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MARK POOR AND SAHARON SHELAH

We give a complete characterization of the sets of cardinals that in a suitable
forcing extension can be the Kurepa spectrum, that is, the set of cardinalities
of branches of Kurepa trees. This answers a question of Poér.

1. Introduction

A tree is a Kurepa tree if it is of height @, each of its levels is countable, and it has
more than w;-many cofinal (that is of order type w;) branches. In this paper we
study the possible values of the branch spectrum of Kurepa trees, i.e., the set

Sp,,, = {* : there exists a Kurepa tree T such that |[B(T)| = A} € [w2, 2¢1]

(where B(T) stands for the set of cofinal branches of T').

The spectrum is related to the model theoretical spectrum of maximal models of
Ly, .»-sentences [Sinapova and Souldatos 2020]. Also canonical topological and
combinatorial structures are associated with branches of Kurepa trees possessing a
remarkably wide range of nonreflecting properties [Koszmider 2005]. For higher
Kurepa trees (of weakly compact height) the consistency strength of certain types
of the branch spectrum was studied in [Hayut and Miiller 2019].

It was first shown by Silver [1971] that the Kurepa hypothesis (i.e., the existence
of a Kurepa tree) is independent (also see [Kunen 1983, Chapter VIII, §3]). More-
over the nonexistence of Kurepa trees is equiconsistent with the existence of an
inaccessible cardinal [Kunen 1983, Chapter VII, Example BS].

Questions about the possible values of the spectrum were addressed by Jin and
Shelah [1992]. They proved (assuming an inaccessible cardinal) that consistently
there are only Kurepa trees with ws-many cofinal branches while 2! = @j.
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Building on ideas of Jin and Shelah, Poér [2017] provided a sufficient condition
for a set to be equal to Sp,,, in a forcing extension. Formally, it was shown that if
GCH holds, and 0, 1 ¢ S is a set of ordinals such that § satisfies either Case A:

(i) 2€8,
(ii) {supC : C € [S]=*1} C S,
(iii) (foralla € S) : (w <cf(a) <wp) > (x+1€79),

or Case B:

(i) there exists an inaccessible «,
(i) {supC : C € [S]=F} C S,
(iii) (forallax € §) : (w <cf(a) <k) —> (¢ +1€09),

then in a forcing extension we have {« : X, € Sp,, } = § (cardinals are only collapsed
in Case B, from (@, «)). It can be easily seen that if cf(1) = w and (Sp,, Nu) is
cofinal in u, then there exists a Kurepa tree with u-many branches, as the union of
countably many Kurepa trees is a Kurepa tree, and it is not difficult to see that the
same holds if cf(u) = wy, therefore Case A(ii) and Case B(ii) are in fact necessary.
However, it remained a question whether the last clauses can be dropped.

In this paper as the main result we prove that assuming CH + (2! = w;)
conditions (i), (i1) (in both cases) are in fact sufficient by forcing a model of
{a : 8y € Sp,, } = §. Also, we can arbitrarily prescribe 2“! to be any cardinal
A > sup(Sp,,) if in Case A the equality A=“> = A holds, or in Case B A= = A
holds too.

Moreover, when we do not want Kurepa trees with w,-many cofinal branches,
we prove that the inaccessible is necessary by verifying that if w, is a successor
in L, then there exists a Kurepa tree with only w,-many cofinal branches in V. It
was known that these assumptions imply that there exists a Kurepa tree even in
L[A] for some A € w; [Kunen 1983, Chapter VII, Example B8] (possibly having
more than w;-many cofinal branches in V). Our proof not only utilizes countable
elementary submodels of initial segments of L[A], but the nodes of the tree are
such elementary submodels, and each cofinal branch uniquely corresponds to an
initial segment of L[A].

2. Preliminaries and notations

Under ordinals we always mean Neumann ordinals. For a fixed cardinal x we will
use the notation #H () for the collection of sets of hereditary size less than y, i.e.,

H(x) = {x :|trel(x)| < x},
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where trcl(x) stands for the transitive closure of x. In terms of forcing we will
use the notations of [Kunen 2011], e.g., p < g means that p is the stronger. If it
is clear from the context and won’t make any confusion we will identify the set
x in the ground model with its canonical name x. For a set A the symbol P(A)
denotes the powerset of A, and [A]* stands for {X € P(A) : | X| = A}. For a function
s ={(B,s(B)): B € dom(s)} we will also use the following notation and refer to s
as
(sg : B € dom(s)).

Under a sequence we mean a function defined on a set of ordinals. For sequences

s, t the relation s = ¢ | dom(s) (or equivalently s C ¢) will be also denoted by s <1 ¢.

Definition 2.1. A tree (T, <r) is a partially ordered set (poset) in which for each
x €T the set

Tow={yeT:y=<rx}
is well ordered by <7.

Definition 2.2. The height of x in the tree T is the order type of T,
ht(x) = otp(7,).
Definition 2.3. For each ordinal « the restriction of 7 to « is
T.o={teT:ht(t) <al}.
Definition 2.4. The height of the tree T (in symbols ht(7")) is the least 8 such that
there does not exist ¢ € T : ht(¢) = 8.

We will need the following lemma [Kunen 1983, Chapter II, Theorem 1.6.]
which we will refer to as the A-system lemma.

Lemma 2.5. Let k be an infinite cardinal, let 6 > k be regular, and satisfy for all
o <0 (Ja=| < 0). Assume that |A| > 0, and for all x € A (|x| < k). Then there is
a D C A, such that |D| = 0, and D forms a A-system, i.e., there is a kernel set y
such that

forallx #x' €eD:xNx"=y.

3. The forcing

Now we can state our main theorem.

Theorem 3.1. Let S, be a set of infinite cardinals such that , w| ¢ Se. Assume
CH, and that either Case 1:

(1) w € S.7

(i) 2" = wy,
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(iii) {supC: C € [S.]=**} C S,
or Case 2:
(1) there exists an inaccessible k such that Se N (w1, k) = D,
(ii) {supC : C €[S,]=*} C S..
Then there exists a forcing extension V¥ such that

vP =S, = Spwl, where P only collapses cardinals in (w1, k) in Case 2.

The key will be Lemma 3.27. After Lemma 3.30 we will put together the pieces
in a short argument. Before these we need some preparation.

Definition 3.2. In Case 1 (i.e., wy € S,) define the cardinal x to be w,.
Corollary 3.3. No cardinal u ¢ (w1, k) is collapsed.

Theorem 3.4. Suppose that all conditions from Theorem 3.1 hold, and « is defined
in Definition 3.2. Assume further that A is a cardinal which is an upper bound of S,
such that <X = X (thus cf(1) > k). Then there exists a forcing extension V¥ with

VP = (S, = {u : there exists a Kurepa tree T such that |B(T)| = u}) A 2% = 1).
Definition 3.5. Let S} = S, U {«, A}.

Definition 3.6. For a cardinal 6 € S, let Qg be the following notion of forcing. The
triplet p = (T}, u,, 1) is an element of Qy if and only if

(a) T, is a countable tree of height § for some § < w; on the underlying set w - §,
where the B-th levelis [w- B, w-(B+1)),1.e., T <g\Tp <p=[w-B, w-(B+1))
for each 8 < 6,

(b) foreacht € T, and B < § there exists t' € T}, \ T, g such that t <7, 1/,
(©) up €015,

(d np = pa @ €up), where n, 4 € T, is a branch in T), -, for some y €
{B+1:B <38=ht(T,)} (we do it for a technical reason, we also could have
stored only the maximal element instead of a chain with a maximal element).

Then Qy is a poset with the obvious order, i.e., g < p, if T, is an end-extension of
T, formally Tq,<ht(Tp) =T, and for each a € u, the inclusion 1, o C 14, holds.

Let Ty, ng be the names for the generic tree and sequence, i.e., denoting the
generic filter by Gy

lg,FTo=| J{T,: peGs) and 1g,I- ﬁ9:<n9,a:U{n,,,a:peGQ}:aee>.
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Definition 3.7. For a cardinal 6 € S, let @} € Qy be the following subposet:

p € Qp if and only if ht(7),) is a successor, and

(for all @ € up,) : np o is a branch through 7),.
Definition 3.8. If A ¢ S, then let (0, be the countable supported product of (<“'2, <)
of length A, i.e.,

Q. ={p=(na:acup): (foral a € u,)n, €= 2 for some u, € [A]=“}.

Definition 3.9. If x ¢ S, (and then « > a)g is inaccessible), then let @, be the
countable supported product of (<=“!'y, <) (y < k), a forcing which collapses each
cardinal in (w1, k):

Qe ={p=(na:acup): (foralacuyn, € « for some u, € [k]=*}.
Definition 3.10. We define the posets which we will need later.
(1) For S C S let Pg be the countable supported product of Qy (0 € S), i.e.,
Ps = {p is a function : dom(p) € [S]=* A (for all § € dom(p)p(®) € Qp)}.
With a slight abuse of notation for p € Pg and 6 € § \ dom(p) we will mean
1g, under p(6).
(2) For 0 € S:r, U C 0 define its restriction from 6 to U, i.e.,

Qpuv={peQ:u, CU}.

(3) For SCSF,U=(Up:0€S)¢e [Tpes P(0) we define Pg g to be PP restriction
to coordinates in Up, i.e.,

Psg=1{pePs:(forall & € S)p®) € Wy .y, }-

(4) For S, 8" CSHU=(Up:0€8)€]pesP©O), U =(U;:0€8)€[lyes P©®)
we define

e U+U =(UgUU;:6€SUS') (where for & € S\ S under Uy we mean
the empty set, similarly for 6 € S\ ', Uy),

¢« U—U'=(Ug\U}:6 €S) (here we also mean the empty set under U}, if
0 eS\S),

e idg=(0:0€8),

o for the set X if Wy € [[peg P(0) (@ € X) then

ZW(X:<U(WQ)9:96S>.

aeX aeX

(5) Let P = Pgs.



Paper Sh:1189, version 2021-08-03.2. See https://shelah.logic.at/papers/1189/ for possible updates.

428 MARK POOR AND SAHARON SHELAH

(6) If po, po, - .., pn € P let )\, pi denote the greatest lower bound if it exists.

(7) For peP,and S C S, U = (Uy:0 € S) € [[pg P(6) define p | U € Ps to
be the following restriction of p | S in the obvious fashion

foreach@ e S: (p [ U)(@) = (T, p@) Up, NUp, 1, | Up).

Definition 3.11. For S C S define the notion of forcing P* (P%, IP* , resp.) to
be the subposet of P (Ps, Pg 57, resp.) consisting of elements p for that p0) € Qp
holds for each 6 € S, N supp(p).

Remark 3.12. The notion of forcing P* (%, [P’* , resp.) is a dense subposet of
P (Ps, Py i, resp.), therefore forcing with P* ([P’*, [P’* , resp.) yields the same
extensions as forcing with P (Pg, P 5.0 resp.).

Claim 3.13. Let S € S, U = (Uy : 6 € S) be fixed. Then the poset P i has the
K-cc property.

Proof. Suppose that {p, : @ € k} C Pg 5 is an antichain. Working in V"', applying
the A-system lemma (Lemma 2.5) for the system {dom(py) : @ € «} of countable
sets ((1) from Definition 3.10), we obtain a set A € [«]* such that the dom(p)
(¢ € A) form a A-system with kernel K C S. Since K is obviously countable, for
each a we have that (T}, ) : € € K) is a countable sequence of countable trees (by
(a) from Definition 3.6). This means that by CH we can assume that

(3-1) (Tpy@) 0 € K) =Ty, :0 € K) (forall a, § € A).

Now applying the A-system lemma again for the system

Us = J U0} x up,00) (@ €50)

6eS

yields a set A’ € [A]¢ such that the U, (@ € A’) form a A-system with kernel
I S Upesl0} x 0 (of course, in fact, I C | J, {0} x 0). Now by (3-1) it suffices
to prove that

(3-2) there exist a # B € A" such that (for each (9, 8) € I) : Npa(®@).y = Nps(®).y»
for which it is enough to prove
(3-3) {(pa@).y 1 (0, 7) €l) e e AT} <.

Fix a € A’. Now for each (6, y) € I, if 6 € S, then 1, @), € [w1]=*" (a branch
through Tpa (9)).
This means that (using that / is countable)

G4 oy :0y)eloeS):acAyS [ lel™,
0,y)el,feS,



Paper Sh:1189, version 2021-08-03.2. See https://shelah.logic.at/papers/1189/ for possible updates.

CHARACTERIZING THE SPECTRA OF CARDINALITIES OF KUREPA TREES 429

which latter set is of size w; by CH. Second, if § = 1 € (S}\ S,) N S, then

<)

{paor.y 1 0. vV ELO=0):0 ey [ 2
(0,y)el,6=X

Finally we have to consider the coordinate 6§ = « if x € S\ S,. Then letting
6 =supf{y : (k, y) € I} we have § < «, because [ is countable and « is inaccessible.

Then
<w]
(3-5) Wpetory s oyyennc [ o
(k,y)el

and since « is inaccessible, this case | ]_[<K el <®1§| < k. We obtain (using w; < k)

that
<wi
{paory s O v) D <101 | ] 8] <«
(k,y)el
therefore (3-3) holds. Ul

Now we make the intuition behind the easy idea of first adding the trees and
some branches, and then forcing over the extension precise.

Claim 3.14. For each S C S}, U = (Uy : 6 € S) we have
P S.0 < [FDS <P,
ie., Pg i completely embeds into Pg, which completely embeds into P.

Proof. Since PP >~ Pg x Pg\ g, it is enough to prove that Pg i < Py.

Assume that A € Pg 7 is a maximal antichain in Py 7, and lEt pEPs\Pgg.
Then there exists a € A, a’ € Py 7 such that ¢’ <a, a’ <b [ U. But then it is
straightforward to check that also @’ and b have a common lower bound. U

Definition 3.15. Let S C S,, U = (Uy :0 € 5), 6 € S, Uj < 6\ Ug,. Then

o o

<o Upy = (8,0),60,Uj,
denotes the Pg 5-name for a notion of forcing which adds the branches 7n¢, «

(a € Uy) to Ty, in the following way

p= <T_]pv up) : (up € [Uéo]ga)) N (ﬁp = (np,oz QS up))a
Upg ; Qg = ysuch that each 1, o is a branch of T, <,
0 for some §, in{y +1:y < w}

If it is clear from the context we will use @;0 Dot mentioning S and U.
~00, 90
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Definition 3.16. Let SC S,, U= (Up:0€S),60p€S. If§ € SH\S,, and U, €6\ U,
then define the Pg ;7-name Qp ; = Qy , to be the name for Qy ¢/
s ~7 ~U,Uy )

Definition 3.17. Let SC S, U= (Up: 0 €S),U = (U} :0 € S) € [[yes PO,
where Uy N U@ = foreach 6 € S. Then [P’O =P° , denotes the [P’S g-hame

~(8,0),0
for the countably supported product of @9 u; (9 € S) i.e., a notion of forcing which

adds the branches N6.a (a € Ue) to Ty for each@ € S\ S,, and the sequences Nk
(ozeU/)lf/ceS\S., nka(an)lfkeS\S

1 “_PS,U E%/
= {p is a function : dom(p) € [S]=“ A (for all & € dom(p)p(0) € @g,ug)}'

Again, as in Definition 3.15 if it does not cause any confusion we only use the
notation E%}, not mentioning S and U.

The following claim is an easy observation.

Claim 3.18. If G is a Pg -generic filter over V (where § C Sk, U= (Ug:0€S),
U = (Uy: 0€8)e]lpesP®),and UyNU, = & for each 6 € S) then with the
notation from [Kunen 2011]

Psg+5/G=1{pePsg,g :forallge G p Lql,

the quotient poset P 7, 77/ G and the evaluation of E% are isomorphic, i.e.,
V[G] 'Z EZ,[G] ~ [FDS,U+I7’/G‘

Since P 7 completely embeds into Pg 7, 7 (by Claim 3.14), [Kunen 2011,
Lemma V.4.45] (and [Kunen 2011, Lemma V.4.44.]) implies the following.
Claim3.19. Let SC S}, U= (Up:0€S),U' = (U} :0 € S) € [[y.5 P(6), where
Up N U, = @ for each 6 € S. Then the canonical embedding from P 5, 7 to the
iteration Pg 77 * (Pg 7, 7//G) is a dense embedding.

Now putting together Claims 3.18 and 3.19 we have the following, meaning
that instead of forcing with P 77, ;7 we can force with Pg ;7 and then with (the
evaluation of) I]g‘l’7

Lemma3.20. Let SC S, U=(Up:0€S),U =(U,:0€S)e[]pes P©O), where
UgNU, = @ for each 0 € S. Then forcing with Pg g g amounts to the same as
forcing with Pg i; and then with Pg i, 77,/ G =~ E%},

Definition 3.21. If SC SF, U =(Ug: 0 €S), U =(U; :0 € S) € [[pes PO).
Now if G is generic over PP = Pg+ then we define

e Gy =GNPg,
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* GS,U =GN psﬁv

e and G%, - P%,[Gsﬁ] € V[Gg ] to be the filter given by the canonical
mapping from Claims 3.18, 3.19.

The following are basic observations. Roughly speaking, we isolate a dense
w1 -closed subset of a two-step iteration similarly as in [Kunen 1978].

Claim 3.22. P* (and in general each [P’* ) is wi-closed, i.e., for each decreasing
sequence of type w has a lower bound In particular if G* € P*, (or in general

G; 7S S U) is generic over V, then there is no new sequence of ordinals of type w.

The last claim and Remark 3.12 obviously implies the following.

Claim 3.23. Forcing with P (or Pg 77) doesn’t add new sequence of ordinals of
type w, and for a given generic filter G C P

H(wn) =H(w)"1% =310,

Lemma 3.24. Let G C [P’S 7 generic over V, B € V[G] where B C H(w1). Then
(in V) there exist Sy C S, |S,| < k and W, = (W* 1y €8y € Hyes y 175, such
that B € V[Gg, w 1

Problem 3.25. Choose p € G forcing that B € H(w), and a nice P s.p-hame for
B, obtaining for each x € H(w) an antichain A, C P S.0 deciding about x € B.
Then by «-cc we have that each |A;| < k, the set S« = |, cyy(0,) Uuca, dom(a)
is of size less than k (as « is either inaccessible, or w,). Also for 6 € S, the
set Wy = Ureno) Uaea, Uaw) is smaller that k. Now it is easy to see that
W, = (W}’,k 1y € 8,) is as claimed.

Then the following immediately follows from the w;-closedness, and «-cc.

Claim 3.26. Forcing with [P doesn’t collapse w;, and cardinals at least . Moreover,
if G € P is generic, then
VIG] E “k = wy”.

Lemma 3.27. Let T € V[Gg 1 be a Kurepa tree, S C S (S' € V). Then, if
b_e V[GS,U*—HdS/] is a branch of T, then there exists a finite set S" C S', and
Ues=(Ug : 0 €8") such that each U} is finite, and b is in the model obtained by
adding these finitely many ng o (0 € 8", a € Ug) to V[Gg i 1, i.e.,

be V[GS,UH»U.]‘
Proof Let T € VbealP 5.0, -name for T'. Define
(3-6) P'=Py.g, 4y

Suppose that p, € P’ forces that b € V is a P’-name for a counterexample (i.e.,
forcing that for no such U, there exists a Py _, 7 -name b — which is of course
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also a P’-name — with b’ = b). Let x be large enough, and let (Ny, €) < (H(x), €)
be countable such that p,, b, T,S,S,V, Ps g, € No.

Let 3, = Ng N w;. Define the countable set Ny to be such that Ny € Ny, and
(N1, €) < (H(x), €). Let X be set of the indices of the new branches added to
(To:0€ S’y by GS’U*Jr(idS,) that are in V[GS,U*HHS/] \ V[Gs’g*], and belong to
N(), i.e.,

(3-7) X=NoN{{0,a): (0 €S)A(xeb\U))}

We fix an enumeration of X and define also the sequence of the first # indices from
this countable set, and as well for each n the one-length sequence consisting only
the n-th, that is; let ((0,, &) : n € w, n > 0) enumerate X (starting from 1),

W, = (W,9:0€S NNy,
W ={e: (0. @) = (g;. &) for some j < n},
(3-8) Wy = (wpg:0 €S NN,
_ {{é‘n} if 6 = o,
Wn,0 = .
%] otherwise.
Observe that if p € P N Ny, then each 6 € dom(p) is an element of Ny since
dom(p) is countable (by Definition 3.10), and similarly 7,), up@) S No (by
Definitions 3.6-3.9).

Working in V we will construct an Ny-generic condition in P, which will derive
us to a contradiction. It is enough to prove the following claim.

Claim 3.28. There exists a sequence (p, :n € w) € V, pj € P 5.0 and a sequence
q = {qn : n € w) such that the following holds:
(B1) po={(po,:!l € w) is such that
@ poo=p« | Us,
(b) pose NoN ps,f/* foreach !/ € w,
() (po:! € w)is <p-decreasing,
(d) po € N1,
(e) letting Go = {p € Pg 7. N No : (there exist [)p > po;}, the filter Gy is
P i, -generic over Np.
() pj € Py g, satisfies the following:
(a) p(/) is a lower bound of pg for each / € w (hence forces a value to Ty s,
for each 6 € SN Np),
(b) p{) forces a value to Ty <5, for each 6 € SN Ny such that for every &,-

branch B in Ty -5, the inclusion B € N; implies that B has an upper
bound in Ty <s,,

(c) pj forces a value to T, .
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(HH3) for every n > 0 the sequence p, = (p,; : | € w) has the following properties:
(a) foralll e w p,; € NoNP
(®) pni [ Ux € Go,
() (pn.i:l € w)is <p-decreasing,
(d) pn € Ny,
(e) letting

S,U 4y,

n
G, = {p € Py g, N No : (there exist lo, I, ..., 1)) p = /\pj’[j},
Jj=0

the filter G,, is PS,@+W" -generic over Nj.
(H4) For the sequence g = (g, : n € w):

(a) g, € NoN [P’S,U*JFBS, for each n € w,

(b) g0 = p+»

(¢) (gn:n € w) is <p-decreasing,

(d) forall n: g, | (Us+W,) € Gy,

(e) let (B, : n € w) enumerate the branches of 7_s, which has an upper
bound in 7s, (forced by Py)- Then g1 A p; forces that b # B,, which
will be guaranteed by the following requirement: There exist § < &,
t #1 € Tes\ Ts, such that p forces B, 5-th level to be ¢/, and g4
forces t € 15, i.e.,

(3-9)  polk ByN(T<s\T<s) ={t'} and  gup1 - 60 (To5\ Teg) = (1.
(Observe that the latter is a statement in Ny.)

Before proving Claim 3.28 we argue why this claim implies Lemma 3.27. First,
the claim gives the following condition in Py 7 {5 . For each n € w let 1, ¢, be
the branch in T, s, represented by the sequence p,, i.e.,

(3_10) r]QVlvsﬂ = U{npn.l(gn):én : l G a)}’

and note that n,, ¢, € N1 (n € w) by (H3)(d). Therefore by (EH,)(b) we can extend
each n,, ¢, to a branch n, . in (7} (,))<s.+1. Define the function p, to be the
extension of p( by the n,, ¢, in the obvious way: (Note that by (H,) we have
SNNy S dom(pj) € S, and for each 6 € SN N the inclusion Uy NNy € Up0) S U;.)
Define p, to be function on dom(py) such that if 6 ¢ NoN S’ then p,(6) = p(6),
and for 6 € NoN S’ define p,(6) to be the following proper extension of p((6). Let
Up,©) = Upye) U (0 N Nop), and if o ¢ Ul (0) (when necessarily o ¢ U)) and (by
(3-8)) choose n > 0 so that

(3-11) (0, @) =(0n, &), andlet 1,6 0=1, ¢
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otherwise
(3-12) Npe(@). = Npo0).«  (f @ € Up).

Observe that as n .5, Was a cofinal branch in (7, (o,)) <s.+1 = (T, (Qn))<5 11 our
function p, is 1ndeed a condition in Pg 7 +idg - Moreover, the followmg shows that
forall n € w, pe < ¢q,. Fix n € w, then using (H,)(d) we have g, | (U.+W,) eG,,
i.e., there exist lo, [1, ...l, € o, such that /\'}:0 Pji; <p qn | (Usx+ W,). This
means that

n
/\pj,lj =dqn r(l_]*+W0):CIn f(ﬁ*),
j=0

and, for each 0 < j <n,

/
Nane).& S Mpjus )8 S Mojg; = Mpalo)) &)+

On the other hand, for j > n we have (recalling g = (g, : n € w) is <p-decreasing
by (H4)) that

Ngutop& S Nasenér S Moy, = Npalen) &

therefore p, < g,, indeed.

Now assuming p, € G 7, +idg will easily yield a contradiction: First recall that
px« (and therefore as well gg and p.) forced that b is a branch through T. Then
(H>)(c) implies that pO, thus p, as well determines TS(;., and p, forces (by (H)(e))
that each element of the 8,-th level of T is the upper bound of B; for some i € .
This means that

Pe I (there exist i € a))B N T<5. =B;,

while at the same time
(qi A pg) I b # Bi,

since (3-9) holds.
This together with p, < g;, p(, gives the contradiction. Now we can turn to the
proof of the claim.

Proof of Claim 3.28. For the construction of each sequence p, and each g, we will
work in Nj. This will need a lot of preparation.

Recall that X € Ny denoted the indices of branches added by forcing with
[P’S’(,*Jrﬁs/ N Np but missing from V[GS,U*] (3-7), and that for each condition p,
0 € S., and § < w the §-th level of T} ) is (a subset of) [w -8, w- (§ + 1)). Define
E C Ny as follows:

<w

(3-13) e <€ E if and only if e € Ny, and e = (u,, 1.), wWhere u, € [X]=?,
Ne = (Ne.p.o : (0,) €u,), such that

Ne.o.a S - (8g.o + 1) for some §p o < wy.
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Definition 3.29. For each n, p € PS’U&W", and e € E, if for each (0, o) € u, we
have 0 € dom(p), and for each i < n {0;, &) ¢ u, holds then define p " e as

dom(p " e) = dom(p),

(3-14) Upreney = Up©) Ufa:(0,a) €u,}) (forall® € dom(p ™ e)),

, _Jmore  ifacupe,
PO ™ | noa if 6, @) € e,

if this is a condition in P (i.e., for each (6, @) € u,, 17.,0.4 1S a cofinal branch of
(Tp(6))<s+1 for some § < ht(T,))), otherwise p e = @.

Let D denote the set of dense subsets of Pg 7 +idg - Fix an enumeration
((Ji,e)y:iew)ye Ny of (DNNy x E,
and let k(D, e) denote the index of the pair (D, e), i.e.,
(3-15) Jk(p.e)y =D, €kp.e) = €,
then we also have k € Ny, of course. Fix a function g € Ny:

(3-16) 8 Psg,+iay XD = Py 4iay
where, for all p, D,

(e1) g(p, D) € D,
(82) g(p, D) = p.
(Then g € Ny obviously implies (p, D € No = g(p, D) € Np).)
We will have to define also the auxiliary sequence r = (r; : [ € w) with the
following properties:

(®1) r € Ny,
(®y) foreachl, r € Pg gz N No,
(®3) foreachl, poy1 <1 < po,

(®4) if there exists p € P 7. such that p < pg;, and p g is a condition extending
po,; in Pg 7. +idg then r; is such a condition.

Now we can construct the po; (and r;). Let poo = px« | U,. For obtaining the
po.; proceed as follows. Assume we have defined pg o, po.1, - - -, Po.—1 (and as
well the r; for i <[ — 1). Now if there exists p € IPS’g* P < po.i—1, such that
p " €1—1 # & but a condition extending po 1, then let r;_; € Ny be such a p (recall
that g;_1 € E € Ny by (3-13)), otherwise define r;_; = pg; = po,;—1. Lastly, in the
former case define po; = g(ri—1, Di—1) | U.,. It is clear from the construction and
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the definition of g that po;—1 <r—1 < po., and r;_1, po; € Ny, and since every
object as well as the series (g; : i € w) are elements of N, we obtain pg, 7o € N; too.

Finally, it is straightforward to check that the filter Gy generated by the pg
meets every dense subset D € Ny of Pg iz . We fix a D such that

={pePsy q, plUs€D)

is clearly a dense subset of Pg 7 +idg belonging to Ny. This means that if e € E is
the empty sequence, then there exists i € w, such that J; = D’, and &; = e, therefore
po.i+1 € D.

For pj, first consider the condition p{ € N consisting of only the generic trees
given by G (for each 6 € dom(pj) = NoN S the tree

Ty o) = | J(Tpo) : p € Go)

is of height &, but u r9)—g)- Then let pi’ € Pg 5 , py’ < p; be an extension so

that for each 8 € S’ N N the tree T,y 2(0) satisfies that for each branch B through
(T, 4 @) <s, =T, L) if B € Ny, then there is an upper bound of B in T, Pl () This can
be done since N 1 is countable. Moreover, we choose the other part of p/ " so that for
each 6, a € Ny, if o € U; the chain 7 ol O). (with a top element) contains the chain

U{np(é),a :p € Go}

which is given by Gy at this coordinate. This can be done as

U{Tlp(e),a :p € Go} € Ny,

since G, po € Ni. Then clearly pj’ < po; for eachl € w.

Finally, for the last item of (H,) first recall that P* _ is an w;-closed dense
subposet of Pg ;7 by Definition 3.11. Then if a countable increasing sequence in
P <. (where a first element stronger than p;’) decides more and more about the
e th level of 7', then choosing P to be an upper bound will work (e.g., choose
an enumeration (f; : i € w} of the §,-th level of T, let (s; : i € w) enumerate T<5.
in type w, and let r; decide whether the j-th ordered pair in the countable set
{si i €w} x {f; 1i € w}isin <j).

The next step is to construct the p; (i > 0) and the g,. This will be done
simultaneously by induction. The induction is carried out in V, but each step can
be done in Ny, which will guarantee that each p, € Nj.

It is straightforward to check that choosing go = p, would satisfy our require-
ments, as, e.g., Po.o = P« | U,. Then fixing n > 0, and assuming that p;, ¢; are con-
structed for each i < n, first we construct g,,. Recall that g, | (U+W, ) €eGp_y

(by (H4)(d)).



Paper Sh:1189, version 2021-08-03.2. See https://shelah.logic.at/papers/1189/ for possible updates.

CHARACTERIZING THE SPECTRA OF CARDINALITIES OF KUREPA TREES 437
Recall the definition of the set £ (3-13), and let
E,_1={ee€E :foralli <n{o;, &) ¢ e}.

Using that p, € Py T, +idg forced that b is not an element of VIGg U*JFWH], ie.,
there is no Pg 7,  -name of it, we argue that

D= {p €Pg g 4w, , : there exists e, edecE, 1(p e<qu1,p € <q.1)

A (there exists 8 <y, t #1' € Tes\T<s: (p ekt eb)A(p "€ -t € b))}

is dense in P STt Wy under g, 1 | (U + W,_1). Indeed, assume on the contrary
that ¢’ € Psg.w, g <qn_1 | (Us+W,_1) is such that D has no element under
q’. Now for every § < w1, consider the set

Ds = {p € PS,U*+W (p<qHA (there existse € E,_1:[p e <qgu_1]

n—1

A [there exists tp 5 € T<s \ Ts : p "el- 1,05 € b1)},

which is dense under ¢’ in P S.0,+ids" Now since for each § < w; the sets D and Dy
are disjoint, for p € Ds the witnessing 7, . s doesn’t depend on e, therefore g’ Agp,—1
forces that b is in V[.GS’U*JFWH] (i.e., forces that the PS’U*JrWnil—name {(p,tps):
p € Ds, § <w;}and b are equal). Then as our set D € Ny is indeed dense we have that
there exists a condition ¢” € G,_1ND, witnessed by  #¢" and e, ¢'. Finally, if r € B,
then define g, = ¢” " ¢/, otherwise we can let g, = ¢” ™ e, which are both stronger
conditions than ¢, by the definition of D. It is straightforward to check (Hy).
As g, is already defined (and so are p;, g; for each i < n), we turn to the definition
of p,, which we will do similarly to that of py. Let p, 0=¢, | (U «+1w,), assume that
Dn.0s Pn.ls - - -» Pni—1 are already chosen. If €;_; ¢ E,_, then p,; = pn.—1, other-
wise proceed as follows. Choose the sequencee =e(n,l—1)=(e; : 1 <i<n+1) €
E" O and the sequence i =m(n, [ —1) = (m; :i <n) € »"*! with the properties

/S

(1) epy1=¢-1andm, =1—1,
(2) foreachi <n+1,
(3—17) Jm,- =DA% = (ei+1 plus (nI’i,mi (01).E; attained on (Q,‘, §i>))”-

Provided that the e; are defined for j > i, as well as each m; for j > i, lete; € E
be the element with u,, = u,,, Ulei, & Nei 2 Neisr> Ne.oi & = Npim, (0i).6i and
let m;_; = k(D, e;). Observe that by our procedure, and by the definition of the
function k (3-15) we have e; = ¢, and also

(3_18) nfl»QnsSn = T,pn.lfl(Qn)aén’
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At some point later we will use the following fact, hence it is worth noting that for
eachi, 1 <i <n,

(3-19) e(i,m;) CTen,l—1) and m(,m;) Smn,[—1).

Finally consider the condition r,, (from (®;)—(®4)): if r,y, " e is a not a condition

in Py T otid] S then let p, ; = p,.;—1, otherwise first define the auxiliary condition

(3_20) r0=g(erAel7D)7

and note that in this case n -
the properties of g we obtain

menon s = Monic1(on) & by (3-18), and therefore by

(3-21) Nre(@n)s&n = Mpui—1(0n)bn

Recall that pj, ;1 | U, € Gy by our induction hypotheses (H3), and it can be seen
from the construction of po ; that in this case po my+1 =7e | U, € Gy. Therefore
by (3-21) we have that (r, | Uy +W,) A Dn.i—1 1s a condition in Pg*+wn, and let

Pnil = (7o r U* +w,) A Pn,i-1.

Then clearly p,; < pn.i—1, and py | U, € Gy. From (H3) it only remains to check
that (d) and (e) also hold. Since the whole construction of p,, took place in Ny (k € Ny
and so is the enumeration ((J;, &;) : i € w), g € Ny), p, € N1 obviously follows.
Verifying the genericity of G, goes similarly as of Go. Let D € Pg i ., D € Ny
be a fixed dense set, and ¢’ € E be the empty sequence. Now, if we choose [ so that
Ji1=D'={pe PS,U*JAES/ :p U+ W, €D}, e_;=¢, then it follows from the
construction of py j, thatof m =m(n,l—1) and e =e(n, [ —1), and from (3-19) that

Pim;+1 = (7, TU*-HIH)/\Pi,m,- if 1<i<n,

and
PO,mo+1 = g(rmo - 61) [ U*,
therefore
/\ Pim; < 8(rmy " e) [ (Us+ Wy) e D', O
i<n
Lemma 3.30. Let T € V[Gg ;7 |1 be a Kurepa tree, S' TSNS, (S'€e V), G2 C
s U ldS/—U*
Pi% g be generic over V|G i 1. Suppose that
S/— * 9 *

be V[GS,U*][GE,’@S,_m)] \VIiGg ]

is a new branch of T, and suppose that y > k is a cardinal, and for each 6 € S’ the
inequality |0 \ Uy | > y holds. Then the filter G, 7 adds at least |y |-many new

idy—T,
branchesto T.
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Proof. Without loss of generality, we can assume that 7 C wy, and A is a cardinal (in
VIGg i 1. First we will choose a system Wo= (Wog:0€S)€[]peg PO) with
(forall® € S") [Wpo| <k,and b € V[GS,U*][G%O]3 since b € V[GS,U ][G;’d 0. 1,
S’ € V we can use Lemma 3.20 and obtain that

be VIG5 lIGy ;1= VIGsp i,

And because b € H(w;)", applying Lemma 3.24 with §, and U=U,+ i?is/, there
exists Sy € S, Wa €[5, 5 PWUs) X [pes.ng P(O) with

beV[Gg w 1S VIGsg (. 1= V[Gs,ﬁ*][GOW*fﬁ*]»

where |S,| <k, and |W;| < « for each 6 € S,. Then fixing Woe [Tpcs P(O) so that
Wo,, = Wi\ U if 6 € S,, and Wy g = & for 6 € S\ S, has the required properties.

Now, as |[Wpg| <« <y, and y <6\ U;| for each 6 € §' we can fix for each
o <y asystem Wy = (Wap:0 €8) € 1pes PO\ Uy) such that for every 6 € §',

(i) WeoNWgo=a foreverya < <y, and
(i1) |Wo,0| = |Wq,| for each o < y.

For each 0 < o < y define the bijections

7o+ ({0} x Woo > (10} x Wass,
6es’ ges’
where 7, [ {6} x Wy g is a bijection to {0} x Wy, ¢. Then clearly each 7, induces an
automorphlsm e € VIG 5.0, of [IJL0 and I]3’° . Moreover, 7, induces a natural
operation 7 from the class of P2 ,“hames to the class of P2 -names. Now fix a
[P>O —name bo € V[GS 7, ] for our new branch b € V[GS 7. ][G° ] and choose an
element De € |]3>o forcmg that by is a new branch, i.e.,

(3-22) VIG5 1= pe k- by € B(T)\ BY1Cs0.(T).
Let
Pi=P% g,

i.e., adding the branches |, ey W0 to T for each 6 € S’, which is of course equal
to the countably supported product of POWa (o < y), and let G denote the generic
filter G°d _7. NnPe.

We w111 show that in V[GS 7. IIG2] < V[GS 7, ][G°
y-many new branches of 7', i.e.,

0. ] there are at least

IB(T) N (VG g G\ VIG5, DI = 4,

by arguing that
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(®;) forany @ < y (in V[Gsyg*]),

na(po) “_U:"O A*(bO) ¢ V] GS U. ][ o, <a]

(where G _, stands for G; N |]3’°Z = ) and
ﬂ<Ot

(®2) Ha <y :7a(ps) €GYl=y
This will complete the proof of Lemma 3.30. (]

First we will prove (®,), for which recall that we assumed that y is a cardinal,
and choose a system of uncountable regular cardinals {pg : B < x < ¥}, and a
partition (Ig : B < x) of y with otp(Ig) = pg for each B < x (i.e., IgN 15 = < for
B <8< p,and Uﬂ<p Ig = y). Then it is enough to verify, for all 8 < x

(3-23) {a € Ig: T4 (pe) € G2} = pg,

which can be seen by a standard density argument: Fix B < g, a € Ig, then it
suffices to show that

Dgo ={p e Py :p <7s(ps) for some § > «, § € Ig} is dense,

which obviously holds by the regularity of the uncountable pg = |Ig| (since for

8 € Ig we have 7T5(ps) € POW , P¢ is the countably supported product of POW (x<y),
) o

and Ig C y).

For (®1) first consider P{ as the product of P2 — and P2 . We will need
Zﬁ<y B#a Wﬂ Wq
the following claim.

Claim 3.31. For each p € I]j’O , P < 74 (ps), there exist qo, q1 € P 40,91 <p
and the incomparable elements to, t; of the tree T such that

VIG, g, 1[G? ol FE (@ Il—[poW t € ﬁ;(l}o)) for each i € {0, 1},

where G, \(,; = G.N P25<y s

Before proving the claim we verify that (®) follows from it. In fact,

Ra(pa) Ibps 5 (bo) & VIG5 1[G2 )\ (oy]-
Since G C Py is generic over V[G s. (7*], and P can be identified with

(P2ﬂ<y B#a Wﬁ) X [lj)Wot ’

by [Kunen 2011, Lemma V.1.1]

=G, NP
* V\ Zﬂ<y B#a Wﬂ
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is generic over V[G 77 ], and G , = GNP is generic over V(G 7 1[Gy (o) ]-

For each branch ¢ € V[GS 7. ][G. T\ a}] of T ‘define (in V[GS 7. 1[G e ])

D.={q e [P"”W : there exists € T \ ¢ such that ¢ Il—[pow temn, (b)),

which is dense under 77, (p,) by Claim 3.31, since for a fixed p € [PL at most one
t; can be in the branch c.

Proof of Claim 3.31. First we argue that the statement holds in V[Gg 7 |, i.e.,
for each p € [P’O , P < u(ps), there exist go, g1 € [P’ 5 40 q1 < p, and the
incomparable elements to, t; of the tree T such that

(3-24) VIGsp,)E (qilbes 1 € 7k (by)) foreach ie€{0,1}.
Now (3-22) implies that
VIGs,p,1 = fta(pa) IFps 75 (bo) € (B(T)\ BY1950:4(T))

since bo € V[GS 7. ]is a [P’° —narne and T € V[GS 7, ]. Suppose that p < 77, (ps)
is a counterexample, but then for the set

b'={t €T :thereexist g € P; ,q < psuchthatg -1 € fia(bo)} € VIGg 5]

we have p I+ 7%*(150) = b’ (since 7, (p.) forced that 7%*([30) is a cofinal branch in T),
a contradiction. Finally, fixing p < 74 (ps), if o, ¢1 € [|3’O , 40,91 < p, and the
incomparable elements ty, t; € T are such that (3-24) holds “then

VIG5 G, )\ (o] E (g IFpe, 1 € ¥ (by)) foreach ie{0,1},

since if g; € H C IP"L is generic over V[GS 7, 1[G? ) ] and t; ¢ 7%*(150)[H]
(for some i € {0, 1}), then H is generic over V[G 5.7, ] too, and the same holds in
VG g I[H]. U

It is left to argue why Lemma 3.27 and Lemma 3.30 complete the proof of
Theorem 3.1 (and Theorem 3.4). Suppose that T € V[G] is a Kurepa tree (where
GCP= [P’S+ A is generic), and assume on the contrary that |BYICK(T)| ¢ S,.
We can also assuime that T C H(wy)", and by Lemma 3.24 there exists S, C St
1Se] <k, Wy= (Wg:0€Ss) €] ]pes, 017 suchthat T € V[Gyg 1. Forestlmatlng
(2")1)V[GS* Wl first a straightforward calculation yields that ||]3’ M ARLE Since
IPs, (z:0es,)| = (IS«||w1])® which is either (w1 -@1)” = w1 < w2 (1f/< =w»,, by CH),
or y“ <k (for some y < «, if k is inaccessible). Thus recalling the definition of
Qg, wy, the fact Zees* W, | <« as k is regular, and sup W) < « (if k € S;) we have
the following (in both cases regardless of whether x = (w7)V, or an inaccessible)

w
|PS*,W*|=|PS*,<@:GGS*>|-((wl)-( > |W9*|)) (W sup W))® <.
}

0eS.\{k
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At this point we have to discuss the two cases (i.e., whether « € S,) differently,
arguing that in both cases there are branches outside V[Gg w 1.
If «k =wy € S,, then as

AP, -
VEIP 5.0 Psmd =,
we have
V[GS*,W*] = 2% = w,,

therefore as |BYICI(T)| ¢ S,, there are branches of 7 in V[G] not in V[Gs*,W*]-
On the other hand, if ¥ ¢ S, is inaccessible, then we obtain that

VIGg .1 IB(T) <27 <«,
and as « remains a cardinal in V[G] (by Claim 3.26), and
VIG] = IB(T)NVIGy, .1l = w1

we conclude that this case there also must be branches of T notin V[G S*,W*] as T
is a Kurepa tree in V[G]. Now let r € ]_[9633\5. P(0), Rg =60\ Wj, then

P= Psf,ﬁs:r ~ P, g7 X Ps,ncsivsa.i) X (Psr\s*,ﬁsr\s*)’

and there are no new sequences of type w in V[G] (by Claim 3.23), and the second
component is wi-closed, the third component has an w;-closed dense subset (which
thus remain w;-closed in V[G . ids, _7]) we obtain that each branch of T is added by
G S, ids, —F = GNPy g7 (smce an w-closed forcing do not add new branches to
Kurepa trees [Kunen 2011 Lemma V.2.26]). We only have to derive a contradiction
from

VIG5, ;1 = IB(T)| ¢ S..

Now letting 8 = |B” (©5s. 7 (T)| ¢ ., = = S, NSN3, SF = (S, NS.)\ S by
Lemma 3.20 we have

VIGs, a5 -1 = VIGs, w4 G , _y -

Asd ¢ S., S, itis enough to prove thatin V[G 5. W.+id ] there are less than o-
many branches of T, because if G35 . adds new branches, then by Lemma 3.30
it adds min(S;")-many new branches (since each |W/)| < x < min(S,) < min(S;")).

Now if 0 =k, then S, = &, we are done, so we can assume that 0 > «, and
sup S, > k. As |S«| <k (in V), and our conditions (Case 2 (iii), or Case 2 (ii))
states that then sup(S. N S, N 9) € S, implying sup S, < 9. Therefore using that
W; C 6 we get 2965 Wy | <|sup S_|2 < d. Now by Lemma 3.27 for each branch
b of T in V[GS W+id 1= V[GS W*][G" y— ]there exist 6y, 01, ..., 60,_1,
Ue’o, U0.1 Ue.,l, ﬁnlte such that b € V[G;* W, ][Go ] Therefore, as ||]3’O | =
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o} = wi, counting the nice IPO _-hames of subsets T for each possible n, sequence
of #, and U,,

BIONWVIGs, w G, w1\ VIGs. w.D

< (|sup S; |- w{")V1Cs.

W <sup S,
which is smaller than 9, a contradiction.

For V[G] = 2“! = X we only need to show that 2! < ). But a similar straight-
forward calculation yields that P = P g+ 5 - is of cardinality A, and then (using
k-cc and the equality =% = A) by counting the possible nice names for subsets of
w; we obtain the desired inequality.

Remark 3.32. If S, also satisfies
(3-25) forall € Se:cf(u) <« — put € S,,

and GCH holds in V then S, \ {A} is the spectrum for the Jech-Kunen trees in V[G].
(A tree T of height w; and power w; is a Jech—Kunen tree if w; < |B(T)| < 2“'.)
For more on Jech—Kunen trees see also [Shelah and Jin 1992; 1993; Jin and Shelah
1994]. Note that CH in the final model implies that the product of countably many
Jech—Kunen trees is a Jech—Kunen tree, so is the diagonal product of w;-many Jech
Kunen trees, hence (3-25) cannot be dropped.

One can obtain similar cardinal arithmetic conditions for Sp,, with u large.

4. The necessity of the inaccessible cardinal

In this section we prove that if w; is not an element of the spectrum, then w, is
inaccessible in L. The idea of using transitive collapses of elementary submodels
of constructible sets as nodes of a tree goes back to Solovay’s original unpublished
argument for the consistency strength of the negation of the Kurepa hypothesis.
Although the next proof is deemed to be well-known, for the sake of completeness
we include the proof as there is probably no known source to cite.

Theorem 4.1. Suppose that w{ is a successor in L. Then there exists a Kurepa tree
T with BY(T) = w,.

Proof. We will use an extension of L, an inner model between L and V, what serves
as the motivation for the following definition of relative constructibility, which can
be found in [Kanamori 2003].

Definition 4.2. For a set A define L[A] =,y L«[A] by transfinite recursion as
follows. Lo[A] = &, Ly+1[A] =defa(Ly[A]), and o limit Ly[A] = U,ka Lg[A]
(where defy (X) are the subsets of X that can be defined in the structure (X, €
(X x X), Y N X) by parameters from X; see [Kanamori 2003, Chapter 1, §3]).
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The following is an easy exercise, but for the sake of completeness we include the
proof.

Claim 4.3. There exists a set A C w; such that a)lL[A] = wi, wZL (AT wy.

Proof. If a)g = (A")E, where |A| = w, then in a single subset A of w; we can code
a well-ordering of w; in type A, and also for each @ < w; a well-ordering of w
in type « in the obvious fashion, and such that L can read this coding (implying
a)lL[AJ =wi, wélAJ = wy): First let (X, : @ <w;) € L be a set of pairwise disjoint
sets of wy with |Xa|L = w for each o < w1, and | X, |L = w1, then for each o < w;
we can code the well ordering X, in order type «, and the well ordering of X, in
type A in a subset A" of |, o1 X2 c a)% Finally, taking the preimage of this set
under a bijection f € L between w; and a)%, ie, A= f"1(A") works. [l

We have to recall a classical lemma [Kanamori 2003, Theorem 3.3]. Recall that
Lc(R4) stands for the (first-order) language of set theory extended by the unary
predicate R4.

Lemma 4.4. There is a sentence o € Lc(Ra) such that for every transitive set N
(N, €, XNN) =0 implies N = L,[X] for some limit y.

In particular, if M < (Lg[X], €, XN Lg[X]), where B is a limit ordinal and 7 is the
collapsing isomorphism from M onto the transitive set ran(rw), then the Mostowski
collapse

ran(w) = L, [{mr(x) : x € M N X}]

for some y < B.
The following is immediate.

Claim 4.5. For each infinite ordinal 8 and ¥ C Lg[X],if Y € L[X]and X C Lg[X],
then = (|8|)LX) implies Y € L, [X].

(Working in L[X],if Y € L,[X], then let M < L,[X] with {Y} U Lg[X] C M,
M| = |Lg[X]|, and apply the lemma recalling that 7 | Lg[X] is the identity.)
Now we can turn to the definition of the tree 7', which will be defined by its
branches.
Recall that there exists a definable well-order on L[A], which is downward
absolute to almost every initial segment of L[A] (to the ones indexed by limit
ordinals) [Kanamori 2003, Theorem 3.3]:

Lemma 4.6. There exists a formula ¢ € Lc(Ry) (i.e., in the language of set the-
ory extended with the unary relation symbol A) which define a well-ordering on
(L[A], €, A), moreover if § is a limit ordinal, x, y € Ls[A], then

(L[A], €, A) E¢(x, y) <= (Ls[A], €, AN Ls[A]) = ¢(x, y).
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From now on “x <47 y” abbreviates ¢(x, y).
We will take Skolem hulls many times, thus we need to introduce the following
variant of this standard notion.

Definition 4.7. Let (M, €, X,0), M C L[A] be a set model of the language
Lc(Ra, cy) with @ € M, M’ C M such that the well-ordering formula ¢ € Lc(R4)
from Lemma 4.6 is absolute to M, i.e.,

(4-1) (forallx,y e M): (L[A], €, A) Eox,y) < (M, €, X) E ¢(x, ),
e.g., when (M, €, X) = (L;[A], €, AN L,[A]) for some limit ordinal {. Then the

Skolem-hull of M’ in (M, €, X, 9) (in symbols, §M-€ X9 (M")) is the closure of M’
(M,e,X,0)

under the functions fw for each formula ¥ (v, ULy .- e Un,) € Le(Ra, ¢y)
with ny, + 1 free variables, where the function fll(,M’e’X’d) satisfies the following:

fED M~ M
is defined so that for every (x1, x2, ..., X, w> € M"v: if there exist y! € M such that

(Mv E’ X’ 8) IZW(y»x]»XZ»---,xnw),

(M,e,X,0)

then let f,/, (1, X2, o5 Xny,) be the unique such y, otherwise let

M,e,X,d
f*/(/ < )(xl,xg,...,xnv,)zﬁ.

Then the fact that for each formula v»" we can define the formula saying that y is the
least y (with respect to the well-order given by @) satisfying ¥/ (v, x1, x2, ..., X, )
together with the Tarski—Vaught criterion implies that the closure is an elementary
submodel of M, in symbols, M’ < (M, €, X, 9).

Observe that this closure only depends on the isomorphism class of (M, €, X, 9)
by the absoluteness of the well-ordering formula ¢ (4-1).
Choose & < w; such that

(4-2) £ is the minimal ordinal (for all ¢ < wy)

there exist f, € L¢[A] bijection between w and «

(which can be done due to Claim 4.5, in fact £ = w;, but we won’t use this equality,
hence we don’t argue that).

Now we will define an operation which assigns for each § € [£, w;) the ordinal
8’ < @y in the following way. We would like to choose 8’ so that in Lg[A] it is true
that for each set x there exists a surjection from w; to x, and for §” # §' the structures
(Ls'[A], €, A, ) and (Ls[A], €, A, §) cannot be elementarily equivalent.

Definition 4.8. Fix § € [£, w,), and define & to be the least ordinal such that
(a) 6 € Ly[A],
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(b) for each x € Ly[A] there is a bijection f € Ly[A] between w; and x,

(c) taking the sentence o from Lemma 4.4 (Ly[A], €, A) Eo.

(Using Claim 4.5 and (|L,[A]] = |a|)* for @ > w it is easy to see that we can do
this closure operation, and there is such a ' < w;.) Then we have

4-3) (8’ is a limit ) /\(Lg/[A] E “w; is the largest cardinal”),
and also the desired uniqueness by our next claim.

Claim 4.9. There is a statement o’ € Lc(R4, c3) such that for each § € [£, wp)
(Ly[A], €, A, 8) =o', moreover, for each § > w; and 8" > §,

(Ls'[Al, €, A, 8) F o) = (8" =4).

Proof. First define " = o A (for all y there exist f : w; — y bijection) and let o’
be the following sentence:

o' =" A(—(3X)(X is transitive) A (6”)X A (8 € X))

(where under ¥* we always mean the formula ¥ € Lc(Ry4, ¢j) relativized to X,
and o is from Lemma 4.4). U

Now fix § € [, wy), and for each ordinal 0 < o < w; define Ms , to be the

Skolem-hull

4-4) Mj o = HEs1ALEAD (o) (for each o < wy).
Also define

(4-5) Ms o= @.

Then

(4-6) Ms o < (Ly[A], €, A,8) (for each o > 0).

Observe that whenever M* < (Lg[A], €, A, §) we have for the Skolem functions

from Definition 4.7 that f, "< | (yeym = fiMEANMD) hence

(4-7) forall M' C M* < (Lg[A], €, A, §) : HLolAL€AD a7
— ﬁ(M*,e,AﬁM*,(S)(M/).

Now as we defined (M; , : @ < w;) note that
(4-8) (M < (Lg[A], €, A, ) AN(IM| =w) > (M Nw € wy),
in particular,

(4—9) M(g’a ﬂa)l € wi,
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since (4-2) together with & < § < 8’ implies that in Ly [A] there is an enumeration
of each ordinal less than w; (and M; , is countable). This implies that

(Cs={a <w: Ms,Nw) =a}isaclubin w) A (0 € Cs).

It is easy to see that

(4—10) for all ¢ < w1 - M(;,O, = MS,min(Ca\a)-
For later use we verify the following statement.
Claim 4.10. U M50 =LsIAlL
a<wi

Proof. Since the union of an increasing chain of elementary submodels is an
elementary submodel, we have M, = U(x<w1 Ms o < (Lg[A], €, A,5). Now
recall, that in Ly[A] every set x admits a surjection from w; onto x, therefore
w1 € M, implies that M,,, is transitive. Then by Lemma 4.4 and M,,, =0 we have
M,, = Ls/[A] for some §” > §. But then either M,,, € Ly[A], or M,,, = Ly[A],
and because the former would contradict Claim 4.9, we arrive at our conclusion. []

For each o € Cs and B < wy, if & = max(Cs N (B + 1)), then let Njs g, be
the range of the Mostowski-collapse s o of (M, €), and let As g o = 75,4(A),
0s.p.0 = T5.0(3):

4-11) 5,0 - Ms,o —> Ns ga

which is of course not only an isomorphism between (M; o, €) and (N5 g, €), but
witnesses

(4-12) (M5, €, ANM;5.4,08) >~ (N5 o, €, As,Bas 05,,a)-

Now we are ready to construct the tree 7. For a fixed § € [£, w;), o € Cs, B < wy,
if 0 < o = max(Cs N (B + 1)) holds then we define

(4-13) tz?,ﬂ,a - (Nﬁ,ﬂ,ou E’ AB,ﬂ,a’ as,ﬂ,cl)a

i.e., the structure (Ns g o, €) extended by the one-place relation for the image of
A € M; , under the collapsing isomorphism, and the constant symbol for 95 g .
For max(CsN(B+1)) =01lets550=9.

Observe that given t =15 g , we can decode « from ¢, as « is the first uncountable
ordinal of ¢.

Definition 4.11. Define
T={(B,1s.pa):0€[§, w2), B <wi,a=max(CsN(B+ 1))},

with the partial order (Bo, 5,,6,00) <1 (B1,1s,,8,.;) 1f and only if either ap =0
(thus 15, g,.«, 18 the empty structure), or
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(i) Bo < Bi1,and
(i1) taking the Skolem-hull M of «g in

Is1, 1,00 = (Nal,ﬂl,aw s, A‘Slsﬁhal’ 851431,0!1)’

i.e., M = $-Are (o) is isomorphic to 150, Bo. a0

(M, €, As, gy.ay VM, 05, ,.01) == (N5, o0 €5 Aso. o0 50, o.0) s

and

(iii) if g < «y, then there is no proper elementary submodel

M < (N5, gy,a15 €, Asy 1. 981.81.01)
with
aU{ag}) €M and MNoa; C By.
Roughly speaking, in level § we have (isomorphism types of) initial segments M of
models of the form (L a/[A], €, A, A) (for some A € [&, w»)), such that M Nw; < B,
and M is maximal with respect to this condition. We need to check that T is a tree,
its levels are countable, and that it has only w,-many branches even in V.

The following claim is a standard calculation, but for the sake of completeness
we include the proof.

Claim 4.12. Let § € [£, wp) be fixed, By < B1 < w1, let o = max(Cs N (B + 1)),

ag =max(Cs N (Bo+ 1)). Then (Bo, t5,6y,00) <7 (B1, 15,81,01)-
Moreover, the embedding 7g, g, : N5, gy,a9 —> Ns,p1,, 1S Unique.

Proof. First observe that by (4-4) and (4-7) for § € [§, w»), 0g < &,
§ Moo ©AD (o) = §5EEAD (@) = My g,

therefore since 8; < w is such that «; = max(Cs N (B; + 1)), then applying (the
restriction of) the collapsing isomorphism 75 o, to the left side, we obtain

(5 Mo & Asar D) (ap), €) 2 (Mg €)

and because fy < i is such that og = max(Cs N (Bp + 1)), then applying the
isomorphism 75 4, to the right side (which fixes og) we obtain

(§ Mo € Aspan D) (@), €) = (Np.aq. - €)-

Finally, since 754,(A) = As,,01> 7s,00(A) = As o0 AN 5,0, (8) = 358,015
7s,00(8) = 05,8),09» WE have

HNoPre (), € As py.ays 35.81.) 18 isomorphic to (Ns gy aes €5 As.po.aes 0. fo.c0)
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therefore (ii) holds. The uniqueness easily follows from the facts that the embedding
of (Ns,g,a0+ €5 As,By,c0> 95, p0,00) has to fix the ordinals less than o, and elementary
embeddings uniquely extend to Skolem-hulls.

For (iii) suppose that ap < 1, and note that

(Ns,g,,a5 €) = “aq is the least uncountable ordinal , o is countable”,

and for M < (N5 g, a5 €, As,B1,a15 05.8,,01) 1f g U {ag} © M then consider the
corresponding submodel M’ < (Msq,, €, A, 8), for which M’ O Mj; 4,+1. But
(recalling (4-8)) since max(Cs N (Bp + 1)) = g we obtain By U {Bo} S M’ C Mj 4,,
that can happen only if By is smaller than the least uncountable ordinal in Nj g, «,,
oq. Butthen g € M Najy. O

The next claim will verify that 7" is a tree of height w; (for the transitivity of <7
use the claim two times).
Claim 4.13. For a fixed §; € [§, @2), Bo < B1 < w1, let ¢ = max(Cs, N (B1 + 1),
and fix arbitrary ag € wy, 8o € [€, w2). Then (B, tﬁo,ﬂo,ao) <r (Bi1, [51,/31,&1) if and
only if 15, .oy = 151, Bo.max(Cs, n(gy+1)) -
Proof. We only have to check the “only if” part, but first observe that Definition 4.11
clearly implies that up to isomorphism there exists only one ¢ for which (By, ¢) <
(B1, t5,,8,,01)- Now the claim is the consequence of the fact that 75, g, o, 7 ..., 0ue
implies that they are not isomorphic as structures of the language L (R4, c¢j): For
transitive sets N and N’ with X, 9 € N, X', 3’ € N’ the structures (N, €, X, 9),
(N’, €, X', 3’) are isomorphic if and only if N = N’, X = X’ and 9 = 9’ (since by
the uniqueness of the Mostowski collapse we know that (N, €) >~ (N, €) if and
only if N = N'). O
Lemma 4.14. For each B < w; the B-th level of T is countable.

Proof. By Claim 4.13 we have that the S-th level of T is
T<g\T.g={(B,1584):8 €&, ), a =max(CsN(B+1))}.
For a fixed § € [£, w)) fix o = max(Cs N (B + 1)) too, and consider the structure
ts.p.0 = (N5,ga> €, As,p.as 05,8,0),

where Nj g o is the Mostowski collapse of (Ms o, €) (by the isomorphism 75 ), and
As pa = ANa. Now (4-6) states M; o < (Ls/, €, A) then (recalling Ms , Nw| =,
and 5 4 [ « =1id,) by Lemma 4.4

Ng’lg,a = LV[A Nal

for some y = y (3, @) € (o, w1). Now we determine an upper bound y,, for the set
{y(,a):6 €l o) N aeCs}. If we have such a bound for each possible o < g,
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then letting y denote sup{y, : o < B}, we get

{ts.,0) 16 €[, w2), a =max(Cs N (B +1))}}
C{Ly[ANa]l,e, AN, 0) Y < Yoo, < B,0 <y},

which latter set is obviously countable, this will finish the proof of the lemma.

So fix @ < B and § € [€, wy) such that o« € Cs. Now we have two cases depending
on whether there is any (cardinal)“lA"! in (o, w;). If A € (o, wy) is a cardinal
in the inner model L[A N «], then for each § if « = max(Cs N (B + 1)), then the
transitive set Ns g , cannot contain A, as M;  sees w; as the largest cardinal, and
7s.o(w1) = . This case choosing y, = A works.

On the other hand, if (Ja|7)HAM = &, then we first prove that « € Cs implies
(le| = w)HAM]: otherwise in Ms 4, and in Nj g, each ordinal less than o are
countable, thus as well in L[A N«]. Then it is easy to see that the condition

(A is the unique cardinal in (w, @] )) 4™

cannot hold for two different A, therefore o can be defined in L[A]. But then using
Claim 4.5 with X = A N« we have that for each ¢ € (o, @) there is a bijection
fr € Ly, [ANa] between « and ¢, therefore o can be defined also in Ly[A], and
M < (Lg[A], €) implies o € M, contradicting that Ms , Nw; = o (which holds
by o € Cs). Then (Ja| = w) 4" and Claim 4.5 implies that there is an ordinal
A < w such that there exists a bijection between « and w in L;[A N«a], implying

Ns.poa=LyswlANal C LilANa],
since « is uncountable in Ns g o. In this case
r@.a):delf,m)naeCs} S ya=4,
which completes the proof of Lemma 4.14. ([

Now T is obviously a Kurepa tree by the following fact and lemma.

Fact 4.15. The sequence (Bs : § € [£, wy)) lists pairwise distinct cofinal branches
in T, where

Bs = {(B, 15,8, max(csn(B+1))) : B < w1}

Proof. We only need to prove that Bs # B, if § # y. But according to the second
statement of Claim 4.12 for each 8 < 8’ < w; there is a unique elementary embedding
of 25, g/ max(Csn(B'+1)) 0I5, 8. max(Csn(p+1))» therefore there is a unique direct-limit of
this elementary chain, isomorphic to UO{GC.; M; o, which is (Lg[A], €, A, §) by
Claim 4.10. ([

It is only left to prove that each branch of T is of the form B; for some § € [, w»)
(even in V). The following lemma will complete the proof of Theorem 4.1.



Paper Sh:1189, version 2021-08-03.2. See https://shelah.logic.at/papers/1189/ for possible updates.

CHARACTERIZING THE SPECTRA OF CARDINALITIES OF KUREPA TREES 451

Lemma 4.16. Let B C T a cofinal branchin T, B € V. Then B = Bs, for a unique
80 € [Ev w2)~

Proof. Let lsg.Bop = (Nsg.p.ags € Asy poags 85ﬂ,lg,aﬂ) denote the elementin BN(T<g\
T_g). Working in V first we define the following bonding maps: for y < 8 < w let

Ty.pB - N5V~V~“V - N‘Sﬂ’ﬂ’“ﬁ

be the unique elementary embedding (combining Claim 4.13, and the second
statement of Claim 4.12). Since elementary submodels of an elementary submodel
are elementary submodels, g g o mgr g is an elementary embedding for each
B" < B’ < B < wy, therefore by the uniqueness

(4-14) (forall B” < p' < B <wi): mp gomp p=mprp.

This elementary chain allows us to define the limit D = (N,,,, E, A,,, 0,,) of the
directed system {ts, g ;. Tpp: B < B < w1}

Let g : Ns, .oy —> No be the embedding, Ng = ran(wg) (hence N, =
Uﬂ<w| Nﬂ)‘

First note that (N, , E) is well-founded, otherwise there would be an infinite
E-decreasing chain in the embedded image of Ns, g o, for some (in fact, every
large enough) B, contradicting that (Ns, g.a,, €) 1s well-founded. Now (by the
E-extensionality in N, ) we can assume that N,, is a Mostowski collapse, i.e.,
(Nw,» E) = (Ng,, €). Then it is easy to see that if 8 < w; for the elementary
embedding 7g : Ns; pay = Noy We have g [ ag = idaﬂ, and 7g(ag) = wi, thus
(recalling that Agﬂ’ﬂ’aﬂ = ANag) we obtain (N, , E, Ay, 0,,) =(Ny,, €, A, §,) for
some &, € (w1, wy). Now we can use Lemma 4.4 (since (Nsy.B.0p0 €5 Asy pay) EO),
there exists ¢ > 8, such that

and then
(Nw,s €, A, 8,) = (L¢[A], €, A, d).

Now because the formula o’ € Lc (R4, ¢y) from Claim 4.9 holds in (Ly[A], €, A, §)
(for each § € [&, w»)) (for our mapping § —> &’ from Definition 4.8) and therefore
also in Ms 4, N5 g o (8 € [§, w2)), so it must hold in (N,,,, €, A, 8,), which means
that 8, > &, and ¢ =4, i.e.,

(Noys €, A, 8.) = (Ls,[A] €, A, bo).
Finally, we have to prove that for each 8 < w;

tsg. By = (Nog.Bags € Asg.Bags 055.B.05) = 15, p.max(Cs,N(B+1))
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by arguing (having B fixed) that for a large enough y

(B, t5,.p.max(Cs,n(B+1)) =1 (V> 15, .0, )-
Let @ = max(Cs, N (B + 1)), & = min(Cs, \ (B + 1)), B’ = &/, and consider

the models Ms, o, Ms, o0 < (Ls,[A], €, A, 8,). Choose y > B’, ¥ < wp so that
N,=m, [N5w%01y] D Ms, . Then

(4-15) ay zao > p+1,
and o’ U{w1} S N, < (Lg;[A], €, A, 8,) with (4-7) imply
5(Ny,e,AﬂNy,5.)(O{) — ﬁ(Ls;[A],e,A,B.)(a) = M;_ ,.

Therefore in (N, €, ANN,, 8,) >~ (N(swy,ay, €, A(gy,y,ay, aay,my) there is an ele-
mentary submodel isomorphic to (Ms, o, €, AN Ms, o, 8s), Which latter is isomor-
phic to (Ns, g, €, ANa, 3s,,p,o), thus (ii) from Definition 4.11 holds.

Similarly, using also (4-10) and the definitions of «, o/,

NS AN (@ +1) = My, a1 = Ms, a0 20" 2 BUB),
and since the isomorphism between
(Ny, €, AN Ny, ) and (Néy,y,(xy, €, A6y,y,aya 88),,)/,0(}/)
fixes the ordinals less than or equal to o’ we obtain
§9Nororay & Byv oy v (o 1) 2 BU{B).

Therefore recalling (4-15) we obtain that (iii) (of Definition 4.11) holds as well. [
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