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Abstract
We study some asymptotic variants of the club principle. Along the way, we construct
some forcings and use them to separate several of these principles.
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1 Introduction

For a regular uncountable cardinal κ and a stationary S ⊆ Lim(κ), the club principle
♣S says the following: There exists A = 〈Aδ : δ ∈ S〉 where each Aδ is an unbounded
subset of δ of order type cf (δ) such that for every A ∈ [κ]κ, there exists some (equiv-
alently, stationary many) δ ∈ S such that Aδ ⊆ A. We say that A is a ♣S witnessing
sequence. If κ = ω1 and S = Lim(ω1) is the set of all countable limit ordinals, we
drop the S and write ♣.

The principle♣was introducedbyAndrzejOstaszewski in [6]where he used♣+CH
(equivalently, ♦) to construct an Ostaszewski space. Several variants of this principle
have since been studied [1,2]. For example, in [1], it was shown that♣1 does not imply
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2 A. Kumar, S. Shelah

♣ where ♣1 is the following statement: There exists A = 〈Aδ : δ ∈ Lim(ω1)〉 where
each Aδ is an unbounded subset of δ of order type ω such that for every A ∈ [ω1]ℵ1,
there exists δ such that Aδ\ A is finite.

In this work, we mostly study asymptotic versions of the club principle where the
requirement Aδ ⊆ A is replaced by Aδ ∩ A is a “large” subset of Aδ . Some of these
principles have previously appeared in [3,4]. As a motivating example, suppose we
start with a model of ♣ and add ℵ2 Cohen reals. Then it is easy to see that ♣1 and
therefore♣ are destroyed. But the following continues to hold (see Remark 7.2): There
exists 〈Aδ : δ ∈ Lim(ω1)〉where each Aδ = {αδ,n : n < ω}where αδ,n’s are increasing
cofinal in δ and for every A ∈ [ω1]ℵ1, here exists δ such that {n < ω : αδ,n ∈ A} has
upper asymptotic density 1. It follows that ¬♣1∧ ♣sup� 1 is consistent.

Definition 1.1 xxx For a ∈ (0, 1] and a stationary set S ⊆ Lim(ω1), the principle
♣inf � a

S says the following: There exists A = 〈Aδ : δ ∈ S〉 such that
(a) each Aδ = {αδ,n : n < ω} and αδ,n’s are increasing cofinal in δ, and
(b) for every A ∈ [ω1]ℵ1, there exists δ ∈ S such that

lim inf
n

|{k < n : αδ,k ∈ A}|
n

� a.

If S = Lim(ω1), we write ♣inf � a. By ♣lim, we mean ♣inf � 1.

It is clear that ♣1 implies ♣lim and for 0 < a < b � 1, ♣inf � b implies ♣inf � a. At
the end of Sect. 1, we show that under CH, all of these principles are equivalent to
diamond.

Theorem 1.2 Assume CH. Then for every a ∈ (0, 1], ♣inf � a implies ♦.

The bulk of the work in this paper is to show the following.

Theorem 1.3 (1) ♣lim∧¬♣1 is consistent.
(2) For every a ∈ (0, 1], ♣inf � a∧ (∀b > a)¬♣inf � b is consistent.
(3) For every a ∈ (0, 1], ¬♣inf � a∧ (∀b < a)♣inf � b is consistent.

In Sects. 2–5 we introduce the necessary tools for constructing the forcings used in
provingTheorem1.3. Sections 2 and3 introduce the class of “thinℵ1-CP’s” (Definition
3.5) which constitute the main building block of these constructions. The associ-
ated forcings satisfy ccc and are somewhat intermediate between Add(ω, ω1) and
Add(ω1, 1). The main point here is that while forcing with a suitable member of this
class will destroy all old ♣1-witnesses, it will preserve some ♣lim-witness. Section
4 handles the next issue, namely, how to perform an iteration of thin ℵ1-CP’s that
preserves ♣lim. This is achieved via “guided products” (Definition 4.1). In Sect. 5, we
construct our iteration and show that the resulting model witnesses Theorem 1.3 (1).
Our construction scheme is quite flexible and should be useful for separating many
similar principles. This is illustrated in Sect. 6 where we prove Theorem 1.3 (2),(3) by
forcing with the guided product of another family of thin ℵ1-CP’s.

In Sect. 7, we introduce ♣sup� a (Definition 7.1) and prove the following in ZFC.

Theorem 1.4 For every a, b ∈ (0, 1), ♣sup� a is equivalent to ♣sup� b.
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On some variants of the club principle 3

Finally, in Sect. 8, we prove that

Theorem 1.5 ♣sup� 0.5∧¬♣sup� 1 is consistent.

On notation: Lim(κ) denotes the set of all limit ordinals below κ . For a set of ordinals
X , otp(X) denotes the order type of X . cf (α) is the cofinality of α. Sκ

δ = {α < κ :
cf (α) = cf (δ)}. For k � ω, ωk is the kth power of ω under ordinal exponentiation. For
a, b sets of ordinals, we write a < b to denote (∀α ∈ a)(∀β ∈ b)(α < β). In forcing,
we use the convention that a larger condition is the stronger one — so p � q means p
extends q.

1.1 CH and♣inf

Fact 1.6 Suppose S ⊆ Lim(ω1) is stationary and A = 〈Aδ : δ ∈ S〉 is a ♣?
S-wit-

nessing sequence where ♣?
S is one of club principles defined in Definitions 1.1, 6.1,

7.1, 8.1. Then for every A ∈ [ω1]ω1, there are stationary many δ ∈ S witnessing the
corresponding requirement for the pair Aδ, A.

Proof Fix A ∈ [ω1]ω1 and let E ⊆ ω1 be a club. Choose B ∈ [A]ω1 such that
between any two members of B, there is a member of E . Choose δ ∈ S witnessing
the corresponding requirement for the pair Aδ, B. As B ⊆ A, this δ also works for
A. Since B ∩ Aδ is unbounded in δ, E ∩ δ is also unbounded in δ. As E is a club, it
follows that δ ∈ S ∩ E . Hence there are stationary many such δ ∈ S. �
Recall that ♦ says the following: There exists 〈Aδ : δ ∈ Lim(ω1)〉 where each Aδ ⊆ δ

such that for every A ⊆ ω1, {δ ∈ Lim(ω1) : Aδ = A ∩ δ} is stationary. An equivalent
formulation (see [5]) is the following: There exists 〈Aδ : δ ∈ Lim(ω1)〉 where eachAδ

is a countable family of subsets of δ such that for every A ⊆ ω1, {δ ∈ Lim(ω1) : A∩δ ∈
Aδ} is stationary.
Proof of Theorem 1.2 Assume CH. Suppose a ∈ (0, 1] and ♣inf � a holds as witnessed
by A = 〈Aδ : δ ∈ Lim(ω1)〉. Let Aδ = {αδ,n : n < ω} list Aδ in increasing order.
Using CH, fix 〈Bi : i < ω1〉 such that each Bi ⊆ i and for every B ∈ [ω1]� ℵ0, there
are uncountably many i < ω1 for which B = Bi .

For δ ∈ Lim(ω1), define Aδ as follows. A ∈ Aδ iff for some u ⊆ ω the following
hold:

• lim infn |u ∩ n|/n � a.
• For every m < n in u, Bαδ,m = Bαδ,n ∩ αδ,m and A = ⋃

n∈u Bαδ,n .

We claim that each Aδ is finite. In fact, |Aδ| � 1/a. To see this, assume otherwise
and let {Ak : k < K } be pairwise distinct members of Aδ where Ka > 1. Choose
〈uk : k < K 〉 witnessing Ak ∈ Ak . Choose N1 < N2 such that the following hold:

(a) 〈Ak ∩ αδ,N1 : k < K 〉 has pairwise distinct members,
(b) |uk ∩ [N1, N2)| > (N2 − N1)/K for each k < K .

By (b), it follows that for some j < k < K , [N1, N2) ∩ uj ∩ uk �= ∅. But if
n ∈ [N1, N2) ∩ uj ∩ uk , then Bαδ,n = Aj ∩ αδ,n = Ak ∩ αδ,n which is impossible by
(a).
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4 A. Kumar, S. Shelah

To complete the proof it is enough to show the following.

Claim 1.7 For every X ⊆ ω1, for every club E ⊆ ω1, there exists δ ∈ E such that
X ∩ δ ∈ Aδ .

Proof Construct 〈αi : i < ω1〉 such that αi ’s are increasing and for every i < ω1,
X ∩ sup j<i αj = Bαi . Choose δ ∈ E and u ⊆ ω such that lim infn |u ∩ n|/n � a and
{αδ,n : n ∈ u} ⊆ {αi : i < ω1}. It follows that X ∩ δ = ⋃

n∈u Bαδ,n ∈ Aδ . �

2 Creatures

Fix a family {Sk : k < ω} of pairwise disjoint stationary subsets of ω1 consisting of
limit ordinals. We describe a ccc forcing which is somewhat intermediate between
adding ℵ1 Cohen reals and adding a Cohen subset of ω1.

Definition 2.1 We say that (CR, �) is an ℵ1-CP (creating pair) if the following holds:

(A) We call members of CR creatures. For each c ∈ CR,

(i) c = (dom(c),pos(c), fc).
(ii) dom(c) is a non-empty subset of ω1 of order type < ωω.
(iii) For every limit δ < ω1, if dom(c) ∩ δ is unbounded in δ, then for some k � 1,

δ ∈ Sk and otp(dom(c) ∩ δ) = ε + ω j for some ε < ωω and 1 � j � k — in
particular, for every δ ∈ S0, dom(c) ∩ δ is bounded below δ.

(iv) pos(c) (possibilities for c) is a countable set of functions from dom(c) to {0, 1}
and fc ∈ pos(c).

(v) If dom(c) is finite, then pos(c) = { fc} — we call such c finite creature.

(B) For every finite u ⊆ ω1 and f : u → {0, 1}, there exists c ∈ CR such that
dom(c) = u and fc = f .

(C) For every δ < ω1, |{c ∈ CR :dom(c) ⊆ δ}| � ℵ0.
(D) � is a function with domain CR that satisfies the following:

(i) �(c) is a countable set of finite tuples d = 〈dk : k < n〉 where
(a) dk ∈ CR,
(b) dom(c) = ⋃

k<n dom(dk),
(c) dom(dk) < dom(dk+1), and
(d) whenever fk ∈ pos(dk) for k < n,

⋃
k<n fk ∈ pos(c).

(ii) Cuts: If c ∈ CR and α ∈ dom(c) then for some d = 〈dk : k < n〉 ∈ �(c), there
exists k < n such that min(dom(dk)) = α.

(iii) 〈c〉 ∈ �(c).
(iv) Transitivity: If 〈ck : k < n〉 ∈ �(c) and 〈dk,l : l < nk〉 ∈ �(ck) for k < n, then

〈dk,l : k < n, l < nk〉 ∈ �(c).

(E) Finite joins: If {dk : k < n} ⊆ CR and dom(dk) < dom(dk+1), then there exists
c ∈ CR such that

(i) dom(c) = ⋃
k<n dom(dk),

(ii) pos(c) = {⋃
k<n fk : (∀k < n)( fk ∈ pos(dk))

}
,
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On some variants of the club principle 5

(iii) fc = ⋃
k<n fdk , and

(iv) �(c) = {⋃
i<n fi : (∀i < n)(fi ∈ �(di ))

}
.

Definition 2.2 Suppose (CR, �) is an ℵ1-CP. Define Q = QCR,� to be the forcing
whose conditions are p = {ck : k < n} where ck ∈ CR and dom(ck) < dom(ck+1).
We write dom(p) for

⋃
c∈p dom(c). For p, q ∈ Q, define p � q iff for every c ∈ p,

there exists d = 〈dk : k < n〉 ∈ �(c) such that {dk : k < n} ⊆ q. Define Q � α = { p ∈
Q :dom(p) ⊆ α}. Let

f̊Q =
⋃ {

fd : (∃ p ∈ GQ)(d ∈ p is a finite creature)
}
.

It is easy to see that �Q f̊Q : ω1 → 2 (See Remark 2.3 (ii) below).

Remark 2.3 Let (CR, �), Q = QCR,� and f̊Q be as in Definition 2.2.

(i) By Clause (D) (iv) in Definition 2.1, it follows that � Q is transitive.

(ii) Let us check that �Q f̊Q : ω1 → 2. For suppose p ∈ Q and α < ω1. It suffices to
find q � p such that for some finite creature d ∈ q, α ∈ dom(d). If α /∈ dom(p), then
we can add a creature with domain {α} to p. So assume α ∈ dom(p). Fix c ∈ p with
α ∈ dom(c). Using Clauses (D) (ii) and (D) (iv) in Definition 2.1, we can find 〈dk : k <

n〉 ∈ �(c) such that for some k, dom(dk) = {α}. Put q = (p\{c}) ∪ {dk : k < n}.
Then q � p is as required.

(iii) Let CR be the set of all finite creatures c = (F, { f }, f ) — so F ⊆ ω1 is finite
and f : F → 2. Let �(c) be the set of all d such that the join of the members of d
is c. Then forcing with Q = QCR,� is same as adding ℵ1 Cohen reals. Note that this
destroys all old witnesses to ♣lim. We would later (Sect. 3) add more creatures to CR
in such a way that while some old ♣lim witnessing sequences are preserved, all old
♣1 witnessing sequences are destroyed.

Recall that a forcing notion Q has ℵ1 as a precaliber if whenever {pi : i < ω1} ⊆ Q,
there exists X ∈ [ω1]ℵ1 such that {pi : i ∈ X} is centered — i.e., for every finite
F ⊆ X , there exists p ∈ Q such that (∀i ∈ F)(pi � p).

Claim 2.4 Suppose (CR, �) is an ℵ1-CP. Let Q = QCR,� . Then Q has ℵ1 as a precal-
iber.

Proof Suppose {pi : i < ω1} ∈ [Q]ℵ1. The map i �→ k(i) = sup
(⋃

c∈pi dom(c) ∩ i
)

is regressive on S0. Choose X1 ∈ [S0]ℵ1 and k(	) < ω1 such that for every i ∈ X1,
k(i) = k(	) and for every i < j in X1, dom(pi )∩dom(pj ) ⊆ k(	). Using Definition
2.1 (D) (ii), by possibly extending each pi , we can assume that for every c ∈ pi , either
dom(c) ⊆ k(	) or inf (dom(c)) � k(	). Since {c ∈ CR :dom(c) ⊆ k(	)} is countable,
we can find X ∈ [X1]ℵ1 such that for every i ∈ X , {c ∈ pi :dom(c) ⊆ k(	)} does
not depend on i ∈ X . Now for any finite F ⊆ X ,

⋃
i∈F pi is a common extension of

{pi : i ∈ F}. �
Claim 2.5 Suppose (CR, �) is an ℵ1-CP. Let Q = QCR,� . Let 〈pi : i < ω1〉 be a
sequence of conditions in Q such that for every i < j < ω1, sup(dom(pi )) <

sup(dom(pj )). Then there exist X ∈ [ω1]ℵ1, 〈qi : i ∈ X〉, m < n < ω such that for
every i ∈ X:
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6 A. Kumar, S. Shelah

(a) qi ∈ Q, qi � pi and dom(qi ) = dom(pi ),
(b) qi = {ci,k : k < n} and for every k < n − 1, dom(ci,k) < dom(ci,k+1),
(c) for k < m, ci,k = ck does not depend on i ∈ X,
(d) for every j < j ′ in X, dom(c j,n−1) < dom(c j ′,m) and
(e) otp(dom(ci,k)) does not depend on i ∈ X.

Proof Just follow the argument in the proof of Claim 2.4 noting that dom(pi )’s are
unbounded in ω1. �

3 Countable joins

In the course of club preservation arguments, we would like to be able to form new
creatures out of old ones in the following way. Suppose 〈qi : i � 1〉 is a sequence of
conditions inQ = QCR,� which forms a
-system of an appropriate kind— it satisfies
clauses (b)–(e) in Claim 2.5. We would like to construct a new condition q ∈ Q such
that q �Q “ limn |{i < n : qi ∈ GQ}|/n = 1 and {i < ω : qi /∈ GQ} is infinite”. This
will require us to add “countable joins” of certain sequences of creatures to CR. This
section introduces the countable join construction.

Definition 3.1 For α < ω1, we say that (CRp, �p) is a partial ℵ1-CP at α if for some
ℵ1-CP (CR, �),

• CRp = CR �α = {c ∈ CR : sup(dom(c)) < α}, and
• �p = � �CRp.

Lemma 3.2 Suppose α < ω1. Then (CR	,�	) is a partial ℵ1-CP at α iff (CR	,�	)

satisfies all the clauses in Definition 2.1 when we replace ω1 by α and for every
c ∈ CR	, sup(dom(c)) < α.

Proof If (CR	,�	) is a partial ℵ1-CP at α, then it is clear that it satisfies all the
clauses in Definition 2.1 when we replace ω1 by α. Now suppose (CR	,�	) satisfies
all the clauses in Definition 2.1 when we replace ω1 by α and for every c ∈ CR	,
sup(dom(c)) < α. Let CR be the set of creatures obtained by adding all finite creatures
to CR	 and closing it under finite joins. For c ∈ CR, define �(c) as follows. If c ∈ CR	,
then �(c) = �	(c). If c is finite, then �(c) is the set of all d = 〈dk : k < n〉 where
each dk ∈ CR and the join of d is c. If c is neither finite nor in CR	, then c is the join of
some c0 ∈ CR	 and a finite creature c1 with dom(c0) < dom(c1). In this case, define
�(c) = {d∪ e : d ∈ �	(c0) and e ∈ �(c1)}. Then (CR, �) witnesses that (CR	,�	) is
a partial ℵ1-CP at α. �
Definition 3.3 Suppose k	 � 1, δ ∈ Sk	 , and (CRp, �p) is a partialℵ1-CP at δ. Suppose
m < n < ω and di = 〈di,k : k < n〉 satisfy the following for 1 � i < ω:

(a) di,k ∈ CRp.
(b) di, j = dj does not depend on i for j < m.
(c) dom(di,k) < dom(di,k+1).
(d) dom(di,n−1) < dom(di+1,m).
(e) otp(dom(di,k)) only depends on k.

123

Sh:1136



On some variants of the club principle 7

(f) W = ⋃ {dom(di,k) : 1 � i < ω, k < n} is unbounded in δ and has order type
ε + ω j	 for some ε < ω1 and 1 � j	 � k	.

We say that 〈di : i � 1〉 is a joinable candidate for (CRp, �p) at δ.
For each N � 1 where N is a power of 2, we define new creatures c	N =

(dom(c	N ),pos(c	N ), fc	
N
) and �	(c

	
N ), as follows:

(1) dom(c	1) = W and dom(c	N ) = ⋃ {dom(di,k) : N � i < ω,m � k < n} for
N � 2.

(2) fc	
1

= ⋃ { fdi,k : 1 � i < ω, k < n} and fc	
N

= ⋃ { fdi,k : N � i < ω,m � k < n}
for N � 2.

(3) �	(c
?
1) is the smallest family satisfying the following:

(i) 〈c	1〉 ∈ �	(c
	
1).

(ii) Whenever j > 1 is a power of 2 and 〈d′
i,k : i < j,m � k < n〉, 〈fi,k : i <

j,m � k < n〉 and 〈gk : k < m〉 satisfy (a)–(d) below, we have, under appro-
priate order

⋃
{gk : k < m } ∪

⋃
{fi,k : i < j,m � k < n} ∪ {c	j } ∈ �	(c

	
1).

(a) d′
i,k ∈ CRp and dom(d′

i,k) = dom(di,k).
(b) |{i ∈ [ j1, j2) : (∃ k ∈ [m, n))(d′

i,k �= di,k)}| � ( j2 − j1)/ log2( j1) for
every 2 � j1 < j2 � j where j1, j2 are powers of 2.

(c) fi,k ∈ �(d′
i,k).

(d) gk ∈ �(dk).

(4) For N � 2, �	(c
	
N ) is the smallest family satisfying the following:

(i) 〈c	N 〉 ∈ �	(c
	
N ).

(ii) Whenever j > N is a power of 2 and 〈d′
i,k : N � i < j,m � k < n〉 and

〈fi,k : N � i < j,m � k < n〉 satisfy (a)–(c) below,we have, under appropriate
order

⋃
{fi,k : i < j,m � k < n} ∪ {c	j } ∈ �	(c

	
N ).

(a) d′
i,k ∈ CRp and dom(d′

i,k) = dom(di,k).
(b) |{i ∈ [ j1, j2) : (∃ k ∈ [m, n))(d′

i,k �= di,k)}| � ( j2 − j1)/ log2( j1) for
every N � j1 < j2 � j where j1, j2 are powers of 2.

(c) fi,k ∈ �(d′
i,k).

(5) pos(c	N ) = {⋃
k<K fck : 〈ck : k < K 〉 ∈ �	(c

	
N )

}
.

Let (CR′
p, �

′
p)be thepartialℵ1-CPat δ+1 such thatCR′

p = CRp∪{c	N : N � 1 is a power of 2}
with dom(c	N ), pos(c	N ), and fc	

N
as above, �′

p �CRp = �p and �′
p(c

	
N ) = �	(c

	
N ).

We say that (CR′
p, �

′
p) is the result of adding the countable join c1 = ⊕

i� 1 di of
〈di : i � 1〉 to (�p,CRp).

Note that by Lemma 3.2, (CR′
p, �

′
p) is indeed a partialℵ1-CP at δ+1. The next lemma

will play a key role in the proof of Theorem 5.4.
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8 A. Kumar, S. Shelah

Lemma 3.4 Let (CR′
p, �

′
p) be as in Definition 3.3. Let (CR, �) be an ℵ1-CP such that

CR′
p = {c ∈ CR : dom(c) ⊆ δ} and �′

p = � �CR′
p. Let Q = QCR,� , p = {c	1 =

⊕
i� 1 di } and pi = {di,k : k < n}. Then

p �Q lim
j

|{i < j : pi ∈ GQ}|
j

= 1.

Proof It suffices to show that for every q � p and j	 � 210 there exists r � q such that

r �Q

|{i < j	 : pi ∈ GQ}|
j	

> 1 − 8

log2 j	
.

Since q � p = {c	1}, we can find r � q and j0 > j	 such that j0 is a power of 2 and

⋃
{gk : k < m } ∪

⋃
{fi,k : i < j0,m � k < n} ∪ {c	j0} ⊆ r ,

where 〈d′
i,k : i < j0,m � k < n〉, 〈fi,k : i < j0,m � k < n〉, and 〈gk : k < m〉 are as in

Definition 3.3 (3) (ii).
Choose N � 10 such that 2N � j	 < 2N+1. Then r forces that

|{i < j	 : pi ∈ GQ}|
j	

� 1 −
∑

1� j<N

2 j+1 − 2 j

j j	
− 2N+1 − 2N

N j	

� 1 −
∑

1� j<N

1

j2N− j
− 1

N
.

Since
∑

1� j<N/2
1

j2N− j � N
2N/2 � 4

N (as N � 10) and
∑

N/2� j<N
1

j2N− j � 2
N , it fol-

lows that

r �Q

|{i < j	 : pi ∈ GQ}|
j	

� 1 −
(
4

N
+ 2

N
+ 1

N

)

> 1 − 8

N
. �

Definition 3.5 (CR, �) is a thin ℵ1-CP if (CR, �) is an ℵ1-CP and there exist S and
〈cδ : δ ∈ S〉 such that the following hold:

(a) S ⊆ ⋃
k� 1 Sk .

(b) cδ ∈ CR.
(c) For every k	 � 1 and δ ∈ S ∩ Sk	 , letting (CRP , �p) be the partial ℵ1-CP at δ

satisfying CRp = CR � δ = {c ∈ CR : sup(dom(c)) < δ} and �p = � �CRp,
there exists a joinable candidate 〈di : i � 1〉 for (CRp, �p) at δ such that

(i) cδ = ⊕
i� 1 di and

(ii) CR′
p = {c ∈ CR :dom(c) ⊆ δ} and �′

p = � �CR′
p where (CR′

p, �
′
p) is the

result of adding
⊕

i� 1 di to (CRp, �p).

(d) c ∈ CR iff c is a finite join of {d ∈ CR : d is finite} ∪ ⋃ {�(cδ) : δ ∈ S}.
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On some variants of the club principle 9

Claim 3.6 Suppose (CR, �) is an ℵ1-CP as witnessed by S, 〈cδ : δ ∈ S〉. Suppose
c ∈ CR, k	 � 1, δ ∈ Sk	 , dom(c) is an unbounded subset of δ. Then there exist
c = 〈ck : k � k1〉 ∈ �(c) and d = 〈dk : k � k2〉 ∈ �(cδ) such that ck1 = dk2 .

Proof Easily follows from Definition 3.5. �
We will later see (Lemma 4.4) that the forcing Q = QCR,� associated with a thin ℵ1-
CP (CR, �) destroys all old witnesses for ♣1. It would therefore follow, for example,
that forcing with a finite support product/iteration of ω2 such Q’s will yield a model
of ¬♣1. Unfortunately, a finite support product/iteration of length ω2 will always
destroy ♣lim since we will be adding Cohen reals at each stage of cofinality ℵ0. To
overcome this issue, in the following section, we introduce the notion of a “guided
product” (Definition 4.1).

4 Guided products

Definition 4.1 Suppose 〈Qα : α < ω2〉 and 〈p	
δ : δ ∈ Sω2ℵ0

〉 satisfy the following:
(i) Qα = QCRα,�α

where (CRα,�α) is a thin ℵ1-CP.
(ii) p	

δ is a function whose domain is a countable unbounded subset of δ and for
every α ∈ dom(p	

δ ), p
	
δ (α) ∈ Qα .

For γ � ω2, define a forcing Pγ as follows:

(1) p ∈ Pγ iff

(a) p is a function, dom(p) ⊆ γ and otp(dom(p)) < ωω,
(b) for every α ∈ dom(p), p(α) ∈ Qα , and
(c) for every δ � γ with cf (δ) = ℵ0, if dom(p) ∩ δ is unbounded in δ, then for

some η < δ, p � (η, δ) = p	
δ � (η, δ).

(2) For p, q ∈ Pγ , define p � q iff dom(p) ⊆ dom(q) and for every α ∈ dom(p),
p(α) � Qα

q(α).

We say that Pω2 is the product of 〈Qα : α < ω2〉 guided by 〈p	
δ : δ ∈ Sω2ℵ0

〉. Note that for
cf (γ ) = ℵ1, Pγ is completely determined by 〈Qα : α < γ 〉 and 〈p	

δ : δ < γ, cf (δ) =
ℵ0〉.
Claim 4.2 Let 〈Qα : α < ω2〉, 〈p	

δ : δ ∈ Sω2ℵ0
〉, and Pγ for γ � ω2 be as in Definition

4.1. Then the following hold:

(a) Pγ+1 = Pγ ×Qγ .
(b) If β < γ � ω2, then Pβ � Pγ .
(c) Pγ satisfies ccc.

Proof (a) and (b) are obvious from the definition of Pγ . To show (c), we will use the
following.

Lemma 4.3 Suppose γ � ω2 and 〈pi : i < ω1〉 is a sequence of conditions in Pγ . Then
there exists X ∈ [ω1]ℵ1 and a finite F ⊆ γ such that for every α ∈ γ \F, if there are
i < j in X such that α ∈ dom(pi ) ∩ dom(pj ), then (∀i ∈ X)(α ∈ dom(pi ) and
pi (α) does not depend on i ∈ X).
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Proof By induction on γ � ω2. If γ is a successor or γ = ω2, this is trivial.
Next suppose cf (γ ) = ℵ0 and 〈pi : i < ω1〉 is a sequence of conditions in Pγ . Let

〈γn : n < ω〉 be increasing cofinal in γ . For each i < ω1, choose n = ni < ω such
that either pi ∈ Pγn or pi � (γn, γ ) = p	

γ � (γn, γ ). Choose Z ∈ [ω1]ℵ1 and n	 < ω

such that (∀i ∈ Z)(ni = n	). Apply the inductive hypothesis to 〈pi � γn	 : i ∈ Z〉 to
get Y ∈ [Z ]ℵ1 and a finite F ⊆ γn	 such that for every α ∈ γn	 \F , if there are i < j
in Y such that α ∈ dom(pi )∩dom(pj ), then (∀i ∈ Y )(α ∈ dom(pi ) and pi (α) does
not depend on i ∈ Z). Choose X ∈ [Y ]ℵ1 such that either (∀i ∈ X)(dom(pi ) ⊆ γn	 )

or (∀i ∈ X)(pi � (γn	 , γ ) = p	
γ � (γn	 , γ ). Then X , F ∪ {γn	} are as required.

Finally, suppose cf (γ ) = ω1 and 〈pi : i < ω1〉 is a sequence of conditions in Pγ .
We claim that there are γ	 < γ and W ∈ [ω1]ℵ1 such that 〈dom(pi )\γ	 : i ∈ W 〉 is a
sequence of pairwise disjoint sets. This suffices since we can then apply the inductive
hypothesis to 〈pi � γ	 : i ∈ W 〉 to get X ∈ [W ]ℵ1 and a finite F ⊆ γ	 such that
for every α ∈ γ	 \F , if there are i < j in X such that α ∈ dom(pi ) ∩ dom(pj ),
then (∀i ∈ X)(α ∈ dom(pi ) and pi (α) does not depend on i ∈ X). It follows that
X , F ∪ {γ	} will be as required.

Fix a continuously increasing sequence 〈γ (i) : i < ω1〉 cofinal in γ . Let E = {i ∈
Lim(ω1) : (∃ j ∈ Lim(ω1))( j > i and sup(dom(pj ) ∩ γ (i)) < γ (i))}. We claim that
W = E \Lim(ω1) is countable and therefore E contains a club. Suppose not and fix
an increasing sequence 〈iξ : ξ < ω1〉 in W . Choose j ∈ Lim(ω1) such that j > iξ for
every ξ < ωω. Then sup(dom(pj )∩γ (iξ )) = γ (iξ ) for every ξ < ωω. But this implies
that otp(dom(pj )) � ωω which is impossible. Fix h : E → ω1 such that for every
i ∈ E , h(i) ∈ Lim(ω1), h(i) > i and dom(ph(i)) ∩ γ (i) is bounded below γ (i). Let
E1 ⊆ E be a club such that for every i < j in E , h(i) < j and sup(dom(ph(i))) <

γ ( j). For each i ∈ E1, fix k(i) < i such that sup(dom(ph(i)) ∩ γ (i)) < γ (k(i)). As
the map i �→ k(i) is regressive on E1, by Fodor’s lemma, we can find a stationary
S ⊆ E1 and i	 < min(S) such that for every i ∈ S, sup(dom(ph(i)) ∩ γ (i)) < γ (i	).
It follows that if i < j are in S, then dom(ph(i)) ∩ dom(ph( j)) ⊆ γ (i	). So take
γ	 = γ (i	) and W = h[S]. �

Fix {pi : i < ω1} ⊆ Pγ . Fix X , F as in Lemma 4.3. Since F is finite and each Qα

has ℵ1 as a precaliber, the product of {Qα : α ∈ F} is ccc. Choose Y ∈ [X ]ℵ1 such
that {pi � F : i ∈ Y } is centered. It follows that {pi : i ∈ Y } is also centered. Hence Pγ

satisfies ccc. �
Lemma 4.4 Let 〈Qα : α < ω2〉, 〈p	

δ : δ ∈ Sω2ℵ0
〉, and Pω2 be as in Definition 4.1. Then

V Pω2 |� ¬♣1.

Proof Towards a contradiction, suppose p0 ∈ Pω2 , 〈 Åδ = {α̊δ,n : n < ω} : δ ∈
Lim(ω1)〉 ∈ V Pω2 are such that p0 � “(∀δ ∈ Lim(ω1))({α̊δ,n : n < ω} is increasing
cofinal in δ) and 〈 Åδ : δ < ω1〉 is a ♣1 witnessing sequence”. Since Pω2 satisfies ccc,
we can find γ < ω2 such that p0 ∈ Pγ and each α̊δ,n is a Pγ -name.

Let X̊ = {α < ω1 : f̊Qγ
(α) = 1}. Then X̊ ∈ V Pγ+1 and V Pγ+1 � X̊ ∈ [ω1]ℵ1.

So there exist p1 ∈ Pγ , q ∈ Qγ , δ ∈ Lim(ω1), and n	 < ω such that p1 � p0
and (p1, q) �Pγ+1 (∀n � n	)(α̊δ,n ∈ X̊). Note that we must have that dom(q) ∩ δ

is unbounded in δ otherwise we can easily extend (p1, q) to get a contradiction. By
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possibly extending q, by Definition 2.1 (D) (ii), we can assume that q = {ck : k < K	}
where dom(ck) < dom(ck+1) for every k < K	 −1 and for some K < K	, dom(cK )

is an unbounded subset of δ. Let Sγ and 〈cγ,δ : δ ∈ Sγ 〉witness that (CRγ ,�γ ) is a thin
ℵ1-CP. By Claim 3.6, we can further assume that cK = c′K ′ for some 〈c′n : n � K ′〉 ∈
�(cγ,δ).

Let m < n < ω and di = 〈di,k : k < n〉 for i � 1 be as in Definition 3.3 and
cγ,δ = ⊕

i� 1 di . Then as 〈c′n : n � K ′〉 ∈ �(cγ,δ), we can find N � 1 a power of 2
such that cK = c′K ′ = c	N in the notation of Definition 3.3.

Choose p2 ∈ Pγ , p2 � p1, n(1) > n	, and α > min(dom(c	N )) such that p2 �Pγ

α̊δ,n(1) = α. We can assume that α ∈ dom(c	N ) — otherwise letting c	 be a creature
with domain {α} and fc	 (α) = 1, we have q ′ = q ∪ {c	} �Qγ

α /∈ X̊ so that (p2, q ′)
forces a contradiction. Choose i(	) � N andm � k(	) < n such thatα ∈ dom(di(	),k).
Let N1 � N be the largest power of 2 such that i(	) � N1 and let j > i(	) be a power
of 2. Choose a creature d′

i(	),k(	) such that dom(d′
i(	),k(	)) = dom(di(	),k(	)) and

f ∈ �(d′
i(	),k(	)) such that for some finite c	 ∈ f, dom(c	) = {α} and fc	 (α) = 0. It

follows that, under appropriate order

{
di,k : N � i < j,m � k < n, (i, k) �= (i(	), k(	))

} ∪ f ∪ {c	j } ∈ �(c	N ).

Let q ′ = (q \{cK }) ∪ {di,k : N � i < j,m � k < n, (i, k) �= (i(	), k(	))} ∪ f ∪ {c	j }.
Then (p2, q ′) � (p, q) and q ′ �Qγ

α /∈ X̊ — contradiction. �

Wewould now like to construct 〈Qα : α < ω2〉, 〈p	
δ : δ ∈ Sω1ℵ0

〉, andPω2 as in Definition

4.1 and a sequence A = 〈Aδ : δ ∈ Lim(ω1)〉 such that inV Pω2 � A is a♣lim-witnessing
sequence. To motivate this construction, let us first consider a simpler situation where
we want to find A and a thin ℵ1-CP (CR, �) such that after forcing with Q = QCR,� ,
A remains a♣lim-sequence. It turns out that choosing A andQ generically is sufficient
to guarantee this. More precisely, if we force using a product R = A×S where A

adds A and S adds (CR, �) both via countable approximations, then VR	Q � A is a
♣lim-witnessing sequence. The preparatory forcing R in the next section does exactly
this for adding A and the sequences 〈Qα : α < ω2〉, 〈p	

δ : δ ∈ Sω1ℵ0
〉.

5 ♣lim and¬ ♣1

We define a preparatory forcing R which generically adds 〈Qα : α < ω2〉 and 〈p	
δ : δ ∈

Sω2ℵ0
〉 satisfying Definition 4.1 (i)–(ii) using countable approximations. This ensures

that the resulting guided product Pω2 preserves a ♣lim witnessing sequence A which
is also added by R via countable approximations.

Definition 5.1 Let R be a forcing whose conditions are r = (ur , δr , 〈Qr ,α : α ∈
ur 〉, vr , 〈p	

r ,α : α ∈ vr 〉, Ar ) where

(a) ur ∈ [ω2] � ℵ0, δr < ω1,
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(b) Qr ,α = ⋃
ξ<δr

(QCRr ,α,�r ,α� ξ) for some thin ℵ1-CP (CRr ,α, �r ,α) as witnessed
by (Sr ,α, 〈cr ,α,δ : δ ∈ Sr ,α〉) — so only Sr ,α ∩ δr and 〈cr ,α,δ : δ ∈ Sr ,α ∩ δr 〉 are
relevant,

(c) vr ⊆ ur ∩ Lim(ω1) and for every α ∈ vr , ur ∩ α is unbounded in α,
(d) p	

r ,α is a function with domain an unbounded subset of ur ∩ α and for each
ξ ∈ dom(p	

r ,α), p	
r ,α(ξ) ∈ Qr ,α , and

(e) Ar = 〈Ar ,γ : γ ∈ Lim(ω1) ∩ δr 〉 where each Ar ,γ is an unbounded subset of γ of
order type ω.

For r , s ∈ R, define r � s iff the following hold:

(i) ur ⊆ us , δr � δs .
(ii) For every α ∈ ur , Sr ,α ∩ δr = Ss,α ∩ δr , and cr ,α,δ = cs,α,δ for every δ ∈ Sr ∩ δr .

It follows that Qr ,α ⊆ Qs,α and for every p ∈ Qs,α , if dom(p) is bounded
below δr , then p ∈ Qr ,α .

(iii) vr ⊆ vs and for every α ∈ vr , p	
s,α = p	

r ,α .
(iv) Ar = As � (Lim(ω1) ∩ δr ).

Claim 5.2 R is countably closed and hence it preserves stationary subsets ofω1. Under
CH, it satisfies ℵ2-c.c. and therefore preserves all cofinalities.

Proof It is clear that R is countably closed. Next let {ri : i < ω2} ⊆ R. Using CH,
we can find X0 ∈ [ω2]ℵ2 such that 〈uri : i ∈ X0〉 forms a 
-system with root u	. By
possibly extending each ri , we can assume that uri \u	 �= ∅ for every i ∈ X0. Choose
X ∈ [X0]ℵ2 such that the following hold:

(i) For every i, j ∈ X with i < j , sup(u	) < min(uri \u	) � sup(uri \u	) <

inf (urj \u	).
(ii) 〈vri : i ∈ X〉 forms a 
-system with root v	 ⊆ u	.
(iii) δri = δ	 does not depend on i ∈ X .
(iv) For every α ∈ u	, Qri ,α = Qα does not depend on i ∈ X .
(v) For every α ∈ v	, p	

ri ,α = p	
α does not depend on i ∈ X .

(vi) Ari = A	 does not depend on i ∈ X .

For clauses (iv), (v) and (vi),weuseCH. It is clear that any twoconditions in {ri : i ∈ X}
have a common extension. �
From now on we assume CH. The next claim is easily verified.

Claim 5.3 Each of the following sets is dense in R:

(a) {r ∈ R : α ∈ ur } for α < ω2.
(b) {r ∈ R : δr > δ} for δ < ω1.
(c) {r ∈ R : δ ∈ vr } for δ ∈ Sω2ℵ0

.

Let GR be R-generic over V . Work in V1 = V [GR]. For α < ω2, define Qα =⋃ {Qr ,α : r ∈ GR, α ∈ ur }. Note that for every α < ω2, Sα = ⋃ {Sr ,α ∩ δr : r ∈
GR, α ∈ ur } is a stationary subset of ⋃

k� 1 Sk and V1 � “(∀α < ω2)(Qα = QCRα,�α

for some thin ℵ1-CP (CRα,�α))”. For δ ∈ Sω2ℵ0
, let p	

δ = p	
r ,δ for some r ∈ GR with
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δ ∈ vr . Let A = 〈Aδ : δ ∈ Lim(ω1)〉 = ⋃ {Ar : r ∈ GR}. Let {αδ,n : n < ω} list Aδ in
increasing order.

Let Pω2 ∈ V1 be the product of 〈Qα : α < ω2〉 guided by 〈p	
δ : δ ∈ Sω2ℵ0

〉. Note
that, since R is countably closed, the set of conditions (r , p) ∈ R	Pω2 satisfying the
following is dense in R	Pω2 :

(a) p is an actual object.
(b) dom(p) ⊆ ur .
(c) (∀α ∈ dom(p))(p(α) ∈ Qr ,α).
(d) For every α < ω2 of cofinality ℵ0, if dom(p)∩α is unbounded in α, then α ∈ vr .

So we can assume that our conditions in R	Pω2 have this form.

Theorem 5.4 V
Pω2
1 � ♣lim∧¬♣1.

Proof ThatV
Pω2
1 � ¬♣1 follows fromLemma4.4.Wewill show that Awitnesses♣lim

in V
Pω2
1 . Suppose (r	, p	) �R	Pω2

Å ∈ [ω1]ℵ1. We will construct (r , p) � (r	, p	)

and δ < ω1 such that

(r , p) �R	Pω2
lim
n

|{k < n : α̊δ,k ∈ Å}|
n

= 1.

Choose 〈(ri , pi , γi ) : i < ω1〉 such that the following hold:

(i) (ri , pi ) � (r	, p	).
(ii) For all i < j < ω1, ri�Rrj , sup(uri ) < sup(urj ) and i � δri < δrj .
(iii) For some N < ω, for every i < ω1, sup

(⋃
j<i dom(pj )

)
< sup(dom(pi )) and

otp(dom(pi )) � ωN.
(iv) For every i < ω1 i ∈ ui and for every α < sup(uri ), there exists j ∈ (i, ω1)

such that α ∈ urj . So
⋃

i<ω1
uri = α	 ∈ [ω1, ω2) and cf (α	) = ℵ1.

(v) For every δ < α	 with cf (δ) = ℵ0, there exists i < ω1 such that δ ∈ vri . Hence⋃
i<ω1

vri = {δ < α	 : cf (δ) = ℵ0}.
(vi) 〈γi : i < ω1〉 is a strictly increasing sequence in ω1.
(vii) (ri , pi ) � γi ∈ Å.

Claim 5.5 There exist F ⊆ ω2 finite and X ∈ [ω1]ℵ1 such that for every α ∈ ω2 \F,
if α ∈ dom(pi ) ∩ dom(pj ) for some i < j in X, then (∀i ∈ X)(α ∈ dom(pi ) and
pi (α) does not depend on i ∈ X).

Proof For α < α	, let Q
′
α = ⋃ {Qri ,α : i < ω1, α ∈ uri }. Then Q

′
α is a thin ℵ1-CP.

For δ < α	 with cf (δ) = ℵ0, let p	
δ = p	

ri ,δ
where i < ω1 and δ ∈ vri . Let Pα	 be the

countable support product of 〈Q′
α : α < α	〉 guided by 〈p	

δ : δ < α	, cf (δ) = ℵ0〉 so
that each pi ∈ Pα	 . Now apply Lemma 4.3. �

By shrinking X and F , we can assume that for every i ∈ X , F ⊆ dom(pi ). Let
W = ⋂

i∈X (dom(pi )\F) and Yi = dom(pi )\(F ∪ W ). Then 〈Yi : i ∈ X〉 is a
sequence of pairwise disjoint non-empty countable sets. By shrinking X , we can also
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assume that for every i < j in X , sup(Yi ) < min(Yj ) and otp(dom(pi )) does not
depend on i ∈ X .

By Claim 2.5, we can find X1 ∈ [X ]ℵ1 such that for every α ∈ F exactly one of
the following holds:

(A) For every i ∈ X1, pi (α) = qα does not depend on i .
(B) There are m = mα , n = nα , m < n < ω and 〈qi,α : i ∈ X1〉 such that for every

i ∈ X1:

(i) qi,α ∈ Qri ,α , dom(qi,α) = dom(pi (α)) and ri �R pi (α) � Qα
qi,α ,

(ii) qi,α = {di,α,k : k < n} and for every k < n−1,dom(di,α,k) < dom(di,α,k+1),
(iii) for every k < m, di,α,k = dα,k does not depend on i ∈ X1,
(iv) for every j < j ′ in X , dom(d j,α,n−1) < dom(d j ′,α,m), and
(v) otp(di,α,k) = θα,k does not depend on i ∈ X1 and 1 � kα < ω is such that

θα,k < ωkα .

Let F0 be the set of α ∈ F for which case (A) holds and F1 = F \F0.
By reindexing, we can assume that X1 = ω1. Let k	 = max({kα +2 : α ∈ F}). Put

Y = ⋃
i<ω1

Yi . Choose a club E ⊆ ω1 such that for every δ ∈ E , the following hold:

(a) For every i < δ, there exists j < δ such that sup(uri ∩ Y ) < sup(Yj ).
(b) sup({δri : i < δ}) = δ.
(c) For every α ∈ F1, sup({dom(qi (α)) : i < δ}) = δ.
(d) sup({γi : i < δ}) = δ.

Fix δ ∈ Sk	 ∩ E and let 〈i(n) : n < ω〉 be increasing cofinal in δ. Let α	 =
sup({Yi(n) : n < ω}). We can assume that α	 /∈ F ∪ W — just pick a sufficiently
large δ ∈ Sk	 ∩ E . Define r ∈ R as follows:

(a) ur = ⋃
n<ω uri(n)

∪ {α	}, δr = δ + 1.
(b) For α ∈ ur , choose Qr ,α , (CRr ,α, �r ,α) and (Sr ,α, 〈cr ,α,δ : δ ∈ Sr ,α〉) as follows:

(i) If α ∈ ur \(F1 ∪ {α	}), choose a thin ℵ1-CP (CRr ,α, �r ,α) with witnessing
pair (Sr ,α, 〈cr ,α,δ : δ ∈ Sr ,α〉) such that for every n < ω, Sr ,α ∩ δi(n) =
Sri(n),α ∩ δi(n) and cr ,α,δ = cri(n),α,δ for every δ ∈ Sr ,α ∩ δi(n). So⋃

n<ω Qri(n),α ⊆ Qr ,α = QCRr ,α,�r ,α� δ.
(ii) If α = α	, choose Qr ,α , (CRr ,α, �r ,α) and (Sr ,α, 〈cr ,α,δ : δ ∈ Sr ,α〉) arbitrar-

ily.
(iii) If α ∈ F1, choose a thin ℵ1-CP (CRr ,α, �r ,α) with witnessing pair

(Sr ,α, 〈cr ,α,δ : δ ∈ Sr ,α〉) such that for every n < ω, Sr ,α ∩ δi(n) =
Sri(n),α ∩ δi(n), cr ,α,δ = cri(n),α,δ for every δ ∈ Sr ,α ∩ δi(n), δ ∈ Sr ,α and
cr ,α,δ = ⊕

n� 1〈di(n),α,k : k < nα〉 where 〈di(n),α,k : k < nα〉 is from clause
(B) (ii) above. Put Qr ,α = QCRr ,α,�r ,α� δ.

(c) vr = ⋃
n<ω vri(n)

∪ {α	}.
(d) For α ∈ vri(n)

, p	
r ,α = p	

ri(n),α
, and p	

r ,α	
= ⋃

n<ω pi(n) � Yi(n). So dom(p	
r ,α	

) is
an unbounded subset of ur ∩ α	.

(e) Ar = ⋃
n<ω Ari(n)

∪ {(δ, {γi(n) : n < ω})}.
Next define p as follows:

(i) dom(p) = F ∪ W ∪ ⋃
n<ω Yn .
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On some variants of the club principle 15

(ii) If α ∈ F0, then p(α) = qα where qα is from clause (B) above.
(iii) If α ∈ F1, then p(α) = {cr ,α,δ}.
(iv) If α ∈ W , then p(α) = pi(n)(α) which does not depend on n < ω.
(v) For every n < ω, p � Yi(n) = pi(n) � Yi .

It is clear that (r	, p	) � R	Pω2
(r , p). By Lemma 3.4,

(r , p) �R	Pω2
lim
n

|{k < n : (ri(k), pi(k)) ∈ GR	Pω2
}|

n
= 1.

Hence

(r , p) �R	Pω2
lim
n

|{k < n : γi(k) ∈ Å}|
n

= 1.

Since Ar ,δ = {γi(n) : n < ω}, the result follows. �

6 On♣inf � a

Definition 6.1 For a ∈ (0, 1], the principle ♣inf>a− says the following. There exists
A = 〈Aδ : δ ∈ Lim(ω1)〉 such that each Aδ = {αδ,n : n < ω} where αδ,n’s are
increasing cofinal in δ and for every A ∈ [ω1]ℵ1 and b < a, there exists some δ such
that

lim inf
n

|{k < n : αδ,k ∈ A}|
n

� b.

Theorem 6.2 Let 0 < a � 1 and suppose for every b < a,♣inf � b holds. Then♣inf>a−
holds.

We need some lemmas.

Lemma 6.3 Suppose 0 < a � 1, S ⊆ Lim(ω1) is stationary, B ∈ [ω1]ℵ1, and A =
〈Aδ : δ ∈ S〉 satisfy the following:
(a) Each Aδ = {αδ,n : n < ω} where αδ,n’s are increasing cofinal in δ.
(b) For every A ∈ [B]ℵ1, there exists δ ∈ S such that

lim inf
n

|{k < n : αδ,k ∈ A}|
n

� a.

Then ♣inf � a
S holds.

Proof For each A ∈ [B]ℵ1, define T (A) to be the set of δ ∈ S satisfying

lim inf
n

|{k < n : αδ,k ∈ A}|
n

� a.
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16 A. Kumar, S. Shelah

Note that each T (A) is stationary (see the proof of Fact 1.6) and A1 ⊆ A2 implies
T (A1) ⊆ T (A2). Put T = T (B). Let {α(ξ) : ξ < ω1} list the members of B in
increasing order. Let E ⊆ Lim(ω1) be a club such that for every δ ∈ E and ξ <

δ, ξ � α(ξ) < δ. Define C = 〈Cδ : δ ∈ T 〉 by Cδ = {ξ : α(ξ) ∈ Aδ}. Note that
sup(Cδ) = δ for every δ ∈ T . We claim that C witnesses ♣inf � a

T and since T ⊆ S,

♣inf � a
S also holds. To see this, fix W ∈ [ω]ℵ1 and put A = {α(ξ) : ξ ∈ W }. Fix

δ ∈ E ∩ T (A). It suffices to show that

lim inf
η→δ

|Cδ ∩ W ∩ η|
|Cδ ∩ η| � a.

For each η ∈ (min(Cδ), δ), let βη = max({α(ξ) : ξ ∈ Cδ ∩ η}) + 1. Observe that
|Cδ ∩ W ∩ η| � |Aδ ∩ A ∩ βη| and |Cδ ∩ η| = |Aδ ∩ B ∩ βη| � |Aδ ∩ βη|. It follows
that

|Cδ ∩ W ∩ η|
|Cδ ∩ η| �

|Aδ ∩ A ∩ βη|
|Aδ ∩ βη| .

Taking lim inf as η → δ, the result follows. �
Lemma 6.4 Suppose ♣inf � a

S holds. Then there exists a partition 〈Si : i < ω1〉 of S
into stationary sets such that for every i < ω1, ♣inf � a

Si
holds.

Proof Fix a witness A = 〈Aδ : δ ∈ S〉 for ♣inf � a
S where each Aδ = {αδ,n : n < ω}

and αδ,n’s are increasing cofinal in δ. Note that if a ∈ (0.5, 1], this is easy — choose
〈Xi : i < ω1〉 where Xi ’s are pairwise disjoint unbounded subsets of ω1 and let

Si =
{

δ ∈ S : lim inf
n

|{k < n : αδ,k ∈ Xi }|
n

� a

}

.

Since a > 0.5, Si ’s are pairwise disjoint and by Fact 1.6, for every Y ∈ [Xi ]ℵ1, there
are stationary many δ ∈ Si such that

lim inf
n

|{k < n : αδ,k ∈ Y }|
n

� a.

By Lemma 6.3, it follows that for every i < ω1, ♣inf � a
Si

holds.

In the general case, Si ’s may not be pairwise disjoint but for any F ∈ [ω1]K, where
Ka > 1, we have

⋂
i∈F Si = ∅. For Y ⊆ ω1, let S(Y ) be the set of δ ∈ S such that

lim inf
n

|{k < n : αδ,k ∈ Y }|
n

� a.

Claim 6.5 There exists 〈Yi : i ∈ W 〉 such that W ∈ [ω1]ℵ1, each Yi ∈ [Xi ]ℵ1 and for
every i ∈ W and Z ∈ [Yi ]ℵ1, S(Z)\ ⋃

j∈W∩i S(Yj ) is stationary.
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On some variants of the club principle 17

Proof Let F be the set of Y = 〈Yi : i ∈ W 〉 where W ∈ [ω1]ℵ1 and each Yi ∈ [Xi ]ℵ1.
For Y = 〈Yi : i ∈ W 〉 ∈ F, let n(Y ) be the least n such that for every F ∈ [W ]n,⋂

i∈F S(Yi ) is non-stationary — so 2 � n(Y ) � K . Let N = min{n(Y ) : Y ∈ F}
and fix Y = 〈Yi : i ∈ W 〉 with n(Y ) = N . It suffices to show that for every
i	 ∈ W , there exists j ∈ W such that j > i	 and for every Z ∈ [Yj ]ℵ1,
S(Z)\ ⋃ {S(Yi ) : i � i	, i ∈ W } is stationary. Towards a contradiction, suppose this
fails for some i	 ∈ W . Let W ′ = W \(i	 + 1). For each j ∈ W ′, choose Zj ∈ [Yj ]ℵ1

such that S(Zj )\ ⋃{S(Yi ) : i � i	, i ∈ W } is non-stationary. Let Z = 〈Zj : j ∈ W ′〉.
Then n(Z) � N , so we can find F ∈ [W ′]N−1 and such that

⋂
j∈F S(Zj ) is stationary.

It follows that there exists i ∈ W such that i � i	 and
⋂

j∈F S(Zj )∩S(Yi ) is stationary.
Hence

⋂
j∈F∪{i	} S(Yj ) is also stationary: Contradiction. �

Let 〈Yi : i ∈ W 〉 be as in Claim 6.5. For i ∈ W , let Ti = S(Yi )\ ⋃
j∈W∩i S(Yj ). Then

{Ti : i ∈ W } is a family of pairwise disjoint stationary sets and for every Z ∈ [Yi ]ℵ1,
there are stationary many δ ∈ Ti such that

lim inf
n

|{k < n : αδ,k ∈ Z}|
n

� a.

By Lemma 6.3, it follows that ♣inf � a
Ti

holds for every i ∈ W . This completes the
proof of Lemma 6.4. �
Lemma 6.6 Suppose ♣inf � a

S holds and S = S1 ∪ S2. Then one of ♣inf � a
S1

, ♣inf � a
S2

holds.

Proof Fix a witness A = 〈Aδ : δ ∈ S〉 for ♣inf � a
S where each Aδ = {αδ,n : n < ω}

and αδ,n’s are increasing cofinal in δ. Suppose ♣inf � a
S1

fails and choose A ∈ [ω1]ℵ1

such that for every δ ∈ S1,

lim inf
n

|{k < n : αδ,k ∈ A}|
n

< a.

Since A is ♣inf � a
S witnessing sequence, it follows that for every B ∈ [A]ℵ1, there

exists δ ∈ S2 such that

lim inf
n

|{k < n : αδ,k ∈ B}|
n

� a.

Now apply Lemma 6.3 to get ♣inf � a
S2

. �
Proof of Theorem 6.2 Let 〈an : n < ω〉 be an increasing sequence with limn an = a.
For each n, using Lemma 6.4, choose a sequence 〈Sn,i : i < ω1〉 of pairwise disjoint
stationary sets such that ♣inf � an

Sn,i
holds. For m < n < ω, define Wm,n = {i <

ω1 : ♣inf � an
Sm,i

holds}.
First suppose that for somem < ω, there are infinitely many n > m such thatWm,n

is infinite. Let 〈n(k) : k < ω〉 list such n’s in increasing order. Inductively choose
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18 A. Kumar, S. Shelah

i(k) ∈ Wm,n(k) such that i(k)’s are pairwise distinct and ♣inf � an(k)
Sm,i(k)

holds. For each

k < ω, choose 〈Aδ : δ ∈ Sm,i(k)〉 witnessing ♣inf � an(k)
Sm,i(k)

. Put T = ⋃{Sm,i(k) : k < ω}.
Then 〈Aδ : δ ∈ T 〉 witnesses ♣inf>a−

T . Since T ⊆ S, ♣inf>a−
S also holds.

So we can assume that there is no such m. Inductively choose a strictly increasing
sequence 〈m(k) : k < ω〉 such that for every n � m(k + 1), Wm(k),n is finite. Let W =⋃ {Wm( j),m(k) : j < k < ω} and choose i > sup(W ). Put Tk = Sm(k),i \ ⋃

l<k Sm(l),i

and T ′
k = Sm(k),i \Tk . Then Tk’s are pairwise disjoint, Sm(k),i = Tk ∪ T ′

k and by

our choice of i , ♣inf � am(k)

T ′
k

does not hold. Hence, by Lemma 6.6, ♣inf � am(k)
Tk

holds.

Put T = ⋃ {Tk : k < ω}. Since Tk’s are pairwise disjoint, we can take the union of

the witnesses for ♣inf � am(k)
Tk

’s to get a witness for ♣inf>a−
T . As T ⊆ S, ♣inf>a−

S
also holds. �
Proof of Theorem 1.3 (2) Fix 0 < a < 1. We indicate the essential changes in the
proof of Theorem 1.3 (1) to get a model of ♣inf � a∧(∀b ∈ (a, 1])¬♣inf � b. Define
a modified countable join as follows. In Definition 3.3, replace Clause (3) (ii) (b) by
(b	) and Clause (4) (ii) (b) by (b		) below.

(b	) |{i ∈ [2, j1) : (∃ k ∈ [m, n))(d′
i,k �= di,k)}| � j1(1 − a) for every 2 < j1 � j .

(b		) |{i ∈ [N , j1) : (∃ k ∈ [m, n))(d′
i,k �= di,k)}| � ( j1 − N )(1 − a) for every N <

j1 � j .

Note that this gives rise to a transitive �′
p there. Lemma 3.4 gets modified to the

following.

Lemma 6.7 Let (CR′
p, �

′
p) be as inDefinition 3.3with (b	) in place ofClause (3) (ii) (b)

and (b		) in place of Clause (4) (ii) (b). Let (CR, �) be an ℵ1-CP such that CR′
p = {c ∈

CR :dom(c) ⊆ δ} and �′
p = � �CR′

p. Let Q = QCR,� , p = {c	1 = ⊕
i� 1 di } and

pi = {di,k : k < n}. Then

p �Q lim inf
j

|{i < j : pi ∈ GQ}|
j

� a.

Next, Lemma 4.4 gets replaced by the following.

Lemma 6.8 For every b ∈ (a, 1], V Pω2 � ¬♣inf � b.

Proof Fix b′ ∈ (a, 1]. Towards a contradiction, suppose p0 ∈ Pω2 , 〈 Åδ = {α̊δ,n : n <

ω} : δ ∈ Lim(ω1)〉 ∈ V Pω2 are such that p0 � “(∀δ ∈ Lim(ω1))({α̊δ,n : n < ω} is
increasing cofinal in δ) and 〈 Åδ : δ < ω1〉 is a ♣inf � b′

witnessing sequence”. Since
Pω2 satisfies ccc, we can find γ < ω2 such that p0 ∈ Pγ and each α̊δ,n is a Pγ -name.
Fix b ∈ (a, b′).

Let X̊ = {α < ω1 : f̊Qγ
= 1}. Then X̊ ∈ V Pγ+1 and V Pγ+1 � X̊ ∈ [ω1]ℵ1. So

there exist p1 ∈ Pγ , q ∈ Qγ , δ ∈ Lim(ω1), and n0 < ω such that p1 � p0 and
(p1, q) �Pγ+1 (∀ j � n0)(|{i < j : α̊δ,i ∈ X̊ }| � jb). We must have that dom(q) ∩ δ

is unbounded in δ otherwise we can easily extend (p1, q) to get a contradiction. By
possibly extending q, by Definition 2.1 (D) (ii), we can assume that q = {ck : k < K	}
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On some variants of the club principle 19

where sup(dom(ck)) < inf (dom(ck+1)) for every k < K	 − 1 and for some K <

K	, dom(cK ) is an unbounded subset of δ. Let Sγ and 〈cγ,δ : δ ∈ Sγ 〉 witness that
(CRγ ,�γ ) is a thin ℵ1-CP. By Claim 3.6, we can further assume that cK = c′K ′ for
some 〈c′n : n � K ′〉 ∈ �(cγ,δ).

Let m < n < ω and di = 〈di,k : k < n〉 for i � 1 be as in Definition 3.3 and
cγ,δ = ⊕

i � 1 di . Then as 〈c′n : n � K ′〉 ∈ �(cγ,δ), we can find N � 1 a power of 2
such that cK = c′K ′ = c	N in the notation of Definition 3.3.

Choose p2 ∈ Pγ , p2 � p1, n	 > n0 a power of 2, and αn	 > min(dom(c	N )) such
that p2 �Pγ

α̊δ,n	 = αn	 . Put c = (a + b)/2. Let n		 > n	 be a power of 2 such
that n	/n		 < (b − c)/(1 − c). Choose p3 � p2 and 〈αn : n ∈ [n	, n		)〉 such that for
every n ∈ [n	, n		), p3 �Pγ

α̊δ,n = αn . Let F = {αn /∈ dom(q) : n ∈ [n	, n		)}. Let
q ′ = q∪⋃

α∈F {dα}where dom(dα) = {α} and fdα (α) = 0. If F is empty, put q ′ = q.
Now it is possible to choose g ∈ �(c	N ) such that letting q ′′ = (q ′ \ {c	N })∪g forces

{n ∈ [n	, n		) : αn /∈ X̊} � (1−c)(n		−n	)—we leave the details of this to the reader.
This means that (p3, q ′′) forces that |{i < n		 : α̊δ,i ∈ X̊}| � n	 + c(n		− n	) < bn		

which is a contradiction. �

Now the remainder of the proof is exactly the same except for the fact that at the end
of the proof of ♣inf � a, we use Lemma 6.7 in place of Lemma 3.4. �
Proof of Theorem 1.3 (3) Let 〈ak : k � 1〉 be an increasing sequence with limit a. Pro-
ceed as in the proof of Theorem 1.3 (2) with the following modification for countable
joins. In Definition 3.3, replace Clause (3) (ii) (b) by (b	) and Clause (4) (ii) (b) by (b		)
below.

(b	) |{i ∈ [2, j1) : (∃ k ∈ [m, n))(d′
i,k �= di,k)}| � j1(1 − ak	 ) for every 2 < j1 � j .

(b		) |{i ∈ [N , j1) : (∃ k ∈ [m, n))(d′
i,k �= di,k)}| � ( j1 − N )(1 − ak	 ) for every

N < j1 � j .

The rest of the proof is similar to that of Theorem 1.3 (2). We leave the details to the
reader. �
7 On♣sup�a

Definition 7.1 For a ∈ (0, 1] and S ⊆ Lim(ω1) stationary, the principle ♣sup� a
S says

the following: There exists A = 〈Aδ : δ ∈ S〉 such that

(a) each Aδ = {αδ,n : n < ω} and αδ,n’s are increasing cofinal in δ, and
(b) for every A ∈ [ω1]ℵ1, there exists δ ∈ S such that

lim sup
n

|{k < n : αδ,k ∈ A}|
n

� a.

As usual, if S = Lim(ω1), we just write ♣sup� a.

The following remark describes the situation in the Cohen and the random real models.

Remark 7.2 (1) Suppose V � ♣ and let P be the forcing for adding ℵ2 Cohen reals.
Then V P � ♣sup� 1∧(∀a > 0)¬♣inf � a. Moreover, the following holds in V P: For
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20 A. Kumar, S. Shelah

every A = 〈Aδ : δ ∈ Lim(ω1)〉 where each Aδ = {αδ,n : n < ω} and αδ,n’s are
increasing cofinal in δ, there exists A ∈ [ω1]ℵ1 such that for every δ ∈ Lim(ω1),

lim inf
n

|{k < n : αδ,k ∈ A}|
n

= 0.

(2) Suppose V � ♣ and let P be the forcing for adding ℵ2 random reals. Then
V P � (∀a > 0)¬♣sup� a. Furthermore, the following holds in V P: There exists
A = 〈Aδ : δ ∈ Lim(ω1)〉 where each Aδ = {αδ,n : n < ω} and αδ,n’s are increasing
cofinal in δ such that for every A ∈ [ω1]ℵ1, there exists δ ∈ Lim(ω1) such that

lim sup
n

|{k < n : αδ,k ∈ A}|
n

> 0.

Proof (1) Fix a ♣-witnessing sequence A = 〈Aδ : δ ∈ Lim(ω1)〉 in V where each
Aδ = {αδ,n : n < ω} and αδ,n’s are increasing cofinal in δ. P is the set of all finite
partialmaps fromω2 to 2 ordered by inclusion.Wefirst check thatV P � A is a♣sup� 1-
witnessing sequence. Suppose p �P Å ∈ ⋂ [ω1]ℵ1. It suffices to find δ ∈ Lim(ω1)

and q � p such that

q � lim sup
n

|{k < n : αδ,k ∈ Å}|
n

= 1.

Choose 〈(pi , γi ) : i < ω1〉 such that γi ’s are strictly increasing and for every i < ω1,
p � pi and pi � γi ∈ Å. Using the 
-system lemma, choose X ∈ [ω1]ℵ1 and
R ∈ [ω2]<ℵ0 such that 〈dom(pi ) : i ∈ X〉 is a 
-system with root R and pi � R = q
does not depend on i ∈ X . Clearly, q � p. Put B = {γi : i ∈ X }. Since A is a ♣-
witnessing sequence in V , there exists δ ∈ Lim(ω1) such that Aδ ⊆ B. We claim that
q, δ are as required. Suppose not and fix r � q, ε > 0 rational and N < ω such that

r � (∀n > N )

( |{k < n : αδ,k ∈ Å}|
n

< 1 − ε

)

.

Note that r is compatible with all but finitely many conditions in {pi : γi ∈ Aδ}. Taking
the union of r with a sufficiently large number of these conditions, we get an extension
s � r and n	 > N such that

s � |{k < n	 : αδ,k ∈ Å}|
n	

> 1 − ε

which is a contradiction. So V P � ♣sup� 1. Next, we check V P � (∀a > 0)¬♣inf � a.
Let Pγ be the poset whose conditions are finite partial maps from γ to 2. So P = Pω2 .
Since each subset of ω1 in V P appears in V Pγ for some γ < ω2, it suffices to show
the following. Whenever a > 0 and A = 〈Aδ : δ ∈ Lim(ω1)〉 are in V , V Pω1 � A is
not a ♣inf � a-witnessing sequence. Let G be Pω1 -generic over V . Put g = ⋃

G. Then
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g : ω1 → 2. Define A = {α < ω1 : g(α) = 1}. Then A ∈ [ω1]ℵ1. We claim that for
every δ ∈ Lim(ω1),

lim inf
n

|{k < n : αδ,k ∈ A}|
n

= 0.

Note that this also gives us the “moreover part”. Towards a contradiction, suppose this
fails. Then there are p ∈ G, δ ∈ Lim(ω1), N < ω and b > 0 such that

p �Pω1
(∀n > N )

( |{k < n : αδ,k ∈ Å}|
n

� b

)

.

Now since dom(p) is finite, we can easily find q � p and n	 > N such that

q �Pω1

|{k < n	 : αδ,k ∈ Å}|
n

<
b

2

which is a contradiction.

(2) Next let P be the forcing for adding ℵ2 random reals. So P = Pω2 where Pγ is
the measure algebra on (2γ, μγ ) w.r.t. the standard product measure μγ . Note that
every subset of ω1 in V P appears in V Pγ for some γ < ω2. So to show that V P �
(∀a > 0)(¬♣sup� a), it suffices to show the following. Whenever a > 0 and A =
〈Aδ : δ ∈ Lim(ω1)〉 are in V , V Pω1 � A is not a ♣sup� a-witnessing sequence. Let
G be Pω1 -generic over V and g ∈ 2ω1 be the generic random sequence added by G.
Fix N > 1/a. In V [G], define A = {α < ω1 : (∀n < N )(g(ωαδ,k + n) = 1)}. Then
A ∈ [ω1]ℵ1. It suffices to show that for every δ ∈ Lim(ω1), the asymptotic density of
{k < ω : αδ,k ∈ A} in ω is strictly less than a. Fix δ ∈ Lim(ω1). For x ∈ 2ω1, define

Tx = {k < ω : (∀n < N )(x(ωαδ,k + n) = 1)}.

As Aδ ∈ V , Tx ∈ V . By the law of large numbers, for almost all x ∈ 2ω1, the
asymptotic density of Tx in ω is 2−N. Since g is random over V , it follows that
{k < ω : αδ,k ∈ A} = Tg has asymptotic density 2−N < 1/N < a.

Finally, fix a ♣-witnessing sequence A = 〈Aδ : δ ∈ Lim(ω1)〉. Suppose V P � Å ∈
[ω1]ℵ1. We will find p ∈ P and δ ∈ Lim(ω1) such that

p � lim sup
n

|{k < n : αδ,k ∈ Å}|
n

> 0.

Choose 〈(pi , γi ) : i < ω1〉 such that γi ’s are strictly increasing and for every i < ω1,
p � pi and pi � γi ∈ Å. Choose X ∈ [ω1]ℵ1 and b > 0 such that for every i ∈ X ,
μ(pi ) � b. Choose δ ∈ Lim(ω1) such that Aδ ⊆ {γi : i ∈ X }. For each n < ω, fix
i(n) ∈ X such that αδ,n = γi(n). Put qn = pγi(n)

. Define fn = 1/n
∑

k<n 1qk where
1qk : 2ω2 → 2 is the characteristic function of qk . Let f = lim supn fn . Note that
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0 � f � 1. By Fatou’s lemma,

∫

f =
∫

lim sup
n

fn � lim sup
n

∫

fn � b.

Let p = {x ∈ 2ω2 : f (x) � b/2}. Then μ(p) � b/2 otherwise

∫

f =
∫

p
f +

∫

2ω2\p
f � μ(p) + (1 − μ(p))

b

2
<

b

2
+ b

2
= b.

It is easy to see that p, δ are as required. This completes the proof of Remark 7.2. �
We now prove Theorem 1.4 — for all a, b ∈ (0, 1), ♣sup� a

S is equivalent to ♣sup� b
S .

For this, it is clearly enough to show the following.

Lemma 7.3 Let a ∈ (0, 1) and a � b <
√
a. Then ♣sup� a

S implies ♣sup� b
S .

Proof Let A = 〈Aδ : δ ∈ S〉 witness ♣sup� a
S . We can assume that A is not a ♣sup� b

S -
witnessing sequence. Choose A ∈ [ω1]ℵ1 such that for every δ ∈ S, for every large
enough α < δ,

|A ∩ Aδ ∩ α|
|Aδ ∩ α| < b.

Let S′ be the set of δ ∈ S such that

lim sup
α→δ

|A ∩ Aδ ∩ α|
|Aδ ∩ α| � a.

Then S′ is stationary. For δ ∈ S′, define Bδ = Aδ ∩ A.

Claim 7.4 For every B ∈ [A]ℵ1 there are stationary many δ ∈ S′ such that

lim sup
α→δ

|B ∩ Bδ ∩ α|
|Bδ ∩ α| � b.

Proof Suppose not. Choose B ∈ [A]ℵ1 andW ⊆ S′ non-stationary such that for every
δ ∈ S′ \W , for every large enough α < δ, we have

|B ∩ Bδ ∩ α|
|Bδ ∩ α| < b.

Since B ⊆ A, we can choose δ ∈ S′ \W such that

lim sup
α→δ

|B ∩ Aδ ∩ α|
|Aδ ∩ α| � a.
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Now for every large enough α < δ, we have

( |B ∩ Bδ ∩ α|
|Bδ ∩ α|

)( |A ∩ Aδ ∩ α|
|Aδ ∩ α|

)

< b2.

Since B ∩ Bδ = B ∩ Aδ and Bδ ∩ α = A ∩ Aδ ∩ α, we get

B ∩ Aδ ∩ α

Aδ ∩ α
< b2 < a

which is impossible. �
Let {αi : i < ω1} list A in increasing order. Let E ⊆ ω1 be a club such that for

every i ∈ E , sup j<i αj = i . Define C = 〈Cδ : δ ∈ S〉 as follows. If δ ∈ E ∩ S′, then
Cδ = { j < δ : αj ∈ Bδ}. Otherwise, choose Cδ to be an arbitrary unbounded subset

of δ of order type ω. It is easy to check that C witnesses ♣sup� b
S . �

8 ¬ ♣sup�1 and♣sup>1−

Definition 8.1 The principle ♣sup>1− says the following: There exists A = 〈Aδ : δ ∈
Lim(ω1)〉 such that

(a) each Aδ = {αδ,n : n < ω} and αδ,n’s are increasing cofinal in δ, and
(b) for every A ∈ [ω1]ℵ1 and ε > 0, there exists some δ such that

lim sup
n

|{k < n : αδ,k ∈ A}|
n

� 1 − ε.

To prove Theorem 1.5, it is enough to show that

Theorem 8.2 ¬♣sup� 1∧♣sup>1− is consistent.

Definition 8.3 Suppose A = 〈Aδ : δ ∈ Lim(ω1)〉 satisfies: For every δ, Aδ =
{αδ,n : n < ω} where αδ,n’s are increasing and cofinal in δ. Define Q = QA as
follows: p ∈ Q iff p = ( f p, u p, ε p) where

(i) f p is a finite partial function from ω1 to {0, 1},
(ii) u p is a finite subset of Lim(ω1), and
(iii) ε p = 〈εp,δ : δ ∈ u p〉 where each εp,δ is a positive rational < 1.

For p, q ∈ Q define p � q iff

(a) f p ⊆ fq ,
(b) u p ⊆ uq ,
(c) ε p = εq � u p, and
(d) for every δ ∈ u p, letting W = {n < ω : αδ,n ∈ dom( fq)\dom( f p)}, for every

N < ω either W ∩ [0, N ) = ∅ or

|{n ∈ W ∩ [0, N ) : fq(αδ,n) = 1}|
|W ∩ [0, N )| � 1 − εp,δ.
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Claim 8.4 Suppose p, q, r are in Q where Q = QA is as in Definition 8.3. If p � q
and q � r , then p � r .

Proof Clauses (a)–(c) are clear. So we only need to check Clause (d) for p, r .
Fix δ ∈ u p and N < ω. Put ε = εp,δ = εq,δ = εr ,δ . Let Wp,r = {n <

N : αδ,n ∈ dom( fr )\dom( f p)} and W 1
p,r = {n ∈ Wp,r : fr (αδ,n) = 1}. Define

Wp,q ,Wq,r ,W 1
p,q and W 1

q,r analogously and note that Wp,r = Wp,q  Wq,r and
W 1

p,r = W 1
p,q  W 1

q,r . Now using Clause (d) for the pairs p, q and q, r we get

|W 1
p,r | = |W 1

p,q | + |W 1
q,r | � |Wp,q |(1 − ε) + |Wq,r |(1 − ε) = |Wp,r |(1 − εp,δ).

Hence Clause (d) also holds for p, r . �
Claim 8.5 Let A and Q = QA,a be as in Definition 8.3. Then Q has ℵ1 as a precaliber.

Proof Suppose {pi = ( fi , ui , εi ) : i < ω1} ⊆ Q. By thinning down we can assume
the following:

(a) 〈dom( fi ) : i < ω1〉 is a 
-system with root R and fi � R does not depend on i .
(b) 〈ui : i < ω1〉 is a 
-system with root u	 and εi � u	 does not depend on i .
(c) For every i < j < ω1 and δ ∈ ui , dom( f j ) ∩ Aδ ⊆ R.

Let E ⊆ ω1 be a club such that for every i ∈ E , for every j < i , dom( f j ) ∪ uj ⊆ i .
Choose S ⊆ E stationary such that for every i ∈ S, dom( fi ) ∩ i = R, ui ∩ i = u	

and
⋃ {Aδ ∩ i : δ ∈ ui , δ > i } = F where F does not depend on i ∈ S. Note that

for every infinite X ⊆ S and i ∈ S, if i > sup(X), then for all but finitely many
j ∈ X , dom( f j )∩ Ai ⊆ R. Let X ∈ [S]ℵ1 be such that for every increasing sequence
〈αn : n < ω〉 in X , supn αn /∈ X . Define c : [X ]2 → {0, 1} by c({i, j}) = 1 iff i < j
and Aj ∩ dom( fi ) ⊆ R. By the Erdős–Dushnik–Miller theorem, either there exists
Y ∈ [X ]ℵ1 such that c[[Y ]2] = {1} or there exists Y ′ ⊆ X such that otp(Y ′) = ω + 1
and c[[Y ′]2] = {0}. Since the latter is impossible, we can find Y ∈ [X ]ℵ1 such that
c[[Y ]2] = {1}. Hence
(d) For every i �= j in Y and δ ∈ uj , dom( fi ) ∩ Aδ ⊆ R.

It follows that {pi : i ∈ Y } is centered. �
Let f̊Q = ⋃ { f p : p ∈ GQ}. Then �Q f̊Q : ω1 → {0, 1}. Let X̊Q = {α <

ω1 : f̊Q(α) = 1}. Note that �Q X̊Q ∈ [ω1]ℵ1. To see this, suppose p ∈ P and
α < ω1. Choose β > max(u p ∪ {α}) and define q by fq = f p ∪ {(β, 1)}, uq = u p

and εq = ε p. Then q � p and q � β ∈ X̊Q.

Claim 8.6 X̊Q witnesses that A is not a ♣sup� 1 witnessing sequence in VQ.

Proof Easy. �
Claim 8.7 Suppose V � ♣sup>1− holds and let C = 〈Cδ : δ ∈ Lim(ω1)〉 be a witness
where Cδ = {βδ,n : n < ω} and βδ,n’s are increasing cofinal in δ. Then VQ � ♣sup>1−
holds with C as witness.
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Proof Suppose p �Q Å ∈ [ω1]ℵ1 and ε > 0 is rational. Choose 〈(pi , γi ) : i < ω1〉
such that γi ’s are increasing and for each i < ω1, p � pi �Q γi ∈ Å. Arguing as in
the proof of Claim 8.5, we can assume the following:

(a) 〈dom( fi ) : i < ω1〉 is a 
-system with root R, fi � R = f	 and |dom( fi )\ R| =
n	 do not depend on i .

(b) If i < j , then R < dom( fi )\ R < dom( f j )\ R.
(c) 〈ui : i < ω1〉 is a 
-system with root u	, εi � u	 = e	 does not depend on i and

i < j implies ui \u	 < uj \u	.
(d) For every i �= j and δ ∈ ui , dom( f j ) ∩ Aδ ⊆ R.

Put X = {γi : i < ω1}. Let E ⊆ ω1 be a club such that for every i ∈ E and j < i ,
γj < i and u	 ∪ dom( f j ) ⊆ i . Choose δ ∈ E such that

lim sup
n

|{k < n : βδ,k ∈ X }|
n

� 1 − ε

10
.

Let q = ( f	, u	 ∪ {δ}, ε	 ∪ {(δ, ε/5)}). It suffices to show that for any q1 � q and
N0 < ω, there exist r � q1 and N2 > N0 such that

r �Q

|{n < N2 : βδ,n ∈ Å}|
N2

� 1 − ε.

So fix q1 � q and N0 < ω. For each n < ω, define

rn =
{
pi if βδ,n = γi ,

q if βδ,n /∈ X .

Let W ′
n = dom( frn )\ R and Wn = W ′

n ∩ Aδ . Choose N1 > N0 such that for every
n � N1, if δ′ ∈ uq1 \{δ}, then W ′

n ∩ Aδ′ = φ. We need a lemma.

Lemma 8.8 Suppose 0 < a1 < a2 < 1 and 1 � K < ω. Then for all sufficiently large
N < ω, the following holds. For every 〈Wk : k < N 〉 where each Wk is an interval in
ω such that |Wk | � K, Wk < Wk+1 and

⋃
k<n Wk = [0, M), there exists F ⊆ N such

that

(i) |F | � Na1, and
(ii) for every m � M,

∣
∣[0,m) ∩ ⋃

k∈F Wk
∣
∣ � ma2.

Proof First assume that |Wk | = K for every k < N — so M = NK . Let m1 < N be
least such that Km1 � M(1 − a2). Then F = [m1, N ) is as required. For the general
case, for each K ′ � K , put SK ′ = {k < N : |Wk | = K ′} and find a suitable FK ′ ⊆ SK ′
for 〈Wk : k ∈ SK ′ 〉. Then F = ⋃ {FK ′ : 1 � K ′ � K } is as required. �
Choose N2 > N1 such that (1− N1/N2)(1−ε/2) � 1−ε and |{k ∈ [N1, N2) : βδ,k ∈
X}| � (1 − ε/4)(N2 − N1). Using Lemma 8.8, choose F ⊆ [N1, N2) such that the
following hold:

(a) |F | � (N2 − N1)(1 − ε/4).
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(b) r = ( fr , ur , εr ) extends each condition in {q1, rn : n ∈ F} where
(i) ur = uq1 ∪ ⋃

n∈F urn ,
(ii) dom( fr ) = dom( fq1) ∪ ⋃

n∈F W ′
n ∪ ⋃ {Wn : n ∈ [N1, N2)\F},

(iii) fq1 ⊆ fr ,
(iv) fr �

⋃ {Wn : n ∈ [N1, N2)\F} ≡ 0,
(v) for every n ∈ F , fr �W ′

n = frn , and
(vi) εr = εq1 ∪ ⋃

n∈F εrn .

Note that r � |{k < N2 : βδ,k ∈ Å}| � (N2 − N1)(1 − ε/2). By our choice of N2, it
follows that

r �Q

|{n < N2 : βδ,n ∈ Å}|
N2

� 1 − ε. �

Let η � 1 and suppose 〈(Pξ , Qξ , Aξ ) : ξ < η〉 satisfies the following:
(1) 〈(Pξ , Qξ ) : ξ < η〉 is a finite support iteration with limit Pη.
(2) Aξ ∈ V Pξ and �Pξ

“Aξ = 〈Aξ,δ : δ ∈ Lim(ω1)〉, Aξ,δ = {αξ,δ,n : n < ω} where
αξ,δ,n’s are increasing cofinal in δ”.

(3) V Pξ � Qξ = QAξ
.

Note that Pη is ccc.

Claim 8.9 Suppose V � ♣sup>1− holds and let C = 〈Cδ : δ ∈ Lim(ω1)〉 be a witness
where Cδ = {βδ,n : n < ω} and βδ,n’s are increasing cofinal in δ. Then V Pη �
♣sup� 1− via the same witness.

Proof By induction on η. If η is a successor or cf (η) > ℵ1, this follows from Claim
8.7.

Suppose cf (η) = ℵ0. Let 〈η(n) : n < ω〉 be increasing cofinal in η. Suppose
p �Pη

X̊ ∈ [ω1]ℵ1. Choose n	 < ω such that p ∈ Pη(n	). For each n < ω, let

X̊n = {α < ω1 : (∃p ∈ GPη(n)
)(p �Pη

α ∈ X̊)} — so X̊n ∈ V Pη(n) and �Pη
X̊n ⊆ X̊ .

Then for some n ∈ [n	, ω), p �Pη(n)
X̊n ∈ [ω1]ℵ1. Nowapply the inductive hypothesis.

Next suppose cf (η) = ℵ1, ε > 0, and p �Pη
X̊ ∈ [ω1]ℵ1. Choose 〈(pi , γi ) : i < ω1〉

such that the following hold:

(a) γi ’s are increasing.
(b) pi ∈ Pη, pi � p and pi �Pη

γi ∈ X̊ .
(c) 〈dom(pi ) : i < ω1〉 is a 
-system with root W .

Choose θ < η such that W ⊆ θ . Since Pθ is ccc, we can find q ∈ Pθ such that q � p
and q �Pθ

“{i < ω1 : pi � θ ∈ GPθ
} is uncountable”. Let Y̊ = {γi : i < ω1∧ pi � θ ∈

GPθ
}. Then Y̊ ∈ V Pθ and q �Pθ

Y̊ ∈ [ω1]ℵ1. By the inductive hypothesis, we can find
r ∈ Pθ and δ ∈ Lim(ω1) such that r � q and

r �Pθ
lim sup

n

|{k < n : βδ,k ∈ Y̊ }|
n

� 1 − ε

2
.
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Since 〈dom(pi )\θ : i < ω1〉 is a sequence of pairwise disjoint sets, it also follows
that

r �Pη
lim sup

n

|{k < n : βδ,k ∈ X̊ }|
n

� 1 − ε. �

Proof of Theorem 8.2 Starting with a model of 2ℵ1 = ℵ2 and ♣sup>1− construct
〈(Pξ , Qξ , Aξ ) : ξ < ω2〉 such that the following hold:

(1) 〈(Pξ , Qξ ) : ξ < ω2〉 is a finite support iteration with limit Pω2 .
(2) Aξ ∈ V Pξ and �Pξ

“Aξ = 〈Aξ,δ : δ ∈ Lim(ω1)〉, Aξ,δ = {αξ,δ,n : n < ω} where
αξ,δ,n’s are increasing cofinal in δ”.

(3) V Pξ � Qξ = QAξ
.

(4) For every η < ω2 and A ∈ V Pη satisfying �Pη
“A = 〈Aδ : δ ∈ Lim(ω1)〉 where

each Aδ is an unbounded subset of δ of order type ω”, there exists ξ ∈ [η, ω2)

such that �Pξ
A = Aξ .

To see why clause (4) can be satisfied, use 2ℵ1 = ℵ2 and the fact that for each η < ω2,
Pη is a ccc forcing with a dense subset of size ℵ1. �
We conclude with some questions.

Question 8.10 (1) Is ♣sup� 0.5∧¬♣sup>1− consistent? What if CH holds?
(2) Assume CH. Does ♣sup� 0.5 imply ♣sup� 1? Does ♣sup>1− imply ♣sup� 1?
(3) For a ∈ (0, 1), is ♣inf � a∧¬♣sup� 1 consistent?
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