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Abstract. We get a version of the colouring property Pri proving Pri(\, A, A, 0)
always when A = 9", 9 are regular cardinals and some stationary subset of \ con-
sisting of ordinals of cofinality < 0 do not reflect in any ordinal < A.

0. Introduction

We prove a strong colouring theorem on successor of regular uncountable
cardinals, so called Pry.

On the history of Pry see [5, Ch. ITI, §4] and later [6], and then indepen-
dently Rinot [3] and [7].

Rinot [3, Main result] proved that Prq(A, A, \,§) when those are regular
cardinals; A = 01 or just #7 < X and X is a successor of regular or just it
has a non-reflecting stationary subset of A consisting of ordinals of cofinality
at least 6. In [7], we have Pri(\ A, A\, (6p, 0)) where 6y is regular < 6 = cf(0),
0T < X and X is a successor of regular. Earlier [6, 4.2, p. 27| prove that
Pri(A\ A A\, 0) when in addition A = 7.

Much earlier [5, Ch. ITI, §4] had treated those problems in a general but
probably in a not so transparent way, first 4.1 there gives a set of various
hypothesis (each with some parameters).

The result here is incomparable with the ones in [3], [7], [6]: the assump-
tion on the stationary set is stronger but the arity — the last parameter, 6 is
bigger.

The connection between purely combinatorial theorems and topological
constructions is known for many years. Several results in general topology
were proved using the property Pry(\, i, 0,0), see recently [2], then [7, §1].
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Recall:

DEFINITION 0.1. 1) Assume A > 1 > o + 6y + 01,0 = (0p,01), see 0.4(1).
Assume further that 6y, 601 > Ry but o may be finite.
Let Pri(\, p1,0,0) mean that there is c : [\]> — o witnessing it, which
means:
(*)c if (a) then (b), where: B
(a) for ¢t =0,1,i, <0, and ¢* = ((,; 1 @ < p,i <1i,) are sequences of
ordinals of A without repetitions, and Rang(¢®), Rang({!) are disjoint and
vy<o
(b) there are ap < a1 < p such that Vip < i, Vi; < iy, C{ngo, Colmil}
=~ and Cgo,io < C;q,z‘l'
2) Above if 0y = 6 = 0; then we may write Pri(\, p,0,0).

In this paper we prove e.g. that if some stationary S C {J < Ny:
cf(0) < Ny} do not reflect then Pr;(Ng, Ng, N, X;) holds, which means that
countable infinite sequences can be taken in both “sides”. Actually, the the-
orem says that, in particular, Pry(A, A\, A, d) holds whenever 9 = cf(9) and
A = 0" and there is a non-reflecting stationay subset of Sén. We intend to
say more on other A\-s in [4].

We thank Shimoni Garti and the referee for many good suggestions.

DEFINITION 0.2. 1) A filter D on a set I is uniform when for every
subset A of I of cardinality < |I|, the set I\ A € D; all our filters will be
uniform.

2) A filter D on a set I is weakly -saturated when 6 > |I| and there is
no partition of I to @ sets from DT,

3) We say the filter D on a set I is f-saturated when the Boolean algebra
P(I)/D satisfies the O-c.c.

Fact 0.3. 1) If D is a 0-complete filter on X\ and is not 0-saturated then
it 18 not weakly 0-saturated; so those properties are equivalent.

2) If 0 =0" and D is a O-complete filter on 0, then D is not weakly
0-saturated.

3) Ifn>1and A =0 and D is a (uniform) o*-complete filter on A\
then D is not weakly o™ -saturated.

PROOF. 1) Obvious and well known.

2) By [8].

3) Let u be the minimal cardinal such that D is not u*-complete, so
clearly p € [0, \] hence p is a successor cardinal. So there is a function f
from X into u such that for every subset A of i of cardinality < u, f~1(A4) =0
mod D. Let E be the family of subsets A of u such that f~(A) € D.
Clearly E is a (uniform) p-complete filter on g hence by part (2) is not
weakly p-saturated, let (A :e < u) be a partition of pu to sets from ET.
Now (f71(A:) : e < p) witnesses the desired conclusion. [y 3
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NOTATION 0.4. 1) We denote infinite cardinals by A, p, x,6,0 while o
denotes a finite or infinite cardinal. We denote ordinals by «, 3,7,¢,(,&.
Natural numbers are denoted by k, ¢, m,n and ¢ € {0,1,2}

1A) Let D denote a filter on an infinite set dom(D).

2) For a set A of ordinals let nacc(A) ={a € A:a >sup(ANa)}
and acc(A) = A\ nacc(A). For regular cardinals A > x let S) = {0 < \:
cf(8) = v}, 2, = {6 < A:cf(8) < K}

1. A colouring theorem

Our aim is to prove

THEOREM 1.1. Pri(A\ N, 0,0) and moreover Pri(A, A\, A\, 0) holds provided
that:

(a) A
) 52 (@) > %
(c) # is a stationary subset of X consisting of ordinals of cofinality < 0
reflecting in no ordinal < A.

REMARK 1.2. 1) The case of 9 colours, i.e. proving only Pri(\, A, 0,0)
is easier so we prove it first.
2) Can we weaken clause (c) of 1.1 replacing “reflecting in no ordinal
< A” by “reflecting in no ordinal of cofinality 97”
The answer seem yes provided that we add:
(a) there is a sequence (e, : a € #') such that (# is as above and)
eq is a club of a of order type < 0 and for o € eg N # we have e, = aNeg
(B) there is no d-complete not &+ -complete uniform weakly d-saturated
filter on A.

PROOF.  Stage A: We begin as in earlier proofs (e.g. [7]). We let
(k1,K2) = (9,\). Let S C S) be stationary and h : A — X be such that o < A
= h(a) <14 a,h[(A\S) is constantly zero and S := {5 € S: h(5) =7} is
a stationary subset of A for every v < A. Let F, : A = &, for ¢« = 1,2 be such
that for every (e1,62) € (k1 X K2) the set We, .,(8) = {y € S§: Fi.(y) =¢, for
¢ = 1,2} is a stationary subset of A for every 5 < A.

For . =1,2 and p € “” A let F,(p) = (F,(p({)) : £ < Lg(p)).

®p without loss of generality if § € # then § is divisible by J.

Let € = (e, : @ < A) be such that:

©®1 (a) if a =0 thene, =10

(b) if @« = B+ 1 then e, = {5}

(c) if « is a limit ordinal then e, is a club of « of order type cf(«)
disjoint to Sg hence to S.

(d) if « is a limit ordinal then e, is disjoint to #'.
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In other cases (not here) instead h we use a sequence (h, : @ < A) of
functions, hy, : eq — 0 and use e.g. (hy,(g,0)(Ve41(8,a)) : £ < k(B,a)) and py,
but this is not necessary here.

Now (using €) for a < 8 < A, let

v(B,a) :=min{y € eg : v > a}.
Let us define 4(8, a):

Y(B,a) =B, and yr1(8, @) = v(7e(B,a),a) (if well defined).

If a < B < A, let k(8, @) be the maximal k < w such that (3, ) is defined
(equivalently is equal to «) and let pg o, = p(f, @) be the sequence

<")/0(,8,Oé),")/1(,8704), s 77k(6,a)—1(/87 a)> :

Let v (8, @) = Y(8,0)—1(8, a) where £t stands for last.
Let

pr = (h(e(B,a)) : £ < k(B,q))
and we let p(«, ) and pp(«, @) be the empty sequences. Now clearly:

®9 if & < f < A then a <~v(8,a) < 8 hence
Oz if a<f <0</l <w,and v(8, ) is well defined, then

« SVZ(ﬂ?a) < /B

and
®4 if a < B < A, then k(8,«) is well defined and letting 7, := v¢(5, @)
for ¢ < k(B, ) we have

@ =Ypa) < V(B0) = Ypa)—1 << <=7

and a € e,,,(3,q) 1-6. p(B, @) is a (strictly) decreasing finite sequence of ordi-
nals, starting with 3, ending with 4 (3, ) of length k(3, a).
Note that if & € S, a <  then v, (8, ) = a + 1.
Also
®s if 9 is a limit ordinal and § < 8 < A, then for some oy < § we have:
ag < a < 6 implies:
(1) for £ < k(ﬂvé) we have Wf(ﬂaé) = Vf(ﬂaa)
(ii)

€ nacc(en,,8,5)) < 0 = V(3,6)(B,0) = Yr(s,5) (B, @)
& [Vk,0)(B,0) = 6 > Yp,6)(B, )]

(iii) p(5,0) < p(B, «); i.e. is an initial segment
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(iv) 0 € nacc(e.,,(g,5)) (here always holds if ¢ € ) implies:
® p(B,0)"(6) < p(B, ) hence
® Ioh(ﬂv 6)A<h(67 6)(6)> < ph(/gaa)'
(v) if cf(§) =0 or § € # then we have vu(8,0) =0+ 1s0od+1¢€
nacc(eq,(s,5))
(vi) if c¢f(0) =0 or § € # and ¢ € e, then necessarily v =6 + 1.
Why? Just let

g = Max{ sup(ew(@(;) Nd)+1:4<k(B,9)and d & acc(ew(ﬁﬁ))}.

Notice that if £ < k(3,d) — 1 then 0 ¢ acc(e,,s,5)) follows.

Note that the outer maximum (in the choice of ag) is well defined as it
is over a finite non-empty set of ordinals. The inner sup is on the empty
set (in which case we get zero) or is the maximum (which is well defined)
as €4,(3,6) 1s a closed subset of v,(3,6),6 < (8,0) and § & acc(e,,(s,5)) — as
this is required. For clauses (v), (vi) recall § € Sy U%# and e, N Sy = ) and
ey N# = () when ~ is a limit ordinal and e, = {y — 1} when 7 is a successor
ordinal.

©s (a) if a<B<A, £<k(B,a), y="u(B, ) then p(B,a)=p(8,7) p(7,)
and pp (B3, ) =pp(B,7) " pr(7; @)

(b) if g < -+ < ay and p(ag, ag) = plag, ak—1)" -+ “plaq, ) then
this holds for any sub-sequence of («y, ..., ax).

©7 let F] be F,oh for « =1,2; so F} is a function from X into 0 and F
is a function from A into A.

Stage B: Let

My T = {t: 1= (t, : @ < \) satisfies t, € [\]<? and' t, C \\a}.

B3 for ¢ <0 and £ € T let Az, be the set of v < A such that for some
(v, 1) we have:

(a) ap < a1 < X and? ((,€) € to, X ta, = (<&
(b) for every ((,&) € ta, X tq, for some ¢ we have:
(a) £ < k(&)
(8) 7e(€,¢) =~
(7) if k < k(€,¢) then F{(7) > Fi((€,¢)) and Fi(y) > ¢
(0) if k& < £ then F{(7(£,¢)) < Fi(7)-

We define:

By D ={AC \: Aincludes Az, for some t € T,e < 9}.

Now note:

B5 (a)if 5,t € T,e < (¢ <9 and (Vo < A)(sq C ta), then Aj C Ag.

(b)if 5€ T, e <9, g is an increasing function from A to A and ¢ =
(to : e < ) is defined by to = s4(q) then Az, C Ase.

Lif instead we demand a # 8 < XA = to N tg = 0 then we shall get the same filter D.
2 If we choose to add here “tay C a1”, then we would have a problem in proving clause Hs(b).
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[Why? Read the definitions.]

B (a) the intersection of any < 0 members of D is a member of D,
equivalently includes the set Az, for some t € T, ¢ < 0

(b) for every 8 < X for some t € T, Az C [3, )
(c)ifte T and a < A =ty # 0 then N{Az. : e <0} =10
(d) D is upward closed.

(e) X belongs to D

[Why? For clause (a) assume A. € D for € < (%) < 0 then for some
(¢ <0 and t. € T we have A. D Aj . Define t, = {t; : € < e(x)} for
a < X and ¢ =sup{(. : € < e(*)}; as the cardinal 0 is regular, clearly |t,|
< D ece(n Ital < 0 and obviously ¢4 C [, A) hence t=(to:a <) €T and
similarly ¢ < 0. Easily A;. C A;_. for every e < &(x), see H5(a) so we are
done proving clause (a). For clause (b) define t, = {5+ o+ 1} and recalling
B3(b)(8) and ©4 check that Az, C [3,A). Also clause (c) obviously holds
because v € Az, = F{(v) > ¢ by B3(b)(y) and FY is a function from A to 0
and clauses (d), (e) hold trivially by the definition.]

537 (a) @ §Z D

(b) D is a filter on A, equivalently Az. # 0 for every t,¢; also D is
uniform d-complete, not O -complete.

[Why? Clause (a) is a major point, proved in Stage C below. That is,
by Bg(a),(d) the only missing point is to show Az # 0, (in fact, [Az .| = A).
For clause (b) by (a) and Hg(a),(d),(e), D is a 0-complete filter and the
statement that D is uniform holds by Hg(b) and not " -complete holds by
Eﬂ@ (C)]

Note also

Hs D is not weakly O-saturated.

[Why? By B7 + Hg(c) and clause (c) in the assumptions of the theorem.
That is it is known that if D fail this statement (and has the properties
listed before) then there is no # as in clause (c) of the theorem. That
is, considering the forcing notion P = D' with inverse inclusion. Toward
contradiction assume that the conclusion fails: by 0.4 the forcing notion P
satisfies the d-cc. Now, in VT, the generic set G is an ultrafilter on the
Boolean algebra 22(\)V and let j be the canonical embedding from V into
the Mostowski collapse of V*/G (we are using only functions from V), now
the contradiction will be clear. If 9 is a successor cardinal we can use 0.3(2).]

Stage C': In this stage we accomplish the proof of the missing point in
H7(a) from above, so we shall prove “A;. is non-empty (in fact, has cardi-
nality \)” when:

B (a) ta € A\a for a < A

(b) [tal <O
(c) e <O.

To start we note that:

(x)1 without loss of generality ¢, # () and o < min(t,).
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[Why? First, recalling H5(a) we can replace t by t = (t, U {a} : a < A},
so we may assume that each ¢, is not empty. Second, let ¢ = (t, : a < \),
ti, = tat1, so easily t' satisfies (x); and Ay . C Az, by clause Bs5(b).]

Now

(%)2 we can find %fln, g4 such that:
(a) 2™ C # is stationary in A
(b )a<5e%dn:>t )
(c) et <9
(d) if 6§ € 2™ then for arbitrarily large o < § we have ¢ € t, =
Rang(F1(pn(6,())) Q et < gy = 0.

[Why? Clearly Ey ={d < A:9J is a limit ordinal such that o <0 =
ta € d}isaclubof A. For every 6 € # N Ey and o < ¢ we can find 56«1 as in
clauses (c), (d) of (x ) (because |ta| < 0) and so recalhng that cf(d) < 0 it
follows that there is e§® such that § = sup{a < § : 55(1 = {1}, Then recall-

ing A = cf(\) > 0 we can choose £1" such that the set 249" = {§ € # N Ey :
efn = g1} is stationary. So (*) holds indeed.]
(x)3 We can find %", a7, " such that:
(a) 2™ C SO is statlonary

(b) h % P s constantly 0, actually follows by (a), see Stage A
(c) af < X satisfies of < min(%24") and " < 9
(d )1f6€%uP and « € [af,d) and B € t5 then:

* pps (0) I pga
e Rang(Fi(pn(B,9))) C e™.
[Why? For every § € S5 C S and ¢ € t5 let a1 5¢ < ¢ be such that (Vo)
(a € [a1s,¢,0) = pes (0) < pea), it exists by @5 of Stage A.
Let
e a1 5 =sup{agse: ¢ € ts}
[

g5” =sup {F{(W(C,é))(é) +1:(etsand l < k((,é)}
— | {sup Rang(Fi(pn(¢,6)) +1: C € 5}

as cf(6) =0 and 0 = cf( ) > |ts|, necessarily a5 < 6 and €5 < 9.

Lastly, there are o] < A and e"™? < k1 =0 and w'"® C So as required by
using Fodor lemma. So (x)s holds indeed.]

Now let E = {6 < X : 4 is alimit ordinal > af such that § = sup(Z,™ N )
and o < § = to, €}, it is a club of A because aj < A by (*)3(c) and %™
is an unbounded subset of A by (x)2(a), and ¢, is a subset of A of cardinality
< 0 hence is bounded.

Choose &(x) = max{e"’ + 1,6 + 1, + 1} where ¢ is from H(c), so
£(x) < 0 and choose 6y € ENS such that F{(d2) =e(*). Next choose
as € %"™\(62+1) and let o* € (af,d2) be large enough such that ¢ €
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(%, 82) NE € to, = p(€,02) (52) <p(&,¢). Now choose §1 € %N (a*,d2) and
a™ € (a*,01) be such that a € (a™*,81) ANE € ta, = p(§,01) (01) < p(§, ).
[Why is this possible? First as o* > a* it is enough to have a € (a**, 1)
= p(d2,01)"(01) < p(d2,a). Second here cf(d1) < 0 however this condition
holds because 6; € % C # so necessarily v (d2,1) = 61 + 1 by ©@5(vi)].
Next let £, < £g(p(az,d1) be such that:
(¥)a (a) e(e) := Fi(pn(az,61))(£+) = max Rang F1(pp (a2, 01))
(b) under this restriction ¢, is minimal.
Lastly, choose a1 € (a**,d1) which is as in (x)2(d) with respect to d1, i.e.
such that:
(¥)5 if ¢ € to, then Rang I (pp(61,¢)) C ™.
Now we shall prove that the pair (aq,a2) is as required. So let ((,¢§)
€ tq, X ta,; now by our choices

(%)6 p(§,¢) = p(§, a2) " plaz, 02) " p(d2,01) " p(d1,¢) and

plaz,61) = p(az, d2)" p(d2, 01)
So
() Rang(Fi(pn(€,02)) € e < e()
[Why? by (x)s(a), the choice of ag € 24" and & being from t,]
(*)s Rang(F1(pp(81,¢)) C e < e(*)
[Why by (*)2(d) and the choice of ay (and ¢ being a member of ¢,, ]
()9 e(*) = F1 o h(d2) € Rang(F1(pp(az,91))), see (x)g and (before and af-
ter) ®1 .
[Why? Recall that d2 was chosen in E'N S such that F[(d2) = &(x).]
Hence
(*)10 e < 8(*) < 6(.) <0
Putting those together, we can finish this stage by:
(*)11 in H3(b) for our ¢ and the pair (a1, as), our £(e) (chosen in (x)4(a))
is gotten, witnessing g, (a2,01) € Az ) € Az
[Why? As first € < £(x), by the choice of (x), and second if ({,&) €
ta, X ta, then £="Lg(p(, aa))+ L. is as required in Hz(b) for ¢ by (*)s—(*)10]
So we are done proving Bz (a).
Stage D: By Hs
®1 there is F, : A — 0 such that ¢ < 9 = F,1({e}) # 0mod D.
We first deal with the easier version with 9 colours, i.e. proving Pri(\, A,
0,0).
We now define the colouring c;: [\]> — 9 by:
®2 if a < B < Athen ci{a, B} is Fi(ye(8,0) (B, @) where £(3, ) = min{/ <
k(ﬂv a) : Fll(/yé(ﬁv Oé)) = maXRang(F{(p(ﬂv Oé)))}
To prove that the colouring c; really witnesses Pry(\, A, 0,0), our task
is to prove:
@3 given t € T and ¢ < J there are o < 3 such that:
ety NEetg=c{(,{} =
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[Why does @3 hold? Let B, = {y < A : Fi(7y) = ¢}. By the choice of F}
we know that B, # mod D. Focus on Az, for our specific £ € T and any
e < 0. Since Az, € D we conclude that B, N Az, # 0.

Fix an ordinal v € B, N A;.. By the very definition of Az, in H3 we
choose a < 8 < A such that for every ((,§) € to X tg there exists £ < k(, ()
for which ~,(§,¢) =~ and F{(y) > F{(7(§,¢)) whenever k < k(£,¢) and
Fi(y) > e and F{(v) > F{(7(&,¢)) whenever k < £. Let £(§,¢) be this ¢, in
fact, this £ is unique (for the pair (¢, ¢&)).

Now ¢1{¢, &} = Fi(e(e,0)(€,€)) (by ®2) which equals Fi(v) (by the choice
of ¢(¢,¢)) which equals ¢ (since v € B,). Hence ®3 holds and we finish
Stage D.]

Stage E: The full theorem: the case of A colors.

Let A/, h” be functions from 9 into 9, w respectively such that the map-
ping ¢ — (R'(¢),h"(¢)) is onto 9 x w and moreover each such pair is gotten
0 times.

We have to define a colouring cs : [A\]2 — A exemplifying Prq (), A, A, ).

This is done as follows using A/, h” and F, from ®1:

@1 for a < 8 < A we let

o1 ( =((B,a):=h(c1{B,a}), necessarily < 0

o n =n(f,a):=h"(c1{B,a}), necessarily < w

o3 m = m(f3,a) is the n-th member of {k < k(5,a) : F{(k(8,a)) = (}
when there is such m and is zero otherwise

4 we define cy as follows: for o < 3, co{a, B} is Fy(ym(s,a) (5, a))
recalling that FJ, a function from A to A is from ®9 from the end of stage A.

To prove that co indeed exemplifies Pry (A, A\, A, @) it suffice to prove (this
is the task of the rest of the proof)

@9 assume t € T and j, < X and we shall find o < 3 such that t, C 3
and ((,§) € to X tg = c2{(, &} = Jju.

Toward this:

@3 (a) we apply ()3 to our ¢, getting €™, %,"?, a7 as there

(b) we apply ()2 to our  getting %3, "
(c) let e™d = max{e™ + 1,e% + 1},
We can find go, %", v«, a5, m4 such that:
@4 (a) 7 < A satisfies Fy(7,) = j. and Fy () = e™d
(b) %, C S% is stationary hence § € %" = Fy(d) = Fy(h(0)) =
Fy(ve) = ju AF{(6) = Fi(h(6)) = Fi(7,) = ™
c) g2 is a function with domain %, such that § € 24, = § < g2(9)
e w"”®
(d) o satisfies of < o < min(%,")
(e)if 6 € %" and o € [a3,6) and § € Ly, (s then
® p(92(0),0)"(0) < p(g2(6), ) hence
* pgs (0)  pga
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(f) m} satisfies: for every 6 € %,", it is the cardinality of the set {¢ <
k(g2(8),9) : F{(7:(g2(6),6)) = ™4} which may be zero.

[Why? First choose 7, as in clause (a) of @4 (possible by the choice
of Fi, F5 in the beginning of Stage A; hence 0 € S,, = F5(0) = Fa(h(d)) =
Fy(v4) = j» and F{(8) = F1(h(5)) = Fi (%) = e™¥ (by the choice of F] in ©7
recalling the definitions of h, F{). Second, define g’ : S¥ — %" such that
6 €855 =d<g(0) €2, Third, for each § € S5 \(af +1), find aj 5 <
above aj and mgs such that the parallel of clauses (e), (f) (with ¢’ here
instead of go there) of @4 holds. Fourth, use Fodor lemma to get a sta-
tionary %, C S% such that (e 5,ma5):0 € U, is constantly (aj,m})
and lastly let go = ¢'|% " \(a + 1). Now it is easy to check that &, holds
indeed.]

Next

@5 if 6 € %" then:

(a) () =e™d
(b) if a € [05,0),& € ty,(5) then u = {l < k(§,a) : Fi(7(§,)) = gmdl
has > m3 members and if £ is the m3-th member of u then ~,(¢,a) = 0.

Why? Clause (a) holds by @4(a),(b). For clause (b) use clause (a) and
the demands on m3. That is

(a) p(€,0) = pl€, 92(8))"l92(6),6)" (6, @) [Why? by (x)g, @4 ()]

(b) Rang(pn(@, 92(3))) € " C =l [Why? by (x)]

(c) the set {¢ < k(g2(9),9) : F{(74(g2(6),6)) = €4} has m} members
[why? by @a(f)]

(d) Fl(70(5,)) = F{(6) = =™ [Why? by @ (a),(b)]

(e) if £, is the m3-th member of {£: Fy(v,(&,)) = ™9} then vy, (&, ) = 6
[Why? putting the above together]

So @5 holds indeed.

Now choose £(*) < O such that h/(s(x)) = e and h"(e(x)) = m3.

Next, let E = {§ < X : § limit ordinal > a3 such that § = sup(%%* N J)
and o < § = ga(ar) < d}.

Lastly,

@6 choose 1 < do such that

(a) 0y € 4" NE
(b) 03 € %" N E\(61 + 1)
(C) C1{627 51} = 5(*)7

[Why does such a pair (d1,d2) exist? By Stage D applied to § = (s, :
a < A\) where s, = {min(%™ N E\«a), min(%, " N E\«a)}.

That is, we can find ordinals o < 5 < A such that: for every ((,§) €
(5a % 55) we have ¢1{¢,(} = emd.

Let 61 = min(Z,™ N E \ ) and let 62 = min(%,"" N E\ B).

So (01,02) € (sq X sg) hence clearly 61 < d2, c1{d1,02} = €(x), 01 € w3
NE and 6; € 24" N E. So the pair (41, d2) is as promised in in @)
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Now let 3 = g2(d2) and choose o € % N &1\ (a3 +1). Easy to check

that «, 8 are as required.

(1]
2]
3]
[4]
[5]
[6]

(7]

So we have finished proving Theorem 1.1. [l
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