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Abstract
We study some asymptotic variants of the club principle. Along the way, we construct
some forcings and use them to separate several of these principles.
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1 Introduction

For a regular uncountable cardinal « and a stationary S C Lim(k), the club principle
& says the following: There exists A = (A : 8 € S) where each A is an unbounded
subset of § of order type cf (§) such that for every A € [«], there exists some (equiv-
alently, stationary many) § € S such that As C A. We say that A is a &g witnessing
sequence. If k = w1 and § = Lim(w) is the set of all countable limit ordinals, we
drop the S and write &.

The principle & was introduced by Andrzej Ostaszewski in [6] where he used &+-CH
(equivalently, <>) to construct an Ostaszewski space. Several variants of this principle
have since been studied [1,2]. For example, in [1], it was shown that &! does not imply
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& where &! is the following statement: There exists A = (As:8 € Lim(w;)) where
each A; is an unbounded subset of § of order type w such that for every A € [w]™,
there exists 6 such that As\ A is finite.

In this work, we mostly study asymptotic versions of the club principle where the
requirement As C A is replaced by AsN A is a “large” subset of As. Some of these
principles have previously appeared in [3,4]. As a motivating example, suppose we
start with a model of & and add 8, Cohen reals. Then it is easy to see that &' and
therefore & are destroyed. But the following continues to hold (see Remark 7.2): There
exists (A5 : 8 € Lim(w)) where each As = {a5 , : n < w} where o ,,’s are increasing
cofinal in § and for every A € [w1 15, here exists § such that {n <w:as5, € A} has
upper asymptotic density 1. It follows that — &' A &P > is consistent.

Dgﬁnition 1.1 xxx For a € (0, 1] and a stationary set S C Lim(wj), the principle
*glea says the following: There exists A = (As:8 € S) such that

(a) each A5 = {o5,, :n < w} and o ,’s are increasing cofinal in §, and
(b) forevery A € [w1 1Y, there exists 8§ € S such that

. Hk<n:asre A}
lim inf : >a
n n

If § = Lim(wy), we write inf>a By &M we mean &N =1,

It is clear that &! implies &M and for0 < a < b < 1, $nf=b implies Qinf=>a A¢
the end of Sect. 1, we show that under CH, all of these principles are equivalent to
diamond.

Theorem 1.2 Assume CH. Then for every a € (0, 1], &™ =% implies <.
The bulk of the work in this paper is to show the following.

Theorem 1.3 (1) &'mA— Ql is consistent. B
(2) Foreverya € (0, 1], &‘nf_>“/\ (Vb > a)— &?“t 2b s consistent.
(3) Foreverya € (0,1], —~&™ > (Vb < a) & >? is consistent.

In Sects. 2-5 we introduce the necessary tools for constructing the forcings used in
proving Theorem 1.3. Sections 2 and 3 introduce the class of “thin 81 -CP’s” (Definition
3.5) which constitute the main building block of these constructions. The associ-
ated forcings satisfy ccc and are somewhat intermediate between Add(w, ;) and
Add (w1, 1). The main point here is that while forcing with a suitable member of this
class will destroy all old &'-witnesses, it will preserve some &'™-witness. Section
4 handles the next issue, namely, how to perform an iteration of thin 8{-CP’s that
preserves &'™. This is achieved via “guided products” (Definition 4.1). In Sect. 5, we
construct our iteration and show that the resulting model witnesses Theorem 1.3 (1).
Our construction scheme is quite flexible and should be useful for separating many
similar principles. This is illustrated in Sect. 6 where we prove Theorem 1.3 (2),(3) by
forcing with the guided product of another family of thin 8-CP’s.

In Sect. 7, we introduce &P = ¢ (Definition 7.1) and prove the following in ZFC.

Theorem 1.4 For every a, b € (0, 1), &P > is equivalent 1o &P =",
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Finally, in Sect. 8, we prove that

Theorem 1.5 &3P =054 — &SW =1 s consistent.

On notation: Lim («) denotes the set of all limit ordinals below «. For a set of ordinals
X, otp(X) denotes the order type of X. cf(«) is the cofinality of a. S§ = {o < « :
cf (@) = cf (8)}. Fork < w, o is the kth power of w under ordinal exponentiation. For
a, b sets of ordinals, we write a < b to denote (Vo € a)(VB € b)(a¢ < B). In forcing,
we use the convention that a larger condition is the stronger one — so p > ¢ means p
extends q.

1.1 CH and &

Fact 1.6 Suppose S C Lim(w;) is stationary and A= (As:6 € S)isa &g—wit—
nessing sequence where &ré is one of club principles defined in Definitions 1.1, 6.1,
7.1, 8.1. Then for every A € [w1]”, there are stationary many § € S witnessing the
corresponding requirement for the pair As, A.

Proof Fix A € [w]®! and let E C w; be a club. Choose B € [A]®! such that
between any two members of B, there is a member of E. Choose § € S witnessing
the corresponding requirement for the pair As, B. As B C A, this § also works for
A. Since B N Ag is unbounded in 8, £ N § is also unbounded in §. As E is a club, it
follows that § € S N E. Hence there are stationary many such § € S. O

Recall that <> says the following: There exists (A5 : 6 € Lim(w;)) where each A5 C §
such that for every A C wy, {6 € Lim(w;): As = A N 4§} is stationary. An equivalent
formulation (see [5]) is the following: There exists (A : § € Lim(w;)) where each A
is a countable family of subsets of § such that forevery A C w1, {8 € Lim(w;): AN§ €
As} is stationary.

Proof of Theorem 1.2 Assume CH. Suppose a € (0, 1] and &™ = ¢ holds as witnessed
by A = (As:8 € Lim(w)). Let A5 = {as,:n < w} list As in increasing order.
Using CH, fix (B; :i < w1) such that each B; C i and for every B € [w1 ]S ™0, there
are uncountably many i < w; for which B = B;.

For § € Lim(wy), define A; as follows. A € A iff for some u € w the following
hold:

e liminf, [uNn|/n > a.

e Foreverym < ninu, By, = Bu;,Nasmand A =, ¢, Bos,-

We claim that each A; is finite. In fact, |As| < 1/a. To see this, assume otherwise
and let {A; :k < K} be pairwise distinct members of As where Ka > 1. Choose
(ug 1k < K) witnessing Ay € Ag. Choose N; < N; such that the following hold:

(a) (Ax Nas, N,k < K) has pairwise distinct members,
(b) |ugx N[Ny, N2)| > (N — Ny)/K foreachk < K.

By (b), it follows that for some j < k < K, [Ny, N2) Nuj Nux # <. But if
n € [Ny, N2) Nuj Nug, then By, = Aj Nasn = A N as,, which is impossible by
(a).
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To complete the proof it is enough to show the following.

Claim 1.7 For every X C wy, for every club E C wy, there exists § € E such that
XNseAs.

Proof Construct («; :i < wi) such that «;’s are increasing and for every i < wq,
X Nsup;_; aj = By;. Choose § € E and u € w such that liminf, [u Nn|/n > a and
{asnineul C{o:i < wi}. Itfollows that X N6 = (J,c,, Bas, € As- o

neu

2 Creatures

Fix a family {S¢ : k < w} of pairwise disjoint stationary subsets of w; consisting of
limit ordinals. We describe a ccc forcing which is somewhat intermediate between
adding R Cohen reals and adding a Cohen subset of .

Definition 2.1 We say that (CR, X) is an 81-CP (creating pair) if the following holds:
(A) We call members of CR creatures. For each ¢ € CR,

(i) ¢ = (dom(c), pos(c), fo).
(i1) dom(c) is a non-empty subset of w; of order type < w®.

(iii) For every limit § < wy, if dom(c) N § is unbounded in §, then for some k > 1,
8 € Si and otp(dom(c) N 8) = ¢ + w/ forsome ¢ < w® and 1 < j <k —in
particular, for every § € Sp, dom(c) N § is bounded below §.

(iv) pos(c) (possibilities for ¢) is a countable set of functions from dom (¢) to {0, 1}
and f. € pos(c).

(v) If dom(c) is finite, then pos(c) = { f¢} — we call such ¢ finite creature.

(B) For every finite # € w; and f: u — {0, 1}, there exists ¢ € CR such that
dom(¢c) =u and f. = f.

(C) Forevery § < wi, |{c € CR:dom(c) C §}| < Ro.

(D) X is a function with domain CR that satisfies the following:

(i) Z(c) is a countable set of finite tuples 0 = (0 : k < n) where

(a) 0 € CR,
(b) dom(c) = Uk<n dom (ak),
(¢) dom(0x) < dom(?g+1), and
(d) whenever fi € pos(dx) fork < n, |J,_, fx € pos(c).

(i) Cuts: If ¢ € CRand & € dom(c) then for some d = (3 :k < n) € =(c), there
exists k < n such that min(dom(0;)) = «.

(iii) (c) € Z(c).

(iv) Transitivity: If (¢, : k < n) € Z(c) and (0 : 1 < ng) € X(ck) fork < n, then
(Ok1:k <n,l <ng) e X(c).

(E) Finite joins: If {0 :k < n} € CR and dom(0x) < dom(0x1), then there exists
¢ € CR such that

(i) dom(c) = {J;_, dom (),
(i) pos(c) = {Ugon fi : (Yk < n)(fi € pos@)},
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(i) fe = Uy<p for, and B

(i) () = {U;-, i+ (Vi <m)(fi € T@)}.
Definition 2.2 Suppose (CR, X) is an 8-CP. Define Q = Qcg x to be the forcing
whose conditions are p = {¢; :k < n} where ¢y € CR and dom(cx) < dom(cx41).
We write dom (p) for Ucep dom(c). For p, g € Q, define p < ¢ iff for every ¢ € p,
there exists 0 = (0x :k < n) € X(¢) suchthat {9z :k <n} C q.DefineQ o ={p €
Q:dom(p) C a}. Let

fo= U {fo:@p € G)(@ € pis afinite creature)}.

It is easy to see that g foQ: w1 — 2 (See Remark 2.3 (ii) below).

Remark 2.3 Let (CR, £), Q = Qcr x and f@ be as in Definition 2.2.
(i) By Clause (D) (iv) in Definition 2.1, it follows that < @ is transitive.

(ii) Let us check that I-g f@ : w1 — 2. For suppose p € Q and @ < w;. It suffices to
find g > p such that for some finite creature 0 € ¢, ¢ € dom(®). If « ¢ dom(p), then
we can add a creature with domain {«} to p. So assume a € dom(p). Fix ¢ € p with
a € dom(c). Using Clauses (D) (ii) and (D) (iv) in Definition 2.1, we can find (0 : k <
n) € %(c) such that for some k, dom @) = {a}. Putg = (p\{c}) U {0r:k < n}.
Then g > p is as required.

(iii) Let CR be the set of all finite creatures ¢ = (F, {f}, f) — so F C w; is finite
and f: F — 2. Let Z(c) be the set of all 0 such that the join of the members of ?
is ¢. Then forcing with Q = Qcg x is same as adding ®; Cohen reals. Note that this
destroys all old witnesses to &'im We would later (Sect. 3) add more creatures to CR
in such a way that while some old &"™ witnessing sequences are preserved, all old
&' witnessing sequences are destroyed.

Recall that a forcing notion Q has R as a precaliber if whenever {p; :i < w1} C Q,
there exists X € [w;]™ such that {pi:i € X} is centered — i.e., for every finite
F C X, there exists p € Q such that (Vi € F)(p; < p).

Claim 2.4 Suppose (CR, X) is an R1-CP. Let Q = Qcr . Then Q has Ry as a precal-
iber.

Proof Suppose {p;:i < w1} € [Q]¥. The map i > k(i) = sup(Ucepi dom(c) Ni)
is regressive on Sp. Choose X| € [Sol™! and k(x) < w; such that for every i € X1,
k(i) = k(x) and forevery i < jin X, dom(p;)Ndom(p;) C k(x). Using Definition
2.1(D) (i1), by possibly extending each p;, we can assume that for every ¢ € p;, either
dom(c) C k(%) orinf (dom(c)) > k(). Since {c € CR:dom(c) C k(x)} is countable,
we can find X € [X]™ such that for every i € X, {c¢ € p;:dom(c) C k(x)} does
not depend on i € X. Now for any finite F C X, Ui <F Pi 1s a common extension of
{pi:i eF}. O

Claim 2.5 Suppose (CR, X) is an R1-CP. Let Q = Qcr x. Let (pi:i < wi) be a
sequence of conditions in Q such that for every i < j < wj, sup(dom(p;)) <
sup(dom(p;)). Then there exist X € [o1 1™, (gi:1 € X), m < n < w such that for
everyi € X:
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(@) qi € Q gi > pi and dom(g;) = dom(p;),

(b) qi ={cik:k <n}andforeveryk <n — 1, dom(c; x) < dom(c; x+1),
(c) fork <m, ¢; x = ¢ does not depend on i € X,

(d) forevery j < j"in X, dom(c; 1) < dom(cj’ ,) and

(e) otp(dom(c; x)) does not depend oni € X.

Proof Just follow the argument in the proof of Claim 2.4 noting that dom(p;)’s are
unbounded in wj. O

3 Countable joins

In the course of club preservation arguments, we would like to be able to form new
creatures out of old ones in the following way. Suppose (g; :i > 1) is a sequence of
conditions in Q = Qcg, x which forms a A-system of an appropriate kind — it satisfies
clauses (b)—(e) in Claim 2.5. We would like to construct a new condition g € Q such
that g IFg “lim, [{i <n:q; € Gg}l/n =1land {i < w:q; ¢ G} is infinite”. This
will require us to add “countable joins” of certain sequences of creatures to CR. This
section introduces the countable join construction.

Definition 3.1 For « < w1, we say that (CR,,, X,) is a partial 8-CP at « if for some
R1-CP (CR, X),

e CR, =CR[a = {ce CR:sup(dom(c)) < a}, and
e X, =2XCR,.

Lemma 3.2 Suppose a < wi. Then (CR,, X,) is a partial R1-CP at « iff (CR,, Z,)
satisfies all the clauses in Definition 2.1 when we replace w1 by o and for every
¢ € CR,, sup(dom(c)) < c.

Proof If (CR,, X,) is a partial ®;-CP at «, then it is clear that it satisfies all the
clauses in Definition 2.1 when we replace w| by «. Now suppose (CR,, X,) satisfies
all the clauses in Definition 2.1 when we replace w; by « and for every ¢ € CR,,
sup(dom(c)) < «.Let CR be the set of creatures obtained by adding all finite creatures
to CR, and closing it under finite joins. For ¢ € CR, define X (¢) as follows. If ¢ € CR,,
then 2 (c) = X,(c). If ¢ is finite, then X (c) is the set of all 9 = (3 :k < n) where
each 9y € CR and the join of 0 is ¢. If ¢ is neither finite nor in CR,, then ¢ is the join of
some ¢y € CR, and a finite creature ¢; with dom(cy) < dom(cy). In this case, define
Y(c) ={0Ue:0 € Z,(co) and ¢ € X(c1)}. Then (CR, ¥) witnesses that (CR,, %,) is
a partial R;-CP at «. O

Definition 3.3 Supposek, > 1,8 € Sk, ,and (CR,, X,) isapartial 81-CP at §. Suppose
m <n <wand?; = (; x:k < n) satisfy the following for 1 <i < w:

(a) 9; x€ CRy.

(b) 9;,j =0, does not depend on i for j < m.

(c) dom(d; k) < dom(®; x+1)-

(d) dom(D; 1) < dOM(Di1,m)-

(e) otp(dom(?d; x)) only depends on k.

@ Springer



Sh:1136

On some variants of the club principle 7

® W= U {dom(0; x):1 <i < w,k < n} is unbounded in § and has order type
& + w/* for some ¢ < w1 and 1 < j, < k.
We say that (0; :i > 1) is a joinable candidate for (CR,, =) at 8.
For each N > 1 where N is a power of 2, we define new creatures c’;v =
(dom(cy), pos(cy), ft7v) and X, (c}), as follows:
(1) dom(c}) = W and dom(c}) = (J{dom(®;x):N <i < w,m <k < n} for
N > 2.

2 fe =UJ{fo, i l<i<wk <n}and for =U{fo,, iIN<i<w,m<k<n}
for N > 2.
3) E*(ci) is the smallest family satisfying the following:
(i) (€]) € (). )
(ii)) Whenever j > 1 is a power of 2 and (Dg’k:i < j.m<k <n), (i <

Jj,m <k < n)and (g, : k < m) satisfy (a)—(d) below, we have, under appro-
priate order

U@k <myulJFiw:i < jom <k <nju{c} e Bu(c}).

(a) D;.,k € CR, and dom(a;’k) = dom(0; x).

() i € [ji.j2): @k € [m,m)@;, # v} < (2 — j1)/logy(ji) for
every 2 < ji < ja < j where ji, jo are powers of 2.

© fix € BQL,).

(d) e € T (@)

(4) For N > 2, ,(c)) is the smallest family satisfying the following:
@) (cy) € Zulcy).
(ii)) Whenever j > N is a power of 2 and (D;’k:N <i < j,m<k < n)and

(f,-,k :N <i < j,m <k < n) satisfy (a)—(c) below, we have, under appropriate
order

JGixi <jom <k <n}U{c)) e S

(a) D;,k € CR, and dom(ag,k) =dom(0; k).

) i € [j1, j2): @k € Im,n) @, # )} < (2 — ji1)/logy(ji) for
every N < ji < ja < j where ji, j are powers of 2.
(© Tix € B

(5) pos(cy) = {Urek for (e ik < K) € Tu(ey)}

Let (CR,, 7)) be the partial | -CPat §+1 such that CR, = CR,U{c}, : N > 1is a power of 2}

with dom(c%,), pos(c},), and fe, as above, 2;, [CR, = X, and 2;((:7\,) = X, (c}).
We say that (CR, E},) is the result of adding the countable join ¢; = @i2 1 0; of
(0i:i > 1) to (,, CRy).

Note that by Lemma 3.2, (CR;,, 2;) is indeed a partial 81-CP at § 4+ 1. The next lemma
will play a key role in the proof of Theorem 5.4.
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Lemma3.4 Let (CR),, X)) be as in Definition 3.3. Let (CR, X) be an X1 -CP such that
CR), = {c € CR: dom(c) C 8} and %), = L [CR). Ler Q = Qer,x, p = {¢] =
@,; 1 0;} and p; = {0i k :k < n}. Then

p kg lim i <Jj:pi€Gaoll _
J J

1.

Proof 1t suffices to show that for every ¢ > p and j, > 2!° there exists r > g such that

i < j.:pi €G 8
i <J pi ol _,_ .
Jx log, ji

r kg
Since ¢ > p = {¢]}, wecanfind r > g and jo > j, such that jo is a power of 2 and
U@k <myulJGix:i <jo.m<k <njuicycr,

where (0;’,{ 1< jo,m <k <n), (f,-‘k:i < jo,m <k < n),and (g, : k < m) are as in
Definition 3.3 (3) (ii).
Choose N > 10 such that 2V < Jx < 2N+ Then r forces that

; iv:pi €G 2]+1_2] 2N+1_2N
i <j ,.Dz Q}|>1_ Z - _ —
Jx 1< <N JJx Jx
1 1
21 Z j2N=i TN
1< j<N

. 1 N 4 1 2 .
Since Zl<j<N/2 W < N2 Sy (as N > 10) and ZN/2<j<N W <N it fol-
lows that

| < ju:pi €G 4 2 1 8
N A T A T R
Jx

Definition 3.5 (CR, X) is a thin ¥1-CP if (CR, ¥) is an 8{-CP and there exist S and
(cs: 8 € S) such that the following hold:

(a) S C Uk>1 Sk.

(b) ¢s5 € CR.

(c) For every k, > 1 and § € SN §,, letting (CRp, X)) be the partial 81-CP at §
satisfying CR, = CR[§ = {c € CR: sup(dom(c)) < 6} and X, = X [CR,,
there exists a joinable candidate (9; :i > 1) for (CR p» Zp) at § such that

(i) g = @i} 1 51' and
(i) CR/p = {c e CR:dom(c) C 8} and &), = & [CR’I, where (CR’ , ¥,) is the
result of adding @), - ; 0; to (CR,, X,).

(d) ¢ € CRiff ¢ s a finite join of {0 € CR: D is finite} U | {X(c5) : 8 € S}.
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Claim 3.6 Suppose (CR, X) is an ¥(-CP as witnessed by S, (¢cs:§ € S). Suppose
ce CR ke>1,6 € S, dgm (¢) is an unbounded subset of 8. Then there exist
c=(ck:k<ky)eX(c)andd = (O : k < kp) € X(cs) such that cg; = ,.

Proof Easily follows from Definition 3.5. O

We will later see (Lemma 4.4) that the forcing QQ = Qcg, x associated with a thin X -
CP (CR, X) destroys all old witnesses for &!. Tt would therefore follow, for example,
that forcing with a finite support product/iteration of w> such QQ’s will yield a model
of —&!. Unfortunately, a finite support product/iteration of length w, will always
destroy &'"™ since we will be adding Cohen reals at each stage of cofinality Xo. To
overcome this issue, in the following section, we introduce the notion of a “guided
product” (Definition 4.1).

4 Guided products

Definition 4.1 Suppose (Qy : @ < w7) and (p3: 6 € S;’;j) satisfy the following:
(1) Qu = Qcr,.x, where (CRy, X¢) is a thin 8{-CP.
(ii) pj is a function whose domain is a countable unbounded subset of § and for
every a € dom(pj), p;(a) € Q.
For y < w», define a forcing P, as follows:
() p el iff

(a) p is afunction, dom(p) C y and otp(dom(p)) < w®,

(b) for every @ € dom(p), p(a) € Qy, and

(c) for every § < y with cf(§) = Ry, if dom(p) N § is unbounded in &, then for
some n <8, p[(n,8) = p;[(1,9).

(2) For p,q € P, define p < ¢ iff dom(p) € dom(q) and for every o € dom(p),
p(@) < g,q(@).

We say that IP,,, is the product of (Q : ¢ < w2) guided by (p}: 6 € S;’;OZ). Note that for

cf(y) = 8y, P, is completely determined by (Qy : ¢ < y) and (p3:6 < y,cf(§) =

Ro).

Claim4.2 Let (Qy:a < w), (p5:68 € S;fg), and P, for y < wy be as in Definition
4.1. Then the following hold:

(@ Pyt =P, xQ,.

(b) If B <y <wy, thenPg <P,,.

(c) P, satisfies ccc.

Proof (a) and (b) are obvious from the definition of P,,. To show (c), we will use the
following.

Lemma 4.3 Suppose y < wp and {p; :i < wy) is a sequence of conditions in P,. Then
there exists X € [w1]™ and a finite F C y such that for every a € y \ F, if there are
i < jin X such that o € dom(p;) N dom(p;), then (Vi € X)(a € dom(p;) and
pi(a) does not depend on i € X).
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Proof By induction on y < wp. If y is a successor or y = wy, this is trivial.

Next suppose cf (y) = Rg and (p; :i < wi) is a sequence of conditions in P,,. Let
(yn :n < w) be increasing cofinal in y. For each i < w1, choose n = n; < w such
that either p; € P, or p; [ (Yu, ¥) = p; I V> 7). Choose Z € [N and n, < @
such that (Vi € Z)(n; = n.). Apply the inductive hypothesis to (p; [ y,, :i € Z) to
get Y € [Z]™ and a finite F C y,, such that for every a € y,, \ F, if there are i < j
in Y such that @ € dom(p;) Ndom(p;), then (Vi € ¥)(« € dom(p;) and p; () does
not depend on i € Z). Choose X € [YT™ such that either (Vi € X)(dom(p;) < yn,)
or Vi € X)(pi | Wn,,y) = p; [ (Vn,»v)- Then X, F U {y,,} are as required.

Finally, suppose cf(y) = w; and (p; :i < w1) is a sequence of conditions in IP,,.
We claim that there are y, < y and W € [w]™' such that (dom(p;)\ y,:i € W)isa
sequence of pairwise disjoint sets. This suffices since we can then apply the inductive
hypothesis to (p; [yx:i € W) to get X € [WIN! and a finite F C y, such that
for every a € v, \ F, if there are i < j in X such that @ € dom(p;) N dom(p;),
then (Vi € X)(a € dom(p;) and p;(«) does not depend on i € X). It follows that
X, F U {y,} will be as required.

Fix a continuously increasing sequence (y (i) :i < wp) cofinalin y.Let E = {i €
Lim(w1): (3j € Lim(w1))(j > i and sup(dom(p;) Ny (i)) < y(i))}. We claim that
W = E\Lim(w) is countable and therefore E contains a club. Suppose not and fix
an increasing sequence (i¢ :§ < wy) in W. Choose j € Lim(w) such that j > i¢ for
every £ < w® Thensup(dom(p;)Ny (ig)) = y (ig) forevery & < w®. But this implies
that otp(dom(p;)) > w® which is impossible. Fix #: E — w1 such that for every
i € E,h(i) € Lim(w1), h(i) > i and dom(pp(;y) N y (i) is bounded below y (i). Let
E; C E be aclub such that for every i < j in E, h(i) < j and sup(dom(py;))) <
y(j).Foreachi € Ey, fix k(i) < i such that sup(dom(puy) Ny (i) < y(k(i)). As
the map i +— k(i) is regressive on Eq, by Fodor’s lemma, we can find a stationary
S C E; and i, < min(S) such that foreveryi € S, sup(dom(ppiy) Ny (i) < v (ix).
It follows that if i < j are in S, then dom(py(;)) N dom(py(jy) S ¥ (k). So take
Ve = Y (i) and W = h[S]. |

Fix {p;:i < w1} € P,. Fix X, F as in Lemma 4.3. Since F is finite and each Qy
has 8 as a precaliber, the product of {Qg :a € F} is ccc. Choose ¥ e [X]™! such
that {p; [ F :i € Y} is centered. It follows that {p; :i € Y} is also centered. Hence PP,
satisfies ccc. O

Lemma4.4 Let (Qy:0o < ), (p5:8 € S;‘;g), and Py, be as in Definition 4.1. Then
VP = — &l

o

Proof Towards a contradiction, suppose pg € Py,, (As = {&s,:n < 0} 1 § €
Lim(wy)) € VFo are such that po Ik “(¥8 € Lim(w1))({&s5,, :n < w} is increasing
cofinal in §) and (/ig S <w)isad! witnessing sequence”. Since P, satisfies ccc,
we can find y < w; such that pg € P, and each &s , is a P, -name.

Let X = {a < o1: fg, (@) = 1}. Then X € VEr+1 and VB Ik X € [o]™.
So there exist p; € Py, g € Q,, § € Lim(w1), and n, < o such that p; > po
and (p1,q) IFp,,, (Vn> n) (&5 € X). Note that we must have that dom(g) N§
is unbounded in é otherwise we can easily extend (p1, ¢) to get a contradiction. By
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possibly extending ¢, by Definition 2.1 (D) (ii), we can assume that ¢ = {¢x 1 k < K,}
where dom (¢;) < dom(c41) forevery k < K, — 1 and for some K < K,,dom(cg)
is an unbounded subset of §. Let S, and (¢, 5 : 8 € S,) witness that (CR,,, X, ) is a thin
R1-CP. By Claim 3.6, we can further assume that cx = c/K, for some (¢, :n < K’) €
X (cy,8). B

Letm <n < wand d; = (9;x:k < n) for i > 1 be as in Definition 3.3 and
G5 = @1;151‘- Then as (¢, :n < K') € X(cy5), we can find N > 1 a power of 2
such that cx = c’K, = ¢}, in the notation of Definition 3.3.

Choose ps € Py, p2 > p1, n(1) > n,, and « > min(dom(c})) such that p I-p,
&5.n(1) = «. We can assume that « € dom(c’;v) — otherwise letting ¢, be a creature
with domain {er} and f¢, (@) = 1, we have ¢’ = q U {¢,} IFq, & ¢ X so that (p2, g')
forces a contradiction. Choose i (x) > N andm < k(x) < nsuchthata € dom(®;¢ ).
Let N1 > N be the largest power of 2 such that i (x) > N and let j > i(x) be a power
of 2. Choose a creature D;(*)’k(*) such that dom (D;(*)’k(*)) = dom ;) k() and
fe S (] (,) x(v)) Such that for some finite ¢, € f, dom(c,) = {a} and f,(a) = 0.1t
follows that, under appropriate order

{Oi,k N<i<jm<k<n, (k) # (i(*),k(*))} U?U{c}f} € X(cy).

Letq' = (g\{cx}) U{dix:N <i < j.m<k <n, (i,k) # (i), k(x)}UfU {cj}.
Then (p2,q’) > (p,q) and ¢ IFg, & ¢ X — contradiction. O

We would now like to construct (Qq @ < @3),{p;:6 € S;f(; ), and P, as in Definition
4.1 andasequencez = (As:8 € Lim(w1)) suchthatin vFer |- Ads a&“m-witnessing
sequence. To motivate this construction, let us first consider a simpler situation where
we want to find A and a thin 8;-CP (CR, X) such that after forcing with Q = Qg =,
A remains a &'"™-sequence. It turns out that choosing A and Q generically is sufficient
to guarantee this. More precisely, if we force using a product R = A xS where A
adds A and S adds (CR, X) both via countable approximations, then VRQ |- A s a
&' _witnessing sequence. The preparatory forcing R in the next section does exactly
this for adding A and the sequences (Qy : o < w2), (p5:6 € S;’;{: ).

5 Qlim and = ‘1

We define a preparatory forcing R which generically adds (Qy : @ < @) and (p3: 6 €
S:;Oz) satisfying Definition 4.1 (i)—(ii) using countable approximations. This ensures

that the resulting guided product P, preserves a &'™ witnessing sequence A which
is also added by R via countable approximations.

Definition 5.1 Let R be_a forcing whose conditions are r = (u,, 8, (Qr o 0 €
ur)v Ur: (p:,a NS Ur)v Ar) Where

<
(@) uy € [wa] SN, 8, < w1,
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) Qo = Ues, (Qcr, .5, [ §) for some thin 8;-CP (CR, 4, T, o) as witnessed
by (Sr.as (¢ra5:6 € Sro)) —soonly S, o NS, and (¢c;q.5:6 € Sy o NS) are
relevant,

(©) v € u, NLim(w;) and for every o € v,, u, N« is unbounded in ¢,

(d) py, is a function with domain an unbounded subset of u, N « and for each
IS dom (p;(,a)’ P:,a(f) € Qr,(x’ and

() A, = (Ar,y iy € Lim(w;) N§,) where each A, ,, is an unbounded subset of y of
order type w.

For r, s € R, define r < s iff the following hold:

() ur € ug, 6 < 6.

(ii) Foreverya € u,, Sy o N8y = Ss.a NSy, and ¢, 4.5 = ¢5,4,5 forevery s € S, N4,.
It follows that Q, o € Q.o and for every p € Qs 4, if dom(p) is bounded
below &, then p € Q; 4.

(iii) v, € vy and for every o € v, p;‘,a = p;"a.

(iv) A, = A, | (Lim(1) N 5,).

Claim 5.2 R is countably closed and hence it preserves stationary subsets of wy. Under
CH, it satisfies N»-c.c. and therefore preserves all cofinalities.

Proof 1t is clear that R is countably closed. Next let {r; :i < w2} € R. Using CH,
we can find Xo € [w2]™? such that (ur,:i € Xo) forms a A-system with root u,. By
possibly extending each r;, we can assume that u,, \ u, 7 @ forevery i € Xo. Choose
X € [Xo]™ such that the following hold:

(i) For every i, j € X withi < j, sup(u,) < min(u,,\u,) < sup(u,\u,) <
inf (e, \ ).
(1) (vy,:1 € X) forms a A-system with root v, C u,.
(iii) &, = 6, does not depend on i € X.
(iv) Forevery o € u,, Qo = Qg does not dependoni € X.
(v) Forevery a € v, p;. , = p;, does notdepend oni € X.
(vi) Z,,. = A, does not dependoni € X.

For clauses (iv), (v) and (vi), we use CH. Itis clear that any two conditionsin {r; : i € X}
have a common extension. O

From now on we assume CH. The next claim is easily verified.
Claim 5.3 Each of the following sets is dense in R:

(@ {reR:a € u,}fora < w.
(b) {r e R:4, > 8} foré$ < wy.
(c) {reR:Sevr}for(SeS&f.

Let Gr be R-generic over V. Work in V| = V[GR]. For @« < @, define Q, =
U{Qra:r € Gr,a € u,}. Note that for every & < w3, Sy = J{Sra NS 17 €
GR, o € u,}is a stationary subset of Uk21 Sk and Vi IF “(Va < 02)(Qn = Qcr,.x,
for some thin 8;-CP (CR,, =))”. For 8§ € S;‘;OZ, let pj = p} 5 for some r € Gg with
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Secv.LetA=(As:8 €Lim(w))) = {A,:r € Gr}. Let {as., :n < w} list A in
increasing order.

Let P, € Vi be the product of (Qu:a < w;) guided by (p;:8 € S;‘;j). Note
that, since R is countably closed, the set of conditions (r, p) € R«P,,, satisfying the
following is dense in Rx[P,:

(a) p is an actual object.
(b) dom(p) < u,.

(©) (Yo € dom(p))(p(e) € Q).
(d) Forevery a < wj of cofinality Rg, if dom(p) N« is unbounded in «, then o € v,.

So we can assume that our conditions in Rx[P,, have this form.
Puy | glim 1
Theorem5.4 V, |- &'"™MA—-&".

Pw . e . 1
Proof ThatV, 2 | — &' follows from Lemma 4.4. We will show that A witnesses &' im

Pw < .
in V, 2. Suppose (74, Px) “—R*]pwz A € [w; ™. We will construct (r, p) = (Fe, Px)
and § < w; such that

|{k<n:&5,kef§}|_1

(r, p) IFR«p,,, lim
2 h n

Choose ((r;, pi, ¥i):i < w1) such that the following hold:

) (ri, pi) = (Fa, Po)-
(ii) Foralli < j < i, ri<wrrj, sup(uy,) < sup(uy;) and i <8y < §y;.
(iii) For some N < w, forevery i < wy, sup(Uj<i dom(p;)) < sup(dom(p;)) and
otp(dom(p;)) < »".
(iv) For every i < wy i € u; and for every o < sup(u,,), there exists j € (i, wy)
such that @ € uy;. So Ui<w1 Uy = oy € [w1, wp) and cf (o) = V.
(v) For every § < a, with cf (§) = R, there exists i < wp such that § € v,,. Hence
Ui <oy v = {8 < a1 cf(8) = Ro}.
(vi) (yi:i <wp)is aostrictly increasing sequence in wj.
(vil) (ri, pi) IFyi € A.

Claim 5.5 There exist F C w, finite and X € [ 1™ such that for every a € wy\ F,
ifa € dom(p;) Ndom(p;) for some i < j in X, then (Yi € X)(a € dom(p;) and
pi(a) does not depend on i € X).

Proof For o < a, let Q), = (J{Q a:i < w1, a € uy,}. Then Q) is a thin R;-CP.
For § < a, with cf(§) = Ry, let pj = p:i,ﬁ where i < w; and § € v,,. Let P, be the
countable support product of (Q[, :a < a,) guided by (p}:8 < ., cf(8) = Rg) so
that each p; € P,,. Now apply Lemma 4.3. |

By shrinking X and F, we can assume that for every i € X, F € dom(p;). Let

W = (jex(dom(p;)\ F) and ¥; = dom(p;)\(F U W). Then (Y; : i € X)isa
sequence of pairwise disjoint non-empty countable sets. By shrinking X, we can also
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assume that for every i < j in X, sup(Y¥;) < min(Y;) and otp(dom(p;)) does not
dependoni € X.

By Claim 2.5, we can find X; € [X 181 such that for every o € F exactly one of
the following holds:

(A) Foreveryi € X1, pi(a) = g4 does not depend on i.
(B) There are m = mqy, n = ng,m < n < wand (g; o :i € X1) such that for every
ieXg:

() gi.o € Q. 0, doM(g; o) = dom(p;(e)) and r; IFr pi () < Qi e
(i1) gi.a = {0i ok :k <n}andforeveryk < n—1,dom(®; ox) < dom(0; o k+1),
(iii) for every k < m, 0; ok = 0o,k does notdependoni € X1,
(iv) forevery j < j in X, dom(¥; 4 n—1) < dom(@; 4 ), and
(v) otp(0;,¢ k) = Ouk does not depend on i € X and 1 < ky < w is such that
Ouk < ke

Let Fy be the set of @ € F for which case (A) holds and F; = F\ Fp.
By reindexing, we can assume that X| = w;. Letk, = max({ky +2 : @ € F}). Put
Y = Ui<w . Y;. Choose a club E C w; such that for every 6 € E, the following hold:

(a) Foreveryi < §, there exists j < & such that sup(u,, N'Y) < sup(Y;).
(b) sup({é,, :i < 6}) =34.
(c) Forevery a € Fy, sup({dom(g;(@)):i < §}) =34.
(d) sup({y;:i < 8)) =8.
Fix 6 € S, N E and let (i(n):n < ) be increasing cofinal in §. Let o, =
sup({Yin):n < w}). We can assume that o, ¢ F U W — just pick a sufficiently
large § € Sk, N E. Define r € R as follows:
@) ur = Uy Uriy YU lond, 8, =8 + 1.
(b) For @ € u,, choose Q; 4, (CRy o, £y o) and (Sy o, (¢r.0.56:6 € Sr)) as follows:
1) Ifo € u,\ (F1 U{a,}), choose a thin 81-CP (CR, 4, X, ;) with witnessing
pair (Sr.a, (¢r0,6:8 € Sr«)) such that for every n < w, Sy ¢ N i) =
S”i(n),ﬂl n 81'(,1) and Crad = Crigy.ad for every 6 € Sr,oz N 8,‘(,,). So
n<w Qri(,,),a - Qr,a = QCR,-.Q,EW, f5
(ii)) If o = a, choose Qr o, (CRy o, Xy o) and (Sy o, (Cr.0.8 18 € Sy o)) arbitrar-
ily.
(iii)) If « € Fjy, choose a thin 8;-CP (CR,,, ¥, ) with witnessing pair
(Sr,as (€ra,5:0 € Srq)) such that for every n < o, Sy o N Sy =
Srig.a N Si(nys Cras = Cryg.anb for every 8 € Sy ¢ N&in), § € Sy« and
Cras = @@ 10im),ak 1k < ng) where (0;(n),a.k -k < ng) is from clause
(B) (ii) above. Put Q; ¢ = Qcr, ,.%,, [ 9.

© v = Un<w Vrin) U {on).
(d) Fora € vy, pr o = p:,'(n),a’ and py, = U <o Pitn) | Yigny- So dom(py ) is
an unbounded subset of u, N .

(e) A, = Un<wzrml) UA{(, Vi) :n < 0]}
Next define p as follows:
(i) dom(p)=FuUuwuUlJ,_, Yu
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(ii) If a € Fy, then p(a) = g, Where g, is from clause (B) above.
(iii) If o € Fy, then p(a) = {¢/ a.5)-

(iv) If « € W, then p(a) = p;u) () which does not depend on n < w.
(v) Foreveryn <, p | Yim) = pim) | Vi

It is clear that (1, px) < R+P,, (r, p). By Lemma 3.4,

k <n:(rigy, pit)) € GRaP,, } -1

(r, p) IFRp,,, lim
2 n

n
Hence
k Vi € A
(r, p) IFRup,,, lim Ik <n:viw ! = 1.
2 n n
Since A, 5 = {Vin) :n < w}, the result follows. m|
6 On ’inf >a

Definition 6.1 For a € (0, 1], the principle &">2= says the following. There exists
A = (A5;:8 € Lim(wp)) such that each A; = {as,:n < w} where o5 ,’s are
increasing cofinal in § and for every A € [w1]™ and b < a, there exists some § such
that

k : €A
liminf \F =0k €A
n n

Theorem 6.2 Let0 < a < 1 and suppose foreveryb < a, &™ 2 holds. Then &™>%~
holds.

We need some lemmas.

Lemma 6.3 Suppose 0 < a< 1, S C Lim(wy) is stationary, B € [w11¥, and A =
(As : 8 € S) satisfy the following:

(a) Each As = {as.n:n < w} where as ,’s are increasing cofinal in §.
(b) For every A € [BI™, there exists 8 € S such that

. Hk<n:asy e A}
lim inf : >a
n n

Then &' > holds.
Proof For each A € [B]™}, define T'(A) to be the set of § € § satisfying

..k <n:asy € A}
lim inf : >a
n n
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Note that each T'(A) is stationary (see the proof of Fact 1.6) and A} € A; implies
T(A)) C T(A2). Put T = T(B). Let {x(§):& < w;} list the members of B in
increasing order. Let E C Lim(w;) be a club such that for every § € E and & <
8, E<a() < 8. Define C = (Cs:8 € T) by Cs = {§:a(§) € As}. Note that
sup(Cs) = ¢ for every § € T. We claim that C witnesses &?D“ and since T C S,
&gnf)a also holds. To see this, fix W € [w]™ and put A = {«(£):& € W}. Fix
8 € ENT(A). It suffices to show that

.. ICsn Wy
liminf ———
n—s  |CsNnl

For each n € (min(Cs), 6), let B;, = max({a(§):& € Cs N n}) + 1. Observe that
[ICsNWNnl>]AsNANByland [Cs Nl =|As N BN Byl <|As N Byl. It follows
that

[CsNWNnl AN AN
ICsnnl = AN Byl

Taking lim inf as n — §, the result follows. O

Lemma 6.4 Suppose &gnf)a holds. Then there exists a partition (S;:i < w1) of S

. . . inf >
into stationary sets such that for every i < wq, &lsl:f Z% holds.

Proof Fix a witness A = (As:8 € S) for &isnf?“ where each A5 = {us,:n < w}
and o ,’s are increasing cofinal in §. Note that if a € (0.5, 1], this is easy — choose
(X; i < w1) where X;’s are pairwise disjoint unbounded subsets of w; and let

k : € X;
s,-:{ses:nminf [tk <n: sk € Xi)l >a}.
n n

Since a > 0.5, S;’s are pairwise disjoint and by Fact 1.6, for every ¥ € [X;]™, there
are stationary many § € S; such that

. Hk<n:asp et}
lim inf d >a
n n

By Lemma 6.3, it follows that for every i < wy, &iSI:f Z4 holds.
In the general case, S;’s may not be pairwise disjoint but for any F' € [w1]", where

Ka > 1, we have ﬂieF S; = . ForY C wq, let S(Y) be the set of § € S such that

]K

o Hk<niasi e Y}
lim inf : >a
n n

Claim 6.5 There exists (Y;:i € W) such that W € [w(]™), each Y; € (X 1™ and for
everyi € Wand Z € [Y;1N, S(2)\ Ujewmi S(Y;) is stationary.
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Proof Let F be the set of Y = (Y;:i € W) where W € [w;]™! and each ¥; € [X;]™.
ForY = (Y;:i € W) € F, let n(Y) be the least n such that for every F € (W1,
(icr S(Y;) is non-stationary — so 2 < n(Y) <K.Let N = min{n(Y):Y € F}
and fix Y = (Y;:i € W) with n(Y) = N. It suffices to show that for every
i, € W, there exists j € W such that j > i, and for every Z € [Y ]Rl
SO\ U{SY) i <ix, i € W} is stationary. Towards a contradiction, suppose thls
fails for some i, € W.Let W' = W\ (i, + 1). For each j € W', choose Z; € [Y ]Rl
such that §(Z;) \ (J{S(Y;):i < iy, i € W} is non-stationary. Let Z= (Zj:] € W)
Thenn(Z) > N, sowe can find F € [W/]V~! and such that ﬂ i« S(Z;) is stationary.
It follows that there existsi € W such thati < i, and ﬂjeF S(Z )N S(Y;) is stationary.
Hence (N JeFUli,) S(Y}) is also stationary: Contradiction. |

Let (Y;:i € W) be as in Claim 6.5. Fori € W, let T; _S(Y)\U iewni S(¥;j). Then

{T;:i € W} is a family of pairwise disjoint stationary sets and for every Z € [Y;]™,
there are stationary many 6 € 7; such that

limi Hk <n:ask € Z}

im inf >a
n n

By Lemma 6.3, it follows that AI}ID” holds for every i € W. This completes the

proof of Lemma 6.4. O

Lemma 6.6 Suppose &glt/a holds and S = S1 U S3. Then one ofllsnlt>a &lsnzf>a

holds.

>
inf>4 where each As = {os.p:n < )

Proof Fix a witness A = (As:8 € S) for &
and o5 ,’s are increasing cofinal in 6. Suppose &lsnf

such that for every § € Sy,

Z% fails and choose A € [w; N

. k< nasy € A}
lim inf : <a
n n

Since A is &i;f?” witnessing sequence, it follows that for every B € [A]™, there
exists § € S such that

.. Nk<n:asi € B}
lim inf : >a
n n

f>
Now apply Lemma 6.3 to get &? Z4 O

Proof of Theorem 6.2 Let (a,:n < w) be an increasing sequence with lim, a, = a.
For each n, using Lemma 6.4, choose a sequence (S, ; :i < wp) of pairwise disjoint
stationary sets such that &isrjf “ holds. For m < n < w, define Win = {i <
) &' =™ holds}.

First suppose that for some m < w, there are infinitely many n > m such that Win.n
is infinite. Let (n(k):k < w) list such n’s in increasing order. Inductively choose
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i(k) € Wy n such that i(k)’s are pairwise distinct and QISIE i:"(k) holds. For each
i:n(k). PutT = U{Sm,i(k) k< w}.
Then (As:8 € T) witnesses Ai}lb“_. Since T C S, &isnba_ also holds.

So we can assume that there is no such m. Inductively choose a strictly increasing
sequence (m (k) :k < w) such that for every n > m(k 4 1), Wy, k), 1s finite. Let W =
U {Wn(jymw) 1 J < k < o} and choose i > sup(W). Put Ty = Spqiy,i \ Uj<x Sma.i
and T = m(k),i\rk- Then Tj’s are pairwise disjoint, Sy k)i = Ty U T and by

inf > ey does not hold. Hence, by Lemma 6.6, &lTnkt 2 Gmi) holds.

our choice of i, &T,
k
Put T = [J{Ti :k < w}. Since T}’s are pairwise disjoint, we can take the union of
1 i f> m B . 1 _ . _
the witnesses for &lTnk 45 to get a witness for & T As T C S, &89

also holds. O

. . inf
k < w, choose (As:8 € Sy ik)) witnessing &?m

Proof of Theorem 1.3 (2) Fix 0 < a < 1. We indicate the essential changes in the
proof of Theorem 1.3 (1) to get a model of &™ ZA (Vb € (a, 1]) — & Z°. Define
a modified countable join as follows. In Definition 3.3, replace Clause (3)(ii) (b) by
(b,) and Clause (4) (ii) (b) by (b,,) below.

(b)) i €12, j1): @k € [m,n)(@; ; # 2} < j1(1 —a) forevery 2 < ji < j.

(bu) I{i € [N, j1): @k € [m,m)(@; ; # 2.0} < (i = N)(1 — a) for every N <
1<

Note that this gives rise to a transitive E; there. Lemma 3.4 gets modified to the

following.

Lemma 6.7 Let (CR, E;) be as in Definition 3.3 with (by) in place of Clause (3) (ii) (b)
and (byy) in place of Clause (4) (ii) (b). Let (CR, X) be an X1-CP such that CR’p ={ce
CR:dom(c) C 8} and %), = L [CR),. Let Q = Qeryx, p = (] = @5 i) and
pi ={0ik:k <n}. Then

i <j:pi€G
i < 171 @H}a

p IF@ lim inf
J J

Next, Lemma 4.4 gets replaced by the following.
Lemma 6.8 For every b € (a, 1], VP2 |- — &inf >0,

Proof Fix b’ € (a, 1]. Towards a contradiction, suppose po € Py, (A(g ={dsn:n <
w}:§ € Lim(wy)) € VFo are such that po IF “(¥é € Lim(wy))({asn:n < w}is
increasing cofinal in §) and (As:8 < wy) is a &inf=>? witnessing sequence”. Since
P, satisfies ccc, we can find ¥ < w; such that pg € P, and each &s ,, is a P, -name.
Fix b € (a, ).

Let X = {@ < o1: fg, = 1}. Then X € VB and VE+1 |- X € [0 So
there exist p; € Py, g € Q,, § € Lim(wy), and ngp < o such that p; > pp and
(P1.q) Fp,,, (Vjizno)({i < j:ds; € XY > jb). We must have that dom(g) N §
is unbounded in § otherwise we can easily extend (p1, ¢) to get a contradiction. By
possibly extending ¢, by Definition 2.1 (D) (ii), we can assume that g = {cx : k < K,}
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where sup(dom(cx)) < inf(dom(cky1)) for every k < K, — 1 and for some K <
K., dom(ck) is an unbounded subset of §. Let S, and (¢, 5:8 € S, ) witness that
(CR,, X,) is a thin 8{-CP. By Claim 3.6, we can further assume that cx = c’K, for
some (¢, :n < K') € X(cy5).

Letm <n < wand d; = (9;x:k < n) for i > 1 be as in Definition 3.3 and
¢y5 = @; > 0. Then as (¢, :n < K') € (¢, 5), we can find N > 1 a power of 2
such that cx = c’K, = ¢}, in the notation of Definition 3.3.

Choose p; € P, p2 > p1, n« > ng a power of 2, and a,,, > min(dom(cy,)) such
that py IFp, &sn, = an,. Put ¢ = (a + b)/2. Let n > n, be a power of 2 such
that n, /n. < (b —¢)/(1 — ¢). Choose p3 > p> and («,, : n € [n,, n.)) such that for
eVery n € [Ny, ), P3 H—]py Asn = ay. Let F = {a, ¢ dom(q) :n € [n,, n.)}. Let
q'= qUUycp {0} where dom(d,) = {a} and fo, (@) = 0.If F is empty, put ¢’ = q.

Now it is possible to choose g € X (c},) such that letting ¢” = (¢"\ {c},}) Ug forces
{n € [Ny, nyw) oy ¢ )Q(} > (1 —c)(n.—n,) — we leave the details of this to the reader.
This means that (p3, ") forces that |{i < n.,:ds; € XM < Ny 4 (e — 1y) < bityy
which is a contradiction. |

Now the remainder of the proof is exactly the same except for the fact that at the end
of the proof of & > we use Lemma 6.7 in place of Lemma 3.4. O

Proof of Theorem 1.3 (3) Let (a; : k > 1) be an increasing sequence with limit a. Pro-
ceed as in the proof of Theorem 1.3 (2) with the following modification for countable
joins. In Definition 3.3, replace Clause (3) (ii) (b) by (b*) and Clause (4) (ii) (b) by (b**)
below.

®") |{i €12, j1): 3k € [m, n))(DE,k;é 00} < j1(1 —ay,) forevery 2 < ji < j.

™) i € [N, j1): 3k € [m,n)@;; # 0} < (i — N1 — a,) for every
N <ji<].

The rest of the proof is similar to that of Theorem 1.3 (2). We leave the details to the

reader. O

7 On @suP>a

Definition 7.1 Fora € (0, 1] and S € Lim(w;) stationary, the principle &;up)a says

the following: There exists A = (As:8 € S) such that
(a) each As = {o5,, :n < w} and «5,,’s are increasing cofinal in §, and
(b) forevery A € [w1 T8, there exists 8§ € S such that
Hk <n:asre A}
>

lim sup >a
n n

As usual, if S = Lim (a)l), WejllSt write &°UP > a

The following remark describes the situation in the Cohen and the random real models.

Remark 7.2 (1) Suppose V I & and let I’ be the forcing for adding X, Cohen reals.
Then VP |- &P =1 A (Va > 0) — & 22 Moreover, the following holds in V*: For
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every A = (As:8 € Lim(w;)) where each A5 = {asn:n < o} and as,’s are
increasing cofinal in §, there exists A € [w1 1% such that for every 6 € Lim(wy),

k : A
liminf K=ok €Al _ o
n n

(2) Suppose V I & and let P be the forcing for adding N, random reals. Then
vEP - (Va > 0) — &P>4 Furthermore, the following holds in VP There exists
A= (As:6 € Lim(w;)) where each As = {as,:n < w} and a5 ,’s are increasing
cofinal in § such that for every A € [w1 1, there exists § € Lim(w;) such that

. Hk <n:asre A}
lim sup > 0.
n n

Proof (1) Fix a &-witnessing sequence A= (As:6 € Lim(w;)) in V where each
As = {as,n:n < o} and s ,’s are increasing cofinal in §. [P is the set of all finite
partial maps from w; to 2 ordered by inclusion. We first check that VF | Ais a &P > I
witnessing sequence. Suppose p IFp A e N [w1 7. It suffices to find & € Lim(w))
and ¢ > p such that

k : cA
q |- lim sup [k < n: .k I =1.
n n

Choose ((pi, ¥i):i < wi) such that y;’s are strictly increasing and for every i < wy,
p<piand p; IF y; € A. Using the A-system lemma, choose X € [w(]™ and
R € [@2]=™0 such that (dom(p;):i € X) is a A-system withroot R and p; [ R = ¢
does not depend on i € X. Clearly, g > p. Put B = {y;:i € X}. Since A is a &-
witnessing sequence in V, there exists § € Lim(w) such that A; C B. We claim that
q, 8 are as required. Suppose not and fix > g, ¢ > O rational and N < w such that

: A
rll—(Vn>N)(|{k<n %k € Al <1—8>.

n

Note that r is compatible with all but finitely many conditions in {p; : ; € As}. Taking
the union of r with a sufficiently large number of these conditions, we get an extension
s >r and n, > N such that

{k < n.:asie A
F : >1—-¢
Ny

which is a contradiction. So VF |- &%P>1 Next, we check VF IF (Va > 0) — &>
Let IP,, be the poset whose conditions are finite partial maps from y to 2. So P = P,,,.
Since each subset of w; in V¥ appears in V7 for some y < w;, it suffices to show
the following. Whenever a > 0 and A = (As:6 € Lim(wyp)) arein V, vFor |- A is
not a & > “_witnessing sequence. Let G be Py, -generic over V. Put g = |J G. Then
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g:w; —> 2.Define A = {o < wy:g(a) = 1}. Then A € [w1 151, We claim that for
every 6 € Lim(wy),

Hk <n:asre A} —0

lim inf
n n

Note that this also gives us the “moreover part”. Towards a contradiction, suppose this
fails. Then there are p € G, 6 € Lim(w;), N < w and b > 0 such that

k<n: cA

plre,, (9n >.f¢)<|{ gk }|;:b>.
n

Now since dom(p) is finite, we can easily find ¢ > p and n, > N such that

Hk <n.:oske fi}|
q IFp <

@]

b
n 2

which is a contradiction.

(2) Next let IP be the forcing for adding 8, random reals. So P = P,, where PP, is
the measure algebra on (2%, i, ) w.r.t. the standard product measure 1, . Note that
every subset of w; in VF appears in V¥ for some y < . So to show that VF |-
(Ya > 0)(— &P>2) it suffices to show the following. Whenever ¢ > 0 and A =
(As:8 € Lim(wy)) are in V, VFer |- A is not a &P >“-witnessing sequence. Let
G be P, -generic over V and g € 2“' be the generic random sequence added by G.
Fix N > 1/a.In V[G], define A = {o < w1 :(Vn < N)(g(was r +n) = 1)}. Then
A € [w M. Tt suffices to show that for every § € Lim(w)), the asymptotic density of
{k <w:ask € A} in w is strictly less than a. Fix § € Lim(w;). For x € 2¢1, define

Ty ={k <w:(Yn < N)(x(was i +n) =1)}.

As As € V, Ty € V. By the law of large numbers, for almost all x € 2“1, the
asymptotic density of T, in  is 27V, Since g is random over V, it follows that
{k < w:as € A} = T, has asymptotic density 2°N<1/N <a.

Finally, fix a &-witnessing sequence A = (As:8 € Lim(wy)). Suppose VT I Ae
[w1 151, We will find p € Pand § € Lim(w;) such that

{k <n:aspe A}
>

p IF limsup 0.

n n

Choose ((pi, ¥i) :i < wi) such that y;’s are strictly increasing and for every i < wi,
p<piand p; IFy; € A. Choose X € [w11¥! and b > 0 such that for everyi € X,
w(pi) = b. Choose § € Lim(w;) such that A; C {y;:i € X}. For eachn < w, fix
i(n) € X such that o5, = Yi@)- Put g, = py,,, . Define f, = 1/n) ; _, 1, where
g 1 22 — 2 is the characteristic function of g¢. Let f = limsup, f,. Note that
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0 < f < 1. By Fatou’s lemma,

ff:/limsupfn> limsup/fn>b.
n n

Let p = {x € 22 f(x) > b/2}. Then u(p) > b/2 otherwise
b b b
/f=/f+/ fsnp)+A—-pp) 5 <5+5=>.
P 292\p 2 2 2

It is easy to see that p, § are as required. This completes the proof of Remark 7.2. O

We now prove Theorem 1.4 — for all a, b € (0, 1), &Ssup >a is equivalent to &

For this, it is clearly enough to show the following.

sup > b
S .

Lemma7.3 Leta € (0,1)anda < b < /a. Then &Ssup%l implies &‘;up)b.

_ ' N - N
Proof Let A = (As:8 € S) witness &~ . We can assume that A is not a &ssup/b-

witnessing sequence. Choose A € [w1]™! such that for every 8 € S, for every large
enough o < 4§,

AN As Nal
|As Nl

< b.

Let S’ be the set of § € S such that

) [ANAs Nol
limsup ——— >
a—8 [As Naf

Then S’ is stationary. For § € §’, define Bs = As N A.
Claim 7.4 For every B € [AIY! there are stationary many 8 € S such that

. |B N Bs Nal
lim sup ————
o—>4 |Bs Nl

Proof Suppose not. Choose B € [A]™ and W C S’ non-stationary such that for every
8 € '\ W, for every large enough @ < §, we have

|BN Bs Nl
|Bs Nl

Since B C A, we can choose § € §”\ W such that

. |[BNAs Nl
limsup ———
a8 |As Nal
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Now for every large enough o < §, we have
[BNBsNal\[|ANAs Nl »2
< .
|Bs N | |As N

Since BN Bs = BN Asand Bs N = AN As N, we get

BNAsNa
AsNa

< <a

which is impossible. |

Let {ej:i < w1} list A in increasing order. Let E € w; be a club such that for
every i € E,sup;_; oj = i. Define C = (Cs:8 € S) as follows. If § € E N S, then
Cs = {j < 9§ :aj € Bs}. Otherwise, choose Cs to be an arbitrary unbounded subset

of & of order type w. It is easy to check that C witnesses &Ssup >b O

8 — ‘sup>1 and qup>1—

Definition 8.1 The principle &“P>!~ says the following: There exists A = (A5:8 €
Lim(w1)) such that

(a) each As = {as5,,:n < w} and o ,’s are increasing cofinal in §, and
(b) forevery A € [w1]¥! and & > 0, there exists some § such that

) Hk <n:asi € Al
lim sup >1—e.
n n

To prove Theorem 1.5, it is enough to show that

Theorem 8.2 — &SP =1 A &3UP>1— s consistent.

Definition 8.3 Suppose A = (As:8 € Lim(wp)) satisfies: For every 6, Ay =
{as,,:n < w} where as ,’s are increasing and cofinal in §. Define Q = Qy as
follows: p € Qiff p = (fp, up, €p) where
(i) fp is a finite partial function from w; to {0, 1},
(ii) up is a finite subset of Lim(w;), and
(iii) €) = (ep,5:6 € up) where each ¢, s is a positive rational < 1.
For p, g € Q define p < ¢ iff
(a) fp - fq’
(b) up S ug,
(c) €p =24 [up, and
(d) forevery 8 € up, letting W = {n < o : a5, € dom(fy)\dom(f,)}, for every
N < weither WN [0, N) = & or

l{n e WNIO,N): fylasn) =1}
W N[0, N)|

<1- Ep,s-
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Claim 8.4 Suppose p,q,r are in Q where Q = Qy is as in Definition 8.3. If p < g
and g <r, then p <r.

Proof Clauses (a)—(c) are clear. So we only need to check Clause (d) for p,r.
Fix 6 € upand N < w. Pute = g,5 = g45 = &5. Let Wy, = {n <
N :as, € dom(f,)\dom(f,)} and W;’r = {n € Wp,: fr(as,n) = 1}. Define
Wp.q» Wa.rs W,l,_q and qu’, analogously and note that W, , = W, , u W, , and
W;17,r = Wzlv,q U W;’,. Now using Clause (d) for the pairs p, ¢ and g, r we get

(W =W 14+ W, | < IWpgl(1— &)+ Wy [ (1 — &) = [Wp [(1 —ps).

Hence Clause (d) also holds for p, r. O
Claim 8.5 Let A and Q = QZ,a be as in Definition 8.3. Then Q has X1 as a precaliber.

Proof Suppose {p; = (fi, u;i,€;):i < w1} € Q. By thinning down we can assume
the following:

(a) (dom(fi):i < wy)isa A-system with root R and f; [ R does not depend on i.
(d) (u;:i < wy)is a A-system with root u, and €; | u, does not depend on i.
(c) Foreveryi < j <wjand§ € u;, dom(fj) N As € R.

Let E € w; be a club such that for every i € E, for every j < i, dom(f/) Uu; Ci.
Choose S C F stationary such that for every i € S, dom(f;) Ni = R, u; Ni = u,
and | J{AsNi:8 €wu;,§ >i} =F where F does not depend on i € S. Note that
for every infinite X € Sandi € S, if i > sup(X), then for all but finitely many
jeX,dom(fj))NA; SR LetX e [ST¥ be such that for every increasing sequence
(ap:n < w)in X, sup, a, ¢ X. Define c: [X]? = {0, 1} by c({i, jh = 1iffi < j
and A; Ndom(f;) € R. By the Erd6s—Dushnik—Miller theorem, either there exists
Y € [XT™ such that c[[Y]?] = {1} or there exists Y/ C X such that otp(Y') = o + 1
and c[[Y']*] = {0}. Since the latter is impossible, we can find ¥ € [X]™! such that
c[[Y1?] = {1}. Hence

(d) Foreveryi # jinY and § € uj, dom(f;) N As C R.

It follows that {p; :i € Y} is centered. O
Let f@ = UI{fp:p € Gg}. Then kg f@:wl — {0, 1}. Let }?Q = {a <
w1 :f@(a) = 1}. Note that IFg JO(Q € [w1I™. To see this, suppose p € P and

a < 1. Choose B > max(u, U {a}) and define g by f;, = fp, U{(B, D}, uy = u,
andg, =¢,.Theng > pandg IF B € )Q(Q.

Claim 8.6 JO(Q wimesses that A is not a & P> witnessing sequence in V<.
Proof Easy. O

Claim 8.7 Suppose V |- &P~ 1~ holds and let C = (Cs : 8 € Lim(w1)) be a witness
where Cg :_{,85,,, 'n < w}and Bs s are increasing cofinal in 8. Then VQ | gsup>1-

holds with C as witness.

@ Springer



Sh:1136

On some variants of the club principle 25

Proof Suppose p I-g A€ [w1 1! and & > 0 is rational. Choose ((pi, Vi) i < wr)
such that y;’s are increasing and for each i < w1, p < p; kg i € A. Arguing as in
the proof of Claim 8.5, we can assume the following:

(a) (dom(f;):i < wy)isa A-system with root R, f; [ R = f, and |[dom(f;)\ R| =
n, do not depend on i.

(b) Ifi < j,then R < dom(f;)\ R < dom(fj)\R.

(¢) (uj:i < wp) is a A-system with root u,, €; [ u, = e, does not depend on i and
i < jimplies u; \u. < )\ Usy.

(d) Foreveryi # jandé € u;, dom(fj) NAs; € R.

Put X = {y;:i < w1}. Let E C w be a club such that foreveryi € E and j < i,
yj <iandu,Udom(f;) Ci.Choose d € E such that

k : X
lim sup Ik <n:psre X >1—i.
n n 10

Let g = (f¥, s U {8}, 8 U {(8, €/5)}). It suffices to show that for any ¢ > ¢ and
No < w, there exist r > g1 and N > Ny such that

{n < Na: Bsnc A}l
Q >
Ny

rl- 1-—

So fix g1 > g and Ng < w. For each n < w, define

pi if Bsn = Vi,
I'n = .
q if IBB,n ¢ X.

Let W, = dom(f;,)\ R and W, = W, N As. Choose N; > Ny such that for every
n > Ny, if 8" € uy, \ {8}, then W, N Ay = ¢. We need a lemma.

Lemma 8.8 Suppose 0 < a; < ar < 1and 1 < K < w. Then for all sufficiently large
N < o, the following holds. For every (Wi :k < N) where each Wy is an interval in
o such that |[Wi| < K, Wy < Wig1 and\J, -, Wk = [0, M), there exists F C N such
that

() |F|> Nay, and
(i) for everym < M,

[0, m) N Uger Wi| < mas.

Proof First assume that |Wy| = K foreveryk < N —so M = NK.Letm| < N be
least such that Km > M (1 — az). Then F = [m1, N) is as required. For the general
case, for each K’ < K, put Sx» = {k < N :|Wy| = K’} and find a suitable Fg' C Sk
for (Wi :k € Sg/). Then F = | J{Fg/:1 < K/ < K} is as required. O

Choose N > Nj suchthat (1 — Ni/N2)(1—¢/2) > 1 —¢and |[{k € [N1, N2): Bs .k €
X} > (1 — e/4)(Na — Nyp). Using Lemma 8.8, choose F € [Ny, N2) such that the
following hold:

(@ [F|l> N2 — N —¢/4).
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(b) r = (fy, ur, &) extends each condition in {g1, r, :n € F'} where

W) ur =gy U Uyep tir,
(i) dom(f,) = dom(fg) UU,ep W, UU{Wa:n € [N1, N2)\ F},
(i) fg < frs
(V) fr I U{Wn:n € [N1, N)\F} =0,
(v) foreveryn € F, f, | W, = f.,, and
(Vi) & =8¢, UU,ep &

Note that r IF [{k < Ny:Bsk € A}| > (N2 — N1)(1 — ¢/2). By our choice of Ny, it
follows that

{n < N2 : Bsnc A}l
Q >
Ny

r - 1—e. O

Let n > 1 and suppose ((IP¢, Q¢, Zg) :& < n) satisfies the following:

€))] ﬁ]P’g, Qg):& <n)is a finite support iteration with limit .
(2) As € VP and IFp, “As = (Ag5:0 € Lim(w)), Ags = {az 5,010 < 0} where
Qg 5.,’s are increasing cofinal in 6.
Pe — O)—
®) VI Qe = Q.
Note that P, is ccc.

Claim 8.9 Suppose V I &**>1= holds and let C = (Cs: 8 € Lim(w)) be a witness
where Cs = {Bsn:n < w} and Bs’s are increasing cofinal in 8. Then v
&3P =1 yiq the same witness.

Proof By induction on 7. If 7 is a successor or cf () > Ry, this follows from Claim
8.7.

Suppose cf(n) = Np. Let (n(n):n < w) be increasing cofinal in 1. Suppose
plkp, X € [w1]™1. Choose n, <  such that p € Py,)- For each n < w, let

Xy ={a <wi:@3p € Gp,,)(p e, @€ X)}—so X, € VEiw and Ikp, X, C X.

Thenforsomen € [n,, w), p IFp X 2 € [0} Now apply the inductive hypothesis.

n(n)
Next suppose cf (7)) = Ry,& > 0,and p Ip, X € [w1 1} Choose ((pi, vi) i < wy)
such that the following hold:

(a) y;’s are increasing.

(®) pi € Py, pi > pand pi kg, yi € X.

(c) (dom(p;):i < wy) is a A-system with root W.

Choose 8 < n such that W C 6. Since Py is ccc, we can ﬁ(pd q € Py suchthatg > p
and g IFp, “{i < w1:p; [0 € Gp,} is uncountable”. Let Y = {y;:i < w1Ap; [0 €
Gp,}. Then Y € VP and q lFp, Y € [w1 TN By the inductive hypothesis, we can find
r € Pg and § € Lim(w;) such thatr > ¢ and

k : 4
r IFp, lim sup [tk <n:Bsk i >1—£.
n n 2
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Since (dom(p;)\ 6 :i < w) is a sequence of pairwise disjoint sets, it also follows
that

tk<n:Brxe X}l
n =

r IFp, lim sup 1—e. O
n

Proof of Theorem 8.2 Starting with a model of 2% = R, and &P>!~ construct
((Pg, Qg, Ag) :& < wy) such that the following hold:

(1) {(Pe, Q) : & < wn) is a finite support iteration with limit Py, .

(2) Az € VP and Ibp, “Ap = (Ags5:8 € Lim(w1)), Ags = {5,011 < ) where
Qg 5.,’S are increasing cofinal in 6.

3) V¥ IF Qs = Qg

(4) Forevery < @y and A € VP satisfying lI-p, “A = (As:8 € Lim(w))) where
each A; is an unbounded subset of § of order type w”, there exists & € [, @)
such that \Hpé A= Zg.

To see why clause (4) can be satisfied, use 281 = R, and the fact that for each n < w,
P, is a ccc forcing with a dense subset of size 8. O

We conclude with some questions.

Question 8.10 (1) Is &*P=0-5 A — &3P>1— consistent? What if CH holds?
(2) Assume CH. Does &P 205 imply &P > 1? Does &P~ 1~ imply &P =12
(3) Fora € (0, 1), is #™Z2 A — &P >1 consistent?
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