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BRANCHES OF KUREPA TREES

MÁRK POÓR AND SAHARON SHELAH

We give a complete characterization of the sets of cardinals that in a suitable
forcing extension can be the Kurepa spectrum, that is, the set of cardinalities
of branches of Kurepa trees. This answers a question of Poór.

1. Introduction

A tree is a Kurepa tree if it is of height ω1, each of its levels is countable, and it has
more than ω1-many cofinal (that is of order type ω1) branches. In this paper we
study the possible values of the branch spectrum of Kurepa trees, i.e., the set

Spω1
= {λ : there exists a Kurepa tree T such that |B(T )| = λ} ⊆ [ω2, 2ω1]

(where B(T ) stands for the set of cofinal branches of T ).
The spectrum is related to the model theoretical spectrum of maximal models of

Lω1,ω-sentences [Sinapova and Souldatos 2020]. Also canonical topological and
combinatorial structures are associated with branches of Kurepa trees possessing a
remarkably wide range of nonreflecting properties [Koszmider 2005]. For higher
Kurepa trees (of weakly compact height) the consistency strength of certain types
of the branch spectrum was studied in [Hayut and Müller 2019].

It was first shown by Silver [1971] that the Kurepa hypothesis (i.e., the existence
of a Kurepa tree) is independent (also see [Kunen 1983, Chapter VIII, §3]). More-
over the nonexistence of Kurepa trees is equiconsistent with the existence of an
inaccessible cardinal [Kunen 1983, Chapter VII, Example B8].

Questions about the possible values of the spectrum were addressed by Jin and
Shelah [1992]. They proved (assuming an inaccessible cardinal) that consistently
there are only Kurepa trees with ω3-many cofinal branches while 2ω1 = ω4.
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Building on ideas of Jin and Shelah, Poór [2017] provided a sufficient condition
for a set to be equal to Spω1

in a forcing extension. Formally, it was shown that if
GCH holds, and 0, 1 /∈ S is a set of ordinals such that S satisfies either Case A:

(i) 2 ∈ S,

(ii) {sup C : C ∈ [S]≤ω1} ⊆ S,

(iii) (for all α ∈ S) : (ω ≤ cf(α) < ω2)→ (α+ 1 ∈ S),

or Case B:

(i) there exists an inaccessible κ ,

(ii) {sup C : C ∈ [S]<κ} ⊆ S,

(iii) (for all α ∈ S) : (ω ≤ cf(α) < κ)→ (α+ 1 ∈ S),

then in a forcing extension we have {α : ℵα ∈Spω1
}= S (cardinals are only collapsed

in Case B, from (ω1, κ)). It can be easily seen that if cf(µ)= ω and (Spω1
∩µ) is

cofinal in µ, then there exists a Kurepa tree with µ-many branches, as the union of
countably many Kurepa trees is a Kurepa tree, and it is not difficult to see that the
same holds if cf(µ)= ω1, therefore Case A(ii) and Case B(ii) are in fact necessary.
However, it remained a question whether the last clauses can be dropped.

In this paper as the main result we prove that assuming CH + (2ω1 = ω2)

conditions (i), (ii) (in both cases) are in fact sufficient by forcing a model of
{α : ℵα ∈ Spω1

} = S. Also, we can arbitrarily prescribe 2ω1 to be any cardinal
λ ≥ sup(Spω1

) if in Case A the equality λ<ω2 = λ holds, or in Case B λ<κ = λ

holds too.
Moreover, when we do not want Kurepa trees with ω2-many cofinal branches,

we prove that the inaccessible is necessary by verifying that if ω2 is a successor
in L , then there exists a Kurepa tree with only ω2-many cofinal branches in V . It
was known that these assumptions imply that there exists a Kurepa tree even in
L[A] for some A ⊆ ω1 [Kunen 1983, Chapter VII, Example B8] (possibly having
more than ω2-many cofinal branches in V ). Our proof not only utilizes countable
elementary submodels of initial segments of L[A], but the nodes of the tree are
such elementary submodels, and each cofinal branch uniquely corresponds to an
initial segment of L[A].

2. Preliminaries and notations

Under ordinals we always mean Neumann ordinals. For a fixed cardinal χ we will
use the notation H(χ) for the collection of sets of hereditary size less than χ , i.e.,

H(χ)= {x : | trcl(x)|< χ},
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where trcl(x) stands for the transitive closure of x . In terms of forcing we will
use the notations of [Kunen 2011], e.g., p ≤ q means that p is the stronger. If it
is clear from the context and won’t make any confusion we will identify the set
x in the ground model with its canonical name x̌ . For a set A the symbol P(A)
denotes the powerset of A, and [A]λ stands for {X ∈P(A) : |X | = λ}. For a function
s = {〈β, s(β)〉 : β ∈ dom(s)} we will also use the following notation and refer to s
as

〈sβ : β ∈ dom(s)〉.

Under a sequence we mean a function defined on a set of ordinals. For sequences
s, t the relation s = t � dom(s) (or equivalently s ⊆ t) will be also denoted by s C t .

Definition 2.1. A tree 〈T,≺T 〉 is a partially ordered set (poset) in which for each
x ∈ T the set

T≺x = {y ∈ T : y ≺T x}

is well ordered by ≺T .

Definition 2.2. The height of x in the tree T is the order type of T≺x

ht(x)= otp(T≺x).

Definition 2.3. For each ordinal α the restriction of T to α is

T<α = {t ∈ T : ht(t) < α}.

Definition 2.4. The height of the tree T (in symbols ht(T )) is the least β such that

there does not exist t ∈ T : ht(t)= β.

We will need the following lemma [Kunen 1983, Chapter II, Theorem 1.6.]
which we will refer to as the 1-system lemma.

Lemma 2.5. Let κ be an infinite cardinal, let θ > κ be regular, and satisfy for all
α < θ (|α<κ |< θ ). Assume that |A| ≥ θ , and for all x ∈A (|x |< κ). Then there is
a D ⊆ A, such that |D| = θ , and D forms a 1-system, i.e., there is a kernel set y
such that

for all x 6= x ′ ∈ D : x ∩ x ′ = y.

3. The forcing

Now we can state our main theorem.

Theorem 3.1. Let S• be a set of infinite cardinals such that ω,ω1 /∈ S•. Assume
CH , and that either Case 1:

(i) ω2 ∈ S•,

(ii) 2ω1 = ω2,
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(iii) {sup C : C ∈ [S•]<ω2} ⊆ S•,

or Case 2:

(i) there exists an inaccessible κ such that S• ∩ (ω1, κ)=∅,

(ii) {sup C : C ∈ [S•]<κ} ⊆ S•.

Then there exists a forcing extension V P such that

V P
|H S• = Spω1

, where P only collapses cardinals in (ω1, κ) in Case 2.

The key will be Lemma 3.27. After Lemma 3.30 we will put together the pieces
in a short argument. Before these we need some preparation.

Definition 3.2. In Case 1 (i.e., ω2 ∈ S•) define the cardinal κ to be ω2.

Corollary 3.3. No cardinal µ /∈ (ω1, κ) is collapsed.

Theorem 3.4. Suppose that all conditions from Theorem 3.1 hold, and κ is defined
in Definition 3.2. Assume further that λ is a cardinal which is an upper bound of S•
such that λ<κ = λ (thus cf(λ)≥ κ). Then there exists a forcing extension V P with

V P
|H (S• = {µ : there exists a Kurepa tree T such that |B(T )| = µ})∧ (2ω1 = λ).

Definition 3.5. Let S+
•
= S• ∪ {κ, λ}.

Definition 3.6. For a cardinal θ ∈ S• let Qθ be the following notion of forcing. The
triplet p = 〈Tp, u p, η̄p〉 is an element of Qθ if and only if

(a) Tp is a countable tree of height δ for some δ < ω1 on the underlying set ω · δ,
where the β-th level is [ω ·β, ω ·(β+1)), i.e., Tp,≤β \Tp,<β =[ω ·β, ω ·(β+1))
for each β < δ,

(b) for each t ∈ Tp and β < δ there exists t ′ ∈ Tp \ Tp,<β such that t ≺Tp t ′,

(c) u p ∈ [θ ]
≤ω,

(d) η̄p = 〈ηp,α : α ∈ u p〉, where ηp,α ⊆ Tp is a branch in Tp,<γ for some γ ∈
{β + 1 : β < δ = ht(Tp)} (we do it for a technical reason, we also could have
stored only the maximal element instead of a chain with a maximal element).

Then Qθ is a poset with the obvious order, i.e., q ≤ p, if Tq is an end-extension of
Tp, formally Tq,<ht(Tp) = Tp, and for each α ∈ u p the inclusion ηp,α ⊆ ηq,α holds.

Let T
∼
θ , η̄
∼
θ be the names for the generic tree and sequence, i.e., denoting the

generic filter by Gθ

1Qθ

 T
∼
θ =

⋃
{Tp : p∈Gθ } and 1Qθ


 η̄
∼
θ =

〈
η
∼
θ,α=

⋃
{ηp,α : p∈Gθ } :α∈θ

〉
.
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Definition 3.7. For a cardinal θ ∈ S• let Q∗θ ⊆Qθ be the following subposet:

p ∈Q∗θ if and only if ht(Tp) is a successor, and

(for all α ∈ u p) : ηp,α is a branch through Tp.

Definition 3.8. If λ /∈ S• then let Qλ be the countable supported product of 〈<ω12,C〉
of length λ, i.e.,

Qλ = {p = 〈ηα : α ∈ u p〉 : (for all α ∈ u p)ηα ∈
<ω1 2 for some u p ∈ [λ]

≤ω
}.

Definition 3.9. If κ /∈ S• (and then κ > ωV
2 is inaccessible), then let Qκ be the

countable supported product of 〈<ω1γ,C〉 (γ < κ), a forcing which collapses each
cardinal in (ω1, κ):

Qκ = {p = 〈ηα : α ∈ u p〉 : (for all α ∈ u p)ηα ∈
<ω1 α for some u p ∈ [κ]

≤ω
}.

Definition 3.10. We define the posets which we will need later.

(1) For S ⊆ S+
•

let PS be the countable supported product of Qθ (θ ∈ S), i.e.,

PS = {p is a function : dom(p) ∈ [S]≤ω ∧ (for all θ ∈ dom(p)p(θ) ∈Qθ )}.

With a slight abuse of notation for p ∈ PS and θ ∈ S \ dom(p) we will mean
1Qθ

under p(θ).

(2) For θ ∈ S+
•

, U ⊆ θ define its restriction from θ to U , i.e.,

Qθ,U = {p ∈Q : u p ⊆U }.

(3) For S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉 ∈
∏
θ∈S P(θ) we define PS,U to be P restriction

to coordinates in Uθ , i.e.,

PS,U = {p ∈ PS : (for all θ ∈ S)p(θ) ∈Qθ,Uθ
}.

(4) For S, S′⊆ S+
•

, U =〈Uθ : θ ∈ S〉 ∈
∏
θ∈S P(θ), U ′=〈U ′θ : θ ∈ S〉 ∈

∏
θ∈S′ P(θ)

we define
• U +U ′ = 〈Uθ ∪U ′θ : θ ∈ S ∪ S′〉 (where for θ ∈ S′ \ S under Uθ we mean

the empty set, similarly for θ ∈ S \ S′, U ′θ ),
• U −U ′ = 〈Uθ \U ′θ : θ ∈ S〉 (here we also mean the empty set under U ′θ if
θ ∈ S \ S′),

• idS = 〈θ : θ ∈ S〉,
• for the set X if W α ∈

∏
θ∈S P(θ) (α ∈ X ) then∑

α∈X

W α =

〈 ⋃
α∈X

(Wα)θ : θ ∈ S
〉
.

(5) Let P= PS+• .
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(6) If p0, p0, . . . , pn ∈ P let
∧

i≤n pi denote the greatest lower bound if it exists.

(7) For p ∈ P, and S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉 ∈
∏
θ∈S P(θ) define p �U ∈ PS to

be the following restriction of p � S in the obvious fashion

for each θ ∈ S : (p �U )(θ)= 〈Tp(θ), u pθ ∩Uθ , η̄p �Uθ 〉.

Definition 3.11. For S ⊆ S+
•

define the notion of forcing P∗ (P∗S , P∗
S,U

, resp.) to
be the subposet of P (PS , PS,U , resp.) consisting of elements p for that p(θ) ∈Q∗θ
holds for each θ ∈ S• ∩ supp(p).

Remark 3.12. The notion of forcing P∗ (P∗S , P∗
S,U

, resp.) is a dense subposet of
P (PS , PS,U , resp.), therefore forcing with P∗ (P∗S , P∗

S,U
, resp.) yields the same

extensions as forcing with P (PS , PS,U , resp.).

Claim 3.13. Let S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉 be fixed. Then the poset PS,U has the
κ-cc property.

Proof. Suppose that {pα : α ∈ κ} ⊆ PS,U is an antichain. Working in V ′, applying
the 1-system lemma (Lemma 2.5) for the system {dom(pα) : α ∈ κ} of countable
sets ((1) from Definition 3.10), we obtain a set A ∈ [κ]κ such that the dom(pα)
(α ∈ A) form a 1-system with kernel K ⊆ S. Since K is obviously countable, for
each α we have that 〈Tpα(θ) : θ ∈ K 〉 is a countable sequence of countable trees (by
(a) from Definition 3.6). This means that by CH we can assume that

(3-1) 〈Tpα(θ) : θ ∈ K 〉 = 〈Tpβ (θ) : θ ∈ K 〉 (for all α, β ∈ A).

Now applying the 1-system lemma again for the system

Uα =

⋃
θ∈S

({θ}× u pα(θ)) (α ∈ κ)

yields a set A′ ∈ [A]κ such that the Uα (α ∈ A′) form a 1-system with kernel
I ⊆

⋃
θ∈S{θ}× θ (of course, in fact, I ⊆

⋃
θ∈K {θ}× θ). Now by (3-1) it suffices

to prove that

(3-2) there exist α 6= β ∈ A′ such that (for each 〈θ, δ〉 ∈ I ) : ηpα(θ),γ = ηpβ (θ),γ ,

for which it is enough to prove

(3-3) |{〈ηpα(θ),γ : 〈θ, γ 〉 ∈ I 〉 : α ∈ A′}|< κ.

Fix α ∈ A′. Now for each 〈θ, γ 〉 ∈ I , if θ ∈ S• then ηpα(θ),γ ∈ [ω1]
<ω1 (a branch

through Tpα(θ)).
This means that (using that I is countable)

(3-4) {〈ηpα(θ),γ : 〈θ, γ 〉 ∈ I, θ ∈ S•〉 : α ∈ A′} ⊆
∏

〈θ,γ 〉∈I,θ∈S•

[ω1]
<ω1,
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which latter set is of size ω1 by CH . Second, if θ = λ ∈ (S+
•
\ S•)∩ S, then

{〈ηpα(θ),γ : 〈θ, γ 〉 ∈ I, θ = λ〉 : α ∈ A′} ⊆
<ω1∏

〈θ,γ 〉∈I,θ=λ

2.

Finally we have to consider the coordinate θ = κ if κ ∈ S \ S•. Then letting
δ = sup{γ : 〈κ, γ 〉 ∈ I } we have δ < κ , because I is countable and κ is inaccessible.
Then

(3-5) {〈ηpα(κ),γ : 〈κ, γ 〉 ∈ I } ⊆
<ω1∏
〈κ,γ 〉∈I

δ,

and since κ is inaccessible, this case |
∏
〈κ,γ 〉∈I

<ω1δ|<κ . We obtain (using ω1<κ)
that

|{〈ηpα(θ),γ : 〈θ, γ 〉 ∈ I }| ≤ ω1 ·ω1 ·

∣∣∣∣ <ω1∏
〈κ,γ 〉∈I

δ

∣∣∣∣< κ,
therefore (3-3) holds. �

Now we make the intuition behind the easy idea of first adding the trees and
some branches, and then forcing over the extension precise.

Claim 3.14. For each S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉 we have

PS,U lPS lP,

i.e., PS,U completely embeds into PS , which completely embeds into P.

Proof. Since P' PS ×PS+• \S , it is enough to prove that PS,U lPS .
Assume that A ⊆ PS,U is a maximal antichain in PS,U , and let p ∈ PS \PS,U .

Then there exists a ∈ A, a′ ∈ PS,U such that a′ ≤ a, a′ ≤ b � U . But then it is
straightforward to check that also a′ and b have a common lower bound. �

Definition 3.15. Let S ⊆ S•, U = 〈Uθ : θ ∈ S〉, θ0 ∈ S, U ′θ0
⊆ θ0 \Uθ0 . Then

Q
∼

◦

θ0,U ′θ0
=Q
∼

◦

(S,U ),θ0,U ′θ0

denotes the PS,U -name for a notion of forcing which adds the branches η
∼
θ0,α

(α ∈U ′θ0
) to Tθ0
∼

in the following way

1 
PS,U
Q
∼

◦

θ0,U ′θ0
=

{
p = 〈η̄p, u p〉 : (u p ∈ [U ′θ0

]
≤ω)∧ (η̄p = 〈ηp,α : α ∈ u p〉),

such that each ηp,α is a branch of T
∼
θ0,<δα

for some δα in {γ + 1 : γ < ω1}

}
.

If it is clear from the context we will use Q
∼

◦

θ0,U ′θ0
not mentioning S and U .
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Definition 3.16. Let S⊆ S•, U =〈Uθ : θ ∈ S〉, θ0∈ S. If θ ∈ S+
•
\S•, and U ′θ ⊆ θ\Uθ ,

then define the PS,U -name Q
∼
θ,U ′θ =Q

∼

◦

θ,U ′θ
to be the name for Qθ,U ′θ .

Definition 3.17. Let S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉, U ′ = 〈U ′θ : θ ∈ S〉 ∈
∏
θ∈S P(θ),

where Uθ ∩U ′θ =∅ for each θ ∈ S. Then P
∼

◦

U ′
= P
∼

◦

(S,U ),U ′
denotes the PS,U -name

for the countably supported product of Q
∼

◦

θ,U ′θ
(θ ∈ S), i.e., a notion of forcing which

adds the branches η
∼
θ,α (α ∈U ′θ ) to T

∼
θ for each θ ∈ S \ S•, and the sequences η

∼
κ,α

(α ∈U ′κ ) if κ ∈ S \ S•, η
∼
λ,α (α ∈U ′λ) if λ ∈ S \ S•:

1 
PS,U
P
∼

◦

U ′

= {p is a function : dom(p) ∈ [S]≤ω ∧ (for all θ ∈ dom(p)p(θ) ∈Q
∼

◦

θ,U ′θ
)}.

Again, as in Definition 3.15 if it does not cause any confusion we only use the
notation P

∼

◦

U ′
not mentioning S and U .

The following claim is an easy observation.

Claim 3.18. If G is a PS,U -generic filter over V (where S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉,
U ′ = 〈U ′θ : θ ∈ S〉 ∈

∏
θ∈S P(θ), and Uθ ∩U ′θ =∅ for each θ ∈ S), then with the

notation from [Kunen 2011]

PS,U+U ′/G = {p ∈ PS,U+U ′ : for all q ∈ G p 6⊥ q},

the quotient poset PS,U+U ′/G and the evaluation of P
∼

◦

U ′
are isomorphic, i.e.,

V [G] |H P
∼

◦

U ′[G] ' PS,U+U ′/G.

Since PS,U completely embeds into PS,U+U ′ (by Claim 3.14), [Kunen 2011,
Lemma V.4.45] (and [Kunen 2011, Lemma V.4.44.]) implies the following.

Claim 3.19. Let S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉, U ′ = 〈U ′θ : θ ∈ S〉 ∈
∏
θ∈S P(θ), where

Uθ ∩U ′θ =∅ for each θ ∈ S. Then the canonical embedding from PS,U+U ′ to the
iteration PS,U ∗ (PS,U+U ′/G) is a dense embedding.

Now putting together Claims 3.18 and 3.19 we have the following, meaning
that instead of forcing with PS,U+U ′ we can force with PS,U and then with (the
evaluation of) P

∼

◦

U ′
.

Lemma 3.20. Let S⊆ S+
•

, U =〈Uθ : θ ∈ S〉, U ′=〈U ′θ : θ ∈ S〉 ∈
∏
θ∈S P(θ), where

Uθ ∩U ′θ = ∅ for each θ ∈ S. Then forcing with PS,U+U ′ amounts to the same as
forcing with PS,U and then with PS,U+U ′/G ' P

∼

◦

U ′
.

Definition 3.21. If S ⊆ S+
•

, U = 〈Uθ : θ ∈ S〉, U ′ = 〈U ′θ : θ ∈ S〉 ∈
∏
θ∈S P(θ).

Now if G is generic over P= PS+• then we define

• GS = G ∩PS ,
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• GS,U = G ∩PS,U ,

• and G◦
U ′
⊆ P◦

U ′
[GS,U ] ∈ V [GS,U ] to be the filter given by the canonical

mapping from Claims 3.18, 3.19.

The following are basic observations. Roughly speaking, we isolate a dense
ω1-closed subset of a two-step iteration similarly as in [Kunen 1978].

Claim 3.22. P∗ (and in general each P∗
S,U

) is ω1-closed, i.e., for each decreasing
sequence of type ω has a lower bound. In particular if G∗ ⊆ P∗, (or in general
G∗

S,U
⊆P∗

S,U
) is generic over V , then there is no new sequence of ordinals of type ω.

The last claim and Remark 3.12 obviously implies the following.

Claim 3.23. Forcing with P (or PS,U ) doesn’t add new sequence of ordinals of
type ω, and for a given generic filter G ⊆ P

H(ω1)
V
=H(ω1)

V [G]
=HV [GS,U ].

Lemma 3.24. Let G ⊆ PS,U generic over V , B ∈ V [G] where B ⊆H(ω1). Then
(in V ) there exist S∗ ⊆ S, |S∗|< κ and W ∗ = 〈W ∗γ : γ ∈ S∗〉 ∈

∏
γ∈S∗[Uγ ]

<κ , such
that B ∈ V [GS∗,W ∗].

Problem 3.25. Choose p ∈ G forcing that B ⊆H(ω1), and a nice PS,U -name for
B, obtaining for each x ∈ H(ω1) an antichain Ax ⊆ PS,U deciding about x ∈ B.
Then by κ-cc we have that each |Ax | < κ , the set S∗ =

⋃
x∈H(ω1)

⋃
a∈Ax

dom(a)
is of size less than κ (as κ is either inaccessible, or ω2). Also for θ ∈ S∗ the
set W ∗θ =

⋃
x∈H(ω1)

⋃
a∈Ax

ua(θ) is smaller that κ . Now it is easy to see that
W ∗ = 〈W ∗γ : γ ∈ S∗〉 is as claimed.

Then the following immediately follows from the ω1-closedness, and κ-cc.

Claim 3.26. Forcing with P doesn’t collapse ω1, and cardinals at least κ . Moreover,
if G ⊆ P is generic, then

V [G] |H “κ = ω2”.

Lemma 3.27. Let T ∈ V [GS,U∗] be a Kurepa tree, S′ ⊆ S (S′ ∈ V ). Then, if
b ∈ V [GS,U∗+idS′

] is a branch of T , then there exists a finite set S′′ ⊆ S′, and
U • = 〈U •θ : θ ∈ S′′〉 such that each U •θ is finite, and b is in the model obtained by
adding these finitely many ηθ,α (θ ∈ S′′, α ∈U •θ ) to V [GS,U∗], i.e.,

b ∈ V [GS,U∗+U •].

Proof. Let Ṫ ∈ V be a PS,U∗-name for T . Define

(3-6) P′ = PS,U∗+idS′
.

Suppose that p∗ ∈ P′ forces that ḃ ∈ V is a P′-name for a counterexample (i.e.,
forcing that for no such U • there exists a PU∗+U •-name ḃ′— which is of course
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also a P′-name — with ḃ′= ḃ). Let χ be large enough, and let 〈N0,∈〉≺ 〈H(χ),∈〉
be countable such that p∗, ḃ, Ṫ , S, S′, V ,PS,U∗ ∈ N0.

Let δ• = N0 ∩ ω1. Define the countable set N1 to be such that N0 ∈ N1, and
〈N1,∈〉 ≺ 〈H(χ),∈〉. Let X be set of the indices of the new branches added to
〈T
∼
θ : θ ∈ S′〉 by GS,U∗+(idS′ )

that are in V [GS,U∗+idS′
] \ V [GS,U∗], and belong to

N0, i.e.,

(3-7) X = N0 ∩ {〈θ, α〉 : (θ ∈ S′)∧ (α ∈ θ \U∗θ )}.

We fix an enumeration of X and define also the sequence of the first n indices from
this countable set, and as well for each n the one-length sequence consisting only
the n-th, that is; let 〈〈%n, ξn〉 : n ∈ ω, n > 0〉 enumerate X (starting from 1),

(3-8)

W n = 〈Wn,θ : θ ∈ S′ ∩ N0〉,

Wn,θ = {α : 〈θ, α〉 = 〈% j , ξ j 〉 for some j ≤ n},

w̄n = 〈wn,θ : θ ∈ S′ ∩ N0〉,

wn,θ =

{
{ξn} if θ = %n,

∅ otherwise.

Observe that if p ∈ P∩ N0, then each θ ∈ dom(p) is an element of N0 since
dom(p) is countable (by Definition 3.10), and similarly Tp(θ), u p(θ) ⊆ N0 (by
Definitions 3.6–3.9).

Working in V we will construct an N0-generic condition in P′, which will derive
us to a contradiction. It is enough to prove the following claim.

Claim 3.28. There exists a sequence 〈 p̄n : n ∈ ω〉 ∈ V , p′0 ∈ PS,U∗ and a sequence
q̄ = 〈qn : n ∈ ω〉 such that the following holds:

(�1) p̄0 = 〈p0,l : l ∈ ω〉 is such that
(a) p0,0 = p∗ �U∗,
(b) p0,l ∈ N0 ∩PS,U∗ for each l ∈ ω,
(c) 〈p0,l : l ∈ ω〉 is ≤P-decreasing,
(d) p̄0 ∈ N1,
(e) letting G0 = {p ∈ PS,U∗ ∩ N0 : (there exist l)p ≥ p0,l}, the filter G0 is

PS,U∗-generic over N0.

(�2) p′0 ∈ PS,U∗ satisfies the following:
(a) p′0 is a lower bound of p0,l for each l ∈ ω (hence forces a value to T

∼
θ,<δ•

for each θ ∈ S ∩ N0),
(b) p′0 forces a value to T

∼
θ,≤δ• for each θ ∈ S ∩ N0 such that for every δ•-

branch B in T
∼
θ,<δ• the inclusion B ∈ N1 implies that B has an upper

bound in T
∼
θ,≤δ• ,

(c) p′0 forces a value to Ṫ≤δ• .
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(�3) for every n > 0 the sequence p̄n = 〈pn,l : l ∈ ω〉 has the following properties:

(a) for all l ∈ ω pn,l ∈ N0 ∩PS,U∗+w̄n
,

(b) pn,l �U∗ ∈ G0,
(c) 〈pn,l : l ∈ ω〉 is ≤P-decreasing,
(d) p̄n ∈ N1,
(e) letting

Gn =

{
p ∈ PS,U∗+W n

∩ N0 : (there exist l0, l1, . . . , ln)p ≥
n∧

j=0

p j,l j

}
,

the filter Gn is PS,U∗+W n
-generic over N0.

(�4) For the sequence q̄ = 〈qn : n ∈ ω〉:

(a) qn ∈ N0 ∩PS,U∗+idS′
for each n ∈ ω,

(b) q0 = p∗,
(c) 〈qn : n ∈ ω〉 is ≤P-decreasing,
(d) for all n: qn � (U∗+W n) ∈ Gn ,
(e) let 〈Ḃn : n ∈ ω〉 enumerate the branches of Ṫ<δ• which has an upper

bound in Ṫ≤δ• (forced by p′0). Then qn+1 ∧ p′0 forces that ḃ 6= Bn , which
will be guaranteed by the following requirement: There exist δ < δ•,
t 6= t ′ ∈ Ṫ≤δ \ Ṫ<δ, such that p′0 forces Bn δ-th level to be t ′, and qn+1

forces t ∈ ḃ, i.e.,

(3-9) p′0 
 Ḃn ∩ (Ṫ≤δ \ Ṫ<δ)= {t ′} and qn+1 
 ḃ∩ (Ṫ≤δ \ Ṫ<δ)= {t}.

(Observe that the latter is a statement in N0.)

Before proving Claim 3.28 we argue why this claim implies Lemma 3.27. First,
the claim gives the following condition in PS,U∗+idS′

. For each n ∈ ω let η%n,ξn be
the branch in T

∼
%n,<δ• represented by the sequence p̄n , i.e.,

(3-10) η%n,ξn =

⋃
{ηpn,l (%n),ξn : l ∈ ω},

and note that η%n,ξn ∈ N1 (n ∈ ω) by (�3)(d). Therefore by (�2)(b) we can extend
each η%n,ξn to a branch η′%n,ξn

in (Tp′0(%n))<δ•+1. Define the function p• to be the
extension of p′0 by the η%n,ξn in the obvious way: (Note that by (�2) we have
S∩N0⊆dom(p′0)⊆ S, and for each θ ∈ S∩N0 the inclusion U∗θ ∩N0⊆u p′0(θ)⊆U∗θ .)
Define p• to be function on dom(p′0) such that if θ /∈ N0 ∩ S′, then p•(θ)= p′0(θ),
and for θ ∈ N0∩ S′ define p•(θ) to be the following proper extension of p′0(θ). Let
u p•(θ) = u p0(θ) ∪ (θ ∩ N0), and if α /∈ u p′0(θ) (when necessarily α /∈ U∗θ ) and (by
(3-8)) choose n > 0 so that

(3-11) 〈θ, α〉 = 〈%n, ξn〉, and let ηp•(θ),α = η
′

%n,ξn
,
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otherwise

(3-12) ηp•(θ),α = ηp0(θ),α (if α ∈U∗θ ).

Observe that as η′%n,ξn
was a cofinal branch in (Tp•(%n))<δ•+1= (Tp′0(%n))<δ•+1 our

function p• is indeed a condition in PS,U∗+idS′
. Moreover, the following shows that

for all n ∈ω, p• ≤ qn . Fix n ∈ω, then using (�4)(d) we have qn � (U∗+W n) ∈ Gn ,
i.e., there exist l0, l1, . . . ln ∈ ω, such that

∧n
j=0 p j,l j ≤P qn � (U∗ +W n). This

means that
n∧

j=0

p j,l j ≤ qn � (U∗+W 0)= qn � (U∗),

and, for each 0< j ≤ n,

ηqn(% j ),ξ j ⊆ ηp j,l j (% j ),ξ j ⊆ η
′

% j ,ξ j
= ηp•(% j ),ξ j .

On the other hand, for j > n we have (recalling q̄ = 〈qn : n ∈ ω〉 is ≤P-decreasing
by (�4)) that

ηqn(% j ),ξ j ⊆ ηq j (% j ),ξ j ⊆ η
′

% j ,ξ j
= ηp•(% j ),ξ j ,

therefore p• ≤ qn , indeed.
Now assuming p• ∈ GS,U∗+idS′

will easily yield a contradiction: First recall that
p∗ (and therefore as well q0 and p•) forced that ḃ is a branch through Ṫ . Then
(�2)(c) implies that p′0, thus p• as well determines Ṫ≤δ• , and p• forces (by (�4)(e))
that each element of the δ•-th level of Ṫ is the upper bound of Bi for some i ∈ ω.
This means that

p• 
 (there exist i ∈ ω)ḃ∩ Ṫ<δ• = Bi ,

while at the same time
(qi ∧ p′0) 
 ḃ 6= Bi ,

since (3-9) holds.
This together with p• ≤ qi , p′0 gives the contradiction. Now we can turn to the

proof of the claim.

Proof of Claim 3.28. For the construction of each sequence p̄n and each qn we will
work in N1. This will need a lot of preparation.

Recall that X ⊆ N0 denoted the indices of branches added by forcing with
PS,U∗+idS′

∩ N0 but missing from V [GS,U∗] (3-7), and that for each condition p,
θ ∈ S•, and δ < ω1 the δ-th level of Tp(θ) is (a subset of) [ω · δ, ω · (δ+ 1)). Define
E ⊆ N0 as follows:

(3-13) e ∈ E if and only if e ∈ N0, and e = (ue, η̄e), where ue ∈ [X ]≤ω,

η̄e = 〈ηe,θ,α : 〈θ, α〉 ∈ ue〉, such that

ηe,θ,α ⊆ ω · (δθ,α + 1) for some δθ,α < ω1.
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Definition 3.29. For each n, p ∈ PS,U∗+W n
, and e ∈ E , if for each 〈θ, α〉 ∈ ue we

have θ ∈ dom(p), and for each i < n 〈%i , ξi 〉 /∈ ue holds then define pa e as

(3-14)

dom(pa e)= dom(p),

u
(pae)(θ) = u p(θ) ∪ {α : 〈θ, α〉 ∈ ue}) (for all θ ∈ dom(pa e)),

η
(pae)(θ),α =

{
ηp(θ),α if α ∈ u p(θ),

ηe,θ,α if 〈θ, α〉 ∈ ue,

if this is a condition in P (i.e., for each 〈θ, α〉 ∈ ue, ηe,θ,α is a cofinal branch of
(Tp(θ))<δ+1 for some δ ≤ ht(Tp(θ))), otherwise pa e =∅.

Let D denote the set of dense subsets of PS,U∗+idS′
. Fix an enumeration

〈〈Ji , εi 〉 : i ∈ ω〉 ∈ N1 of (D∩ N0)× E,

and let k(D, e) denote the index of the pair 〈D, e〉, i.e.,

(3-15) Jk(D,e) = D, εk(D,e) = e,

then we also have k ∈ N1, of course. Fix a function g ∈ N0:

(3-16) g : PS,U∗+idS′
×D→ PS,U∗+idS′

where, for all p, D,

(•1) g(p, D) ∈ D,

(•2) g(p, D)≤ p.

(Then g ∈ N0 obviously implies (p, D ∈ N0⇒ g(p, D) ∈ N0).)
We will have to define also the auxiliary sequence r̄ = 〈rl : l ∈ ω〉 with the

following properties:

(~1) r̄ ∈ N1,

(~2) for each l, rl ∈ PS,U∗ ∩ N0,

(~3) for each l, p0,l+1 ≤ rl ≤ p0,l ,

(~4) if there exists p ∈PS,U∗ such that p≤ p0,l , and paεl is a condition extending
p0,l in PS,U∗+idS′

, then rl is such a condition.

Now we can construct the p0,i (and ri ). Let p0,0 = p∗ �U∗. For obtaining the
p0,l proceed as follows. Assume we have defined p0,0, p0,1, . . . , p0,l−1 (and as
well the ri for i < l − 1). Now if there exists p ∈ PS,U∗ p ≤ p0,l−1, such that
paεl−1 6=∅ but a condition extending p0,l−1, then let rl−1 ∈ N0 be such a p (recall
that εl−1 ∈ E ⊆ N0 by (3-13)), otherwise define rl−1 = p0,l = p0,l−1. Lastly, in the
former case define p0,l = g(rl−1, Dl−1) �U∗. It is clear from the construction and
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the definition of g that p0,l−1 ≤ rl−1 ≤ p0,l , and rl−1, p0,l ∈ N0, and since every
object as well as the series 〈εi : i ∈ω〉 are elements of N1, we obtain p̄0, r̄0 ∈ N1 too.

Finally, it is straightforward to check that the filter G0 generated by the p0,l

meets every dense subset D ∈ N0 of PS,U∗ . We fix a D such that

D′ = {p ∈ PS,U∗+idS′
: p �U∗ ∈ D}

is clearly a dense subset of PS,U∗+idS′
belonging to N0. This means that if e ∈ E is

the empty sequence, then there exists i ∈ω, such that Ji = D′, and εi = e, therefore
p0,i+1 ∈ D.

For p′0, first consider the condition p′′0 ∈ N1 consisting of only the generic trees
given by G0 (for each θ ∈ dom(p′′0)= N0 ∩ S the tree

Tp′1(θ) =
⋃
{Tp(θ) : p ∈ G0}

is of height δ•, but u p′′0 (θ)=∅). Then let p′′′0 ∈ PS,U∗ , p′′′0 ≤ p′′0 be an extension so
that for each θ ∈ S′ ∩ N0 the tree Tp′2(θ) satisfies that for each branch B through
(Tp′′′0 (θ))<δ•=Tp′′0 (θ), if B∈N1, then there is an upper bound of B in Tp′′′0 (θ). This can
be done since N1 is countable. Moreover, we choose the other part of p′′′0 so that for
each θ, α ∈ N0, if α ∈U∗θ the chain ηp′′′0 (θ),α (with a top element) contains the chain⋃

{ηp(θ),α : p ∈ G0}

which is given by G0 at this coordinate. This can be done as⋃
{ηp(θ),α : p ∈ G0} ∈ N1,

since G0, p̄0 ∈ N1. Then clearly p′′′0 ≤ p0,l for each l ∈ ω.
Finally, for the last item of (�2) first recall that P∗

S,U∗
is an ω1-closed dense

subposet of PS,U∗ by Definition 3.11. Then if a countable increasing sequence in
P∗

S,U∗
(where a first element stronger than p′′′0 ) decides more and more about the

δ•-th level of Ṫ , then choosing p′0 to be an upper bound will work (e.g., choose
an enumeration 〈ṫi : i ∈ ω} of the δ•-th level of Ṫ , let 〈si : i ∈ ω〉 enumerate Ṫ<δ•
in type ω, and let r j decide whether the j-th ordered pair in the countable set
{si : i ∈ ω}× {ṫi : i ∈ ω} is in ≤Ṫ ).

The next step is to construct the p̄i (i > 0) and the qn . This will be done
simultaneously by induction. The induction is carried out in V , but each step can
be done in N1, which will guarantee that each p̄n ∈ N1.

It is straightforward to check that choosing q0 = p∗ would satisfy our require-
ments, as, e.g., p0,0 = p∗ �U∗. Then fixing n > 0, and assuming that p̄i , qi are con-
structed for each i <n, first we construct qn . Recall that qn−1 � (U∗+W n−1)∈Gn−1

(by (�4)(d)).
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Recall the definition of the set E (3-13), and let

En−1 = {e ∈ E : for all i < n〈%i , ξi 〉 /∈ e}.

Using that p∗ ∈ PS,U∗+idS′
forced that ḃ is not an element of V [GS,U∗+W n−1

], i.e.,
there is no PS,U∗+W n−1

-name of it, we argue that

D =
{

p ∈ PS,U∗+W n−1
: there exists e, e′ ∈ En−1(pa e ≤ qn−1, pa e′ ≤ qn−1)

∧ (there exists δ < ω1, t 6= t ′ ∈ Ṫ≤δ \ Ṫ<δ : (pa e 
 t ∈ ḃ)∧ (pa e′ 
 t ′ ∈ ḃ))
}

is dense in PS,U∗+W n−1
under qn−1 � (U∗+W n−1). Indeed, assume on the contrary

that q ′ ∈PS,U∗+W n−1
, q ′≤ qn−1 � (U∗+W n−1) is such that D has no element under

q ′. Now for every δ < ω1, consider the set

Dδ =
{

p ∈ PS,U∗+W n−1
: (p ≤ q ′)∧

(
there exists e ∈ En−1 : [pa e ≤ qn−1]

∧ [there exists tp,e,δ ∈ Ṫ≤δ \ Ṫ<δ : pa e 
 tp,e,δ ∈ ḃ]
)}
,

which is dense under q ′ in PS,U∗+idS′ . Now since for each δ <ω1 the sets D and Dδ

are disjoint, for p ∈ Dδ the witnessing tp,e,δ doesn’t depend on e, therefore q ′∧qn−1

forces that ḃ is in V [GS,U∗+W n−1
] (i.e., forces that the PS,U∗+W n−1

-name {〈p, tp,δ〉 :

p∈Dδ, δ<ω1} and ḃ are equal). Then as our set D∈N0 is indeed dense we have that
there exists a condition q ′′∈Gn−1∩D, witnessed by t 6= t ′ and e, e′. Finally, if t ∈ Bn

then define qn = q ′′a e′, otherwise we can let qn = q ′′a e, which are both stronger
conditions than qn−1 by the definition of D. It is straightforward to check (�4).

As qn is already defined (and so are p̄i , qi for each i <n), we turn to the definition
of p̄n , which we will do similarly to that of p̄0. Let pn,0=qn � (U∗+w̄n), assume that
pn,0, pn,1, . . . , pn,l−1 are already chosen. If εl−1 /∈ En−1, then pn,l = pn,l−1, other-
wise proceed as follows. Choose the sequence ē= ē(n, l−1)=〈ei : 1≤ i ≤ n+1〉 ∈
En+1\{0} and the sequence m̄= m̄(n, l−1)=〈mi : i ≤ n〉 ∈ωn+1 with the properties

(1) en+1 = εl−1 and mn = l − 1,

(2) for each i < n+ 1,

(3-17) Jmi = D∧ “ei = (ei+1 plus (ηpi,mi (%i ),ξi attained on 〈%i , ξi 〉))”.

Provided that the e j are defined for j > i , as well as each m j for j ≥ i , let ei ∈ E
be the element with uei = uei+1

⋃
{〈%i , ξi 〉}, η̄ei ⊇ η̄ei+1 , ηe,%i ,ξi = ηpi,mi (%i ),ξi , and

let mi−1 = k(D, ei ). Observe that by our procedure, and by the definition of the
function k (3-15) we have e1 = εm0 , and also

(3-18) ηe1,%n,ξn = ηpn,l−1(%n),ξn .
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At some point later we will use the following fact, hence it is worth noting that for
each i , 1≤ i ≤ n,

(3-19) ē(i,mi )⊆ ē(n, l − 1) and m̄(i,mi )⊆ m̄(n, l − 1).

Finally consider the condition rm0 (from (~1)–(~4)): if rm0
ae1 is a not a condition

in PS,U∗+id�S′ , then let pn,l = pn,l−1, otherwise first define the auxiliary condition

(3-20) r• = g(rm0
a e1, D),

and note that in this case η
(rm0
ae1)(%n),ξn

= ηpn,l−1(%n),ξn by (3-18), and therefore by
the properties of g we obtain

(3-21) ηr•(%n),ξn ⊇ ηpn,l−1(%n),ξn .

Recall that pn,l−1 �U∗ ∈ G0 by our induction hypotheses (�3), and it can be seen
from the construction of p0, j that in this case p0,m0+1 = r• �U∗ ∈ G0. Therefore
by (3-21) we have that (r• �U∗+ w̄n)∧ pn,l−1 is a condition in PU∗+w̄n

, and let

pn,l = (r• �U∗+ w̄n)∧ pn,l−1.

Then clearly pn,l ≤ pn,l−1, and pn,l �U∗ ∈ G0. From (�3) it only remains to check
that (d) and (e) also hold. Since the whole construction of p̄n took place in N1 (k∈N1

and so is the enumeration 〈〈Ji , εi 〉 : i ∈ ω〉, g ∈ N0), p̄n ∈ N1 obviously follows.
Verifying the genericity of Gn goes similarly as of G0. Let D ⊆PS,U∗+W n

, D ∈ N0

be a fixed dense set, and e′ ∈ E be the empty sequence. Now, if we choose l so that
Jl−1= D′= {p ∈PS,U∗+idS′

: p �U∗+W n ∈ D}, εl−1= e′, then it follows from the
construction of pk, j , that of m̄= m̄(n, l−1) and ē= ē(n, l−1), and from (3-19) that

pi,mi+1 = (r• �U∗+ w̄i )∧ pi,mi if 1≤ i ≤ n,

and
p0,m0+1 = g(rm0

a e1) �U∗,

therefore ∧
i≤n

pi,mi ≤ g(rm0
a e1) � (U∗+W n) ∈ D′. �

Lemma 3.30. Let T ∈ V [GS,U∗] be a Kurepa tree, S′⊆ S∩S• (S′ ∈ V ), G◦
idS′−U∗

⊆

P◦
idS′−U∗

be generic over V [GS,U∗]. Suppose that

b ∈ V [GS,U∗][G
◦

S′,(idS′−U∗)
] \ V [GS,U∗]

is a new branch of T , and suppose that γ ≥ κ is a cardinal, and for each θ ∈ S′ the
inequality |θ \U∗θ | ≥ γ holds. Then the filter G◦

idS′−U∗
adds at least |γ |-many new

branches to T .
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Proof. Without loss of generality, we can assume that T ⊆ω1, and λ is a cardinal (in
V [GS,U∗]). First we will choose a system W 0 = 〈W0,θ : θ ∈ S′〉 ∈

∏
θ∈S′ P(θ) with

(for all θ ∈ S′) |W0,θ |<κ , and b ∈ V [GS,U∗][G
◦

W 0
]: since b ∈ V [GS,U∗][G

◦

idS′−U∗
],

S′ ∈ V we can use Lemma 3.20 and obtain that

b ∈ V [GS,U∗][G
◦

idS′−U∗
] = V [GS,U∗+idS′

].

And because b ⊆H(ω1)
V , applying Lemma 3.24 with S, and U =U∗+ idS′ , there

exists S∗ ⊆ S, W ∗ ∈
∏

S∗\S′ P(Uθ )×
∏
θ∈S∗∩S′ P(θ) with

b ∈ V [GS∗,W ∗] ⊆ V [GS,U∗+W ∗] = V [GS,U∗][G
◦

W ∗−U∗
],

where |S∗|<κ , and |W ∗θ |<κ for each θ ∈ S∗. Then fixing W 0 ∈
∏
θ∈S′ P(θ) so that

W0,θ =W ∗θ \U∗θ if θ ∈ S∗, and W0,θ =∅ for θ ∈ S \ S∗ has the required properties.
Now, as |W0,θ | < κ ≤ γ , and γ ≤ |θ \U∗θ | for each θ ∈ S′ we can fix for each

α < γ a system W α = 〈Wα,θ : θ ∈ S′〉 ∈
∏
θ∈S′ P(θ \U∗θ ) such that for every θ ∈ S′,

(i) Wα,θ ∩Wβ,θ =∅ for every α < β < γ , and

(ii) |W0,θ | = |Wα,θ | for each α < γ .

For each 0< α < γ define the bijections

πα :
⋃
θ∈S′
{θ}×W0,θ →

⋃
θ∈S′
{θ}×Wα,θ ,

where πα � {θ}×W0,θ is a bijection to {θ}×Wα,θ . Then clearly each πα induces an
automorphism π̂α ∈ V [GS,U∗] of P◦

W 0
and P◦

Wα
. Moreover, π̂α induces a natural

operation π̂∗α from the class of P◦
W 0

-names to the class of P◦
Wα

-names. Now fix a
P◦

W 0
-name ḃ0 ∈ V [GS,U∗] for our new branch b ∈ V [GS,U∗][G

◦

W 0
], and choose an

element p• ∈ P◦
W 0

forcing that ḃ0 is a new branch, i.e.,

(3-22) V [GS,U∗] |H p• 
 ḃ0 ∈ B(T ) \BV [GS,U∗ ](T ).

Let
P◦
•
= P◦∑

α<γ Wα
,

i.e., adding the branches
⋃
α∈γ Wα,θ to T

∼
θ for each θ ∈ S′, which is of course equal

to the countably supported product of P◦
Wα

(α < γ ), and let G◦
•

denote the generic
filter G◦

idS′−U∗
∩P◦
•
.

We will show that in V [GS,U∗][G
◦
•
] ⊆ V [GS,U∗][G

◦

idS′−U∗
] there are at least

γ -many new branches of T , i.e.,

|B(T )∩ (V [GS,U∗][G
◦

•
] \ V [GS,U∗])| ≥ λ,

by arguing that
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(⊗1) for any α < γ (in V [GS,U∗]),

π̂α(p•) 
P◦•
π̂∗α(ḃ0) /∈ V [GS,U∗][G

◦

•,<α]

(where G◦
•,<α stands for G◦

•
∩P◦∑

β<α W β
), and

(⊗2) |{α < γ : π̂α(p•) ∈ G◦
•
}| = γ .

This will complete the proof of Lemma 3.30. �

First we will prove (⊗2), for which recall that we assumed that γ is a cardinal,
and choose a system of uncountable regular cardinals {ρβ : β < χ < γ }, and a
partition 〈Iβ : β < χ〉 of γ with otp(Iβ)= ρβ for each β < χ

(
i.e., Iβ ∩ Iδ =∅ for

β < δ < ρ, and
⋃
β<ρ Iβ = γ

)
. Then it is enough to verify, for all β < χ

(3-23) |{α ∈ Iβ : π̂α(p•) ∈ G◦
•
}| = ρβ,

which can be seen by a standard density argument: Fix β < %, α ∈ Iβ , then it
suffices to show that

Dβ,α = {p ∈ P◦
•
: p ≤ π̂δ(p•) for some δ > α, δ ∈ Iβ} is dense,

which obviously holds by the regularity of the uncountable ρβ = |Iβ | (since for
δ∈ Iβ we have π̂δ(p•)∈P◦

W δ
, P◦
•

is the countably supported product of P◦
Wα

(α<γ ),
and Iβ ⊆ γ ).

For (⊗1) first consider P◦
•

as the product of P◦∑
β<γ,β 6=α W β

and P◦
Wα

. We will need
the following claim.

Claim 3.31. For each p ∈ P◦
Wα

, p ≤ π̂α(p•), there exist q0, q1 ∈ P◦
Wα

q0, q1 ≤ p,
and the incomparable elements t0, t1 of the tree T such that

V [GS,U∗][G
◦

•,γ \{α}] |H (qi 
P◦
Wα

ti ∈ π̂∗α(ḃ0)) for each i ∈ {0, 1},

where G◦
•,γ \{α} = G◦

•
∩P◦∑

β<γ,β 6=α W β
.

Before proving the claim we verify that (⊗1) follows from it. In fact,

π̂α(p•) 
P◦•
π̂∗α(ḃ0) /∈ V [GS,U∗][G

◦

•,γ \{α}].

Since G◦
•
⊆ P◦

•
is generic over V [GS,U∗], and P◦

•
can be identified with

(P◦∑
β<γ,β 6=α W β

)×P◦Wα
,

by [Kunen 2011, Lemma V.1.1]

G◦
•,γ \{α} = G◦

•
∩P◦∑

β<γ,β 6=α W β

Paper Sh:1189, version 2021-08-03 2. See https://shelah.logic.at/papers/1189/ for possible updates.



CHARACTERIZING THE SPECTRA OF CARDINALITIES OF KUREPA TREES 441

is generic over V [GS,U∗], and G◦
•,α=G◦

•
∩P◦

Wα
is generic over V [GS,U∗][G

◦

•,γ \{α}].
For each branch c ∈ V [GS,U∗][G

◦

•,γ \{α}] of T define (in V [GS,U∗][G
◦

•,γ \{α}])

Dc = {q ∈ P◦Wα
: there exists t ∈ T \ c such that q 
P◦

Wα
t ∈ π̂∗α(ḃ0)},

which is dense under π̂α(p•) by Claim 3.31, since for a fixed p ∈ P◦
Wα

at most one
ti can be in the branch c.

Proof of Claim 3.31. First we argue that the statement holds in V [GS,U∗], i.e.,
for each p ∈ P◦

Wα
, p ≤ π̂α(p•), there exist q0, q1 ∈ P◦

Wα
, q0, q1 ≤ p, and the

incomparable elements t0, t1 of the tree T such that

(3-24) V [GS,U∗] |H (qi 
P◦
Wα

ti ∈ π̂∗α(ḃ0)) for each i ∈ {0, 1}.

Now (3-22) implies that

V [GS,U∗] |H π̂α(p•) 
P◦
Wα
π̂∗α(ḃ0) ∈ (B(T ) \BV [GS,U∗ ](T ))

since ḃ0 ∈ V [GS,U∗] is a P◦
W 0

-name and T ∈ V [GS,U∗]. Suppose that p ≤ π̂α(p•)
is a counterexample, but then for the set

b′ = {t ∈ T : there exist q ∈ P◦Wα
, q ≤ p such that q 
 t ∈ π̂∗α(ḃ0)} ∈ V [GS,U∗]

we have p 
 π̂∗α(ḃ0)= b′ (since π̂α(p•) forced that π̂∗α(ḃ0) is a cofinal branch in T ),
a contradiction. Finally, fixing p ≤ π̂α(p•), if q0, q1 ∈ P◦

Wα
, q0, q1 ≤ p, and the

incomparable elements t0, t1 ∈ T are such that (3-24) holds, then

V [GS,U∗][G
◦

•,γ \{α}] |H (qi 
P◦
Wα

ti ∈ π̂∗α(ḃ0)) for each i ∈ {0, 1},

since if qi ∈ H ⊆ P◦
Wα

is generic over V [GS,U∗][G
◦

•,γ \{α}], and ti /∈ π̂∗α(ḃ0)[H]
(for some i ∈ {0, 1}), then H is generic over V [GS,U∗] too, and the same holds in
V [GS,U∗][H]. �

It is left to argue why Lemma 3.27 and Lemma 3.30 complete the proof of
Theorem 3.1 (and Theorem 3.4). Suppose that T ∈ V [G] is a Kurepa tree (where
G ⊆ P = PS+• ,idS+•

is generic), and assume on the contrary that |BV [G](T )| /∈ S•.
We can also assume that T ⊆H(ω1)

V , and by Lemma 3.24 there exists S∗ ⊆ S+
•

,
|S∗|<κ , W ∗=〈W ∗θ : θ ∈ S∗〉∈

∏
θ∈S∗[θ ]

<κ such that T ∈V [GS∗,W ∗]. For estimating
(2ω1)V [GS∗,W∗ ] first a straightforward calculation yields that |PS∗,W ∗ | < κ: Since
|PS∗,〈∅:θ∈S∗〉|= (|S∗||ω1|)

ω which is either (ω1 ·ω1)
ω
=ω1<ω2 (if κ =ω2, by CH),

or γ ω < κ (for some γ < κ , if κ is inaccessible). Thus recalling the definition of
Qθ,W ∗θ , the fact

∑
θ∈S∗ |W

∗

θ |<κ as κ is regular, and sup W ∗κ <κ (if κ ∈ S∗) we have
the following (in both cases regardless of whether κ = (ω2)

V , or an inaccessible)

|PS∗,W ∗ | = |PS∗,〈∅:θ∈S∗〉| ·

(
(ω1) ·

( ∑
θ∈S∗\{κ}

|W ∗θ |
))ω
· (|W ∗κ | · sup W ∗κ )

ω < κ.
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At this point we have to discuss the two cases (i.e., whether κ ∈ S•) differently,
arguing that in both cases there are branches outside V [GS∗,W ∗].

If κ = ω2 ∈ S•, then as

V |H |PS∗,W ∗ |
ω1·|PS∗,W∗ | = ω2,

we have
V [GS∗,W ∗] |H 2ω1 = ω2,

therefore as |BV [G](T )| /∈ S•, there are branches of T in V [G] not in V [GS∗,W ∗].
On the other hand, if κ /∈ S• is inaccessible, then we obtain that

V [GS∗,W ∗] |H |B(T )| ≤ 2ω1 < κ,

and as κ remains a cardinal in V [G] (by Claim 3.26), and

V [G] |H |B(T )∩ V [GS∗,W ∗]| = ω1,

we conclude that this case there also must be branches of T not in V [GS∗,W ∗] as T
is a Kurepa tree in V [G]. Now let r̄ ∈

∏
θ∈S+• \S• P(θ), Rθ = θ \W ∗θ , then

P= PS+• ,idS+•
' (PS∗,idS∗−r̄ )× (PS∗∩(S+• \S•),r̄ )× (PS+• \S∗,idS+• \S∗

),

and there are no new sequences of type ω in V [G] (by Claim 3.23), and the second
component is ω1-closed, the third component has an ω1-closed dense subset (which
thus remain ω1-closed in V [GS∗,idS∗−r̄ ]) we obtain that each branch of T is added by
GS∗,idS∗−r̄ = G∩PS∗,idS∗−r̄ (since an ω1-closed forcing do not add new branches to
Kurepa trees [Kunen 2011, Lemma V.2.26]). We only have to derive a contradiction
from

V [GS∗,idS∗−r̄ ] |H |B(T )| /∈ S•.

Now letting ∂ = |BV [GS∗,idS∗−r̄ ](T )| /∈ S•, S−
∗
= S∗ ∩ S• ∩ ∂ , S+

∗
= (S∗ ∩ S•) \ S−

∗
by

Lemma 3.20 we have

V [GS∗,idS∗−r̄ ] = V [GS∗,W ∗+idS−∗
][G◦idS+∗

−W ∗
].

As ∂ /∈ S−
∗
, S+
∗

, it is enough to prove that in V [GS∗,W ∗+idS−∗
] there are less than ∂-

many branches of T , because if G◦idS+∗
−W ∗ adds new branches, then by Lemma 3.30

it adds min(S+
∗
)-many new branches (since each |W ∗θ |< κ ≤min(S•)≤min(S+

∗
)).

Now if ∂ = κ , then S−
∗
= ∅, we are done, so we can assume that ∂ > κ , and

sup S−
∗
≥ κ . As |S∗| < κ (in V ), and our conditions (Case 2 (iii), or Case 2 (ii))

states that then sup(S∗ ∩ S• ∩ ∂) ∈ S• implying sup S−
∗
< ∂ . Therefore using that

W ∗θ ⊆ θ we get
∑

θ∈S−∗ |W
∗

θ | ≤ | sup S−
∗
|
2<∂ . Now by Lemma 3.27 for each branch

b of T in V [GS∗,W ∗+idS−∗
] = V [GS∗,W ∗][G

◦

(idS−∗
)−W ∗
] there exist θ0, θ1, . . . , θn−1,

U •θ0
,U •θ1

, . . . ,U •θn−1
finite such that b ∈ V [GS∗,W ∗][G

◦

U •
]. Therefore, as |P◦

U •
| =
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ωn
1 = ω1, counting the nice P◦

U •
-names of subsets T for each possible n, sequence

of θ , and U •,

B(T )∩ (V [GS∗,W ∗][G
◦

(idS−∗
)−W ∗
] \ V [GS∗,W ∗])

≤ (| sup S−
∗
|
<ω
·ω

ω1
1 )

V [GS∗,W∗ ] ≤ sup S−
∗
,

which is smaller than ∂ , a contradiction.
For V [G] |H 2ω1 = λ we only need to show that 2ω1 ≤ λ. But a similar straight-

forward calculation yields that P = PS+• ,idS+•
is of cardinality λ, and then (using

κ-cc and the equality λ<κ = λ) by counting the possible nice names for subsets of
ω1 we obtain the desired inequality.

Remark 3.32. If S• also satisfies

(3-25) for all µ ∈ S• : cf(µ) < κ→ µ+ ∈ S•,

and GCH holds in V then S•\{λ} is the spectrum for the Jech–Kunen trees in V [G].
(A tree T of height ω1 and power ω1 is a Jech–Kunen tree if ω1 < |B(T )|< 2ω1 .)
For more on Jech–Kunen trees see also [Shelah and Jin 1992; 1993; Jin and Shelah
1994]. Note that CH in the final model implies that the product of countably many
Jech–Kunen trees is a Jech–Kunen tree, so is the diagonal product of ω1-many Jech
Kunen trees, hence (3-25) cannot be dropped.

One can obtain similar cardinal arithmetic conditions for Spµ with µ large.

4. The necessity of the inaccessible cardinal

In this section we prove that if ω2 is not an element of the spectrum, then ω2 is
inaccessible in L . The idea of using transitive collapses of elementary submodels
of constructible sets as nodes of a tree goes back to Solovay’s original unpublished
argument for the consistency strength of the negation of the Kurepa hypothesis.
Although the next proof is deemed to be well-known, for the sake of completeness
we include the proof as there is probably no known source to cite.

Theorem 4.1. Suppose that ωV
2 is a successor in L. Then there exists a Kurepa tree

T with BV (T )= ω2.

Proof. We will use an extension of L , an inner model between L and V , what serves
as the motivation for the following definition of relative constructibility, which can
be found in [Kanamori 2003].

Definition 4.2. For a set A define L[A]=
⋃
α∈O N Lα[A] by transfinite recursion as

follows. L0[A] =∅, Lα+1[A] = defA(Lα[A]), and α limit Lα[A] =
⋃
β<α Lβ[A]

(where defY (X) are the subsets of X that can be defined in the structure (X,∈�
(X × X), Y ∩ X) by parameters from X ; see [Kanamori 2003, Chapter 1, §3]).
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The following is an easy exercise, but for the sake of completeness we include the
proof.

Claim 4.3. There exists a set A ⊆ ω1 such that ωL[A]
1 = ω1, ωL[A]

2 = ω2.

Proof. If ωV
2 = (λ

+)L , where |λ| = ω1, then in a single subset A of ω1 we can code
a well-ordering of ω1 in type λ, and also for each α < ω1 a well-ordering of ω
in type α in the obvious fashion, and such that L can read this coding (implying
ω

L[A]
1 = ω1, ωL[A]

2 = ω2): First let 〈Xα : α ≤ ω1〉 ∈ L be a set of pairwise disjoint
sets of ω1 with |Xα|L = ω for each α < ω1, and |Xω1 |

L
= ω1, then for each α < ω1

we can code the well ordering Xα in order type α, and the well ordering of Xω1 in
type λ in a subset A′ of

⋃
α≤ω1

X2
α ⊆ ω

2
1. Finally, taking the preimage of this set

under a bijection f ∈ L between ω1 and ω2
1, i.e., A = f −1(A′) works. �

We have to recall a classical lemma [Kanamori 2003, Theorem 3.3]. Recall that
L∈(RA) stands for the (first-order) language of set theory extended by the unary
predicate RA.

Lemma 4.4. There is a sentence σ ∈ L∈(RA) such that for every transitive set N

(N ,∈, X ∩ N ) |H σ implies N = Lγ [X ] for some limit γ.

In particular, if M ≺ (Lβ[X ],∈, X∩Lβ[X ]), where β is a limit ordinal and π is the
collapsing isomorphism from M onto the transitive set ran(π), then the Mostowski
collapse

ran(π)= Lγ [{π(x) : x ∈ M ∩ X}]

for some γ ≤ β.

The following is immediate.

Claim 4.5. For each infinite ordinal β and Y ⊆ Lβ[X ], if Y ∈ L[X ] and X ⊆ Lβ[X ],
then µ= (|β|+)L[X ] implies Y ∈ Lµ[X ].

(Working in L[X ], if Y ∈ Lγ [X ], then let M ≺ Lγ [X ] with {Y } ∪ Lβ[X ] ⊆ M ,
|M | = |Lβ[X ]|, and apply the lemma recalling that π � Lβ[X ] is the identity.)

Now we can turn to the definition of the tree T , which will be defined by its
branches.

Recall that there exists a definable well-order on L[A], which is downward
absolute to almost every initial segment of L[A] (to the ones indexed by limit
ordinals) [Kanamori 2003, Theorem 3.3]:

Lemma 4.6. There exists a formula ϕ ∈ L∈(RA) (i.e., in the language of set the-
ory extended with the unary relation symbol A) which define a well-ordering on
(L[A],∈, A), moreover if δ is a limit ordinal, x, y ∈ Lδ[A], then

(L[A],∈, A) |H ϕ(x, y)⇐⇒ (Lδ[A],∈, A∩ Lδ[A]) |H ϕ(x, y).
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From now on “x <L[A] y” abbreviates ϕ(x, y).
We will take Skolem hulls many times, thus we need to introduce the following

variant of this standard notion.

Definition 4.7. Let (M,∈, X, ∂), M ⊆ L[A] be a set model of the language
L∈(RA, c∂) with ∅ ∈ M , M ′ ⊆ M such that the well-ordering formula ϕ ∈ L∈(RA)

from Lemma 4.6 is absolute to M , i.e.,

(4-1) (for all x, y ∈ M) : (L[A],∈, A) |H ϕ(x, y)⇐⇒ (M,∈, X) |H ϕ(x, y),

e.g., when (M,∈, X)= (Lζ [A],∈, A∩ Lζ [A]) for some limit ordinal ζ . Then the
Skolem-hull of M ′ in (M,∈, X, ∂) (in symbols, H(M,∈,X,∂)(M ′)) is the closure of M ′

under the functions f (M,∈,X,∂)ψ for each formula ψ(v0, v1, . . . , vnψ ) ∈ L∈(RA, c∂)
with nψ + 1 free variables, where the function f (M,∈,X,∂)ψ satisfies the following:

f (M,∈,X,∂)ψ : Mnψ → M

is defined so that for every 〈x1, x2, . . . , xnψ 〉 ∈ Mnψ : if there exist y! ∈ M such that

(M,∈, X, ∂) |H ψ(y, x1, x2, . . . , xnψ ),

then let f (M,∈,X,∂)ψ (x1, x2, . . . , xnψ ) be the unique such y, otherwise let

f (M,∈,X,∂)ψ (x1, x2, . . . , xnψ )=∅.

Then the fact that for each formula ψ ′ we can define the formula saying that y is the
least y (with respect to the well-order given by ϕ) satisfying ψ ′(y, x1, x2, . . . , xnψ ′ )

together with the Tarski–Vaught criterion implies that the closure is an elementary
submodel of M , in symbols, M ′ ≺ (M,∈, X, ∂).

Observe that this closure only depends on the isomorphism class of (M,∈, X, ∂)
by the absoluteness of the well-ordering formula ϕ (4-1).

Choose ξ < ω2 such that

(4-2) ξ is the minimal ordinal (for all α < ω1)

there exist fα ∈ Lξ [A] bijection between ω and α

(which can be done due to Claim 4.5, in fact ξ = ω1, but we won’t use this equality,
hence we don’t argue that).

Now we will define an operation which assigns for each δ ∈ [ξ, ω2) the ordinal
δ′ <ω2 in the following way. We would like to choose δ′ so that in Lδ′[A] it is true
that for each set x there exists a surjection from ω1 to x , and for δ′′ 6= δ′ the structures
(Lδ′[A],∈, A, δ) and (Lδ′′[A],∈, A, δ) cannot be elementarily equivalent.

Definition 4.8. Fix δ ∈ [ξ, ω2), and define δ′ to be the least ordinal such that

(a) δ ∈ Lδ′[A],
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(b) for each x ∈ Lδ′[A] there is a bijection f ∈ Lδ′[A] between ω1 and x ,

(c) taking the sentence σ from Lemma 4.4 (Lδ′[A],∈, A) |H σ .

(Using Claim 4.5 and (|Lα[A]| = |α|)L[A] for α ≥ ω it is easy to see that we can do
this closure operation, and there is such a δ′ < ω2.) Then we have

(4-3) (δ′ is a limit )
∧
(Lδ′[A] |H “ω1 is the largest cardinal”),

and also the desired uniqueness by our next claim.

Claim 4.9. There is a statement σ ′ ∈ L∈(RA, c∂) such that for each δ ∈ [ξ, ω2)

(Lδ′[A],∈, A, δ) |H σ ′, moreover, for each δ > ω1 and δ′′ > δ,

((Lδ′′[A],∈, A, δ) |H σ ′)⇒ (δ′′ = δ′).

Proof. First define σ ′′ = σ ∧ (for all y there exist f : ω1→ y bijection) and let σ ′

be the following sentence:

σ ′ = σ ′′ ∧ (¬(∃ X)(X is transitive)∧ (σ ′′)X
∧ (δ ∈ X))

(where under ψ X we always mean the formula ψ ∈ L∈(RA, c∂) relativized to X ,
and σ is from Lemma 4.4). �

Now fix δ ∈ [ξ, ω2), and for each ordinal 0 < α < ω1 define Mδ,α to be the
Skolem-hull

(4-4) Mδ,α = H(Lδ′ [A],∈,A,δ)(α) (for each α < ω1).

Also define

(4-5) Mδ,0 =∅.
Then

(4-6) Mδ,α ≺ (Lδ′[A],∈, A, δ) (for each α > 0).

Observe that whenever M∗ ≺ (Lδ′[A],∈, A, δ) we have for the Skolem functions
from Definition 4.7 that f (Lδ′ [A],∈,A,δ)ψ � (M∗)nψ = f (M

∗,∈,A∩M∗,δ)
ψ , hence

(4-7) for all M ′ ⊆ M∗ ≺ (Lδ′[A],∈, A, δ) : H(Lδ′ [A],∈,A,δ)(M ′)

= H(M
∗,∈,A∩M∗,δ)(M ′).

Now as we defined 〈Mδ,α : α < ω1〉 note that

(4-8) (M ≺ (Lδ′[A],∈, A, δ))∧ (|M | = ω)→ (M ∩ω1 ∈ ω1),

in particular,

(4-9) Mδ,α ∩ω1 ∈ ω1,
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since (4-2) together with ξ ≤ δ < δ′ implies that in Lδ′[A] there is an enumeration
of each ordinal less than ω1 (and Mδ,α is countable). This implies that

(Cδ = {α < ω1 : Mδ,α ∩ω1 = α} is a club in ω1)∧ (0 ∈ Cδ).

It is easy to see that

(4-10) for all α < ω1 : Mδ,α = Mδ,min(Cδ\α).

For later use we verify the following statement.

Claim 4.10.
⋃
α<ω1

Mδ,α = Lδ′[A].

Proof. Since the union of an increasing chain of elementary submodels is an
elementary submodel, we have Mω1 =

⋃
α<ω1

Mδ,α ≺ (Lδ′[A],∈, A, δ). Now
recall, that in Lδ′[A] every set x admits a surjection from ω1 onto x , therefore
ω1⊆Mω1 implies that Mω1 is transitive. Then by Lemma 4.4 and Mω1 |H σ we have
Mω1 = Lδ′′[A] for some δ′′ > δ. But then either Mω1 ∈ Lδ′[A], or Mω1 = Lδ′[A],
and because the former would contradict Claim 4.9, we arrive at our conclusion. �

For each α ∈ Cδ and β < ω1, if α = max(Cδ ∩ (β + 1)), then let Nδ,β,α be
the range of the Mostowski-collapse πδ,α of (Mδ,α,∈), and let Aδ,β,α = πδ,α(A),
∂δ,β,α = πδ,α(δ):

(4-11) πδ,α : Mδ,α→ Nδ,β,α,

which is of course not only an isomorphism between (Mδ,α,∈) and (Nδ,β,α,∈), but
witnesses

(4-12) (Mδ,α,∈, A∩Mδ,α, δ)' (Nδ,β,α,∈, Aδ,β,α, ∂δ,β,α).

Now we are ready to construct the tree T . For a fixed δ ∈ [ξ, ω2), α ∈Cδ , β <ω1,
if 0< α =max(Cδ ∩ (β + 1)) holds then we define

(4-13) tδ,β,α = (Nδ,β,α,∈, Aδ,β,α, ∂δ,β,α),

i.e., the structure (Nδ,β,α,∈) extended by the one-place relation for the image of
A ∈ Mδ,α under the collapsing isomorphism, and the constant symbol for ∂δ,β,α.
For max(Cδ ∩ (β + 1))= 0 let tδ,β,0 =∅.

Observe that given t = tδ,β,α we can decode α from t , as α is the first uncountable
ordinal of t .

Definition 4.11. Define

T = {(β, tδ,β,α) : δ ∈ [ξ, ω2), β < ω1, α =max(Cδ ∩ (β + 1))},

with the partial order (β0, tδ0,β0,α0) ≤T (β1, tδ1,β1,α1) if and only if either α0 = 0
(thus tδ0,β0,α0 is the empty structure), or

Paper Sh:1189, version 2021-08-03 2. See https://shelah.logic.at/papers/1189/ for possible updates.



448 MÁRK POÓR AND SAHARON SHELAH

(i) β0 ≤ β1, and

(ii) taking the Skolem-hull M of α0 in

tδ1,β1,α1 = (Nδ1,β1,α1,∈, Aδ1,β1,α1, ∂δ1,β1,α1),

i.e., M = Htδ1,β1,α1 (α0) is isomorphic to tδ0,β0,α0 :

(M,∈, Aδ1,β1,α1 ∩M, ∂δ1,β1,α1)' (Nδ0,β0,α0,∈, Aδ0,β0,α0, ∂δ0,β0,α0),

and

(iii) if α0 < α1, then there is no proper elementary submodel

M ≺ (Nδ1,β1,α1,∈, Aδ1,β1,α1, ∂δ1,β1,α1)

with
α0 ∪ {α0} ⊆ M and M ∩α1 ⊆ β0.

Roughly speaking, in level β we have (isomorphism types of) initial segments M of
models of the form (L1′[A],∈, A,1) (for some1∈ [ξ, ω2)), such that M∩ω1≤β,
and M is maximal with respect to this condition. We need to check that T is a tree,
its levels are countable, and that it has only ω2-many branches even in V .

The following claim is a standard calculation, but for the sake of completeness
we include the proof.

Claim 4.12. Let δ ∈ [ξ, ω2) be fixed, β0 ≤ β1 < ω1, let α1 =max(Cδ ∩ (β1+ 1)),
α0 =max(Cδ ∩ (β0+ 1)). Then (β0, tδ,β0,α0)≤T (β1, tδ,β1,α1).

Moreover, the embedding πβ0,β1 : Nδ,β0,α0 → Nδ,β1,α1 is unique.

Proof. First observe that by (4-4) and (4-7) for δ ∈ [ξ, ω2), α0 < α1,

H(Mδ,α1 ,∈,A,δ)(α0)= H(Lδ′ [A],∈,A,δ)(α0)= Mδ,α0,

therefore since β1 < ω1 is such that α1 =max(Cδ ∩ (β1+ 1)), then applying (the
restriction of) the collapsing isomorphism πδ,α1 to the left side, we obtain

(H(Nδ,β1,α1 ,∈,Aδ,β1,α1 ,∂δ,β1,α1 )(α0),∈)' (Mδ,α0,∈)

and because β0 < β1 is such that α0 = max(Cδ ∩ (β0 + 1)), then applying the
isomorphism πδ,α0 to the right side (which fixes α0) we obtain

(H(Nδ,β1,α1 ,∈,Aδ,β1,α1 ,∂δ,β1,α1 )(α0),∈)' (Nδ,α0,β0,∈).

Finally, since πδ,α1(A) = Aδ,β1,α1 , πδ,α0(A) = Aδ,β0,α0 , and πδ,α1(δ) = ∂δ,β1,α1 ,
πδ,α0(δ)= ∂δ,β0,α0 , we have

(HNδ,β1,α1 (α0),∈ Aδ,β1,α1, ∂δ,β1,α1) is isomorphic to (Nδ,β0,α0,∈, Aδ,β0,α0, ∂δ,β0,α0),
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therefore (ii) holds. The uniqueness easily follows from the facts that the embedding
of (Nδ,β0,α0,∈, Aδ,β0,α0, ∂δ,β0,α0) has to fix the ordinals less than α0, and elementary
embeddings uniquely extend to Skolem-hulls.

For (iii) suppose that α0 < α1, and note that

(Nδ,β1,α1,∈) |H “α1 is the least uncountable ordinal , α0 is countable”,

and for M ≺ (Nδ,β1,α1,∈, Aδ,β1,α1, ∂δ,β1,α1) if α0 ∪ {α0} ⊆ M then consider the
corresponding submodel M ′ ≺ (Mδ,α1,∈, A, δ), for which M ′ ⊇ Mδ,α0+1. But
(recalling (4-8)) since max(Cδ ∩ (β0+ 1))= α0 we obtain β0∪{β0} ⊆ M ′ ⊆ Mδ,α1 ,
that can happen only if β0 is smaller than the least uncountable ordinal in Nδ,β1,α1 ,
α1. But then β0 ∈ M ∩α1. �

The next claim will verify that T is a tree of height ω1 (for the transitivity of ≤T

use the claim two times).

Claim 4.13. For a fixed δ1 ∈ [ξ, ω2), β0 ≤ β1 < ω1, let α1 = max(Cδ1 ∩ (β1+ 1),
and fix arbitrary α0 ∈ ω1, δ0 ∈ [ξ, ω2). Then (β0, tδ0,β0,α0)≤T (β1, tδ1,β1,α1) if and
only if tδ0,β0,α0 = tδ1,β0,max(Cδ1∩(β0+1)).

Proof. We only have to check the “only if” part, but first observe that Definition 4.11
clearly implies that up to isomorphism there exists only one t for which (β0, t)≤
(β1, tδ1,β1,α1). Now the claim is the consequence of the fact that tδ∗,β0,α∗ 6= tδ∗∗,β0,α∗∗

implies that they are not isomorphic as structures of the language L∈(RA, c∂): For
transitive sets N and N ′ with X, ∂ ∈ N , X ′, ∂ ′ ∈ N ′ the structures (N ,∈, X, ∂),
(N ′,∈, X ′, ∂ ′) are isomorphic if and only if N = N ′, X = X ′ and ∂ = ∂ ′ (since by
the uniqueness of the Mostowski collapse we know that (N ,∈) ' (N ′,∈) if and
only if N = N ′). �

Lemma 4.14. For each β < ω1 the β-th level of T is countable.

Proof. By Claim 4.13 we have that the β-th level of T is

T≤β \ T<β = {(β, tδ,β,α) : δ ∈ [ξ, ω2), α =max(Cδ ∩ (β + 1))}.

For a fixed δ ∈ [ξ, ω2) fix α =max(Cδ ∩ (β + 1)) too, and consider the structure

tδ,β,α = (Nδ,β,α,∈, Aδ,β,α, ∂δ,β,α),

where Nδ,β,α is the Mostowski collapse of (Mδ,α,∈) (by the isomorphism πδ,α), and
Aδ,β,α = A∩α. Now (4-6) states Mδ,α ≺ (Lδ′,∈, A) then (recalling Mδ,α ∩ω1 = α,
and πδ,α � α = idα) by Lemma 4.4

Nδ,β,α = Lγ [A∩α]

for some γ = γ (δ, α) ∈ (α, ω1). Now we determine an upper bound γα for the set
{γ (δ, α) : δ ∈ [ξ, ω2) ∧ α ∈ Cδ}. If we have such a bound for each possible α ≤ β,
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then letting γ∞ denote sup{γα : α ≤ β}, we get

{tδ,β,α) : δ ∈ [ξ, ω2), α =max(Cδ ∩ (β + 1))}}

⊆ {(Lγ [A∩α],∈, A∩α, ∂) : γ ≤ γ∞, α ≤ β, ∂ < γ },

which latter set is obviously countable, this will finish the proof of the lemma.
So fix α≤ β and δ ∈ [ξ, ω2) such that α ∈Cδ . Now we have two cases depending

on whether there is any (cardinal)L[A∩α] in (α, ω1). If λ ∈ (α, ω1) is a cardinal
in the inner model L[A ∩ α], then for each δ if α = max(Cδ ∩ (β + 1)), then the
transitive set Nδ,β,α cannot contain λ, as Mδ,α sees ω1 as the largest cardinal, and
πδ,α(ω1)= α. This case choosing γα = λ works.

On the other hand, if (|α|+)L[A∩α]
= ω1, then we first prove that α ∈ Cδ implies

(|α| = ω)L[A∩α]: otherwise in Mδ,α, and in Nδ,β,α each ordinal less than α are
countable, thus as well in L[A∩α]. Then it is easy to see that the condition

(λ is the unique cardinal in (ω, ωV
1 ))

L[A∩λ]

cannot hold for two different λ, therefore α can be defined in L[A]. But then using
Claim 4.5 with X = A ∩ α we have that for each ζ ∈ (α, ω1) there is a bijection
fζ ∈ Lω1[A∩α] between α and ζ , therefore α can be defined also in Lδ′[A], and
M ≺ (Lδ′[A],∈) implies α ∈ M , contradicting that Mδ,α ∩ω1 = α (which holds
by α ∈ Cδ). Then (|α| = ω)L[A∩α] and Claim 4.5 implies that there is an ordinal
λ < ω1 such that there exists a bijection between α and ω in Lλ[A∩α], implying

Nδ,β,α = Lγ (δ,α)[A∩α]( Lλ[A∩α],

since α is uncountable in Nδ,β,α. In this case

{γ (δ, α) : δ ∈ [ξ, ω2)∧α ∈ Cδ} ⊆ γα = λ,

which completes the proof of Lemma 4.14. �

Now T is obviously a Kurepa tree by the following fact and lemma.

Fact 4.15. The sequence 〈Bδ : δ ∈ [ξ, ω2)〉 lists pairwise distinct cofinal branches
in T , where

Bδ = {(β, tδ,β,max(Cδ∩(β+1))) : β < ω1}.

Proof. We only need to prove that Bδ 6= Bγ if δ 6= γ . But according to the second
statement of Claim 4.12 for each β<β ′<ω1 there is a unique elementary embedding
of tδ,β ′,max(Cδ∩(β ′+1)) to tδ,β,max(Cδ∩(β+1)), therefore there is a unique direct-limit of
this elementary chain, isomorphic to

⋃
α∈Cδ Mδ,α, which is (Lδ′[A],∈, A, δ) by

Claim 4.10. �

It is only left to prove that each branch of T is of the form Bδ for some δ ∈ [ξ, ω2)

(even in V ). The following lemma will complete the proof of Theorem 4.1.
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Lemma 4.16. Let B ⊆ T a cofinal branch in T , B ∈ V . Then B = Bδ• for a unique
δ• ∈ [ξ, ω2).

Proof. Let tδβ ,β,αβ = (Nδβ ,β,αβ ,∈, Aδβ ,β,αβ , ∂δβ ,β,αβ ) denote the element in B∩(T≤β\
T<β). Working in V first we define the following bonding maps: for γ ≤ β <ω1 let

πγ,β : Nδγ ,γ,αγ → Nδβ ,β,αβ

be the unique elementary embedding (combining Claim 4.13, and the second
statement of Claim 4.12). Since elementary submodels of an elementary submodel
are elementary submodels, πβ ′,β ◦ πβ ′′,β ′ is an elementary embedding for each
β ′′ ≤ β ′ ≤ β < ω1, therefore by the uniqueness

(4-14) (for all β ′′ ≤ β ′ ≤ β < ω1) : πβ ′,β ◦πβ ′′,β ′ = πβ ′′,β .

This elementary chain allows us to define the limit D = (Nω1, E, Aω1, ∂ω1) of the
directed system {tδβ ,β,αβ , πβ ′,β : β

′
≤ β < ω1}.

Let πβ : Nδβ ,β,αβ → Nω1 be the embedding, Nβ = ran(πβ) (hence Nω1 =⋃
β<ω1

Nβ).
First note that (Nω1, E) is well-founded, otherwise there would be an infinite

E-decreasing chain in the embedded image of Nδβ ,β,αβ for some (in fact, every
large enough) β, contradicting that (Nδβ ,β,αβ ,∈) is well-founded. Now (by the
E-extensionality in Nω1) we can assume that Nω1 is a Mostowski collapse, i.e.,
(Nω1, E) = (Nω1,∈). Then it is easy to see that if β < ω1 for the elementary
embedding πβ : Nδβ ,β,αβ → Nω1 we have πβ � αβ = idαβ , and πβ(αβ) = ω1, thus
(recalling that Aδβ ,β,αβ = A∩αβ) we obtain (Nω1, E, Aω1, ∂ω1)= (Nω1,∈, A, δ•) for
some δ• ∈ (ω1, ω2). Now we can use Lemma 4.4 (since (Nδβ ,β,αβ ,∈, Aδβ ,β,αβ ) |Hσ ),
there exists ζ > δ• such that

Nω1 = Lζ [A],

and then

(Nω1,∈, A, δ•)= (Lζ [A],∈, A, δ•).

Now because the formula σ ′∈L∈(RA, c∂) from Claim 4.9 holds in (Lδ′[A],∈, A, δ)
(for each δ ∈ [ξ, ω2)) (for our mapping δ 7→ δ′ from Definition 4.8) and therefore
also in Mδ,α , Nδ,β,α (δ ∈ [ξ, ω2)), so it must hold in (Nω1,∈, A, δ•), which means
that δ• ≥ ξ , and ζ = δ′

•
, i.e.,

(Nω1,∈, A, δ•)= (Lδ′•[A],∈, A, δ•).

Finally, we have to prove that for each β < ω1

tδβ ,β,αβ = (Nδβ ,β,αβ ,∈, Aδβ ,β,αβ , ∂δβ ,β,αβ )= tδ•,β,max(Cδ•∩(β+1))
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by arguing (having β fixed) that for a large enough γ

(β, tδ•,β,max(Cδ•∩(β+1)))≤T (γ, tδγ ,γ,αγ ).

Let α = max(Cδ• ∩ (β + 1)), α′ = min(Cδ• \ (β + 1)), β ′ = α′, and consider
the models Mδ•,α,Mδ•,α′ ≺ (Lδ′•[A],∈, A, δ•). Choose γ ≥ β ′, γ < ω1 so that
Nγ = πγ [Nδγ ,γ,αγ ] ⊇ Mδ•,α′ . Then

(4-15) αγ ≥ α
′ > β + 1,

and α′ ∪ {ω1} ⊆ Nγ ≺ (Lδ′•[A],∈, A, δ•) with (4-7) imply

H(Nγ ,∈,A∩Nγ ,δ•)(α)= H(Lδ′• [A],∈,A,δ•)(α)= Mδ•,α.

Therefore in (Nγ ,∈, A∩ Nγ , δ•)' (Nδγ ,γ,αγ ,∈, Aδγ ,γ,αγ , ∂δγ ,γ,αγ ) there is an ele-
mentary submodel isomorphic to (Mδ•,α,∈, A∩Mδ•,α, δ•), which latter is isomor-
phic to (Nδ•,β,α,∈, A∩α, ∂δ•,β,α), thus (ii) from Definition 4.11 holds.

Similarly, using also (4-10) and the definitions of α, α′,

H(Nγ ,∈,A∩Nγ ,δ•)(α+ 1)= Mδ•,α+1 = Mδ•,α′ ⊇ α
′
⊇ β ∪ {β},

and since the isomorphism between

(Nγ ,∈, A∩ Nγ , δ•) and (Nδγ ,γ,αγ ,∈, Aδγ ,γ,αγ , ∂δγ ,γ,αγ )

fixes the ordinals less than or equal to α′ we obtain

H(Nδγ ,γ,αγ ,∈,Aδγ ,γ,αγ ,∂δγ ,γ,αγ )(α+ 1)⊇ β ∪ {β}.

Therefore recalling (4-15) we obtain that (iii) (of Definition 4.11) holds as well. �
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