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Abstract. If κ > ℵ0 then κ → (κ,TopKκ)
2, i.e., every graph on κ vertices

contains either an independent set of κ vertices, or a topological Kκ, iff κ is reg-
ular and there is no κ-Suslin tree. Concerning the statement ω2 → (TopKω2

)2
ω
,

i.e., in every coloring of the edges of Kω2
with countably many colors, there is a

monochromatic topological Kω2
, both the statement and its negation are consis-

tent with the Generalized Continuum Hypothesis.

The natural generalization of Ramsey’s theorem ℵ0 → (ℵ0,ℵ0)
2 fails

strongly for most cardinals, as it is well known. If κ is uncountable, then κ
→ (κ, κ)2 holds if and only if κ is weakly compact. Erdős and Hajnal in [2]
gave a short, elegant proof (applying ultrafilters) of κ → (TopKκ,TopKκ)

2

for κ > ℵ0, that is, if the pairs of κ are colored with 2 colors, then one of
them contains a topological Kκ. The same argument gives κ → (TopKκ)

2
n

for any finite n.
Erdős and Hajnal asked if the asymmetric variant κ → (κ,TopKκ)

2 holds
for κ > ℵ0. A moment’s reflection shows that this implies the above κ →
(TopKκ)

2
n. Here we answer this question by showing that κ �→ (κ,TopKκ)

2

for κ is singular and if κ > ℵ0 is regular, κ → (κ,TopKκ)
2 holds if and only

if there is no κ-Suslin tree.
Next we address the following natural extension of the Erdős–Hajnal

result: does κ → (TopKκ)
2
ω hold? As the edges of the complete graph Kω1
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can be covered by countably many circuit-free graphs (Erdős–Kakutani [3]),
κ must be at least ℵ2. Our interest is therefore in ω2 → (TopKω2

)2ω.
In order to show the positive relation, we introduce the following princi-

ple.

(∗)

{
For every F : [ω2]

2 → ω there exist i < ω and A ∈ [ω2]
ω2 such that

if α,β ∈ A, α < β, then there is γ > β with F (α,γ) = F (β,γ) = i.

We show that (∗) implies ω2 → (TopKκ)
2
ω. (∗) follows from the existence

of an ℵ1-dense ideal on ω2, whose consistency was deduced from the consis-
tency of a huge cardinal by Foreman [4]. Next we give two forcing models
for the negation of (∗), one without, one with CH. Finally we give a forc-
ing model of GCH in which [ω2]

2 is the union of countably many ω2-Suslin
trees, from which we deduce ω2 �→ (TopKω2

)2ω.
We notice that both results lift to larger cardinals: if μ > ω is regular

then both μ++ �→ (TopKμ++)2μ and μ++ → (TopKμ++)2μ are consistent (the
latter relative to the consistency of a huge cardinal).

Notation. Definitions. We use the notation and definitions of ax-
iomatic set theory. In particular, ordinals are von Neumann ordinals, and
each cardinal is identified with the least ordinal of that cardinality.

If S is a set, κ a cardinal, we define [S]κ = {x ⊆ S : |x| = κ}, [S]<κ =
{x ⊆ S : |x| < κ}. If A is some set of ordinals, then tp(A) is the order type
of A. If A, B are sets of ordinals, then A < B denotes that x < y holds for
x ∈ A, y ∈ B. H(θ) denotes the set of all sets with transitive closure of size
< θ. <w always denotes some well order on it.

In a partially ordered set (P,≤) we define p↑ = {q ∈ P : p < q} and
p↓ = {q ∈ P : q < p}. A tree (T,≤) is a partially ordered set in which
each t↓ is well ordered. Define Tα = {t ∈ T : tp(t↓) = α}, the height of

(T,≤) is h(T ) = min{α : Tα = ∅}. If α ≤ h(T ) is limit, an α-branch is a
set b ⊆

⋃
{Tβ : β < α} such that (b,≤) is totally ordered and |b ∩ Tβ| = 1

(β < α). A set A ⊆ T is an antichain if its elements are pairwise incompa-
rable in (T,≤). A tree (T,≤) with h(T ) = κ is a κ-Suslin-tree if it contains
neither κ-branches, nor antichains of size κ. It is easy to see that if κ is
weakly compact, then there is no κ-Suslin tree. If the axiom of constructibil-
ity holds, then the reverse implication holds—for every non-weakly compact
strongly inaccessible κ there exists a κ-Suslin tree, as shown by Jensen (cf.
[5] and also in [1]).

A graph is a pair (V,X), where V is an arbitrary set (the set of ver-
tices) and X ⊆ [V ]2 (the set of edges). We sometimes write simply X
rather than (V,X), i.e., identify the graph with its edge set. If (V,X) is
a graph, x ∈ V a vertex, then N(x) = {y ∈ V : {x, y} ∈ X} is the neighbor-

hood of x. If V is ordered by <, then N−(x) = {y < x : {x, y} ∈ X} and
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N+(x) = {y > x : {x, y} ∈ X}. A path is a sequence (v0, v1, . . . , vn) of dis-
tinct vertices such that {vi, vi+1} ∈ X (i < n). A graph is connected if any
two vertices are connected by a path.

Kκ is the complete graph on κ vertices: (κ, [κ]2).
A graph (V,X) contains a topological Kκ if there exist distinct vertices

{vα : α < κ} and paths {pα,β : α < β < κ} such that pα,β is a path between
vα and vβ , and the paths are vertex disjoint, except, of course, at their
extremities.

A similar notion is that the graph (V,X) contains Kκ as a minor. This
happens if there are disjoint vertex sets {Wα : α < κ} such that each Wα

induces a connected subgraph, and there is an edge between Wα and Wβ

(α < β < κ). It is easy to see that if (V,X) contains a topological Kκ, then
it also contains Kκ as a minor. The reverse implication is proved in [6] by
Jung if κ is uncountable regular.

The comparison graph of a tree (T,≤) is (T,X) where X consists of all
pairs {t, t′} where t < t′t.

The partition relation symbol κ → (α, β)2 holds if the following state-
ment is true: for every f : [κ]2 → {0, 1} either there is a homogeneous set of
size α in color 0, or else there is a homogeneous set of size β in color 1. Simi-
larly, κ → (α)2γ abbreviates the statement that for every coloring f : [κ]2 → γ

there is a homogeneous set of size α. That is, the graph f−1(τ) contains a
Kα for some τ < γ. We use the ad hoc modification κ → (TopKα)

2
γ to de-

note that for each f : [κ]2 → γ for some τ < γ the graph f−1(τ) contains a
topologicalKα and similarly for κ → (α,TopKβ)

2. The negation of all these
statements is denoted by crossing the arrows.

Lemma 1. Let κ be regular, T a tree of height κ, X the comparison graph
of T . Then X contains a topological Kκ iff there is a κ-branch in T .

Proof. One direction is obvious: if there is a κ branch in T , then this
is a Kκ in X .

For the other direction assume that {aα, pα,β : α < β < κ} is a topologi-
cal Kκ in X .

For each α < κ, as |aα↓| < κ, there are only < κ many β such that pα,β
has a vertex in aα↓ (apart from aα). For all other β, all vertices of pα,β ,
specifically aβ must be in aα↑, that is, aα < aβ . We obtained that there is a
U ∈ [κ]κ such that aα < aβ for α, β ∈ U , α < β, but this gives a κ-branch.
�

Lemma 2. If κ is singular, then κ �→ (κ,TopKκ)
2.

Proof. Set μ = cf(κ), sup{κα : α < μ} = κ. Let V be the disjoint union
of the sets Vα (α < μ), |Vα| = κα and let X be the graph where two vertices
are joined iff they are in the same Vα. Now clearly there is neither an inde-
pendent set of size μ+, nor a topological Kκ, or even a connected subgraph
of cardinality κ. �
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Theorem 3. If κ > ω is regular, then the following are equivalent.
(a) κ �→ (κ,TopKκ)

2.
(b) There is a κ-Suslin tree.

Proof. First, let (T,≤) be a κ-Suslin tree. Let X be the comparison
graph of T , i.e., {s, t} ∈ X iff s, t are comparable. As (T,≤) is Suslin, there
is no independent set or (by Lemma 1) a topological Kκ in X .

Assume finally that X is a graph on κ with no independent set of car-
dinal κ, neither a topological Kκ. By Jung’s theorem, Kκ is not a minor
of X .

Claim 1. If W ∈ [κ]κ, then the number of connected components of X|W
is < κ.

Proof. Otherwise, the choice of one vertex from each would give an
independent set of size κ. �

Claim 2. If W ∈ [κ]κ, then there is A ∈ [W ]<κ such that X|(W −A)
contains at least 2 connected components of size κ.

Proof. Assume that the Claim fails. Then, for some W ∈ [κ]κ, the fol-
lowing holds. For every A ∈ [W ]<κ, all but one of the connected components
of X|(W −A) are of size < κ. By Claim 1, the number of those components
is < κ, as κ is regular, their union still has size < κ. We have therefore
obtained the following. For every A ∈ [W ]<κ there is A ⊆ A′ ∈ [W ]<κ such
that X|(W −A′) is connected. Using this, we define the increasing sequence
{Aα : α < κ} with |Aα| < κ (α < κ), such that

⋃
{Aβ : β < α} ⊆ A′

α with
|A′

α| < κ and X|(W −A′
α) connected, Dα ∈ [W −A′

α]
<κ is maximal inde-

pendent and finally A′
α ∪Dα ⊆ Aα is such that |Aα| < κ and Bα = Aα −A′

α

is connected.
Now, each X|Bα is connected and if β < α < κ, then there is an edge

between Bβ and Bα, namely if p ∈ Bα is arbitrary, then there is and edge
between p and Dβ ⊆ Bβ , as Dβ is maximal independent. That is, {Bα :
α < κ} establishes Kκ as a minor in X|W , a contradiction to our assumption
on X . �

Next we are going to build a tree T and define the sets A(t) ∈ [κ]<κ,
V (t) ∈ [κ]κ for t ∈ T . We define T level by level. Let T0 contain the unique
root r with V (r) = κ.

Assume that we have built T up to level α and t ∈ Tα. By Claim 2, there
is a set A ∈ [V (t)]<κ such that V (t)−A contains at least two connected com-
ponents of cardinality κ. By adding those components with size < κ to A
we obtain a set A(t) ∈ [V (t)]<κ such that all components of X|(V (t)−A(t))
have size κ and θ, their number, is at least 2. We add θ immediate successors
{tξ : ξ < θ} to t and arrange that {V (tξ) : ξ < θ} are the above mentioned
components of X|(V (t)−A(t)).
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Assume that α < κ is limit and we have constructed T<α and the corre-
sponding sets A(t), V (t) (t ∈ T<α). For each α-branch b ⊆ T<α we place
a node s of Tα atop b iff |

⋂
{V (t) : t ∈ b}| = κ. If this holds, we set

V (s) =
⋂
{V (t) : t ∈ b}.

It is clear from the construction that if t < t′ then V (t) ⊇ V (t′).

Claim 3. If t′, t′′ are incomparable, then V (t′) ∩ V (t′′) = ∅ and there is
no edge between V (t′) and V (t′′).

Proof. Let t be the largest common lower bound of t′ and t′′. t exists
by the way of constructing Tα for α limit. There are immediate successors
tξ �= tη of t such that tξ ≤ t′, tη ≤ t′′. Then V (t′) ⊆ V (tξ), V (t′′) ⊆ V (tη)
and V (tξ) ∩ V (tη) = ∅ and there is no edge between V (tξ) and V (tη) and so
this hold for V (t′), V (t′′). �

Claim 4. There is no antichain of size κ in T .

Proof. If {tξ : ξ < κ} were an antichain, then picking one vertex from
each V (tξ) would give an independent set of size κ by Claim 3, a contradic-
tion. �

Claim 5. |Tα| < κ (α < κ).

Proof. As Tα is an antichain. �

Claim 6. h(T ) = κ.

Proof. Assume indirectly that Tα = ∅ for some α < κ. Let α be min-
imal such. Then α is limit by the way T is constructed. If β ≤ α is limit,
b is a β-branch, set H(b) =

⋂
{V (t) : t ∈ b},

U(β) =
{
b : |H(b)| < κ

}
,

and

R(β) =
⋃{

H(b) : b ∈ U(β)
}
.

By assumption κ = S′ ∪ S′′ where

S′ =
⋃{

A(t) : t ∈ T<α

}
and S′′ =

⋃{
R(β) : β ≤ α limit

}
.

We have |S′| < κ as A(t) < κ (t ∈ T<α) and α < κ and |Tβ | < κ (β < α) by
Claim 5.

Further, by the argument in Claim 3, there are only < κ β-branches b
for which H(b) �= ∅. This implies that |R(β)| < κ and eventually |S′′| < κ.
As we showed both |S′| < κ and |S′′| < κ, we have reached a contradiction.
�

Claim 7. There is no κ-branch in T .
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Proof. Assume indirectly that b = {tα : α<κ} is a κ-branch with
b ∩ Tα={tα}. Pick sα ∈ Tα+1 such that tα < sα and sα �= tα+1. This choice is
possible as each tα has at least two immediate successors. Now {sα : α < κ}
is an antichain of size κ, contradicting Claim 4. �

By Claims 4, 6, and 7, (T,≤) is a κ-Suslin tree, and the proof of Theo-
rem 3 is finished. �

A reasonable extension of the above mentioned Erdős–Hajnal theorem
ω2 → (TopKω2

)2n (n < ω) would be ω2 → (TopKω2
)2ω. In order to investigate

it, we consider the principle (∗) defined in the Introduction.

Lemma 4. (∗) implies ω2 → (TopKω2
)2ω.

Proof. Assume that F : [ω2]
2 → ω. Let

N0 ≺ N1 ≺ · · · ≺ Nα ≺ · · · ≺ 〈H(θ);∈, F,<w〉

be a continuous sequence of elementary submodels with θ sufficiently
large regular and <w a well ordering of H(θ), such that |Nα| ≤ ℵ1, δα =
Nα ∩ ω2 < ω2. Apply (∗) to F |D where D = {δα : α < ω2}. This gives i < ω
and A ∈ [D]ω2 such that if δα < δβ are in A then there is γ > β such that
F (δα, δγ) = F (δβ, δγ) = i. As δα, δβ ∈ Nγ < δγ , we have∣∣{ξ : F (δα, ξ) = F (δβ, ξ) = i

} ∣∣ = ℵ2.

By transfinite recursion one can select A′ ⊆ A, |A′| = ℵ2 and

B =
{
{δα} ∪ uα,β ∪ {δβ} : α, β ∈ A′, α < β

}
such that A′ ∩B = ∅, and F (δα, uα,β) = F (δβ, uα,β) = i, i.e.,

{
δα : α ∈ A′

}
∪
{
uα,β : α, β ∈ A′, α < β

}
form a topological Kω2

in color i. �

Lemma 5. If there is an ω1-complete, ℵ1-dense ideal on ω2, then (∗)
holds.

Proof. Let I be an ω1-complete ideal on ω2 with {Aα : α < ω1} dense
in I+. Assume that F : [ω2]

2 → ω. For each α < ω2 there is i(α) < ω such
that

Bα =
{
α < β < ω2 : F (α, β) = i(α)

}
∈ I+.

There is U ∈ [ω2]
ω2 such that if α ∈ U , then i(α) = i and Aj ⊆I Bα for some

i < ω, j < ω1. Clearly U is as required in (∗). �

The consistency of the existence of an ω1-complete ℵ1-dense ideal on ω2
was established by Foreman in [4]. Notice that by a theorem of Woodin, the
existence of an ω1-complete ℵ1-dense ideal on ω2 implies CH.
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Lemma 6. It is consistent that 2ℵ0 = ℵ2 and (∗) fails.

Proof. We force with the following notion of forcing. p = (s, h, f) ∈ P
iff s ∈ [ω2]

<ω , h, f : [s]2 → ω, and there are no α < β < γ with f(α, γ) =
f(β, γ) = h(α, β). (s′, h′, f ′) ≤ (s, h, f) iff s′ ⊇ s, f ′|s = f , h′|s = h.

Claim 1. If ξ < ω2, then {(s, g, f) : ξ ∈ s} is dense.

Proof. If (s, h, f) ∈ P and ξ �∈ s define s′ = s ∪ {ξ}, h′, f ′ : [s′]2 → ω
such that h′ ⊇ h, f ′ ⊇ f and the values, i.e., the values h′(α, ξ) and f ′(α, ξ)
for α ∈ s are different from the range of h and f and from each other. Clearly,
(s′, h′, f ′) is a condition and (s′, h′, f ′) ≤ (s, h, f). �

Claim 2. (P,≤) is ccc.

Proof. Assume that we are given the conditions {pξ : ξ < ω1} with
pξ = (sξ, hξ, fξ). By the Δ-system lemma we can assume that {sξ : ξ < ω1}
form a Δ-system. As there are finitely many isomorphism types of the struc-
tures (sξ;<,hξ , fξ) (ξ < ω1), without loss of generality we can assume that
the order isomorphism between any (sξ;<) and (sη;<) gives an isomorphism
between (sξ;<,hξ, fξ) and (sη;<,hη , fη) (ξ, η < ω1).

We therefore need to show that if p = (Δ∪a,h, f) and p′ = (Δ∪a′, h′, f ′)
are isomorphic conditions, a ∩ a′ = ∅, then p and p′ are compatible. Set

p∗ = (Δ ∪ a ∪ a′, h∗, f∗),

where h∗ ⊇ h ∪ h′, f∗ ⊇ f ∪ f ′ are such that the crossing values, i.e.,
{
h∗(α, β), f∗(α, β) : α ∈ a, β ∈ a′

}
are distinct and disjoint from

Ran(h) ∪ Ran(h′) ∪ Ran(f) ∪ Ran(f ′).

In order to show that p∗ is a condition, assume that α < β < γ and f∗(α,γ) =
f∗(β, γ) = h∗(α, β). By the way p∗ was constructed, either {α, β} ⊆ Δ ∪ a
or {α, β} ⊆ Δ ∪ a′ and the same holds for {α, γ} and {β, γ}. This is only
possible, if either {α,β, γ} ⊆ Δ∪ a or {α,β, γ} ⊆ Δ∪ a′, but then we cannot
have f∗(α, γ) = f∗(β, γ) = h∗(α, β) as p and p′ are conditions. �

If G is V -P -generic, set

H =
⋃{

h : (s, h, f) ∈ G
}
, F =

⋃{
f : (s, h, f) ∈ G

}
.

We show that F : [ω2]
2 → ω is a witness for the failure of (∗). Assume,

for the sake of contradiction, that i < ω, and p forces that |A| = ℵ2 and if
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α, β ∈ A, α < β then there exists a γ > β such that F (α, γ) = F (β, γ) = i.
There is a set B ⊆ ω2, |B| = ℵ2, and pξ ≤ p for ξ ∈ B, such that pξ � ξ ∈ A.
With the usual arguments we can assume that pξ = (Δ ∪ aξ, hξ, fξ) where
Δ < aξ < aη , ξ ∈ aξ , hξ|[Δ]2 = hη|[Δ]2, fξ|[Δ]2 = fη|[Δ]2 (ξ < η ∈ B), and
ξ ∈ aξ (ξ ∈ B). Pick ξ < η from B.

Define p∗ = (Δ∪aξ ∪aη, h
∗, f∗) such that h∗|(Δ∪aξ) = hξ, h

∗|(Δ∪aη) =
hη, f

∗|(Δ ∪ aξ) = fξ, f
∗|(Δ ∪ aη) = fη. Further, h

∗(ξ, η) = i, and the other
crossing values, i.e.,{

h∗(α, β) : α ∈ aξ, β ∈ aη , {α, β} �= {ξ, η}
}
∪
{
f∗(α, β) : α ∈ aξ, β ∈ aη

}
are different from i, each other, and from the elements of

Ran(hξ) ∪ Ran(hη) ∪ Ran(fξ) ∪ Ran(fη).

Claim 3. p∗ is a condition.

Proof. The argument in Claim 2 works, except for the case when
h∗(ξ, η) plays a role, i.e., when α = ξ, β = η (in the condition on α < β < γ).
We have to show that we cannot have f∗(ξ, γ) = f∗(η, γ) = h∗(ξ, η). But
h∗(ξ, η) = i, and as aξ < aη , we have γ ∈ aη , and f∗(ξ, γ) �= i by construc-
tion. �

p∗ forces that there is no γ > η with F (ξ, γ) = F (η, γ) = i, a contradic-
tion to ξ, η ∈ A. This concludes the proof of Lemma 6. �

Theorem 7. CH is consistent with the negation of (∗).

Proof. Let V be a model of CH.
We define the following notion of forcing. (S, f,H, h) ∈ P if
(a) S ∈ [ω2]

≤ℵ0 ,
(b) f : S × S → [ω]ω is symmetric, f(α,α) = ω (α ∈ S),
(c) H ⊆ [S]ω , |H| ≤ ω, if H ∈ H then tp(H) = ω, if H �= H ′ ∈ H, then

|H ∩H ′| < ω (H is almost disjoint), h : H → ω,
(d) if α ∈ S, H ∈ H, α ≥ min(H), then∣∣{β ∈ H : h(H) ∈ f(α, β)

}∣∣ ≤ 1.

We define (S′, f ′,H′, h′) ≤ (S, f,H, h) iff S′ ⊇ S, f = f ′|(S×S), H′ ⊇ H
with H �⊆ S for H ∈ H′ −H, and h = h′|H.

Claim 1. If α < ω2, then D = {(S, f,H, h) : α ∈ S} is dense in (P,≤).

Proof. Assume that (S, f,H, h) ∈ P with α �∈ S. Define S′ = S ∪ {α}.
Let ω =

⋃
{uξ : ξ ∈ S′} be a partition of ω into infinite parts. We de-

fine the symmetric f ′ : S′ × S′ → [ω]ω such that f ′ ⊇ f , f ′(α,α) = ω and
f ′(α, β) = uβ (β ∈ S). Finally, set H′ = H and h′ = h. Now (S′, f ′,H′, h′)
is a condition: (d) follows from uβ ∩ uβ′ = ∅ (β �= β′) and α �∈ H (H ∈ H).
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Clearly, (S′, f ′,H′, h′) ≤ (S, f,H, h) and (S′, f ′,H′, h′) ∈ D. �

Claim 2. (P,≤) is ω1-closed.

Proof. Assume that pn = (Sn, fn,Hn, hn) and 〈pn : n < ω〉 is a decreas-
ing sequence of conditions. Define S =

⋃
{Sn : n < ω}, f =

⋃
{fn : n < ω},

H =
⋃
{Hn : n < ω}, and h =

⋃
{hn : n < ω}. Now p = (S, f,H, h) is a con-

dition as if H ∈ H, α ∈ S, α ≥ min(H), then there is n < ω such that H
∈ Hn, α ∈ Sn, and so (d) holds for α and H . Also, p ≤ pn (n < ω) as if
H ∈ H−Hn, then H �⊆ Sn. �

Claim 3. (P,≤) is ℵ2-c.c.

Proof. With the usual methods it suffices to show that p0 = (S ∪ S0,
f0,H0, h0) and p1 = (S∪S1, f1,H1, h1) are compatible if S < S0 < S1, tp(S0)
= tp(S1), and the order isomorphism π : S ∪ S0 → S ∪ S1 is an isomor-
phism of p0 and p1. We define S′ = S ∪ S0 ∪ S1, f ′ ⊇ f0 ∪ f1 such that
f ′(α, π(β)) ⊆ f0(α, β) (α, β ∈ S0), H

′ = H0 ∪H1, h
′ = h0 ∪ h1. Further, we

require that the sets {f ′(α, β) : α ∈ S0, β ∈ S1} be pairwise disjoint. This
is possible, as countably many infinite sets have pairwise disjoint infinite
subsets.

We next show that H′ is almost disjoint. Assume that H0,H1 ∈ H′ and
|H0 ∩H1| = ω. Then H0 ∈ H0 −H1, H1 ∈ H1 −H0 (or vice versa). These
mean that H0 ⊆ S ∪ S0 but H0 �⊆ S, as tp(H0) = ω, we have |H0 ∩ S| < ω.
Similarly, |H1 ∩ S| < ω, and these imply that |H0 ∩H1| < ω.

In order to conclude the proof that (S′, f ′,H′, h′) is a condition, we have
to show that if H ∈ H′, α ∈ S′, α ≥ min(H) then

∣∣ {β ∈ H : h′(H) ∈ f ′(α, β)
}∣∣ ≤ 1.

holds.
Case 1: H ∈ H0 and α ∈ S ∪ S0. The inequality holds as p0 is a condi-

tion.
Case 2: H ∈ H1 and α ∈ S ∪ S1. The inequality holds as p1 is a condi-

tion.
Case 3: H ∈ H0, α ∈ S1, and H ∩ S �= ∅. Then π−1(α) > min(H) and

(d) holds for H , π−1(α), i.e., at most one of the sets {f0(π
−1(α), β) : β ∈ H}

may contain h′(H) = h0(H), so this holds for the system {f ′(α,β) : β ∈ H},
as f ′(α, β) ⊆ f0(π

−1(α), β) (β ∈ H).
Case 4: H ∈ H0, α ∈ S1, and H ⊆ S0. The inequality holds as {f ′(β,α) :

β ∈ H} are disjoint.
Case 5: H ∈ H1 and α ∈ S0. By the condition α ≥ min(H) we neces-

sarily have π(α) > min(H), and, as (d) holds for H and π(α), it holds for
π−1(H), α. Because for any γ ∈ S0, η ∈ S1, f

′(γ, η) ⊆ f(α,π−1(η)), (d) also
holds for H and α. �
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From Claims 2, 3 we get that forcing with (P,≤) does not collapse ω1
or ω2. If G is generic for (P,≤), then let

F =
⋃{

f : (S, f,H, h) ∈ G
}
.

By the above, F : ω2 × ω2 → [ω]ω is a symmetric function. We define
F ∗(α, β) = min(F (α, β)) for α < β < ω2.

Claim 4. For F ∗, (∗) fails in V [G].

Proof. Assume that

p � A∈ [ω2]
ω2 , i < ω, ∀α, β∈A ∃γ > max(α, β), F ∗(α, γ) = F ∗(β, γ)= i.

There exist an increasing sequence 〈xα < ω2 : α < ω2〉 and 〈pα : α < ω2〉
with pα ≤ p and pα � xα ∈ A. Let pα = (S′

α, fα,Hα, hα). Apply the Δ-
system lemma and CH to {S′

α : α < ω2} to obtain B ∈ [ω2]
ℵ2 such that

{S′
α : α ∈ B} forms a head-tail-tail Δ-system with root S. Let Sα = S′

α − S.
With a further shrinking we can assume that the structures (S ∪ Sα;<
,S, fα,Hα, hα, {xα}) are isomorphic for α ∈ B. Let πα : S ∪ S0 → S ∪ Sα

be the isomorphism between p0 and pα.
Let {αn : n < ω} be the first ω elements of B. We define

p∗ = (S∗, f∗,H∗, h∗)

where

S∗ = S ∪
⋃

{Sαn
: n < ω}, H∗ = {xαn

: n < ω},

H∗ =
⋃

{Hαn
: n < ω} ∪ {H∗}, h∗ ⊇

⋃
{hαn

: n < ω}

is such that h∗(H∗) = i, f∗ : S∗×S∗ → [ω]ω is such that f∗ ⊇
⋃
{fαn

: n < ω}
and {

f∗(παm
(α), παn

(β)) : m < n, α, β ∈ Sα0

}
are disjoint and do not contain i.

In order to show that p∗ is a condition, we have to check (d). As-
sume that H ∈ H∗, α ∈ S∗ and α ≥ min(H). If H = H∗, then α ∈ Sαn

for
some n < ω (as α ≥ x0), and therefore {β ∈ H∗ : i ∈ f∗(α, β)} ⊆ Sαn

and
|Sαn

∩H∗| = 1, we are done. If H �= H∗, we proceed as in Claim 3.
Once we obtained that p∗ is a condition, it is easy to see that p∗ ≤ pαn

≤ p (n < ω). By (d), it is immediate that in V [G], there is no γ > xα1
such

that

F ∗(xα0
, γ) = F (xα1

, γ) = i,

a contradiction. �
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As Claims 2,3, and 4 give that (∗) fails in V [G], we are finished. �

Theorem 8. It is consistent that GCH holds and [ω2]
2 =

⋃
{Tn : n < ω}

where each Tn is an ω2-Suslin tree.

Proof. We force with the following notion of forcing. p = (S, f) ∈ P if
S ∈ [ω2]

≤ℵ0 , f : S × S → [ω]ω is such that f(α, β) = f(β, α) (α, β ∈ S) and
f(α,α) = ω (α ∈ S). For α ≤ β in S we define α ≤n β iff n ∈ f(α,β). (More
correctly, we should use the notation α ≤p

n β.)
We also assume that if α < β < γ are in S, then
(1) if α ≤n β ≤n γ, then α ≤n γ, and
(2) if α ≤n γ, β ≤n γ, then α ≤n β.
Assumption (1) means that (S,≤n) is a partially ordered set, (2) tells

that it is a tree.
We set (S′, f ′) ≤ (S, f) iff S′ ⊇ S and f = f ′|(S × S).

Claim 1. (P,≤) is transitive.

Proof. Straightforward. �

Claim 2. (P,≤) is ω1-closed.

Proof. If p0 ≥ p1 ≥ p2 ≥ · · · where pn = (Sn, fn), then we let p = (S,f)
where S =

⋃
{Sn : n < ω}, f =

⋃
{fn : n < ω}. It is easy to see that p is a

condition and p ≤ pn (n < ω). �

Claim 3. If α < ω2, then {(S, f) : α ∈ S} is dense.

Proof. Assume that (S, f) is a condition, α �∈ S. We show that (S, f)
has an extension (S′, f ′) such that S′ = S ∪ {α}.

Let {(nk, βk) : k < ω} be an enumeration in which the nk’s are distinct
and each β ∈ S occurs as βk for infinitely many k < ω.

We extend (S,≤nk
) to (S′,≤nk

) as follows.
Case 1: βk < α. Let b = {x : x ≤nk

βk} be the (closed) branch deter-
mined by βk in (S,≤nk

). Define x ≤nk
α if x ∈ b and no element will be

strictly above α in (S′,≤nk
). Notice that βk ≤nk

α and so nk ∈ f ′(βk, α).
In order to show (1), assume that x ≤nk

y ≤nk
α. Then x ≤nk

y ∈ b,
therefore x ∈ b, and so x ≤nk

α. As there are no elements strictly above α,
there are no more cases.

In order to show (2), assume that x < y and x, y ≤nk
α. Then x, y ∈ b,

so x ≤nk
y. Again, there are no more cases.

Case 2: α < βk. Let u ∈ S − α be minimal such that u ≤nk
βk. Define

x ≤nk
α if x ≤nk

u (x ∈ S ∩ α), α ≤nk
x if u ≤nk

x (x ∈ S − α). Notice that
α ≤nk

βk and so nk ∈ f ′(α, βk).
We first show (1). If x ≤nk

y ≤nk
α, then x ≤nk

y ≤nk
u, consequently

x ≤nk
u and so x ≤nk

α.
If x ≤nk

α ≤nk
y, then x ≤nk

u ≤nk
y and so x ≤nk

y.
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If α ≤nk
x ≤nk

y, then u ≤nk
x ≤nk

y, then u ≤nk
y, and so α ≤nk

y.
We finally show (2). If x, y ≤nk

α, then x, y ≤nk
u, so x, y are compara-

ble by ≤nk
.

If x,α ≤nk
y, x < α, then x ≤nk

y, u ≤nk
y, so x ≤nk

u and then x ≤nk
α.

If α, x ≤nk
y, α < x, then u, x ≤nk

y, so u ≤nk
x, and then α ≤nk

x. �

In order to investigate how conditions can be extended we make the fol-
lowing setup. Assume that p0 = (S ∪ S0, f0) and p1 = (S ∪ S1, f1) are con-
ditions, S < S0 < S1, tp(S0) = tp(S1), and π : S ∪ S0 → S ∪ S1 is the order
isomorphism. We assume that p0 and p1 are isomorphic, i.e., if α, β ∈ S
∪ S0, then f0(α, β) = f1(π(α), π(β)). We let ≤0

n, ≤
1
n be the tree orderings

corresponding to p0, p1. We notice that ≤0
n and ≤1

n agree on S.

Claim 4. Set α ≤n β iff either α ≤0
n β or α ≤1

n β. Then ≤n is a tree

ordering on S ∪ S0 ∪ S1 which restricts to ≤0
n and ≤1

n on S ∪ S0, S ∪ S1,

respectively.

Proof. Straightforward. �

Claim 5. If α < β ∈ S0 are ≤0
n-comparable, then there is a tree ordering

≤n on S ∪ S0 ∪ S1 with α ≤n π(β) which restricts to ≤0
n, ≤

1
n on S ∪ S0 and

S ∪ S1.

Proof. Let τ be the ≤0
n-least element of S0 below β. Notice that τ ≤0

n α
holds also.

We define the relation ≤n on S ∪ S0 ∪ S1 as follows. x ≤n y iff either
x ≤0

n y, or x ≤1
n y, or x ∈ S0, y ∈ S1, x ≤0

n α and π(τ) ≤1
n y.

Subclaim 1. ≤n satisfies (1).

Proof. Assume that x ≤n y ≤n z. We have to prove that x ≤n z. This
is immediate if either x, y, z ∈ S ∪ S0 or x, y, z ∈ S ∪ S1.

Case 1: x ∈ S ∪ S0, y ∈ S0, z ∈ S1. If x ∈ S0, then x ≤0
n y ≤0

n α, conse-
quently x ≤0

n α, and so x ≤n z.
If x ∈ S, then, as x ≤0

n α and τ ≤0
n α, we have x ≤0

n τ , and so x ≤1
n π(τ)

≤1
n z.
Case 2: x ∈ S0, y, z ∈ S1. This holds if x ≤0

n α, π(τ) ≤1
n y ≤1

n z, but
then π(τ) ≤1

n z, and so x ≤n z. �

Subclaim 2. ≤n satisfies (2).

Proof. Assume that x ≤n z, y ≤n z, and x < y. We have to prove that
x ≤n y. Again, we have no problem if either {x, y, z} ⊆ S ∪ S0 or {x, y, z} ⊆
S ∪ S1 so we ignore these possibilities.

Case 1: x ∈ S, y ∈ S0, z ∈ S1. Since x, π(τ) ≤n z, so x ≤1
n π(τ), by

the fact that π is an isomorphism, x ≤0
n τ ≤0

n α. Also, y ≤0
n α, so x, y are

comparable under ≤0
n.
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Case 2: x, y ∈ S0, z ∈ S1. Now x, y ≤0
n α so they are comparable under

≤0
n.
Case 3: x ∈ S0, y, z ∈ S1. By the definition of ≤n we have x ≤0

n α and
π(τ) ≤1

n z. The latter implies π(τ) ≤1
n y and so we get x ≤n y. �

As ≤n satisfies (1) and (2), we are done. �

Claim 6. (P,≤) is ℵ2-c.c.

Proof. Modulo standard arguments one has to show that p0 and p1 are
compatible, if p0 = (S ∪S0, f0), p1 = (S ∪S1, f1), S < S0 < S1 and p0, p1 are
isomorphic with π : S ∪ S0 → S ∪ S1 as the isomorphism.

Choose, for each α ≤ β in S0 the natural numbers ni(α, β) ∈ f0(α, β)
such that ni(α, β) �= ni′(α

′, β′) for 〈i, α, β〉 �= 〈i′, α′β′〉.
If n = ni(α, β), we apply Claim 5 and obtain a tree ordering ≤n on

S ∪ S0 ∪ S1 with α ≤n π(β) and if n is not of the form ni(α, β) we apply
Claim 4. This gives a structure p = (S ∪ S0 ∪ S1, f

′) such that f ′(α,π(β)) ⊇
{ni(α, β) : i < ω} and so it is infinite, so p is a condition and p ≤ p0, p1. �

If G is generic, we define the tree Tn as the partial order ≤n on ω2 where
α ≤n β iff n ∈ f(α, β) for some (S, f) ∈ G. It is clear that ≤n satisfies (1)
and (2) so Tn is indeed a tree.

Claim 7. Tn does not contain an ω2-branch (n < ω).

Proof. Assume p forces that B is an ω2-branch of Tn. There are ℵ2 dis-
tinct ordinals xα and conditions pα ≤ p such that pα � xα ∈ B. The usual
applications of the pigeon hole principle and the Δ-system lemma give two of
these conditions, we simply call them p0 and p1 such that p0 = (S ∪ S0, f0),
p1 = (S∪S1, f1), S < S0 < S1, the structures (S∪S0,<,S,x0, f0), (S∪S1,<,
S, x1, f1) are isomorphic under the order isomorphism π : S ∪ S0 → S ∪ S1.
Notice that π(x0) = x1. We proceed as in the proof of Claim 6 except that we
choose all ni(α,β) different from n. This way, we get an extension p′ ≤ p0, p1
such that n �∈ f ′(x0, x1) and so p′ forces that x0 and x1 are incomparable in
Tn, a contradiction. �

Claim 8. Tn does not contain antichains of size ℵ2 (n < ω).

Proof. Assume that p forces that A is an antichain of size ℵ2 in Tn.
There are ℵ2 distinct ordinals xα and conditions pα ≤ p such that pα � xα
∈ A. The usual applications of the pigeon hole principle and the Δ-system
lemma give two of these conditions, we simply call them p0 and p1, such that
p0 = (S ∪ S0, f0), p1 = (S ∪ S1, f1), S < S0 < S1, the structures (S ∪ S0, <,
S, {x0}, f0), (S ∪ S1, <, S, {x1}, f1) are isomorphic under the order isomor-
phism π : S ∪ S0 → S ∪ S1. Notice that π(x0) = x1 and so n ∈ f0(x0, x0).
We proceed as in the proof of Claim 6 so that we choose n0(x0, x1) = n.

This way, we get an extension p′ ≤ p0, p1 such that n ∈ f ′(x0, x1) and so
p′ forces that x0 < x1 in Tn, a contradiction. �

MONOCOLORED TOPOLOGICAL COMPLETE GRAPHS 83

Sh:1190



Acta Mathematica Hungarica 163, 2021
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With Claims 2, 6 we get that the forcing is cardinal preserving, and with
Claims 7 and 8 that [ω2]

2 =
⋃
{Tn : n < ω} as required. �

Corollary 9. GCH is consistent with ω2 �→ (TopKω2
)2ω.

Proof. By Theorem 8, [ω2]
2 =

⋃
{Xn : n < ω} where Xn is the com-

parison graph of a κ-Suslin tree on ω2. By Lemma 1, no Xn contains a
topological Kκ. If F (α, β) = min{n : {α, β} ∈ Xn}, then F : [ω2]

2 → ω is a
coloring witnessing ω2 �→ (TopKκ)

2
ω. �
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