβ = Aζα ∩ Aβ.

�

Remark. By [3, Corollary 2.2], if (ωω+1, ωω) → (ω1, ω) holds, then the
cardinality of a splendid space is less than ωω. So we need some new
ideas if we want to construct arbitrarily large nice families in ZFC.

Theorem 2.5. If λ is an in�nite cardinal, and

(i) λ < ωω, or
(ii) 2ω < λ, and µω = µ+ and �µ hold for each µ ≤ λ with ω =

cf(µ) < µ.

then there is an ω-homogeneous and ω-intransitive permutation group
on λ.

Proof. Applying the Juhasz-Nagy-Weiss theorem for κ = λ if cf(λ) >
ω, and for κ = λ+ if λ > cf(λ) = ω, we obtain a splendid space on
κ ≥ λ. So, by Lemma 2.4, we obtain a nice family A on λ.
Thus, putting together Theorems 2.2 and 2.3 we obtained the desired

permutation group on λ. �

3. κ-homogeneous but not κ-transitive for κ > ω

De�nition 3.1. Let κ < λ be cardinals. We say that a co�nal family
A ⊂

[
λ
]κ

is locally small i� |AdA| ≤ κ for all A ∈ A.
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6 S. SHELAH AND L. SOUKUP

Theorem 3.2. Assume that 2κ = κ+ and there is a co�nal, locally
small family A ⊂

[
λ
]κ
. Then there is a permutation group G on λ

which is κ-homogeneous, but not κ-transitive.

Before proving this theorem we need some preparation.

De�nition 3.3. If X, Y are subsets of ordinals with the same order
types, then let ρX,Y be the unique order preserving bijection between
X and Y .

De�nition 3.4. If F is a set of functions, an F ∪ {x}-term t is a
sequence 〈h0, . . . , hn−1〉, where hi = x or hi = x−1 or hi = fi or hi =
fi
−1 for some fi ∈ F . If g is function we use t[g] to denote the function

h′0 ◦ h′1 ◦ · · · ◦ h′n−1, where

h′i =


fi if hi = fi,
f−1i if hi = f−1i ,
g if hi = x,
g−1 if hi = x−1.

If H is a set of F ∪ {x}-terms, then write

H[g] = {t[g] : t ∈ H}.
We say that an F ∪ {x}-term t is an F-term i� neither x nor x−1

appear in t. If t is a F -term, then the function t[g] does not depend
on g, so we will write t[ ] instead of t[g] in that situation.
We say that a term t′ is a subterm of a term t = 〈h0, . . . , hn−1〉 i�

t′ = 〈hi0 , hi1 , . . . , hik〉, where i0 < i1 < · · · < ik < n.
The set of all F ∪ {x}-terms is denoted by TERM(F ∪ {x}).
The set of all F -terms is denoted by TERM(F).

Lemma 3.5. Assume that

(1) λ is a cardinal, H is a �nite set of S(λ) ∪ {x}-terms, and H is
closed for subterms,

(2) g is an injective function, dom(g) ∪ ran(g) ⊂ λ,
(3) α, α∗ ∈ λ such that

〈α, α∗〉 /∈
⋃
H[g],

(4) ζ0 ∈ λ \ dom(g) and ζ1 ∈ λ \ ran(g),
(5) η0 ∈ λ \ ran(g) and η1 ∈ λ \ dom(g) such that

η0, η1 /∈ {t[g](α), t[g]−1(α∗) : t ∈ H}.
Let g0 = g ∪ {〈ζ0, η0〉} and g1 = g ∪ {〈η1, ζ1〉}. Then

〈α, α∗〉 /∈ H[g0] ∪H[g1].

Proof. We prove only 〈α, α∗〉 /∈ H[g0]. The proof of the other statement
is similar.
Assume on the contrary that 〈α, α∗〉 ∈ H[g0].
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κ-HOMOGENEOUS, BUT NOT κ-TRANSITIVE 7

Pick the shortest term t = 〈f0, . . . , fn〉 from H such that t[g0](α) =
α∗.
Write αn+1 = α and αi = 〈fi, . . . , fn〉 [g0](α) for 0 ≤ i ≤ n. Hence

α0 = α∗.
Let i maximal such that αi is ζ0 or η0. Since t[g](α) can not be α∗

by (3), i is de�ned.
Since αi = 〈fi, . . . , fn〉 [g](α), it follows that αi 6= η0 by (5). So

αi = ζ0.
Let j minimal such that αj is ζ0 or η0. Since

αj = (〈f0, . . . , fj−1〉 [g])−1(α∗),
it follows that αj 6= η0 by (5). So αj = ζ0 by (5). Thus αi = αj = ζ0,
and so

α∗ = 〈f0, . . . , fj−1, fi, . . . , fn〉 [g0](α).
Since j < i, the term t′ = 〈f0, . . . , fj−1, fi, . . . , fn〉 is shorter than t and
still α∗ = t′[g0](α). So the length of t was not minimal. Contradiction.

�

Lemma 3.6. Assume that

(1) y ∈ S(κ),
(2) A ∈

[
λ
]κ
, and B,C ∈

[
A
]κ

such that |A \B| = |A \ C| = κ,

(3) F ∈
[
S(λ)

]κ
such that

|y \
⋃
H[ ]| = κ

whenever H is a �nite set of F-terms.

Then there is g ∈ S(A) such that

(i) g[B] = C,
(ii)

|y \ H[g+]| = κ

whenever H is a �nite set of F ∪ {x}-terms.

Proof of Lemma 3.6. Write

TASK0 = A× {dom, ran} and TASK1 =
[
TERM(F ∪ {x})

]<ω × κ.
Let {I0, I1} ∈

[[
κ
]κ]2

be a partition of κ, and �x enumerations
{Ti : i ∈ I0} of TASK0, and {Ti : i ∈ I1} of TASK1.
By trans�nite induction, for i < κ we will construct a function gi

and if i = j + 1 for some j ∈ K1 then we also pick an ordinal αj+1 ∈ κ
such that

(a) gi is an injective function, dom(gi) ∪ ran(gi) ⊂ A,
(b) gi[B] ⊂ C and gi[A \B] ⊂ A \ C;
(c) |gi| ≤ i;
(d) if i = j + 1, j ∈ I0 and Tj = 〈ζ, dom〉, then ζ ∈ dom(gi);
(e) if i = j + 1, j ∈ I0 and Tj = 〈ζ, ran〉, then ζ ∈ ran(gi);
(f) if i = j + 1, j ∈ I1 and Tj = 〈Hj, χj〉, then
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8 S. SHELAH AND L. SOUKUP

(i) αj+1 ∈ κ \ {αj′+1 : j
′ ∈ I1 ∩ j}, and

(ii) t[gi ∪ idλ\A](αj+1) is de�ned and t[gi ∪ idλ\A](αj+1) 6= y(αj+1)
for each t ∈ Hj.

Let g0 = ∅.
If i is limit, then let gi =

⋃
j<i gj.

Assume that i = j + 1.

Claim 3.6.1.

|y \
⋃
H[gj ∪ idλ\A]| = κ. (�)

for each �nite set H of F ∪ {x}-terms.

Proof of the Claim. Fix H. We can assume that H is closed for sub-
terms. By (3) we have |y \

⋃
H[ ]| = κ, and

y ∩
⋃
H[ ] = y ∩

⋃
H[idλ\A] (◦)

because H is closed for subterms. Since |gj| < κ, we have

|t[gj ∪ idλ\A] \ t[idλ\A]| < κ. (•)

for each t ∈ H. Putting together |y\
⋃
H[ ]| = κ, (◦) and (•) we obtain

(�). �

Case 1. j ∈ I0 and so Tj = 〈ζj, xj〉 ∈ A× {dom, ran}.
Assume �rst that xj = dom. If ζj ∈ dom(gj), let gi = gj. If ζj /∈

dom(gj), then pick η ∈ C if ζi ∈ B, and pick η ∈ A \ C if ζi ∈ A \ B
such that and η /∈ ran(gj).
Let gi = gj ∪ 〈ζi, η〉. Then gi satis�es (a)�(f).
The case xj = ran is similar.

Case 2. j ∈ I1 and so Tj = 〈Hj, χj〉 ∈
[
TERM(F ∪ {x})

]<ω × κ.
We can assume that Hj is closed for subterms.
By Claim 3.6.1, we have

|y \
⋃
Hj[gj ∪ id(λ\A)]| = κ.

So we can pick αj+1 ∈ κ \ {αj′+1 : j
′ ∈ I1 ∩ j} such that

(∗) for each t ∈ Hj either t[gj ∪ idλ\A](αj+1) is unde�ned or t[gj ∪
idλ\A](αj+1) 6= y(αj+1) .

Now in �nitely many steps, using Lemma 3.5, we can extend the
function gj to a function gi such that

(∗) t[gi ∪ idλ\A](αj+1) is de�ned and t[gi ∪ idλ\A](αj+1) 6= y(αj+1) for
each t ∈ Hj.

Indeed, if t[g′ ∪ idλ\A](αj+1) is not de�ned, where t = 〈t0, . . . , tn〉
then there is i < n such that either

ζi = 〈ti+1, . . . , tn〉 [g′ ∪ idλ\A](αj+1) is de�ned, ti = x and ζi ∈
A \ dom(g′)

or
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κ-HOMOGENEOUS, BUT NOT κ-TRANSITIVE 9

ζi = 〈ti+1, . . . , tn〉 [g′ ∪ idλ\A](αj+1) is de�ned, ti = x−1 and ζi ∈
A \ ran(g′).

In both cases, using Lemma 3.5, we can extend g′ to g′′ such that
〈ti, . . . , tn〉 [g′′∪ idλ\A](αj+1) is de�ned and 〈αj+1, y(αj+1)〉 /∈

⋃
Hj[g

′′∪
idλ\A].

After the inductive construction, the function g =
⋃
i<κ gi meets the

requirements. �

Lemma 3.7. Assume that 2κ = κ+ and there is a co�nal, locally small
subfamily C ⊂

[
λ
]κ
. Then there is a family D ⊂

[
λ
]κ × [λ]κ such that

(1) if 〈A,B〉 ∈ D, then B ∪ κ ⊂ A and |A \B| = κ.

Moreover, writing A = {A : 〈A,B〉 ∈ D} and B = {B : 〈A,B〉 ∈ D}
(2) A is a co�nal, locally small subfamily of

[
λ
]κ
,

(3) B is co�nal in
〈[
λ
]κ
,⊂
〉
,

(4) {X ⊂ κ : |X| = |κ \X| = κ} ⊂ B.

Proof of Lemma 3.7. Fix a locally small, co�nal subfamily C ⊂
[
λ
]κ

such that µ = |C| is minimal. Then |{C ∈ C : D ⊂ C}| = |C| for all
D ∈

[
λ
]κ
.

Write C = {Cα : α < µ}. Since 2κ = κ+ ≤ λ ≤ µ there is a sequence
〈Bα : α < µ〉 ⊂ [λ]κ such that

(a) {Bα : α < κ+} ⊃ {X ⊂ κ : |X| = |κ \X| = κ},
(b) {Bα : α < µ} ⊃ C.
Thus B = {Bα : α < µ} is co�nal in [λ]κ. Now, for each α < µ pick
Aα ∈ C such that Aα ⊃ Cα ∪Bα ∪ κ and |Aα \Bα| = κ.
Then D = {〈Aα, Bα〉 : α < µ} satis�es the requirements. �

After that preparation we prove the main theorem of this section.

Proof of Theorem 3.2. Fix D, A and B as in Lemma 3.7.
For 〈A,B〉 ∈ D consider the structure

M〈A,B〉 = 〈A,<,B, {A ∩X : A ∈ A}〉 .

Fix D′ ∈
[
D
]κ+

such that writing A′ = {A′ : 〈A′, B′〉 ∈ D′} and
B′ = {B′ : 〈A′, B′〉 ∈ D′} we have
(a) ∀ 〈A,B〉 ∈ D ∃ 〈A′, B′〉 ∈ D′ such that ρA,A′ is an isomorphism

betweenM〈A,B〉 andM〈A′,B′〉.
(b) {X ⊂ κ : |X| = |κ \X| = κ} ⊂ B′.

PickK ∈
[
κ
]κ

with |κ\K| = κ. Choose y ∈ S(κ) such that y(α) 6= α
for each α ∈ κ.

Lemma 3.8 (Key lemma). There are functions F = {f〈A,B〉 : 〈A,B〉 ∈
D′} such that

(a) f〈A,B〉 ∈ S(A),
(b) f〈A,B〉[B] = K,
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10 S. SHELAH AND L. SOUKUP

moreover, taking

S =
{
ρC0,C1 : 〈A0, B0〉 , 〈A1, B1〉 ∈ D′, C0 ∈ Ad∗A0, C1 ∈ Ad∗A1,

ρC0,C1 [AdC0] = AdC1},
if H is a �nite collection of F ∪ S-terms, then

|y \
⋃
H[ ]| = κ.

Before proving the Key lemma, we show how the Key Lemma com-
pletes the proof of Theorem 3.2.
So assume that the Key lemma holds.
For each 〈A,B〉 ∈ D pick 〈A′, B′〉 ∈ D′ such that ρA,A′ is an isomor-

phism betweenM〈A,B〉 andM〈A′,B′〉. We assume that 〈A′, B′〉 = 〈A,B〉
for 〈A,B〉 ∈ D′.
Let

g〈A,B〉 = ρA′,A ◦ f〈A′,B′〉 ◦ ρA,A′ ∈ S(A).
Let G be the permutation group on λ generated by

G = {g〈A,B〉+ : 〈A,B〉 ∈ D}.
Lemma 3.9. G is κ-homogeneous.

Proof of Lemma 3.9. It is enough to show that for each X ∈
[
λ
]κ

there
is g ∈ G with g[X] = K.
So �x X ∈

[
λ
]κ
. Pick 〈A,B〉 ∈ D such that X ⊂ B.

Then

Z = g〈A,B〉[X] ⊂ g〈A,B〉[B] =(ρA′,A ◦ f〈A′,B′〉 ◦ ρA,A′)[B]

=(ρA′,A ◦ f〈A′,B′〉)[B′] = ρA′,A[K] = K.

Since |Z| = |κ \ Z| = κ, there is C such that 〈C,Z〉 ∈ D′. Then
f〈C,Z〉[Z] = K. Thus g〈C,Z〉

+[Z] = K because 〈C ′, Z ′〉 = 〈C,Z〉 and so
f〈C,Z〉 = g〈C,Z〉.
Thus K = (g〈C,Z〉

+ ◦ g〈A,B〉+)[X]. �

Lemma 3.10. G is not κ-transitive.

Proof of Lemma 3.10. We prove that y 6⊂ h for any h ∈ G.
Assume that

h = (g+0 )
`0 ◦ (g+1 )`1 ◦ · · · ◦ (g+n−1)`n−1 ,

where gi = g〈Ai,Bi〉 = ρA′i,Ai ◦ fA′i,B′i ◦ ρAi,A′i and `i ∈ {−1, 1} for i < n.

Since g+i \ gi is the identity function on λ \ Ai, we have

h ⊂
⋃
{(gi0)`i0 ◦ (gi1)`i1 ◦ · · · ◦ (gik−1

)`ik−1 :

k < n, i0 < i1 < · · · < ik−1 < n}.
Fix k ≤ n and i0 < i1 < · · · < ik−1 < n.
Observe that if `i = −1 then

(gi)
`i = (ρA′i,Ai ◦ fA′i,B′i ◦ ρAi,A′i)

−1 = ρA′i,Ai ◦ (fA′i,B′i)
−1 ◦ ρAi,A′i .
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So

(gi0)
`i0 ◦ (gi1)`i1 ◦ · · · ◦ (gik−1

)`ik−1 =

ρA′i0 ,Ai0
◦ (fA′i0 ,B′i0 )

`i0 ◦ ρAi0 ,A′i0 ◦ ρA′i1 ,Ai1 ◦ (fA′i1 ,B′i1 )
`i1 ◦ ρAi1 ,A′i1◦

For j < k let
ρ∗j = ρAij ,A′ij

◦ ρA′ij+1
,Aij+1

.

Observe that writing

Cj+1 = ρAij+1
,A′ij+1

[Aij ∩ Aij+1
] and Cj = ρAij ,A′ij

[Aij ∩ Aij+1
]

we have
ρ∗j = ρCj+1,Cj ∈ S

(see Figure 1).

Cj+1

Cj

ρAij ,A ′
ij

ρA′ij+1
,Aij+1

ρ∗j Aij

Aij+1

Aij ∩ Aij+1

A′ij

A′ij+1

Figure 1. The function ρ∗j

Thus

(gi0)
`i0 ◦ (gi1)`i1 ◦ · · · ◦ (gik−1

)`ik−1 =

ρAi0 ,A′i0
◦ (fA′i0 ,B′i0 )

`0 ◦ ρ∗0 ◦ (fA′i1 ,B′i1 )
`1 ◦ ρ∗1 ◦ . . .

◦ (fA′ik−1
,B′ik−1

)`ik−1 ◦ ρA′ik−1
,Aik−1

.

Since ρA`,A′` � κ = id � κ, we have(
(gi0)

`i0 ◦ (gi1)`i1 ◦ · · · ◦ (gik−1
)`ik−1

)
∩ κ× κ ⊂

(fA′i0 ,B
′
i0
)`0 ◦ ρ∗0 ◦ (fA′i1 ,B′i1 )

`1 ◦ ρ∗1 ◦ . . .

◦ (fA′ik−1
,B′ik−1

)`ik−1

But (fA′i0 ,B
′
i0
)`0 ◦ρ∗0 ◦ (fA′i1 ,B′i1 )

`1 ◦ρ∗1 ◦ · · · ◦ (fA′ik−1
,B′ik−1

)`ik−1 = t[] for the

F ∪ S-term t =
〈
(fA′i0 ,B

′
i0
)`0 , ρ∗0, (fA′i1 ,B

′
i1
)`1 , ρ∗1, . . . , (fA′ik−1

,B′ik−1
)`ik−1

〉
.

Since there are only �nitely many sequences i0 < · · · < ik−1 < n, we
obtain that h ∩ κ× κ is covered by the union of �nitely many F ∪ S-
terms.
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12 S. SHELAH AND L. SOUKUP

But y is not covered by the union of �nitely many F ∪ S-terms. So
y witnesses that G is not κ-transitive. �

Proof of the Key Lemma 3.8. Write D′ = {〈Aα, Bα〉 : α < κ+}.
By trans�nite induction, we de�ne functions {fα : α < κ+} such that

taking
F<β = {fγ : γ < β}

and

S<β = {ρC0,C1 : δ, γ < β,C0 ∈ Ad∗Aδ, C1 ∈ Ad∗Aγ,
ρC0,C1 [AdC0] = AdC1},

we have

(i) fα ∈ S(Aα),
(ii) fα[Bα] = K,
(iii) if H is a �nite collection of F<α+1 ∪ S<α+1-terms, then

|y \ H[ ]| = κ.

Assume that we have constructed fβ for β < α. Then we have:

if H is a �nite collection of F<α ∪ S<α-terms, then |y\H[ ]| = κ. (∗)
To continue the construction we need a bit more.

Claim 3.10.1. If H is a �nite collection of F<α ∪ S<α+1-terms, then

|y \ H[ ]| = κ.

Proof. First observe that if ρi = ρAi,A∗i for i < 2, then

ρ1 ◦ ρ0 = ρρ−1
0 [A∗0∩A1],ρ1[A∗0∩A1]

. (�)

Let
t = 〈t0, t1, . . . , tn〉

be an element of H. Since ρC0,C1 � κ = id � κ, if t0 ∈ S<α+1, then
t[ ] ∩ κ × κ = 〈t1, . . . tn〉 [ ] ∩ κ × κ. So we can assume that t0 ∈ F<α.
Similar argument give that we can assume that tn ∈ F<α.
Now assume that

〈ti, . . . , tj〉 =
〈
fαi , ρCi+1,Di+1

, ρCi+2,Di+2
, . . . , ρCj−1,Dj−1

, fαj
〉

Then, by (�)

ρCi+1,Di+1
◦ ρCi+2,Di+2

◦ · · · ◦ ρCj−1,Dj−1
= ρEi,Ej .

for some Ei ∈ AdCi+1 and Ej ∈ AdDj−1.
Thus we can assume that j = i+ 2 and

〈ti, ti+1, ti+2〉 = 〈fα0 , ρE0,E1 , fα1〉 .
Now

fα0 ◦ ρE0,E1 ◦ fα1 = fα0 ◦ ρAα0∩E0,Aα1∩E1 ◦ fα1

and ρAα0∩E0,Aα1∩E1 ∈ S<α.
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Thus there is a F<α ∪ S<α-term st such that

t[ ] ∩ (κ× κ) = st[ ] ∩ (κ× κ).
Since |y \

⋃
{st[ ] : t ∈ H}| = κ by (∗), the Claim holds. �

Since the claim holds, we can apply Lemma 3.6 for the family F =
F<α ∪ S<α+1 to obtain fα as g.
So we proved the Key Lemma 3.8. �

So we proved theorem 3.2 �

The following theorem is hidden in [5]:

Theorem 3.11. If κω = κ, λ = κ+n for some n < ω, and �ν holds for
each κ ≤ ν < λ, then there is a co�nal, locally small family in

[
λ
]κ
.

Indeed, in subsection 2.4 of [5] the author de�nes the weakly rounded
subsets of λ = κ+n, in Lemma 2.4.1 he shows that the family of weakly
rounded sets is co�nal, �nally on page 52 he proves a Claim which
clearly implies that the family of weakly rounded sets is locally small.
Putting together Theorems 3.2 and 3.11 we obtain the following

corollary.

Corollary 3.12. If κω = κ, λ = κ+n for some n < ω, and �ν holds for
each κ ≤ ν < λ, then there is a κ-homogeneous, but not κ-transitive
permutation group on λ.

4. ω-homogeneous but not ω-transitive permutation

groups in the Cohen model

Let MA(countable) denote the Martin's Axiom restricted to count-
able partial orderings.
For f ∈ S(λ) let supp(f) = {α : f(α) 6= α}. Write

Sω(λ) = {f ∈ S(λ) : | supp(f)| ≤ ω}.

Theorem 4.1. If MA(countable) holds and H ≤ Sω(ω1) is a permu-
tation group with |H| < 2ω, then there is an ω-homogeneous, but ω-
intransitive permutation group H∗ ≤ Sω(ω1) with H

∗ ⊃ H.

Proof of Theorem 4.1. If F is a set of functions, let

〈F〉gen = {f0 ◦ · · · ◦ fn−1 : n ∈ ω, fi ∈ F or f−1i ∈ F for i < n}.

Lemma 4.2. If H is a family of functions with |H| < 2ω then some
r ∈ S(ω) is H-large.

Proof. Fix a family {rα : α < 2ω} ⊂ S(ω) such that rα ∩ rβ is �nite for

each {α, β} ∈ [2ω]2.
Assume on the contrary that for each α < 2ω the permutation rα is

not H-large, i.e. there is Hα ∈ [H]<ω such that rα \
⋃
Hα is �nite.

Let U be a non-principal ultra�lter on ω. Then for each α < 2ω there
is h(α) ∈ Hα such that Uα = {n ∈ ω : rα(n) = h(α)(n)} ∈ U .
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14 S. SHELAH AND L. SOUKUP

Since |H| < 2ω, there are α 6= β such that h(α) = h(β). Thus for
each n ∈ Uα ∩ Uβ we have rα(n) = h(α)(n) = h(β)(n) = rβ(n). Thus
rα ∩ rβ is in�nite. Contradiction. �

Using Lemma 4.2 �x an H-large r ∈ S(ω). Enumerate [ω1]
ω × [ω1]

ω

as {〈Aα, Bα〉 : α < 2ω}. By trans�nite recursion on α < 2ω, we will
construct permutations fα ∈ Sω(ω1) such that fα[Aα] = Bα and writing

Fδ = {t[] : t is a H ∪ {fζ : ζ < δ}-term} = 〈H ∪ {fζ : ζ < δ}〉gen ,
the permutation r is Fα+1-large.
Since F0 = H, we know that r ∈ S(ω) is F0-large.
Assume that we have constructed 〈fζ : ζ < α〉 such that the function

r is Fζ+1-large for ζ < α. Then r is Fα-large. Next we should construct
fα ∈ S(ω1) such that fα[Aα] = Bα and r is Fα+1-large. We want
to apply MA(countable) to construct fα, but to do so we need some
technical lemmas.
Fix �rst Cα ∈ [ω1]

ω such that Aα∪Bα ⊂ Cα and Cα \ (Aα∪Bα) = ω.

De�nition 4.3. Given sets X and Y let us denote by Bijp(X, Y ) the
set of all �nite bijections between subsets of X and Y .
For A,B,C ∈ [ω1]

ω de�ne the poset PC,A,B = 〈PC,A,B,≤〉 as follows.
Let

PC,A,B = {p ∈ Bijp(C,C) : p[A] ⊂ B, p[C \ A] ⊂ C \B}.
Write p ≤ q i� p ⊇ q.

We want to apply MA(countable) for the countable poset

P = PCα,Aα,Bα .
Our plan is to de�ne a family D of dense subsets in P with |D| < 2ω

such that if K is a D-generic �lter in P , then (
⋃
K) ∪ idω1\Cα works as

fα.

Lemma 4.4. For i ∈ Cα the sets Di = {p ∈ PC,A,B : i ∈ dom(p)} and
Ri = {p ∈ PC,A,B : i ∈ ran(p)} are dense in P .

Proof. Straightforward. �

Lemma 4.5. If M ∈ ω and H is a �nite set of Fα ∪ {x}-terms then

EH,M = {p ∈ P : ∃m ∈ ω \M
t[p](m) is de�ned, but t[p](m) 6= r(m) for each t ∈ H}

is dense in P .

Proof of the lemma. Fix q ∈ P . We can assume that H is closed for
subterms.
We know that |r \

⋃
H[ ]| = ω because r is Fα-large.

Since H is closed for subterms,

r ∩
⋃
H[ ] = r ∩

⋃
H[idω1\Cα ].
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Since |q| < ω, we have

|r \
⋃
H[q ∪ idω1\Cα ]| = ω.

So we can pick m ∈ ω \M such that

(∗) for each t ∈ H either t[q ∪ idω1\Cα ](m) is unde�ned or t[q ∪
idω1\Cα ](m) 6= r(m).

Since H is �nite, we can �nd p ≤ q such that

(?) for each t ∈ H either t[p ∪ idω1\Cα ](m) is unde�ned or t[p ∪
idω1\Cα ](m) 6= r(m),

(•) the cardinality of the �nite set

{t ∈ H : t[p ∪ idω1\Cα ](m) is unde�ned}
is minimal.

To show that p ∈ EH,M we prove that

(◦) there is no t ∈ H such that t[p ∪ idω1\Cα ](m) is unde�ned.

Assume on the contrary that this statement is not true.
Fix t ∈ H such that t[p ∪ idω1\Cα ](m) is not de�ned, where t =

〈t0, . . . , tn〉. Thus there is i < n such that

(1) 〈ti+1, . . . , tn〉 [p ∪ idω1\Cα ](m) is de�ned, but
(2) 〈ti, . . . , tn〉 [p ∪ idω1\Cα ](m) is not de�ned.

Then t′ = 〈ti, . . . , tn〉 ∈ H. Let ζi = 〈ti+1, . . . , tn〉 [p ∪ idω1\Cα ](m).
Then either ti = x and ζi /∈ dom(p) or ti = x−1 and ζi /∈ ran(p).
In both cases, using Lemma 3.5, we can extend p to p′ such that

〈ti, . . . , tn〉 [p′ ∪ idω1\Cα ](m) is de�ned and 〈m, r(m)〉 /∈ H[p′ ∪ idω1\Cα ].
Thus p′ ≤ q and

{t ∈ H : t[p′ ∪ idω1\Cα ](m) is unde�ned} (
{t ∈ H : t[p ∪ idω1\Cα ](m) is unde�ned}

which contradicts (•).
So we proved Lemma 4.5. �

Let

D = {Di, Ri : i ∈ Cα}∪
{EF ,M :M ∈ ω, F is a �nite set of Fα ∪ {x}-terms.}

Then D is a family of dense sets in PCα,Aα,Bα with cardinality < 2ω.
So, by MA(countable), there is a D-generic �lter K. Let fα = (

⋃
K) ∪

idω1\Cα
The assumption {Di, Rj : i ∈ Cα} ⊂ D yields Cα = dom(

⋃
K) =

ran(
⋃
K). Since fα[Aα] ⊂ Bα and fα[Cα \ Aα] ⊂ Cα \ Bα by the

construction of PCα,Aα,Bα we have fα[Aα] = Bα.
If F is a �nite subset of Fα+1, then there is a �nite set H of Fα∪{x}-

terms such that
F = {t[fα] : t ∈ H}.
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16 S. SHELAH AND L. SOUKUP

Then EH,M ∩ K 6= ∅ implies that there is m > M such that r(m) /∈
{t[fα](m) : t ∈ H} = {f(m) : f ∈ F}. Thus r is Fα+1-large. Hence fα
satis�es the requirements.

So we carried out the inductive construction, and so we have con-
structed 〈fα : α < 2ω〉 such that r is F2ω -large. So the group H∗ =
F2ω satis�es the requirements. This completes the proof of Theorem
4.1. �

Next we need a "stepping-up" theorem.

Theorem 4.6. Assume that λ ≥ ω1 is a cardinal, G ≤ S(λ) and
H∗ ≤ S(ω1) are permutation groups such that

(i) H∗ is ω-homogeneous, but ω-intransitive,
(ii) ∀g ∈ G ∀δ < ω1 ∃h ∈ H∗ g ∩ (δ × δ) ⊂ h.
(iii) {g[ω] : g ∈ G} is co�nal in 〈[λ]ω,⊂〉.
Then G∗ = 〈G ∪ {h+ : h ∈ H}〉gen ≤ S(λ) is ω-homogeneous, but ω-
intransitive.

Proof of Theorem 4.6. First we show that G∗ is ω-homogeneous.
Let X, Y ∈

[
λ
]ω

be arbitrary. First, by (iii) we can pick f, g ∈ G
such that f [ω] ⊃ X and g[ω] ⊃ Y . Since H∗ is ω-homogeneous, there
is h ∈ H∗ such that

h[f−1(X)] = g−1(Y ).

Then g ◦ h+ ◦ f−1 ∈ G∗ and (g ◦ h+ ◦ f−1)[X] = Y .

Next we show that G∗ is ω-intransitive. Fix a countable injective
function function r with dom(r) ∪ ran(r) ∈ [ω1]

ω which is H∗-large.
Without loss of generality we can assume that r ∈ S(γ) for some γ <
ω1. We will verify that

r is G∗-large

as well. It is enough to show that

Lemma 4.7. For each g ∈ G∗ there is a �nite subset Hg of H∗ such
that

g ∩ (γ × γ) ⊂
⋃

Hg.

Proof of the Lemma. Since G∗ = 〈G ∪H+〉gen, where H+ = {h+ : h ∈
H∗} and both G and H+ are subgroups, we can assume that

g = e0 ◦ g0 ◦ · · · ◦ en ◦ gn
where gi ∈ G and ei ∈ H+.
For e ∈ H+, write e− = e � ω1 ∈ H∗.
By �nite induction, de�ne countable subsetsAn+1, Bn, An, . . . , B0, A0

of λ as follows: let An+1 = γ and Bi = gi[Ai+1] and Ai = ei[Bi] for
i = n, n− 1, . . . , 0.
Pick δ < ω1 with⋃

{Ai, Bi : 0 ≤ i ≤ n+ 1} ∩ ω1 ⊂ δ.

Paper Sh:1193, version 2021-07-07. See https://shelah.logic.at/papers/1193/ for possible updates.



κ-HOMOGENEOUS, BUT NOT κ-TRANSITIVE 17

For 0 ≤ k < m ≤ n let

gk,m = gk ◦ · · · ◦ gm−1.

By (ii) we can pick hk,m ∈ H∗ such that hk,m ⊃ gk,m ∩ (δ × δ). Let

Hg = {e−i0 ◦ hi0,i1 ◦ e
−
i1
◦ hi1,i2 ◦ · · · ◦ e−i` ◦ hi`,i`+1

:

0 ≤ i0 < · · · < i` < i`+1 = n}.

Claim 4.7.1. g ∩ (γ × γ) ⊂
⋃
Hg.

Proof of the Claim. Let α ∈ γ be arbitrary with g(α) ∈ γ. Write
αn+1 = α, βi = gi(αi+1) and αi = ei(βi) for i = n, n − 1, . . . , 0. So
α0 = g(α) ∈ γ.
Let i0 = 0 < · · · < is = n+1 be the enumeration of the set I = {i ≤

n+ 1 : αi ∈ ω1} = {i ≤ n+ 1 : αi ∈ δ}.
Fix ` < s, and write k = i` and m = i`+1.
If k + 1 = m, then αk, βk, αm ∈ δ and so then

αk = ek(βk) = ek(gk(αm)) = (e−k ◦ hk,m)(αm).

If k + 1 < m, then

(i) αk ∈ δ, βm ∈ δ, but
(ii) αi, βi ∈ λ \ ω1 and so αi = βi for k < i < m,

(see Figure 2).

λ

ω1

δ

•αm

•

g m
−
1

βm−1 •
αm−1

em−1
•αk+1

•
βk

g
k

•
αk

ek

gk,m

hk,m

k = i`

m = i`+1

Figure 2. The function hk,m

Thus

βk = (gk ◦ ek ◦ gk+1 · · · ◦ em−1 ◦ gm−1)(αm) =
= (gk ◦ gk+1 ◦ · · · ◦ gm−1)(αm) = gk,m(αm) = hk,m(αm),

and so

αk = ek(βk) = ek(hk,m(αm)) = (e−k ◦ hk,m)(αm).
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Hence

g(α) = (e0 ◦ g0 ◦ · · · ◦ en ◦ gn)(α) =
(e−i0 ◦ hi0,i1 ◦ · · · ◦ e

−
i`
◦ his−1,is)(α)

and (e−i0 ◦ hi0,i1 ◦ · · · ◦ e
−
i`
◦ his−1,is) ∈ Hg. �

So we proved the Claim which completes the proof of the Lemma. �

As we observed, the previous lemma implies that r is G∗-large, and
so G∗ is ω-intransitive which completes the proof of Theorem 4.6. �

Putting together Theorems 4.1 and 4.6 we can get the following
result.

Theorem 4.8. Assume that λ is an uncountable cardinal and there is
a permutation group G ≤ Sω(λ) such that

(1) |{g ∩ (ω1 × ω1) : g ∈ G}| < 2ω.
(2) {g[ω] : g ∈ G} is co�nal in 〈[λ]ω,⊂〉.
If MA(countable) holds, then there is an ω-homogeneous but not ω-
transitive permutation group G∗ ≤ Sω(λ) with G

∗ ⊃ G.

Proof of Theorem 4.8. First observe that (2) implies that |{g ∩ (ω1 ×
ω1) : g ∈ G}| ≥ ω1, and so 2ω > ω1 by (1).
For each countable injective function f with dom(f) ∪ ran(f) ⊂ ω1

pick a permutation h(f) ∈ Sω(ω1) with h(f) ⊃ f .
Let

H = 〈{h(g ∩ (α× α)) : g ∈ G,α < ω1}〉gen .
Since 2ω > ω1, we have

(3) |H| ≤ |{g ∩ (ω1 × ω1) : g ∈ G}| · ω1 < 2ω, and
(4) ∀g ∈ G ∀α < ω1 ∃h ∈ H such that g ∩ (α× α) ⊂ h.

By (3) we can apply Theorem 4.1 and so there is an ω-homogeneous,
but ω-intransitive permutation group H∗ ≤ Sω(ω1) with H

∗ ⊃ H.
By (2) and (4) we can apply Theorem 4.6 for G and H∗ to show

that the permutation group G∗ = 〈G ∪ {h+ : h ∈ H+}〉gen ≤ Sω(λ) is
ω-homogeneous, but ω-intransitive. �

Given sets X and Y let us denote by Fin(X, Y ) the following poset:
its underlying set is the set of all �nite functions mapping a �nite subset
of X into Y , and p ≤Fin(X,Y ) q i� p ⊇ q. In particular, ∅ is the greatest
element of Fin(X, 2).

Corollary 4.9. If P = Fin((2ω)+, 2) then

V P |= �for each λ ≥ ω1 there is an ω-homogeneous,

but not ω-transitive permutation group on λ.�
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Remark. In section 2 we showed that if there is a splendid space of car-
dinality at least λ, then there is a ω-homogeneous but not ω-transitive
permutation group on λ. However, it was proved in [3] that it is consis-
tent (modulo some large cardinal assumption), that there is no splendid
space of size at least ℵω+1 in any c.c.c. generic extension of a certain
ZFC model.

Proof of Corollary 4.9 from Theorem 4.8. We work in V P . Let G =
Sω(λ)

V . Then

|{g ∩ ω1 × ω1 : g ∈ G}| = | Sω(ω1)
V | = (2ω)V < ((2ω)+)V = (2ω)V

P

.

So (1) holds. Since P is c.c.c., {g[ω] : g ∈ G} = [λ]ω ∩ V is co�nal in
〈[λ]ω,⊂〉. Hence (2) also holds.
So we can apply Theorem 4.8 because it is known that MA(countable)

holds after adding (2ω)+-many Cohen reals to a ground model, (e.g.
cov(M) = 2ω in the Cohen model by [1, Table 4], and cov(M) = 2ω

implies MA(countable) by [4, Theorem 1]). �
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