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Abstract. We get a version of the colouring property Pr1 proving Pr1(λ,λ,λ, ∂)
always when λ = ∂+, ∂ are regular cardinals and some stationary subset of λ con-
sisting of ordinals of cofinality < ∂ do not reflect in any ordinal < λ.

0. Introduction

We prove a strong colouring theorem on successor of regular uncountable
cardinals, so called Pr1.

On the history of Pr1 see [5, Ch. III, §4] and later [6], and then indepen-
dently Rinot [3] and [7].

Rinot [3, Main result] proved that Pr1(λ, λ, λ, θ) when those are regular
cardinals; λ = θ++ or just θ+ < λ and λ is a successor of regular or just it
has a non-reflecting stationary subset of λ consisting of ordinals of cofinality
at least θ. In [7], we have Pr1(λ,λ, λ, (θ0, θ)) where θ0 is regular < θ = cf(θ),
θ+ < λ and λ is a successor of regular. Earlier [6, 4.2, p. 27] prove that
Pr1(λ, λ, λ, θ) when in addition λ = θ++.

Much earlier [5, Ch. III, §4] had treated those problems in a general but
probably in a not so transparent way, first 4.1 there gives a set of various
hypothesis (each with some parameters).

The result here is incomparable with the ones in [3], [7], [6]: the assump-
tion on the stationary set is stronger but the arity – the last parameter, θ is
bigger.

The connection between purely combinatorial theorems and topological
constructions is known for many years. Several results in general topology
were proved using the property Pr1(λ, μ, σ, θ), see recently [2], then [7, §1].
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Recall:

Definition 0.1. 1) Assume λ ≥ μ ≥ σ+ θ0 + θ1, θ̄ = (θ0, θ1), see 0.4(1).
Assume further that θ0, θ1 ≥ ℵ0 but σ may be finite.

Let Pr1(λ, μ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it, which
means:
(∗)c if (a) then (b), where:

(a) for ι = 0, 1, iι < θι and ζ̄ι = 〈ζια,i : α < μ, i < iι〉 are sequences of
ordinals of λ without repetitions, and Rang(ζ̄0), Rang(ζ̄1) are disjoint and
γ < σ

(b) there are α0 < α1 < μ such that ∀i0 < i0, ∀i1 < i1, c{ζ0
α0,i0

, ζ1
α1,i1

}

= γ and ζ0
α0,i0

< ζ1
α1,i1

.
2) Above if θ0 = θ = θ1 then we may write Pr1(λ, μ, σ, θ).

In this paper we prove e.g. that if some stationary S ⊆ {δ < ℵ2 :
cf(δ) < ℵ1} do not reflect then Pr1(ℵ2,ℵ2,ℵ2,ℵ1) holds, which means that
countable infinite sequences can be taken in both “sides”. Actually, the the-
orem says that, in particular, Pr1(λ, λ, λ, ∂) holds whenever ∂ = cf(∂) and
λ = ∂+ and there is a non-reflecting stationay subset of Sλ

<κ. We intend to
say more on other λ-s in [4].

We thank Shimoni Garti and the referee for many good suggestions.

Definition 0.2. 1) A filter D on a set I is uniform when for every
subset A of I of cardinality < |I|, the set I \A ∈ D; all our filters will be
uniform.

2) A filter D on a set I is weakly θ-saturated when θ ≥ |I| and there is
no partition of I to θ sets from D+,

3) We say the filter D on a set I is θ-saturated when the Boolean algebra
P(I)/D satisfies the θ-c.c.

Fact 0.3. 1) If D is a θ-complete filter on λ and is not θ-saturated then
it is not weakly θ-saturated; so those properties are equivalent.

2) If θ = σ+ and D is a θ-complete filter on θ, then D is not weakly
θ-saturated.

3) If n ≥ 1 and λ = σ+n and D is a (uniform) σ+-complete filter on λ
then D is not weakly σ+n-saturated.

Proof. 1) Obvious and well known.
2) By [8].
3) Let μ be the minimal cardinal such that D is not μ+-complete, so

clearly μ ∈ [σ+, λ] hence μ is a successor cardinal. So there is a function f
from λ into μ such that for every subsetA of μ of cardinality< μ, f−1(A) = ∅
mod D. Let E be the family of subsets A of μ such that f−1(A) ∈ D.
Clearly E is a (uniform) μ-complete filter on μ hence by part (2) is not
weakly μ-saturated, let 〈Aε : ε < μ〉 be a partition of μ to sets from E+.
Now 〈f−1(Aε) : ε < μ〉 witnesses the desired conclusion. �0.3
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Notation 0.4. 1) We denote infinite cardinals by λ, μ, κ, θ, ∂ while σ
denotes a finite or infinite cardinal. We denote ordinals by α, β, γ, ε, ζ, ξ.
Natural numbers are denoted by k, �,m, n and ι ∈ {0, 1, 2}

1A) Let D denote a filter on an infinite set dom(D).
2) For a set A of ordinals let nacc(A) = {α ∈ A : α > sup(A ∩ α)}

and acc(A) = A \ nacc(A). For regular cardinals λ > κ let Sλ
κ = {δ < λ :

cf(δ) = κ}, Sλ
<κ = {δ < λ : cf(δ) < κ}.

1. A colouring theorem

Our aim is to prove

Theorem 1.1. Pr1(λ,λ, ∂, ∂) and moreover Pr1(λ,λ,λ, ∂) holds provided
that :

(a) λ = ∂+

(b) ∂ = cf(∂) > ℵ0
(c) W is a stationary subset of λ consisting of ordinals of cofinality < ∂

reflecting in no ordinal < λ.

Remark 1.2. 1) The case of ∂ colours, i.e. proving only Pr1(λ, λ, ∂, ∂)
is easier so we prove it first.

2) Can we weaken clause (c) of 1.1 replacing “reflecting in no ordinal
< λ” by “reflecting in no ordinal of cofinality ∂?”

The answer seem yes provided that we add:
(α) there is a sequence 〈eα : α ∈ W 〉 such that (W is as above and)

eα is a club of α of order type < ∂ and for α ∈ eβ ∩ W we have eα = α ∩ eβ
(β) there is no ∂-complete not ∂+-complete uniform weakly ∂-saturated

filter on λ.

Proof. Stage A: We begin as in earlier proofs (e.g. [7]). We let
(κ1, κ2) = (∂, λ). Let S ⊆ Sλ

∂ be stationary and h : λ → λ be such that α < λ
⇒ h(α) < 1 + α, h�(λ\S) is constantly zero and S∗

γ := {δ ∈ S : h(δ) = γ} is
a stationary subset of λ for every γ < λ. Let Fι : λ → κι for ι = 1, 2 be such
that for every (ε1, ε2) ∈ (κ1 ×κ2) the set Wε1,ε2(β) = {γ ∈ S∗

β : Fι(γ) = ει for
ι = 1, 2} is a stationary subset of λ for every β < λ.

For ι = 1, 2 and ρ ∈ ω>λ let Fι(ρ) = 〈Fι(ρ(�)) : � < �g(ρ)〉.
�0 without loss of generality if δ ∈ W then δ is divisible by ∂.
Let ē = 〈eα : α < λ〉 be such that:
�1 (a) if α = 0 then eα = ∅

(b) if α = β + 1 then eα = {β}
(c) if α is a limit ordinal then eα is a club of α of order type cf(α)

disjoint to Sλ
∂ hence to S.

(d) if α is a limit ordinal then eα is disjoint to W .

S. SHELAH194
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In other cases (not here) instead h we use a sequence 〈hα : α < λ〉 of
functions, hα : eα → ∂ and use e.g. 〈hγ�(β,α)(γ�+1(β,α)) : � < k(β,α)〉 and ρh,
but this is not necessary here.

Now (using ē) for α < β < λ, let

γ(β, α) := min{γ ∈ eβ : γ ≥ α}.

Let us define γ�(β, α):

γ0(β, α) = β, and γ�+1(β, α) = γ(γ�(β, α), α) (if well defined).

If α < β < λ, let k(β, α) be the maximal k < ω such that γk(β, α) is defined
(equivalently is equal to α) and let ρβ,α = ρ(β, α) be the sequence

〈
γ0(β, α), γ1(β, α), . . . , γk(β,α)−1(β, α)

〉
.

Let γ�t(β, α) = γk(β,α)−1(β, α) where �t stands for last.
Let

ρh = 〈h(γ�(β, α)) : � < k(β, α)〉

and we let ρ(α,α) and ρh(α,α) be the empty sequences. Now clearly:
�2 if α < β < λ then α ≤ γ(β, α) < β hence
�3 if α < β < λ, 0 < � < ω, and γ�(β, α) is well defined, then

α ≤ γ�(β, α) < β

and
�4 if α < β < λ, then k(β, α) is well defined and letting γ� := γ�(β, α)

for � ≤ k(β, α) we have

α = γk(β,α) < γ�t(β, α) = γk(β,α)−1 < · · · < γ1 < γ0 = β

and α ∈ eγ�t(β,α) i.e. ρ(β, α) is a (strictly) decreasing finite sequence of ordi-
nals, starting with β, ending with γ�t(β, α) of length k(β, α).

Note that if α ∈ S, α < β then γ�t(β, α) = α+ 1.
Also
�5 if δ is a limit ordinal and δ < β < λ, then for some α0 < δ we have:

α0 ≤ α < δ implies:
(i) for � < k(β, δ) we have γ�(β, δ) = γ�(β, α)
(ii)

δ ∈ nacc(eγ�t(β,δ)) ⇔ δ = γk(β,δ)(β, δ) = γk(β,δ)(β, α)

⇔ ¬[γk(β,δ)(β, δ) = δ > γk(β,δ)(β, α)]

(iii) ρ(β, δ) � ρ(β, α); i.e. is an initial segment
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(iv) δ ∈ nacc(eγ�t(β,δ)) (here always holds if δ ∈ S) implies:
• ρ(β, δ)ˆ〈δ〉 � ρ(β, α) hence
• ρh(β, δ)ˆ〈h(β, δ)(δ)〉 � ρh(β, α).

(v) if cf(δ) = ∂ or δ ∈ W then we have γ�t(β, δ) = δ + 1 so δ + 1 ∈
nacc(eγlt(β,δ))

(vi) if cf(δ) = ∂ or δ ∈ W and δ ∈ eγ , then necessarily γ = δ + 1.
Why? Just let

α0 = Max
{
sup(eγ�(β,δ) ∩ δ) + 1 : � < k(β, δ) and δ ∈ acc(eγ�(β,δ))

}
.

Notice that if � < k(β, δ)− 1 then δ ∈ acc(eγ�(β,δ)) follows.
Note that the outer maximum (in the choice of α0) is well defined as it

is over a finite non-empty set of ordinals. The inner sup is on the empty
set (in which case we get zero) or is the maximum (which is well defined)
as eγ�(β,δ) is a closed subset of γ�(β, δ), δ < γ�(β, δ) and δ ∈ acc(eγ�(β,δ)) – as
this is required. For clauses (v), (vi) recall δ ∈ Sλ

∂ ∪ W and eγ ∩ Sλ
∂ = ∅ and

eγ ∩W = ∅ when γ is a limit ordinal and eγ = {γ − 1} when γ is a successor
ordinal.

�6 (a) if α<β<λ, �<k(β,α), γ=γ�(β,α) then ρ(β,α)=ρ(β, γ)ˆρ(γ,α)
and ρh(β, α)=ρh(β, γ)ˆρh(γ, α)

(b) if α0 < · · · < αk and ρ(αk, α0) = ρ(αk, αk−1)ˆ · · · ˆρ(α1, α0) then
this holds for any sub-sequence of 〈α0, . . . , αk〉.

�7 let F ′
ι be Fι ◦ h for ι = 1, 2; so F ′

1 is a function from λ into ∂ and F ′
2

is a function from λ into λ.
Stage B : Let
�2 T = {t̄ : t̄ = 〈tα : α < λ〉 satisfies tα ∈ [λ]<∂ and1 tα ⊆ λ\α}.
�3 for ε < ∂ and t̄ ∈ T let At̄,ε be the set of γ < λ such that for some

(α0, α1) we have:
(a) α0 < α1 < λ and2 (ζ, ξ) ∈ tα0

× tα1
⇒ ζ < ξ

(b) for every (ζ, ξ) ∈ tα0
× tα1

for some � we have:
(α) � < k(ξ, ζ)
(β) γ�(ξ, ζ) = γ
(γ) if k < k(ξ, ζ) then F ′

1(γ) ≥ F ′
1(γk(ξ, ζ)) and F ′

1(γ) ≥ ε
(δ) if k < � then F ′

1(γk(ξ, ζ)) < F ′
1(γ).

We define:
�4 D = {A ⊆ λ : A includes At̄,ε for some t̄ ∈ T, ε < ∂}.
Now note:
�5 (a) if s̄, t̄ ∈ T, ε ≤ ζ < ∂ and (∀α < λ)(sα ⊆ tα), then At̄,ζ ⊆ As̄,ε

(b) if s̄ ∈ T, ε < ∂, g is an increasing function from λ to λ and t̄ =
〈tα : α < λ〉 is defined by tα = sg(α) then At̄,ε ⊆ As̄,ε.

1 if instead we demand α �= β < λ ⇒ tα ∩ tβ = ∅ then we shall get the same filter D.
2 If we choose to add here “tα0

⊆ α1”, then we would have a problem in proving clause �5(b).
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[Why? Read the definitions.]
�6 (a) the intersection of any < ∂ members of D is a member of D,

equivalently includes the set At̄,ζ for some t̄ ∈ T, ζ < ∂
(b) for every β < λ for some t̄ ∈ T, At̄,0 ⊆ [β, λ)
(c) if t̄ ∈ T and α < λ ⇒ tα = ∅ then ∩{At̄,ε : ε < ∂} = ∅
(d) D is upward closed.
(e) λ belongs to D

[Why? For clause (a) assume Aε ∈ D for ε < ε(∗) < ∂ then for some
ζε < ∂ and t̄ε ∈ T we have Aε ⊇ At̄ε ,ζε . Define tα =

⋃
{tεα : ε < ε(∗)} for

α < λ and ζ = sup{ζε : ε < ε(∗)}; as the cardinal ∂ is regular, clearly |tα|
≤

∑
ε<ε(∗) |t

ε
α| < ∂ and obviously tα ⊆ [α, λ) hence t̄ = 〈tα : α < λ〉 ∈ T and

similarly ζ < ∂. Easily At̄,ζ ⊆ At̄ε,ζε for every ε < ε(∗), see �5(a) so we are
done proving clause (a). For clause (b) define tα = {β+α+1} and recalling
�3(b)(β) and �4 check that At̄,0 ⊆ [β, λ). Also clause (c) obviously holds
because γ ∈ At̄,ε ⇒ F ′

1(γ) ≥ ε by �3(b)(γ) and F ′
1 is a function from λ to ∂

and clauses (d), (e) hold trivially by the definition.]
�7 (a) ∅ ∈ D

(b) D is a filter on λ, equivalently At̄,ε = ∅ for every t̄, ε; also D is
uniform ∂-complete, not ∂+-complete.

[Why? Clause (a) is a major point, proved in Stage C below. That is,
by �6(a),(d) the only missing point is to show At̄,ζ = ∅, (in fact, |At̄,ζ | = λ).
For clause (b) by (a) and �6(a),(d),(e), D is a ∂-complete filter and the
statement that D is uniform holds by �6(b) and not ∂+-complete holds by
�6(c).]

Note also
�8 D is not weakly ∂-saturated.
[Why? By �7 +�6(c) and clause (c) in the assumptions of the theorem.

That is it is known that if D fail this statement (and has the properties
listed before) then there is no W as in clause (c) of the theorem. That
is, considering the forcing notion P = D+ with inverse inclusion. Toward
contradiction assume that the conclusion fails: by 0.4 the forcing notion P

satisfies the δ-cc. Now, in VP, the generic set G is an ultrafilter on the
Boolean algebra P(λ)V and let j be the canonical embedding from V into
the Mostowski collapse of Vλ/G (we are using only functions from V), now
the contradiction will be clear. If ∂ is a successor cardinal we can use 0.3(2).]

Stage C : In this stage we accomplish the proof of the missing point in
�7(a) from above, so we shall prove “At̄,ε is non-empty (in fact, has cardi-
nality λ)” when:

� (a) tα ⊆ λ\α for α < λ
(b) |tα| < ∂
(c) ε < ∂.

To start we note that:
(∗)1 without loss of generality tα = ∅ and α < min(tα).

COLOURING OF SUCCESSOR OF REGULAR, AGAIN 197

Sh:1163



Acta Mathematica Hungarica 165, 2021

COLOURING OF SUCCESSOR OF REGULAR, AGAIN 7

[Why? First, recalling �5(a) we can replace t̄ by t̄ = 〈tα ∪ {α} : α < λ},
so we may assume that each tα is not empty. Second, let t̄′ = 〈t′α : α < λ〉,
t′α = tα+1, so easily t̄′ satisfies (∗)1 and At̄′,ε ⊆ At̄,ε by clause �5(b).]

Now
(∗)2 we can find U dn

1 , εdn such that:
(a) U dn

1 ⊆ W is stationary in λ
(b) α < δ ∈ U dn

1 ⇒ tα ⊆ δ
(c) εdn < ∂
(d) if δ ∈ U dn

1 then for arbitrarily large α < δ we have ζ ∈ tα ⇒
Rang(F1(ρh(δ, ζ))) ⊆ εdn < κ1 = ∂.

[Why? Clearly E0 = {δ < λ : δ is a limit ordinal such that α < δ ⇒
tα ⊆ δ} is a club of λ. For every δ ∈ W ∩E0 and α < δ we can find εdn

δ,α as in
clauses (c), (d) of (∗)2 (because |tα| < ∂) and so recalling that cf(δ) < ∂ it
follows that there is εdn

δ such that δ = sup{α < δ : εdn
δ,α = εdn

δ }. Then recall-
ing λ = cf(λ) > ∂ we can choose εdn such that the set U dn

1 = {δ ∈ W ∩E0 :
εdn
δ = εdn} is stationary. So (∗)2 holds indeed.]
(∗)3 We can find U

up
1 , α∗

1, ε
up such that:

(a) U
up
1 ⊆ S∗

0 is stationary
(b) h�U up

1 is constantly 0, actually follows by (a), see Stage A
(c) α∗

1 < λ satisfies α∗
1 < min(U up

1 ) and εup < ∂
(d) if δ ∈ U

up
1 and α ∈ [α∗

1, δ) and β ∈ tδ then:
• ρβ,δˆ〈δ〉 � ρβ,α
• Rang(F1(ρh(β, δ))) ⊆ εup.

[Why? For every δ ∈ S∗
0 ⊆ S and ζ ∈ tδ let α1,δ,ζ < δ be such that (∀α)

(α ∈ [α1,δ,ζ , δ) ⇒ ρζ,δˆ〈δ〉 � ρζ,α), it exists by �5 of Stage A.
Let

• α1,δ = sup{α1,δ,ζ : ζ ∈ tδ}
•

εup
δ = sup{F ′

1(γ�(ζ, δ))(�) + 1 : ζ ∈ tδ and � < k(ζ, δ)}

=
⋃

{ supRang(F1(ρh(ζ, δ))) + 1 : ζ ∈ tδ};

as cf(δ) = ∂ and ∂ = cf(∂) > |tδ|, necessarily α1,δ < δ and εup
δ < ∂.

Lastly, there are α∗
1 < λ and εup < κ1 = ∂ and U

up
1 ⊆ S∗

0 as required by
using Fodor lemma. So (∗)3 holds indeed.]

Now let E =
{
δ < λ : δ is a limit ordinal> α∗

1 such that δ = sup(U dn
1 ∩ δ)

and α < δ ⇒ tα ⊆ δ
}
, it is a club of λ because α∗

1 < λ by (∗)3(c) and U dn
1

is an unbounded subset of λ by (∗)2(a), and tα is a subset of λ of cardinality
< ∂ hence is bounded.

Choose ε(∗) = max{εup + 1, εdn + 1, ε+ 1} where ε is from �(c), so
ε(∗) < ∂ and choose δ2 ∈ E ∩ S such that F ′

1(δ2) = ε(∗). Next choose
α2 ∈ U

up
1 \(δ2 + 1) and let α∗ ∈ (α∗

1, δ2) be large enough such that ζ ∈
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(α∗, δ2)∧ξ ∈ tα2
⇒ ρ(ξ, δ2)ˆ〈δ2〉�ρ(ξ, ζ). Now choose δ1 ∈ U dn

1 ∩ (α∗, δ2) and
α∗∗ ∈ (α∗, δ1) be such that α ∈ (α∗∗, δ1) ∧ ξ ∈ tα2

⇒ ρ(ξ, δ1)ˆ〈δ1〉 � ρ(ξ, α).
[Why is this possible? First as α∗∗ > α∗ it is enough to have α ∈ (α∗∗, δ1)

⇒ ρ(δ2, δ1)ˆ〈δ1〉 � ρ(δ2, α). Second here cf(δ1) < ∂ however this condition
holds because δ1 ∈ U

dn
1 ⊆ W so necessarily γlt(δ2, δ1) = δ1 + 1 by �5(vi)].

Next let �∗ < �g(ρ(α2, δ1) be such that:
(∗)4 (a) ε(•) := F1(ρh(α2, δ1))(�∗) = maxRangF1(ρh(α2, δ1))

(b) under this restriction �∗ is minimal.
Lastly, choose α1 ∈ (α∗∗, δ1) which is as in (∗)2(d) with respect to δ1, i.e.

such that:
(∗)5 if ζ ∈ tα1

then RangF1(ρh(δ1, ζ)) ⊆ εdn.
Now we shall prove that the pair (α1, α2) is as required. So let (ζ, ξ)

∈ tα1
× tα2

; now by our choices
(∗)6 ρ(ξ, ζ) = ρ(ξ, α2)ˆρ(α2, δ2)ˆρ(δ2, δ1)ˆρ(δ1, ζ) and

ρ(α2, δ1) = ρ(α2, δ2)ˆρ(δ2, δ1)

So
(∗)7 Rang(F1(ρh(ξ, α2)) ⊆ εup ≤ ε(∗)
[Why? by (∗)3(a), the choice of α2 ∈ U

up
1 and ξ being from tα2

]
(∗)8 Rang(F1(ρh(δ1, ζ)) ⊆ εdn ≤ ε(∗)
[Why by (∗)2(d) and the choice of α1 (and ζ being a member of tα1

]
(∗)9 ε(∗) = F1 ◦ h(δ2) ∈ Rang(F1(ρh(α2, δ1))), see (∗)6 and (before and af-

ter) �1 .
[Why? Recall that δ2 was chosen in E ∩ S such that F ′

1(δ2) = ε(∗).]
Hence

(∗)10 ε ≤ ε(∗) ≤ ε(•) < ∂
Putting those together, we can finish this stage by:

(∗)11 in �3(b) for our t̄ and the pair (α1, α2), our ε(•) (chosen in (∗)4(a))
is gotten, witnessing γ�•(α2, δ1) ∈ At̄,ε(∗) ⊆ At̄,ε

[Why? As first ε < ε(∗), by the choice of ε(∗), and second if (ζ, ξ) ∈
tα1

× tα2
then �=�g(ρ(ξ, α2))+�∗ is as required in �3(b) for t̄ by (∗)6–(∗)10]

So we are done proving �7(a).
Stage D : By �8
�1 there is F∗ : λ → ∂ such that ε < ∂ ⇒ F−1

∗ ({ε}) = ∅mod D.
We first deal with the easier version with ∂ colours, i.e. proving Pr1(λ,λ,

∂, ∂).
We now define the colouring c1 : [λ]2 → ∂ by:
�2 if α < β < λ then c1{α,β} is F∗(γ�(β,α)(β,α)) where �(β,α) = min{� <

k(β, α) : F ′
1(γ�(β, α)) = maxRang(F ′

1(ρ(β, α)))}.
To prove that the colouring c1 really witnesses Pr1(λ, λ, ∂, ∂), our task

is to prove:
�3 given t̄ ∈ T and ι < ∂ there are α < β such that:

• ζ ∈ tα ∧ ξ ∈ tβ ⇒ c1{ζ, ξ} = ι.
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[Why does �3 hold? Let Bι = {γ < λ : F∗(γ) = ι}. By the choice of F∗

we know that Bι = ∅mod D. Focus on At̄,ε for our specific t̄ ∈ T and any
ε < ∂. Since At̄,ε ∈ D we conclude that Bι ∩At̄,ε = ∅.

Fix an ordinal γ ∈ Bι ∩ At̄,ε. By the very definition of At̄,ε in �3 we
choose α < β < λ such that for every (ζ, ξ) ∈ tα × tβ there exists � < k(ξ, ζ)
for which γ�(ξ, ζ) = γ and F ′

1(γ) ≥ F ′
1(γk(ξ, ζ)) whenever k < k(ξ, ζ) and

F1(γ) ≥ ε and F ′
1(γ) > F ′

1(γk(ξ, ζ)) whenever k < �. Let �(ξ, ζ) be this �, in
fact, this � is unique (for the pair (ζ, ξ)).

Now c1{ζ, ξ} = F∗(γ�(ξ,ζ)(ξ, ζ)) (by �2) which equals F∗(γ) (by the choice
of �(ξ, ζ)) which equals ι (since γ ∈ Bι). Hence �3 holds and we finish
Stage D.]

Stage E : The full theorem: the case of λ colors.
Let h′, h′′ be functions from ∂ into ∂, ω respectively such that the map-

ping ζ �→ (h′(ζ), h′′(ζ)) is onto ∂ × ω and moreover each such pair is gotten
∂ times.

We have to define a colouring c2 : [λ]2 → λ exemplifying Pr1(λ, λ, λ, ∂).
This is done as follows using h′, h′′ and F∗ from �1:
⊕1 for α < β < λ we let

•1 ζ = ζ(β, α) := h′(c1{β, α}), necessarily < ∂
•2 n = n(β, α) := h′′(c1{β, α}), necessarily < ω
•3 m = m(β,α) is the n-th member of {k < k(β,α) : F ′

1(γk(β, α)) = ζ}
when there is such m and is zero otherwise

•4 we define c2 as follows: for α < β, c2{α, β} is F ′
2(γm(β,α)(β, α))

recalling that F ′
2, a function from λ to λ is from �2 from the end of stage A.

To prove that c2 indeed exemplifies Pr1(λ,λ, λ, ∂) it suffice to prove (this
is the task of the rest of the proof)

⊕2 assume t̄ ∈ T and j∗ < λ and we shall find α < β such that tα ⊆ β
and (ζ, ξ) ∈ tα × tβ ⇒ c2{ζ, ξ} = j∗.

Toward this:
⊕3 (a) we apply (∗)3 to our t̄, getting εup,U up

1 , α∗
1 as there

(b) we apply (∗)2 to our t̄ getting U dn
1 , εdn

(c) let εmd = max{εup + 1, εdn + 1}.
We can find g2,U

up
2 , γ∗, α

∗
2,m

∗
2 such that:

⊕4 (a) γ∗ < λ satisfies F2(γ∗) = j∗ and F1(γ∗) = εmd

(b) U
up

2 ⊆ S∗
γ∗

is stationary hence δ ∈ U
up
2 ⇒ F ′

2(δ) = F2(h(δ)) =
F2(γ∗) = j∗ ∧ F ′

1(δ) = F1(h(δ)) = F1(γ∗) = εmd

(c) g2 is a function with domain U
up

2 such that δ ∈ U
up
2 ⇒ δ < g2(δ)

∈ U
up

1
(d) α∗

2 satisfies α∗
1 < α∗

2 < min(U up
2 )

(e) if δ ∈ U
up
2 and α ∈ [α∗

2, δ) and β ∈ tg2(δ) then
• ρ(g2(δ), δ)ˆ〈δ〉 � ρ(g2(δ), α) hence
• ρβ,δˆ〈δ〉 � ρβ,α
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(f) m∗
2 satisfies: for every δ ∈ U

up
2 , it is the cardinality of the set {� <

k(g2(δ), δ) : F ′
1(γ�(g2(δ), δ)) = εmd} which may be zero.

[Why? First choose γ∗ as in clause (a) of ⊕4 (possible by the choice
of F1, F2 in the beginning of Stage A; hence δ ∈ Sγ∗

⇒ F ′
2(δ) = F2(h(δ)) =

F2(γ∗) = j∗ and F ′
1(δ) = F1(h(δ)) = F1(γ∗) = εmd (by the choice of F ′

1 in �7
recalling the definitions of h, F ′

1). Second, define g′ : S∗
γ∗

→ U
up
1 such that

δ ∈ S∗
γ∗

⇒ δ < g′(δ) ∈ U
up
1 . Third, for each δ ∈ S∗

γ∗

\(α∗
1 + 1), find α′

2,δ < δ

above α∗
1 and m2,δ such that the parallel of clauses (e), (f) (with g′ here

instead of g2 there) of ⊕4 holds. Fourth, use Fodor lemma to get a sta-
tionary U

up
2 ⊆ S∗

γ∗

such that 〈(α′
2,δ,m2,δ) : δ ∈ U

up
2 〉 is constantly (α∗

2,m
∗
2)

and lastly let g2 = g′�U up
2 \(α∗

2 + 1). Now it is easy to check that ⊕4 holds
indeed.]

Next
⊕5 if δ ∈ U

up
2 then:

(a) F ′
1(δ) = εmd

(b) if α ∈ [α∗
2, δ), ξ ∈ tg2(δ) then u = {� < k(ξ, α) : F ′

1(γ�(ξ, α)) = εmd}
has > m∗

2 members and if � is the m∗
2-th member of u then γ�(ξ, α) = δ.

Why? Clause (a) holds by ⊕4(a),(b). For clause (b) use clause (a) and
the demands on m∗

2. That is
(a) ρ(ξ, α) = ρ(ξ, g2(δ))ˆρ(g2(δ), δ)ˆρ(δ, α) [Why? by (∗)3,⊕4(e)]
(b) Rang(ρh(α, g2(δ))) ⊆ εup ⊆ εmd [Why? by (∗)2]
(c) the set {� < k(g2(δ), δ) : F ′

1(γ�(g2(δ), δ)) = εmd} has m∗
2 members

[why? by ⊕4(f)]
(d) F ′

1(γ0(δ, α)) = F ′
1(δ) = εmd [Why? by ⊕4(a),(b)]]

(e) if �∗ is them∗
2-th member of {� : F1(γ�(ξ,α)) = εmd} then γ�∗(ξ, α) = δ

[Why? putting the above together]
So ⊕5 holds indeed.
Now choose ε(∗) < ∂ such that h′(ε(∗)) = εmd and h′′(ε(∗)) = m∗

2.
Next, let E = {δ < λ : δ limit ordinal > α∗

2 such that δ = sup(U dn
1 ∩ δ)

and α < δ ⇒ g2(α) < δ}.
Lastly,
⊕6 choose δ1 < δ2 such that

(a) δ1 ∈ U dn
1 ∩E

(b) δ2 ∈ U
up
2 ∩E\(δ1 + 1)

(c) c1{δ2, δ1} = ε(∗),
[Why does such a pair (δ1, δ2) exist? By Stage D applied to s̄ = 〈sα :

α < λ〉 where sα = {min(U dn
1 ∩E\α),min(U up

2 ∩E\α)}.
That is, we can find ordinals α < β < λ such that: for every (ζ, ξ) ∈

(sα × sβ) we have c1{ξ, ζ} = εmd.
Let δ1 = min(U dn

1 ∩E \ α) and let δ2 = min(U up
1 ∩E \ β).

So (δ1, δ2) ∈ (sα × sβ) hence clearly δ1 < δ2, c1{δ1, δ2} = ε(∗), δ1 ∈ U dn
1

∩E and δ1 ∈ U
up
1 ∩E. So the pair (δ1, δ2) is as promised in in ⊕6]
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Now let β = g2(δ2) and choose α ∈ U dn
1 ∩ δ1\(α∗

2 + 1). Easy to check
that α, β are as required.

So we have finished proving Theorem 1.1. �1.1
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