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2 SAHARON SHELAH

§ 0. INTRODUCTION

We prove a strong colouring theorem on successor of regular uncountable cardi-
nals, so called Pr;.

On the history of Pry see [She94, Ch.ITL,§4] and later [She97], and then indepen-
dently Rinot [Rin14] and [Shel9)].

Rinot [Rinl4, Main result] proved that Pry(A, A, A,0) when those are regular
cardinals; A = 07T or just 67 < X and ) is a successor of regular or just it has a
non-reflecting stationary subset of A consisting of ordinals of cofinality at least 6.
In [Shel9], we have Pri(A, A, A, (6o, 0)) where 6 is regular < 6 = cf(6),0" < X and
A is a successor of regular.

Earlier [She97, 4.2, page 27] prove that Pri (), A, A, #) when in addition A = 6.

Much earlier [She94, Ch.III, §4] had treated those problems in a general but
probably in a not so transparent way, first 4.1 there gives a set of various hypothesis
(each with some parameters)

The result here is incomparable with the ones in [Rinl4], [Shel9], [She97]: the
assumption on the stationary set is stronger but the arity - the last parameter, 6
is bigger.

The connection between purely combinatorial theorems and topological construc-
tions is known for many years. Several results in general topology were proved using
the property Pri(A, u,0,0), see recently [JS15], then [Shel9, §1].

Recall:

Definition 0.1. 1) Assume A > u > o + 0y + 61,0 = (6o, 01), see 0.4(1). Assume
further that 6y, 61 > Yo but o may be finite
Let Pry(\, i1, 0,60) mean that there is ¢ : [\]> — o witnessing it, which means:

(%) if (a) then (b), where:
(a) for o = {0,1},{}i, <6, and ¢* = (¢}, : @ < p,i < i,) are sequences of
ordinals of A\ without repetitions, and Rang(¢®), Rang(¢') are disjoint
and v < o
. . . . 0 _
(b) there are ap < a1 < p such that Vig < ip, Vi; < iy, c{(ao’io,golq)il} =
and Co ;0 < Chy

2) Above if 6y = 0 = 6, then we may write Pry(\, p, 0,0).

In this paper we prove e.g. that if some stationary S C {§ < Ny : ¢f(§) < Xy} do
not reflect then Pry(Ng, Ng, o, Ny) holds, which means that countable infinite se-
quences can be taken in both “sides”. Actually, the theorem says that, in particular,
Pri(A, A, A, 8) holds whenever d = cf(9) and A = 9% and there is a non-reflecting
stationay subset of S2,. We intend to say more on other \-s in [She].

We thank the Shimoni Garti and the referee for many good suggestions.

Definition 0.2. 1) A filter D on a set I is uniform when for every subset A of T
of cardinality < |I|, the set I \ A € D; all our filters will be uniform

2) A filter D on a set I is weakly #-saturated when 6 > |I| and there is no partition
of I to 0 sets from DT,

3) We say the filter D on a set I is f-saturated when the Boolean algebra &(I)/D
satisfies the -c.c.
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Fact 0.3. 1) If D is a f-complete filter on A and is not f-saturated then it is not
weakly f-saturated; so those properties are equivalent.

2)If @ = ot and D is a O-complete filter on 6, then D is not weakly §-saturated.
3)If n >1and A = o™ and D is a (uniform) o*-complete filter on A then D is
not weakly o "-saturated

Proof. 1) Obvious and well known
2) By [Sol71],
3) Let u be the minimal cardinal such that D is not p™-complete, so clearly p €
[oF,A] hence p is a successor cardinal. So there is a function f from X into u
such that for every subset A of u of cardinality < u, f~1(A) =0 mod D. Let E
be the family of subsets A of u such that f=!'(A) € D. Clearly E is a (uniform)
p-complete filter on p hence by part (2) is not weakly p-saturated, let (A; : e < p)
be a partition of u to sets from E*. Now (f~1(A.) : € < u) witnesses the desired
conclusion.

Uo.3

Notation 0.4. 1) We denote infinite cardinals by A, i, x, 8,0 while o denotes a finite
or infinite cardinal. We denote ordinals by «, 8,7,¢,(,&. Natural numbers are
denoted by k, ¢, m,n and ¢ € {0,1,2}

1A) Let D denote a filter on an infinite set dom(D)

2) For a set A of ordinals let nacc(4) = {a € A: a > sup(ANa)} and acc(A4) =
A\ nacc(A). For regular cardinals A > x let S} = {§ < X : ¢f(d) = s} and
S2,.=1{0 < X:cf(8) < K}
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§ 1. A COLOURING THEOREM
Our aim is to prove

Theorem 1.1. Pri(\ A, 0,9) and moreover Pri(\, A\, A\, 0) holds provided that:

(a) A=0t

(b) 9 =cf(9) >Ry

(¢) # is a stationary subset of A consisting of ordinals of cofinality < O re-
flecting in no ordinal < A

Remark 1.2. 1) The case of 9 colours, i.e. proving only Pri(A, A, 9,0) is easier so
we prove it first.
2) Can we weaken clause (c) of 1.1 replacing “reflecting in no ordinal < A\’ by
“reflecting in no ordinal of cofinality 0”7
The answer seem to be
yes provided that we add:
(o) there is a sequence (e, : « ¢ #') such that (# is as above and) e, is a club
of « of order type < 0 and for & € eg N # we have e, = aNeg
(B) there is no d-complete not d+-complete uniform weakly d-saturated filter
on A.

Proof. Stage A: We begin as in earlier proofs (e.g. [Shel9]). We let (k1,kK2) =
(0,A). Let S C S) be stationary and h : A — A be such that o < A = h(a) <
1+ a, h[(A\S) is constantly zero and Sy := {6 € S : h(J) = 7} is a stationary
subset of A\ for every v < A. Let F, : A — Kk, for « = 1,2 be such that for every
(e1,€2) € (K1 X k2) the set We, ., (8) = {y € S; : Fi(y) = ¢, for v = 1,2} is a
stationary subset of A for every 8 < A.
For . =1,2 and p € “Z A let F,(p) = (F.(p(£)) : £ < £g(p)). Clearly:
®p without loss of generality if 6 € # then § is divisible by 0.

Let € = (eq : @ < A) be such that:
®1 (a) ifa=0thene, =0
(b) if &« = B+ 1 then e, = {5}
(c) if o is a limit ordinal then e, is a club of « of order type cf(«) disjoint

to S) hence to S.
(d) if v is a limit ordinal then e, is disjoint to #.

In other cases (not here) instead h we use a sequence (h, : o < A) of functions,
he : eq — O and use e.g (hy,(,q)(Ve+1(8,a)) : £ < k(B,a)) and pp,, but this is not
necessary here.

Now (using €) for a < 8 < A, let

v(8,a) :=min{y € eg : v > a}.
Let us define v4(8, «):

70(6705) :B7

Yer1(B,a) = v(7e(B, ), ) (if well defined).



Paper Sh:1163, version 2021-07-15. See https://shelah.logic.at/papers/1163/ for possible updates.

COLOURING OF SUCCESSOR OF REGULAR AGAIN SH1163 5

If « < B < A let k(8,«) be the maximal k < w such that (8, a) is defined
(equivalently is equal to «) and let pg o = p(8, &) be the sequence

<’70(5; a)»’Yl(ﬂv Oé), s a'yk(ﬁ,a)—l(ﬁva»'

Let ve:(8, @) = Y(8,a)—1(B, a) where £t stands for last.
Let

pn = (h(7e(B,a)) : £ <k(B,a))
and we let p(«, @) and pp(a, @) be the empty sequences. Now clearly:
Oy if @ < B < A then a <~v(8,a) <f
hence

O3 fa<f <0</l <w,and (8, ) is well defined, then

(e S ’V@(ﬁva) < B
and

Oq if @ < B < A, then k(B,«) is well defined and letting v, := v,(8,«) for
¢ < k(B,a) we have

@ = YiB,a) < Vet (B0) = MBa)y-1 < <M<Y =40

and o € ey, (8,0)

ie. p(B,a) is a (strictly) decreasing finite sequence of ordinals, starting
with 3, ending with v, (8, ) of length k(8, «).

Note that if & € S, < § then v (8, a) = a+ 1.
Also

@s if 0 is a limit ordinal and 6 < 8 < A, then for some oy < J we have:
ap < a < § implies:
(Z) for £ < k‘(ﬂa§) we have w(ﬂ,é) = Ve(ﬂva)
(ii) 6 € nacc(ey,,(s.5)) © 6 = Yi(s.5)(B:0) = Yr(s.5)(Bs @) & ~[(,6)(8,6) =
6 > Yr(,5) (B, a)]
(#31) p(B,0) < p(B,); i.e. is an initial segment
(iv) ¢ € nacc(e,,,(s,5)) (here always holds if § € S'U#’) implies:
* p(8,6)"(6) < p(B, @) hence
* pn(B,0)"(h(B,0)(6)) L pu(B, ).
(v) if cf(d) = 0 or § € # then we have vu(8,0) = d+1s0d+1 €
2021 — 05 — O6nacc(e.,, (8,5))

(vi) if cf(6) =0 or 6 € # and 6 € e, then necessarily v = 4§ + 1.
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Why? Just let

oo = Max{sup(e,,(g,6) N 0) +1: £ < k(3,0) and ¢ ¢ acc(e,(s,5))}

Notice that if £ < k(83,5) — 1 then ¢ ¢ acc(e,,(s,5)) follows.

Note that the outer maximum (in the choice of ) is well defined as it is over a
finite non-empty set of ordinals. The inner sup is on the empty set (in which case
we get zero) or is the maximum (which is well defined) as e., (3,5 is a closed subset
of v¢(8,6),6 < v¢(B3,0) and 0 ¢ acc(e,,(s,5)) - as this is required. For clauses (v),
(vi) recall 6 € S U ¥ and e, NSy =0 and e, N # = ) when + is a limit ordinal
and e, = {7 — 1} when 7 is a successor ordinal.

O (a) ifa < B <AL < k(B,0),7 = 7(B,a) then p(8,a) = p(8,7) p(,a)
and pi(B, ) = pr(B,7) " pa(y, @)
(b) if ap < ... < o and p(ag, o) = p(ag, ak—1)" ... plaq, ap) then this
holds for any sub-sequence of (ayg, ..., ax).

©7 let F] be F, o h for « = 1,2; so F} is a function from A into 9 and Fj is a
function from A into .

Stage B:
Let

By T ={t:f= (to, : @ < \) satisfies t, € [\]<? and' t, C \\a}.
B3 for e < 0 and ¢t € T let A7 . be the set of 7 < X such that for some (ag, a1)

we have:

(a) ap < a; < Xand? ((,€) Etay X ta, = (<&

(b) for every ((,&) € to, X ta, for some ¢ we have:
(a) € <k(&Q)

(B) 7e(&¢) =1
(v) if k < k(&) then Fi(v) = F{((&,¢)) and Fi(y) = €
(0) if k < £ then F{(yx(£,¢)) < F1(7).

We define:
Bs D ={AC X: A includes Az, for some t € T,e < 0}.
Now note:
Bs (a) if 5,6 € T,e < (<9 and (Va < \)(sq Cta), then Az C A5,

(b) if s € T,e < 0,¢ is an increasing function from A to A and ¢ = (¢, :
a < A) is defined by to = sg4(q) then (f € T and) Az, C As..

[Why? Read the definitions.]

Bs (a) the intersection of any < 9 members of D is a member of D, equiva-
lently includes the set Az ¢ for some t € T, < 0
(b) for every f < X for some t € T, Az o C [5,\)
(c)ifte Tand a < A=ty # 0 then N{A;. :e <9} =0

L if instead we demand # B8 < A= taNtg =0 then we shall get the same filter D.
21f we choose to add here “tay C a1”, then we would have a problem in proving clause H5(b).
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(d) D is upward closed.
(e) A belongs to D

[Why? For clause (a) assume A, € D for £ < e(x) < O then for some (. < 0
and t. € T we have A. O Az .. Define t, = [J{t; : ¢ < g(x)} for @ < A and
¢ = sup{¢. : € < e(x)}; as the cardinal 0 is regular, clearly |to| < > [t5] < O
e<e(*)
and obviously t, C [a, A) hence ¢ = (t, : @« < A) € T and similarly ( < 9. Easily
Ajc C A . for every € < e(x), see H5(a) so we are done proving clause (a).
For clause (b) define t, = { + a 4+ 1} and recalling B3(b)(5) and 4 check that
Az C [B,A). Also clause (c) obviously holds because v € A;. = Fi(y) > ¢ by
B3(b)(y) and FY is a function from A to 0 and clauses (d),(e) hold trivially by the
definition.]

B7 (a) 0¢ D
(b) D is a filter on A, equivalently Az . # () for every ¢, ¢; also D is uniform

O-complete, not 9T -complete,
(¢) D is a uniform filter.

[Why? Clause (a) is a major point, proved in Stage C below. That is, by Hg(a), (d)
the only missing point is to show Az # 0, (in fact, |Az | = A). For clause (b) by
(a) and Bg(a), (d), (e), D is a 0-complete filter and the statement that D is uniform
holds by Hg(b) and not 9 -complete holds by Hg(c). Lastly for clause (c) note that
A is a regular cardinal and the set [, ) belongs to D for every ordinal § < A by
s (b)]-

Note also

Hs D is not weakly 0-saturated.

[Why? By H7+Hg(c) vex and clause (c) in the assumptions of the theorem. That is,
it is known that if D fail this statement (and has the properties listed before) then
there is no # as in clause (c) of the theorem. That is, considering the forcing notion
P = D% with inverse inclusion. Toward contradiction assume that the conclusion
fail; by 0.4 the forcing notion P satisfies the d-cc. Now in VF, the generic set G is
an ultrafilter on the Boolean algebra ()Y and let j be the canonical embedding
from V into the Mostowski collapse of V*/G (we are using only functions from
V), now the contradiction will be clear. If J is a successor cardinal we can use].
0.3(2).

Stage C:
In this stage we accomplish the proof of the missing point in H7(a) from above,
so we shall prove “A; . is non-empty (in fact, has cardinality A\)” when :

B (a) ta CMafora<A
(b) [tal <0
(c) e<O.

To start we note that:

()1 without loss of generality t, # 0 and o < min(t,).



Paper Sh:1163, version 2021-07-15. See https://shelah.logic.at/papers/1163/ for possible updates.

8 SAHARON SHELAH

[Why? First, recalling H5(a) we can replace t by t = (t, U{a}: a < A}, so we may
assume that each t, is not empty. Second, let ¢ = (t/, : a < ), #, = ta11, S0 easily
t' satisfies (*); and Ap . C Az by clause H5(b).]

Now

(¥)2 we can find 2,3, 9" such that:

(a) 23" C W is stationary in A,

b a<de %P =t,C6

(c) et <0

(d) if 6§ € % then for arbitrarily large o < & we have ¢ € t, =
Rang(Fy(pn(6,¢))) C e < ky = 0.

[Why? Clearly Eyp = {§ < A : 0 is a limit ordinal such that « < 6 = t, C 0} is a
club of A. For every § € #' N Ey and o < 6 we can find 53{‘; as in clauses (c),(d) of
()2 (because |t,| < ) and so recalling that cf(8) < 0 it follows that there is ef®
such that § = sup{a < d: 5?7‘; = e}, Then recalling A = cf(\) > 0 we can choose
9" guch that the set 249" = {0 € # N Ey : ei* = 91} is stationary. So ()2 holds
indeed.]

x)3 We can find %4"", %, P such that:
1
(a) 2"" C S} is stationary
(b) h|%™ is constantly 0, actually follows by (a), see Stage A
(¢) af < X satisfies af < min(%,"") and e"P < 9
(d) if 6 € 24" and « € [af,0) and (3 € 5 then:

® pps (0) Dppa
o Rang(F1(pn(B,9))) C ™.

[Why? For every 6 € S5 C S and ¢ € 5 let a1,5¢ < ¢ be such that (Va)(a €
[a1,6.¢,0) = pes (0) D pe.o), it exists by @5 of Stage A.
Let

o o5 =sup{aise: (€ ts}

o % = sup{F{((C, 6))()+1 £ C € by and £ < k(¢ 6)} = Ufsup Rang(Fi (pn (€, )+
1:¢ € ts}; as cf(d) = 0 and 9 = cf(9) > |ts|, necessarily a3 5 < ¢ and
ggf < 0.

Lastly, there are af < A and €"P < r; = 9 and 24" C S§ as required by using
Fodor lemma. So (*)3 holds indeed.]

Now let E = {§ < A : § is a limit ordinal > af such that § = sup(Z" N 9)
and a < § = t, C 6}, it is a club of A because af < A by (x)3(c) and 24 is an
unbounded subset of A by (¥)2(a), and t,, is a subset of A of cardinality < 9 hence
is bounded.

Choose (%) = max{e"? +1,e9 + 1, + 1} where ¢ is from B(c), so (x) < 9 and
choose d; € EN S such that Fy(d3) = e(x). Next choose as € 24"7\(d2 + 1) and let
o* € (af, 62) be large enough such that ¢ € (a*, 02)AE € to, = p(&,02) (d2)<p(&, ().
Now choose §; € 29" N (a*, d3) and a** € (a*,d1) be such that a € (a**,61) A€ €
ta, = p(fa 51)A<51> 4 p(fa a)'
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[Why is this possible? First, the choice of £(x) and of as are obvious. Second,
the choice of av, is by ®s. Third, we can choose dy € 24" N (cv., §1 because §, € E
which implies §; = sup(Z;®™ N ;. Lastly we can choose a.. by ®s5(iv).

Next let £, < £g(p(ae,d1) be such that:

(x)a (a) () := Fi(pn(az,61))(f.) = max RangF (pn(az,01))
(b) under this restriction ¢, is minimal.

Lastly, choose ay € (a**, 1) which is as in (x)o(d) with respect to d1, i.e. such
that:

(¥)5 if ¢ € to, then RangFy (pp(61,¢)) C ed®.

Now we shall prove that the pair (a1, a9) is as required. So let (¢,€) € ta, X ta,;
now by our choices

(*)s p(&,¢) = p(&; a2)"plaz,d2)" p(d2, 1) p(d1,¢) and p(aa, 1) = p(az, d2)" p(d2,01)
So

(*)7 Rang(Fi(pn(§, az)) S " < e(x)
[Why? by (*)3(a), the choice of ap € 24" and & being from t,,]
(+)s Rang(E) (pn(61,0)) € £ < e(x)
[Why by (x)2(d) and the choice of o; (and ¢ being a member of ¢, ]
(¥)g e(x) = Fy o h(d2) € Rang(Fy1(pn(azg,d1))), see (x)g and (before and after)
©1 .

[Why? Recall that d2 was chosen in EN S such that Fy(d2) = &(x).]
Hence

(¥)10 € <e(x) <e(e) <9
Putting those together, We can finish this stage by:
(¥)11 in H3(b) for our ¢ and the pair (aj,as), our €(e) (chosen in (x)4(a)) is
gotten, witnessing vy, (az2,01) € Af (s C Afe
[Why? As first € < e(x), by the choice of e(x), and second if (¢, &) € to, X tq, then
£ = Lg(p(&,az)) + £ is as required in H3(b) for ¢ by (*)g — (*)10] So we are done

proving H7(a).
Stage D: By Hg
®1 thereis F, : A\ — 0 such that e < 9 = F1({e}) # 0 mod D.

We first deal with the easier version with 0 colours, i.e. proving Pri (A, A, 9, 9).
We now define the colouring c; : [A\]2 — 9 by:

® if @ < B < X then ci{a, B} is Fi(vyp,a) (B, ) where £(3,a) = min{l <
k(B,a) : F(7¢(B, o)) = max Rang(F{(p(8,a)))}-

To prove that the colouring c; really witnesses Pri (A, A, 9,9), clearly it suffice to
prove:

®3 given t € T and ¢« < 9 there are o < 3 such that:
o (cto Nty =c{(, &} =1
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[Why does ®3 holds? Let B, = {y < A: Fi(y) = ¢}. By the choice of F, we know
that B, # ) mod D. Focus on Az, for our specific £ € T and any € < 0. Since
Az . € D we conclude that B, N Az # 0.

Fix an ordinal v € B, N Az .. By the very definition of A, in H3 we choose
a < B < X such that for every ((,§) € to X tg there exists £ < k(§,¢) for which
(€, C) = 7 and Fi(y) > Fi(3(€,)) whenever k < k(£,¢) and Fy(7) > & and
F{(y) > F{(v£(&,¢)) whenever k < £. Let £(¢,() be this ¢, in fact, this ¢ is unique
(for the pair (¢,£)).

Now ¢1{(,&} = Fu(vee,0)(§,€)) (by ®2) which equals F.(vy) (by the choice of
£(&,¢)) which equals ¢ (since v € B,). Hence ®3 holds and we finish Stage D.]

Stage E: The full theorem: the case of A colors.
Let h/,h” be functions from 9 into 9,w respectively such that the mapping
¢ (W(C),h"(€)) is onto O x w and moreover each such pair is gotten 9 times.
We have to define a colouring cs : [A\]? — X exemplifying Prq(\, A, A, 9).
This is done as follows using h’, k" and F, from ®:

@1 for a < B < A we let:
o, ( =((B,a):=h(c1{B,a}), necessarily < 9
o n=n(8,a) :=h"(c1{B, a}), necessarily < w
o3 m = m(B, «) is the n-th member of {k < k(8, ) : F{(y(8,a)) = ¢}
when there is such m and is zero otherwise

e, we define ¢y as follows: for a < 3, ca{a, B} is Fy(Vm(s,a) (B, @) recall-
ing that Fj, a function from X to A is from ®g from the end of stage

A.

To prove that co indeed exemplifies Pri(A, A, A\, 9) it suffice to prove (this is the
task of the rest of the proof)

@9 assume t € T and j, < A and we shall find o < 3 such that ¢, C 3 and
(Cag) S ta X tﬁ = C2{<,€} = .7*

Toward this:

@3 (a) we apply (*)3 to our ¢, getting P, 24", a; as there
(b) we apply ()2 to our # getting 2", e»

(c) let e™d = max{e"’ + 1,e + 1}.
We can find g2, %", Vs, o, m} such that:

@4 () 7. < A satisfies Fo(7.) = 7. and Fy(v,) = e™d
(b) %, C S% is stationary hence § € %" = F3(0) = Fa(h(d)) =
Fy(vs) = ju NF{(0) = F1(h(9)) = Fi(7.) = e™
(c) g2 is a function with domain %, such that 6 € %,* = 6 < g2(0) €
w
(d) o3 satisfies af < o < min(%,™")
(e) if 0 € %, and « € [o3,0) and B € tg,(s5) then
* 0(92(9),0)"(6) < p(g2(9), @) hence
* 055 (0) L ppa
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(f) m3 satisfies: for every § € %,', it is the cardinality of the set {¢ <
k(g2(8),6) : F{(7e(g2(0),0)) = €™} which may be zero.

[Why? First choose 7. as in clause (a) of @4 (possible by the choice of Fy, F5 in
the beginning of Stage A; hence § € S, = F3(0) = F5(h(0)) = Fa(7«) = j« and
FJ(6) = Fy(h(8)) = Fi(7«) = ™ (by the choice of F| in ®7 recalling the definitions
of h, F{). Second, define ¢’ : S¥ — %,"" such that 6 € S¥ = § < ¢'(6) € 2,"™".
Third, for each § € 53 \(af + 1), find o} 5 < 6 above af and mg s such that the
parallel of clauses (e),(f) (with g’ here instead of g5 there) of &4 holds. Fourth, use
Fodor lemma to get a stationary %, " C S3_such that ((aj5,mas) : 0 € %" is
constantly (o, m3) and lastly let go = ¢'[% " \(ab + 1). Now it is easy to check
that @4 holds indeed.]
Next

@5 if 6 € %, then:
(a) Fy(0) =em

(b) ifae [a;75)a§ € tgz(é) then u = {Z < k(gva) : F{(’Yé(éaa)) = 5md}
has > mj} members and if ¢ is the m3-th member of u then v,(§, o)) = 4.

Why? Clause (a) holds by @®4(a), (b). For clause (b) use clause (a) and the demands
on m5. That is

B51 (a) pl€,0) = p(€,02(6)) plg2(6).8) " p(5, 1)

[Why? by (x)3, ®a(e)]

(b) Rang(pn(a,g2(8))) C ™ C emd
[Why? by (*)2]

(c) the set {£ < k(ga(0),0) : F}(v¢(g2(5),8)) = ™4} has m3 members
[why? by ©a(f)]

(d) Fi(70(0,a)) = F{(§) = ™
[Why? by ©4(a), (b)]]

(e) if £, is the m3-th member of {£ : Fy (7,(&, @) = ™4} then 4, (€, 0) =
[Why? putting the above together]

So @5 holds indeed.

Now choose (*) < 0 such that h'(e(x)) = e™ and b’ (e(x)) = ms.

Next, let E = {§ < X : § limit ordinal > «} such that § = sup(%;,*" N ) and
a<d= go(a) <4}

Lastly,

Mg choose 1 < dg such that
(a) 0 € 02/1(1n NnE
(b) 62 € U, NE\(61 +1)
(C) 01{52, 51} = 5(*)7
[Why does such a pair (1,02) exist? By Stage D applied to § = (54 : @ < A)
where s, = {min(%;% N E\«a), min(%,™ N E\«a)}.
That is, we can find ordinals o < 8 < A such that: for every ((,€) € (sq X $3)
we have ¢;{¢,(} = e™d.
Let 01 = min(%% N E \ a and let d> = min(%,"* N E '\ S.
So (81,02) € (sa X sg) hence clearly 61 < d2, c1{01,02} = e(x), 61 € v NE
and 6; € 24"" N E. So the pair (d1,d2) is as promised in in @)
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Now let 8 = g2(d2) and choose a € %, N d;\(aj + 1). Easy to check that a, 3

are as required.

So we have finished proving Theorem 1.1. 011
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