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Abstract. We deal with the combinatorial principle Weak Diamond. We
prove that, if it holds for a given cardinal, we can get this principle with more
than two colours or some relevant ideal is not too saturated. Then we point out
a model theoretic consequence of Weak Diamond.

0. Basic definitions

In this section we present basic notations, definitions and results.
The paper was circulated (including the math arXiv) and accepted to the

East-West Journal of Math around 2000, but due to some problems between
the editors has not appeared. Meanwhile Aspero, Larson and Moore [1] with
a related result was done. Weak diamond was introduced in [2], lately see [3].

Notation 0.1. (1) κ, λ, θ, μ will denote cardinal numbers and α, β, δ,
ε, ξ, ζ , γ will be used to denote ordinals.

(2) Sequences of ordinals are denoted by ν, η, ρ (with possible indexes).
(3) The length of a sequence η is �g(η).
(4) For a sequence η and � ≤ �g(η), η�� is the restriction of the sequence η

to � (so �g(η��) = �). If a sequence ν is a proper initial segment of a se-
quence η then we write ν � η (and ν � η has the obvious meaning).

(5) For a set A and an ordinal α, αA stands for the function on A which
is constantly equal to α.

(6) For a model M , |M | stands for the universe of the model.
(7) The cardinality of a set X is denoted by ‖X‖. The cardinality of the

universe of a model M is denoted by ‖M‖.
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Definition 0.2. Let λ be a regular uncountable cardinal and θ be a
cardinal number, possibly finite.

(1) A (λ, θ)-colouring is a function F : DOM −→ θ, where DOM is either
<λ2 =

⋃
α<λ

α2 or
⋃

α<λ
α(H(λ)). In the first case we will write DOMα =

DOMα(F ) = 1+α2, in the second case we let

DOMα = DOMα(F ) = 1+α(H(λ)) (for α ≤ λ).

If the choice does not matter we shall not mention it; for the main defi-
nitions the choice does not matter, see 1.10.

If λ is understood from the context, we may omit it; if θ = 2 then we
may omit it (thus a λ-colouring means a (λ, 2)-colouring and a colouring is
a (λ, 2)-colouring).

(2) For a (λ, θ)-colouring F and a set S ⊆ λ, we say that a function
η ∈ Sθ is an F -weak diamond sequence for S when for every f ∈ DOMλ the
set {

δ ∈ S : η(δ) = F (f�δ)
}

is stationary.
(3) WDmIdλ is the collection of all sets S ⊆ λ such that for some colour-

ing F there is no F -weak diamond sequence for S.

Remark 0.3. In the definition of WDmIdλ (0.2(3)), the choice of DOM
(see 0.2(1)) does not matter; see [10, AP, §1], remember that ‖H(λ)‖ = 2<λ.

Theorem 0.4 (Devlin and Shelah [2]; see [10, AP, §1] too). Assume that
2θ = 2<λ < 2λ (e.g. λ = μ+, 2μ < 2λ). Then for every λ-colouring F there
exists an F -weak diamond sequence for λ. Moreover, WDmIdλ is a normal
ideal on λ (and λ �∈ WDmIdλ).

Remark 0.5. One could wonder why the weak diamond (and WDmIdλ)
is interesting. Below we list some of the applications, limitations and related
problems.

(1) Weak diamond is really weaker than diamond, but provably (in ZFC)
it holds true for some cardinals λ. Note that under GCH, ♦μ+ holds true
for each μ > ℵ0, so the only interesting case then is λ = ℵ1.

(2) Original interest in this combinatorial principle comes from interest
in Whitehead groups: if G is a strongly λ-free Abelian group and Γ(G) �∈
WDmIdλ then G is not Whitehead.

(3) A related question was: can we have stationary subsets S1, S2 ⊆ ω1
such that ♦S1

but ¬♦S2
? (See [5].)

(4) Weak diamond has been helpful particularly in problems where we
have some uniformity, e.g.:

(∗)1 Assume 2λ < 2λ
+

. Let ψ ∈ Lλ+,ω be categorical in λ, λ+. Then
(MODψ,≺Frag(ψ)) has the amalgamation property in λ.
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(∗)2 If G is a group of cardinality λ > ℵ0 then we can find subgroups
Gi of G (for i < λ) non-conjugate in pairs (see [9]).

(5) One may wonder if assuming λ = μ+, 2λ > 2μ (and e.g. μ regular) we
may find a regular σ < μ such that

{δ < λ : cf(δ) = σ} �∈ WDmIdλ.

Of course, by the ‘‘normal ideal” result (see 0.4), it follows that there is
such σ, but does σ depend on the present set theory? e.g. does it hold for
every regular σ �= cf(μ) below μ?

Unfortunately, this is not the case (see [7] even for μ = ℵ1).
(6) We would like to prove

(a) WDmIdλ is not λ+-saturated or
(b) a strengthening, e.g. weak diamond for more (than two) colours.

We will get (a variant of) a local version of the disjunction, where we
essentially fix F . There are two reasons for interest in (a): understanding
λ+-saturated normal ideals (e.g. we get more information on the case CH
+ “Dω1

is ℵ2-saturated”; see also Zapletal and Shelah [16]), and non λ+-
saturation helps in “non-structure theorems in model thery” (see [6], [11],
[13], [14]). That is, having 2μ < 2μ

+

< 2μ
++

and some “bad” (i.e. “non-
structure”) properties for models in μ we get 2μ

++

models in μ++ when
WDmIdλ+ is not λ++-saturated (and using the local version does not hurt).

(7) Note that for S �∈ WDmIdλ we have a weak diamond sequence f ∈ S2
such that the set of “successes” (=equalities) is stationary, but it does not
have to be in (WDmIdλ)+. We would like to start and end in the same
place: being positive for the same ideal. Also, in (b) above the set of places
we guess was stationary, when we start with S ∈ (WDmIdλ)+.

Note that it may well be that λ ∈ WDmIdλ (if (∃θ < λ)(2θ = 2λ) this
holds), but some “local” versions may still hold. E.g. in the Easton model,
we have F -weak diamond sequences for all F which are reasonably definable
(see [10, AP, §1]; define e.g.

F (f) = 1 ⇔ L[X, f ] |= ϕ(X, f)

for a fixed first order formula ϕ, where X ⊆ λ depends on F only). So the
case WDmIdλ = P(λ) has some interest.

(8) Related later works are [12], [15].

We would like to thank Andrzej Ros�lanowski for mathematical comments
and improving the presentation and to Shimoni Garti.

1. When colourings are almost constant

In 1.1, 1.2 we now “slice” WDmIdλ by finer approximations meaningful
even when WDmIdλ fails.
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Definition 1.1. Let λ be a regular uncountable cardinal.
(1) Let F be a (λ, θ)-colouring.

(a) Let S ⊆ λ . We say that a sequence η ∈ Sθ is coded by F if there
exists f ∈ DOMλ such that

α ∈ S ⇔ η(α) = F (f�(1 + α)).

(b) We let

B(F ) def=
{
η ∈ λθ : η is coded by F

}
.

(2) For a family A of subsets of λ let idealλ(A) be the λ-complete normal
ideal on λ generated by A (i.e. it is the closure of A under unions of < λ
elements, diagonal unions, containing singletons, and subsets).

[Note that idealλ(A) does not have to be a proper ideal.]
(3) For a λ-colouring F (so θ = 2) we define by induction on α: ID−

0 (F ) =
∅, ID0(F ) = {S ⊆ λ : S is not stationary}, for a limit α

ID−
α (F ) =

⋃
β<α

IDβ(F ), IDα(F ) = idealλ

( ⋃
β<α

IDβ(F )
)
,

and1 for α = β + 1

ID−
α (F ) =

{
S ⊆ λ : for each S∗ ⊆ S there is f ∈ DOMλ such
that {δ < λ : δ ∈ S∗ ⇔ F (f�δ) = 0} ∈ IDβ(F )

}
;

}

IDα(F ) = idealλ
(
ID−

α (F )).

Finally we let IDa(F ) =
⋃

α IDα(F ).
(4) We say that F is rich when DOM(F ) =

⋃
α<λ

αH(λ), and for every
function f ∈ DOMλ and α < λ and a set A ⊆ α there is f ′ ∈ DOMλ such
that:

(∀i ∈ (λ \ α))(f(1 + i) = f ′(1 + i) & F (f�(1 + i)) = F (f ′�(1 + i)))

and (∀j ∈ α \ {0})(F (f ′�j) = 1 ⇔ j ∈ A).

Definition 1.2. Let λ be a regular uncountable cardinal and let F be
a λ-colouring.

(1) WDmIdλ(F ) is the family of all sets S ⊆ λ with the property that
for every S∗ ⊆ S there is f ∈ DOMλ such that the set{

δ ∈ S : δ ∈ S∗ ⇔ F (f�δ) = 1
}

is not stationary, (note, the difference with 0.2(3)).

1 Note that ID−
α (F ) �= ∅ iff α > 0.
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(2) B+(F ) is the closure of (see 1.1(1)):

B(F ) ∪ {S ⊆ λ : S is not stationary}

under unions of < λ sets, complement and diagonal unions (here, in B(F ),
we identify a subset of λ with its characteristic function).

(3) IDb def= {S ⊆ λ : for every Y ⊆ S for some B ∈ B
+(F ) we have

B ∩ S = Y }
(4) IDc(F ) is the collection of all S ⊆ λ such that for some X ∈ B

+(F )
we have: S ⊆ X and there is a partition X0,X1 of X such that

(α) P(X�) = {Y ∩X� : Y ∈ B
+(F )} for � = 0, 1, and

(β) for � < 2 there is no Y ∈ B
+(F ) satisfying

Y \X� ∈ IDb(F ) & Y �∈ IDb(F ).

Proposition 1.3. Assume λ is a regular uncountable cardinal and F
is a λ-colouring.

(1) idealλ(A) is the collection of all diagonal unions ∇ξ<λAξ such that
Aξ ∈ A for ξ < λ, when A is a family of subsets of λ such that

(�A) if S0 ⊆ S1 and S1 ∈ A and A ∈ [λ]<λ then S0 ∪ A ∈ A,
(2) The condition (�ID−

α (F )) (see above) is true for each α. Consequently,
if α = β + 1 then IDα(F ) = {∇i<λAi : 〈Ai : i < λ〉 ⊆ ID−

α (F )}, and if α is
limit then IDα(F ) = {∇i<λ Ai : 〈Ai : i < λ〉 ⊆

⋃
β<α IDβ(F )}.

(3) IDa(F ) and IDα(F ) are λ-complete normal ideals on λ extending the
ideal of non-stationary subsets of λ (but they do not have to be proper). For
α < γ we have IDα(F ) ⊆ IDγ(F ) and hence IDa(F ) = IDα(F ) for every large

enough α < (2λ)+.
(4) Suppose B̄ = 〈B� : � ≤ m〉, where B� ⊆ B�+1 (for � < m) and Bm

∈ IDa(F ). Then B̄ has an F -representation, which means that there are a

well founded tree T ⊆ ω>λ, sequences 〈B�
η : η ∈ T, � ≤ �η〉, and 〈fk

η : η ∈ T ,
k ≤ kη〉 such that kη ≤ �η + 1 ≤ m+ 1 and

(a) B�
〈〉 = B�, �〈〉 = m, B�

η ⊆ B�+1
η ⊆ λ, f �

η ∈ λ2,
(b) (∀η ∈ T \max(T )) (∀i < λ)(η�〈i〉 ∈ T ),
(c) for each η ∈ T \max(T ) there is αη < λ such that for all � ≤ �η ,

δ ∈ λ \ αη we have:
(⊕) δ ∈ B�

η iff

(∃i < δ)(δ ∈ B�
η�〈i〉) or

F (f �
η�δ) = 1 & ¬(∃i < δ)(∃k)(δ ∈ Bk

η�〈i〉),
(d) for each η ∈ max(T ), Bη is a bounded subset of λ with min(Bη) >

sup({η(n) : n < �g(η)}).
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(5) If for some f∗ ∈ λ2 we have (∀α < λ)(F (f∗�α) = 0) then in part (4)
above we can demand that kη = �η + 1.

(6) If F is rich then in part (4) above we can add
(e) αη=0 for η ∈ T \max(T ) and Bη = ∅ for η ∈ max(T ).

(7) IDa(F ) is the minimal normal ideal D on λ such that there is no
S ∈ D+ satisfying

(∀S∗ ⊆ S)(∃A ∈ B(F ))(S∗ � A ∈ D).

(8) If X ∈ P(λ) \ IDb(F ) then there is η ∈ λ2 which is a weak diamond
even modulo IDb(F ) which means that :

for every f ∈ DOM(F ) we have {δ∈X : F (f�δ)=η(δ)} �= ∅ mod IDb(F ).
(9) ID1(F ) = {S ⊆ λ : (∃X ∈ B

+(F ))(S ⊆ X & P(X) ⊆ B
+(F ))}.

Proof. (1) Should be clear.
(2) If α = 0 then (�A) holds trivially because there is no such S1.
If α is a limit ordinal then the condition holds because for every S1 ∈

ID−
α (F ) there is β < α such that S1 ∈ ID−

β (F ) and we can use the induction
hypothesis.

Lastly, if α = β + 1 this is easy too.
(3) For the first sentence ID−

α (F ) is a normal ideal by its definition; this
implies IDa(F ) is a normal ideal by the second sentence. We still have to
prove the second sentence.

By induction on γ < λ and then by induction on α < γ we show that
(∀γ < λ)(∀α < γ)(IDα(F ) ⊆ IDγ(F )). If γ = 1 then this follows immediately
from definitions; similarly if γ is limit. So suppose now that γ = γ0+1 and we
proceed by induction on α ≤ γ0. There are no problems neither when α = 0
nor when α is limit. So suppose that α = β + 1 < γ (so β < γ0). By the in-
ductive hypothesis we know that IDβ(F ) ⊆ IDγ0

(F ). Let A ∈ IDβ+1(F ). By
(2) there are Aξ ∈ ID−

β+1 (for ξ < λ) such that A = ∇ξ<λAξ . Now look at the
definition of ID−

β+1(F ): since IDβ(F ) ⊆ IDγ0
(F ) we see that Aξ ∈ ID−

γ0+1(F ).
Hence A ∈ IDγ .

(4) By induction on α we show that: if B̄ = 〈B� : � ≤ m〉, where B� ⊆
B�+1 (for � < m) and Bm ∈ IDα(F ) then B̄ has an F -representation.

Case 1: α = 0. Thus the set Bm is not stationary and we may pick up
a club E of λ disjoint from Bm. Let E = {αζ : ζ < λ} be the increasing
enumeration. Put T = {〈〉} ∪ {〈i〉 : i < λ}, α〈〉 = 1, �〈〉 = �〈i〉 = m, B�

〈〉 = B�

and B�
〈i〉 = B� ∩ αi+1. Now check.

Case 2: α is limit. It follows from (2) that B� = ∇i<λB�,i for some
B�,i ∈

⋃
β<α IDβ(F ). Let B′

�,i be defined as follows:
if i = (m+ 1)j + t, � < t ≤ m then B′

�,i = ∅,
if i = (m+ 1)j + t, t ≤ m, t ≤ � then B′

�,i = B�,i.
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Then for each i, � we may find 〈Bi,�
η , f i,�′

η , αi
η : η ∈ Ti, � < �i,1η , �′ < �i,2η 〉

satisfying clauses (a)–(d) and such that 〈B�,i,k
〈〉 : k ≤ k1

η〉 = 〈B′
�,i : � ≤ m〉 (by

the induction hypothesis). Put

T = {〈〉} ∪ {〈i〉�η : η ∈ Ti},

�〈〉 = m, �′〈〉 = 0, �〈i〉�η = �i,1η , �〈i〉�η = �i,2η ,

B�
〈〉 = B�, B�

〈i〉�η = Bi,�
η , f �′

〈i〉�η = f i,�′

η ,

α〈〉 = ω, α〈i〉�η = αi
η.

Checking that 〈B�
η, f

�′

η , αη : η ∈ T, � ≤ �η, �′ ≤ �′η〉 is as required is straight-
forward.

Case 3: α = β+1. By (2) above and the proof of Case 2 we may assume
that Bm ∈ ID−

α (F ). It follows from the definition of ID−
α (F ) that there are

f� ∈
λ2 (for � ≤ m) such that

B⊕
�

def=
{
δ < λ : δ is limit and F (f��δ) = 0 ⇔ δ ∈ B�

}
∈ IDβ(F ),

and hence B⊕ def=
⋃

�≤mB⊕
� ∈ IDβ(F ). Therefore B∗

�

def= B� ∩B⊕ ∈ IDβ(F ).
Now apply the inductive hypothesis for β and B̄∗ = 〈B∗

� : � ≤ m〉 to get the
sequences 〈B�,∗

η , fk,∗
η : η ∈ T ∗, � ≤ �∗η , k ≤ k∗η〉 satisfying clauses (a)–(d) and

such that 〈B�,∗
〈〉 : � ≤ �∗η〉 = 〈B∗

� : � ≤ m〉. Put

T = {〈〉} ∪ {〈i〉 : i < λ} ∪ {〈0〉�η : η ∈ T ∗},

�〈0〉�η = �∗η, k〈〉 = m+ 1, k〈0〉�η = kη,

B�
〈0〉�η = B�,∗

η , B�
〈0〉�〈i〉 = B� ∩ (i+ ω),

fk
〈〉 = fk, fk

〈0〉�η = fk,∗
η ,

α〈〉 = ω, α〈0〉�η = α∗
η .

(5) If f �
η is not defined then choose f∗ as it.

(6), (7), (8), (9) Easy too. �

Remark 1.4. Note that it may happen that λ ∈ IDa(F ). However, if
η ∈ λ2 is a weak diamond sequence for F then the set {γ < λ : η(γ) = 0}
witnesses λ �∈ ID−

1 (F ). And conversely, if λ �∈ ID−
1 (F ) and S∗ ⊆ λ witnesses

it, then the function 0S∗ ∪ 1λ\S∗ is a weak diamond sequence for F .

Definition 1.5. For a λ-colouring F we define λ-colourings F⊕ and
F⊗ as follows.
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(1) A function g ∈ γ(H(λ)) is called F⊕-standard if there is a tuple
(T, f̄ , ᾱ, Ā) (called a witness) such that

(i) T ⊆ ω>γ is a well founded tree (so 〈〉 ∈ T , ν � η ∈ T ⇒ ν ∈ T
and T has no ω-branch);

(ii) f̄ = 〈f �
η : η ∈ T, � ≤ kη〉, where f �

η ∈ DOM(F ) ∩ γ(H(λ));
(iii) ᾱ = 〈αη : η ∈ T 〉, where αη < λ;
(iv) Ā = 〈A�

η : η ∈ T, � ≤ �η〉, where A�
η ⊆ αη ;

(v) g(β) =
(
T ∩ω>β, 〈f �

η�β : η ∈ T ∩ω>β, � ≤ kη〉, 〈αη : η ∈ T ∩ω>β〉,
〈A�

η : η ∈ T ∩ ω>β, � ≤ �η〉
)
for each β < γ.

(2) DOM(F⊕) =
⋃

α<λ
α(H(λ)) and for g ∈ γ(H(λ)):

(⊕)α if γ = 0 then F⊕(g) = 0,
(⊕)β if γ > 0 and g is not standard then F⊕(g) = 0,
(⊕)γ if γ > 0 and g is standard as witnessed by 〈T̄ , f̄ , ᾱ, Ā〉 then

F⊕(g) = t0
F,g(〈〉), where t�F,g(η) ∈ {0, 1} (for η ∈ T , � = 0, 1) are defined by

downward induction as follows.
If η ∈ max(T ) then t�F,g(η) = 1 iff γ ∈ Aη ,
if η ∈ T \max(T ), γ < αη then t�F,g(η) = 1 iff γ ∈ Aη ,
if η ∈ T \max(T ), γ ≥ αη then

t1
F,g(η) = 1 iff F (fη) = 1 or (∃i < γ)(t1

F,g(η
�〈i〉) = 1),

t0
F,g(η) = 1 iff (∃i < γ)(t0

F,g(η
�〈i〉) = 1) or

F (fq) = 1 & (∀i < γ)(t1
F,g(η

�〈i〉) = 0).

(3) A function g ∈ γ(H(λ)) is called F⊗-standard if there is a tuple
(T, f̄ , �̄, ᾱ, Ā) (called a witness) such that

(i) T ⊆ ω>γ is a well founded tree;
(ii) f̄ = 〈fη : η ∈ T 〉, where fη ∈ DOM(F ) ∩ γ(H(λ));
(iii) �̄ = 〈�η : η ∈ T 〉, where �η : 3{0, 1} −→ {0, 1};
(iv) ᾱ = 〈αη : η ∈ T 〉, where αη < λ;
(v) Ā = 〈Aη : η ∈ T 〉, where Aη ⊆ αη ;
(vi) g(β) = (T ∩ω>β, 〈fη�β : η ∈ T ∩ω>β〉, 〈�η : η ∈ T ∩ω>β〉, 〈αη : η

∈ T ∩ ω>β〉, 〈Aη : η ∈ T ∩ ω>β〉) for each β < γ.
(4) DOM(F⊗) =

⋃
α<λ

α(H(λ)) and for g ∈ γ(H(λ)):
(⊗)α if γ = 0 then F⊗(g) = 0,
(⊗)β if γ > 0 and g is not F⊗-standard then F⊗(g) = 0,
(⊗)γ if γ > 0 and g is F⊗-standard as witnessed by 〈T̄ , f̄ , �̄, ᾱ, Ā〉 then

F⊗(g) = tF,g(〈〉), where tF,g(η) ∈ {0,1} (for η ∈ T ) are defined by downward
induction as follows.

If η ∈ max(T ) then tF,g(η) = 1 iff γ ∈ Aη ,
if η ∈ T \max(T ), 1 + γ < αη then tF,g(η) = 1 iff γ ∈ Aη ,
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if η ∈ T \max(T ), 1 + γ ≥ αη then

tF,g(η) = �η(F (fη),max{tF,g(η�〈β〉) : β < γ},min{tF,g(η�〈β〉) : β < γ}).

Remark 1.6. On F⊕, F⊗ see 1.7, 1.12 below.

Proposition 1.7. Let F be a λ-colouring. Then F⊕ is a λ-colouring and
(a) if S ∈ IDa(F ) then 0S ∪ 1λ\S ∈ B(F⊕) and B(F ) ⊆ B(F⊕),
(b) IDa(F ) ⊆ ID−

1 (F
⊕) = ID1(F⊕) = IDa(F⊕),

Proof. (a) Check.
(b) The main point is proving IDa(F ) ⊆ ID1(F⊕).
Suppose thatB ∈ IDa(F ). We are going to show that thenB ∈ ID−

1 (F
⊕).

So suppose that B′ ⊆ B. We want to find g ∈ DOMλ(F⊕) such that the set{
δ < λ : δ is limit and F (g�δ) = 0 ⇔ δ ∈ B′

}
is in ID0(F⊕) (what just means that it is non-stationary). Since B ∈ IDa(F )
we have B′ ∈ IDa(F ), so by 1.3(4) we may find 〈B�

η, f
k
η , αη : η ∈ T , � ≤ �η ,

k < kη〉 such that the clauses (a)–(d) of 1.3(4) are satisfied with �〈〉 = 0,
B′ = B0

〈〉. Define g as follows. For β < λ let Tβ = T ∩ ω>β and

g(β) =
(
Tβ, 〈f

k
η : η ∈ Tβ , k ≤ kη〉, 〈αη : η ∈ Tβ〉, 〈B

�
η ∩ αη : � ≤ �η, η ∈ Tβ〉

)
.

Now look at the demands in 1.5(2) – they are exactly what 1.3(4) guarantees
us. �

Definition 1.8. Let F1, F2 be λ-colourings (with DOM(F�) being
either λ>2 or

⋃
α<λ

α(H(λ)), see 0.2(1)).
(1) We say that F1 ≤ F2 when there is h : DOM(F1) −→ DOM(F2) such

that:
(a) η � ν ⇒ h(η) � h(ν),
(b) h(η) = limα<δ h(η � α), for every η ∈ δ2, δ a limit ordinal,
(c) (∀η ∈ DOM(F1))(0 < �g(η) = �g(h(η)) ⇒ F1(η) = F2(h(η))).

(2) We say that F1 ≤∗ F2 when there is h : DOM(F1) −→ DOM(F2) such
that the clauses (a)–(c) above hold but

(d) if η ∈ DOMλ(F1) and limα<λ h(η�α) has length < λ then F1(η�α)
= 0 for every large enough α.

Proposition 1.9. (1) ≤∗ and ≤ are transitive relations on λ-colourings,
satisfying ≤∗ ⊆ ≤.

(2) ≤ is λ+-directed.

Proposition 1.10. (1) For every colouring F1 :
⋃

α<λ
α(H(λ)) −→ 2

there is a colouring F2 : λ>2 −→ 2 such that F1 ≤ F2 ≤∗ F1.
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(2) For every λ-colouring F2 : λ>2 −→ 2 there is a λ-colouring

F1 :
⋃
α<λ

α(H(λ)) → 2

such that F2 ≤ F1 ≤∗ F2.

Proof. (1) Let F1 :
⋃

α<λ
α(H(λ)) −→ 2. Let h0 be a one-to-one func-

tion from H(λ) to λ>2, say h0(η) = 〈�η,i : i < �g(h0(η))〉. Define a function
h1 : H(λ) −→ λ>2 by:

�g(h1(η)) = 2�g(h0(η)) + 2,

h1(η)(2i) = h0(η)(i), h1(η)(2i+ 1) = 0 for i < �g(h0(η)), and

h1(η)(2�g(h0(η))) = h1(η)(2�g(h0(η) + 1)) = 1.

Next, by induction on �g(η), we define a function h+ :
⋃

α<λ
α(H(λ)) −→

λ>2 as follows:

h+(〈〉) = 〈〉, h+(η�〈x〉) = h+(η)�h1(x).

and if η ∈
⋃

α<λ
α(H(λ)) has length the limit ordinal δ then h+(η) =⋃

{h+(η�β) : β < δ}
Clearly h+ is one to one with the right domain and range.
Finally we define a colouring F2 : λ>2 −→ 2 by

F2(ν) =

{
F1(η) if ν = h+(η),
0 if ν �∈ rng(h+).

It is easy to check that F2 is as required.
(2) Similar to part (1). �

Proposition 1.11. Assume that F1, F2 are λ-colourings such that
F1 ≤ F2, or F1 ≤∗ F2. Then:

(1) For every η ∈ DOMλ(F ) there are ν ∈ DOMλ(F ) and a club E of λ
such that

(∀δ ∈ E)(F1(η�δ) = F2(ν�δ)).

(2) IDα(F1) ⊆ IDα(F2), ID−
α (F1) ⊆ ID−

α (F2); hence IDa(F1) ⊆ IDa(F2)
and B

+(F1) ⊆ B
+(F2).

(3) For every colouring F we have IDc(F ) ⊆ WDmIdλ

Proof. Straightforward. �
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Conclusion 1.12. Assume that λ is a regular uncountable cardinal
and F : λ>2 −→ 2 is a λ-colouring. Let

F⊗ :
⋃
α<λ

α(H(λ)) −→ 2

be the colouring defined for F in Definition 1.5(4). Let ι ∈ {a, b}. Then:
(a) F ≤ F⊗.
(b) IDι(F⊗) is a normal ideal on λ.
(c) B(F ) ⊆ B(F⊗) and IDι(F ) ⊆ IDι(F⊗) = WDmIdλ(F⊗).
(d) F⊗ relates to itself as it relates to F , i.e. if α∗ < λ+, 〈Sα : α < α∗〉

is increasing continuous modulo IDι(F⊗), Sα+1 = Sα ∪Aα mod IDι(F⊗),
Aα ∈ B(F⊗), �α ∈ 2, then for some f ∈ λ(H(λ))

{α < λ : F (f�α) = 1}/Dλ

is, in P(λ)/Dλ, the least upper bound of the family {(Aα \Sα)/Dλ : �α = 1}
(where Dλ stands for the club filter).

(e) The family B(F⊗) is closed under complements, unions and intersec-
tions of less than λ sets, diagonal unions and diagonal intersections and it
includes bounded subsets of λ. Moreover B+(F⊗) = B(F⊗).

(f) If P(λ)/IDι(F⊗) is λ+-saturated then for every set X ⊆ λ there are
sets A,B ∈ B(F⊗) such that:

(α) A ⊆ X ⊆ B,
(β) for every Y ∈ B(F⊗) one of the following occurs:

(i) the sets (X \A)∩ Y , (X \A) \ Y , (B \X)∩ Y , (B \X) \ Y are
not2 in IDι(F⊗),

(ii) Y ∩ (B \A) ∈ IDι(F⊗),
(iii) (B \A) \ Y ∈ IDι(F⊗).

In the situation as above we denote A = maxF⊗(X), B = minF⊗(X)
(note that these sets are unique only modulo IDι(F⊗)). Moreover

(g) In clause (f), if A ⊆ minF⊗(B) then

min
F⊗

(A) ⊆ min
F⊗

(B) mod IDι(F⊗).

(h) In clause (f), when ι = b, if X ⊆ λ, X �∈ IDι(F⊗) then for some
Y1, Y2 ⊆ X which are not in IDι(F⊗) we have

max
F⊗

(Y1) = max
F⊗

(Y2) = ∅ and min
F⊗

(Y1) = min
F⊗

(Y2) �∈ IDι(F⊗).

(i) In clause (f), minF⊗ and maxF⊗ commute with the union of < λ and
the intersection of < λ sets.

2 hence none of X \A, B \A includes (modulo IDι(F⊗)) a member of B(F⊗) \ IDι(F⊗)
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Proof. Clauses (a) and (b): Should be clear.
Clause (e): Note that as θ = 2 we identify a sequence η ∈ λ2 with

{i < λ : η(i) = 1}.
B(F⊗) is closed under complementation. Suppose that A ∈ B(F⊗).

First, assume A is bounded then let g, (T, f̄ , �̄, ᾱ, Ā) be as in 1.5(3) with
T = {〈〉} ∪ {〈i〉 : i < λ}, A〈〉 = α〈〉 \A, α〈〉 > sup(A), �〈〉 constantly 1. Then
(∀α < λ)(F⊗(g�(1 + α)) = 1 ⇔ α ∈ A), so F⊗ codes λ \A.

Second, suppose that sup(A) = λ. Pick g such that

(∀α < λ)(F⊗(g�(1 + α)) = 1 ⇔ α ∈ A).

By our assumption, for arbitrarily large β < λ we have F⊗(g�β) = 1,
so g(β) is(

Tβ, 〈f
β
η : η ∈ Tβ〉, 〈α

β
η : η ∈ Tβ〉, 〈�

β
η : η ∈ Tβ〉, 〈A

β
η : η ∈ Tβ〉

)
and it is as in 1.5(3). If β1 < β2 then the two values necessarily cohere, in
particular Tβ1

= Tβ2
∩ω>(β1). Consequently there is (T, f̄ , �̄, ᾱ, Ā) such that

T =
⋃

β<λ Tβ ⊆ ω>λ is closed under initial segments and is well founded (as
Tβ increase with β and cf(λ) > ℵ0). Thus we have proved

(�) if A ⊆ λ is unbounded and A is coded by F⊗, g, then there is
p = (T, f̄ , �̄, ᾱ, Ā) such that the clauses (i)–(vi) of 1.5(3) hold for γ = λ and
g(β) = p�β.

Now define p′ like p (with the same T etc) except that �p
′

〈〉 = 1− �p〈〉 and

Ap
′

〈〉 = Ap

〈〉.

B(F⊗) contains all bounded subsets of λ. By the first part of the argu-
ments above all co-bounded subsets of λ are in B(F⊗), so (by the above)
their complements are there too.

B(F⊗) is closed under unions of length < λ. Let B =
⋃

i<αBi where
α < λ and Bi ∈ B(F⊗). Let w = {i < α : sup(Bi) = λ} and for i ∈ w

let Bi be represented by gi ∈
λ(H(λ)) which, by (�), comes from pi =

(T i, f̄ i, �̄i, ᾱi, Āi). We may assume that w = β ≤ α. Let

T = {〈〉} ∪ {〈i〉 : i < λ} ∪ {〈i〉�η : η ∈ T i, i < β},

f〈i〉�η = f i
η, etc

α〈〉 is the first γ ≥ ω such that γ ≥ α & (∀i ∈ [β, α))(Bi ⊆ γ),

B〈i〉 = ∅ if i ≥ β,

A〈〉 =
⋃
i<α

Bi ∩ α〈〉,
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�〈〉(i0, i1, i2) = i1.

Checking is straightforward.
B(F⊗) is closed under diagonal unions. Let B = ∇i<λBi, where each

Bi ∈ B(F⊗) is represented by gi ∈
λ(H(λ)) which, by (�), comes from

pi = (T i, f̄ i, �̄i, ᾱi, Āi). Let T = {〈〉} ∪ {〈i〉�η : η ∈ Ti, i < λ}, f〈i〉�η = f i
η ,

etc, α〈〉 = ω, B〈〉 = B ∩ ω and �〈〉(i0, i1, i2) = i1.
So we have proved the first sentence in clause (e). The second sentence

there follows by it and Def. 1.2(2). Note that including the family of non-
stationary sets follows by including the family of bounded subsets and being
closed under diagonal unions.

Clause (c): We concentrate on the case IDι = IDa. First note that
B(F ) ⊆ B(F⊗) as B(F ) ⊆ B

+(F ) ⊆ B
+(F⊗) = B(F⊗) (the second inclu-

sion by (a) and 1.11, the last equality by (e)). Next note that

WDmIdλ(F⊗) ⊆ ID−
1 (F

⊗) ⊆ ID1(F⊗) ⊆ IDι(F⊗).

Now by induction on α we are proving that IDα(F⊗) ⊆ WDmIdλ(F⊗). So
suppose that we have arrived at a stage α.

If α = 0 then we use the fact that every non-stationary subset of λ is in
B(F⊗) (by (e)).

If α is limit then, by the induction hypothesis, ID−
α (F

⊗) ⊆ B(F⊗) and
hence IDα(F⊗) ⊆ B(F⊗) (as B(F⊗) is closed under diagonal unions by (e);
remember 1.3(3)).

So suppose that α = β + 1 and B ∈ IDα(F⊗). Suppose B′ ⊆ B (so
B′ ∈ ID−

α (F⊗)). There is B′′ ∈ B(F ) such that B′′�B′ ∈ IDβ(F ). By the
first part we know that B′′ ∈ B(F⊗) and by the induction hypothesis B′�B′′

∈ B(F⊗). Consequently B′ ∈ B(F⊗).
Together we have proved that IDι(F⊗) = WDmIdλ(F⊗). The inclusion

IDι(F ) ⊆ IDι(F⊗) is easy.
Clause (d): Easy.
Clause (f): Let D1 be {A ⊆ X : A ∈ B(F⊗) \ IDι(F⊗)} and let {Ai :

i < i∗} be a maximal sub-family of D1 such that i < j < i∗ ⇒ Ai ∩Aj

∈ IDι(F⊗). By the assumption of clause (f) necessarily i∗ < λ+ so without
lose of generality i∗ ≤ λ. Let A be ∪{Ai : i < i∗} if i∗ < λ and the diagonal
union if i∗ = λ. Clearly A ∈ B

+(F ) = B(F⊗).
Let A′ be chosen similarly replacing X by λ \X and let B = λ \A′.

Clearly A, B are as required.
Clauses (g), (h), (i): Easy. �

Proposition 1.13. Let λ be a regular uncountable cardinal and F be
a λ-colouring.

(1) If IDα(F ) is λ+-saturated then for some β < λ+ we have IDα+β(F ) =
IDa(F ).

MORE ON WEAK DIAMOND 13

Author's personal copy
Sh:638



Acta Mathematica Hungarica 165, 2021

14 S. SHELAH

(2) IDα(F ) ⊆ WDmIdλ, see 1.2(3);
(3) If IDα(F ) is λ+-saturated and λ �∈WDmIdλ then WDmIdλ = ID1(F ′)

for some λ-colouring F ′.
(4) IDb(F ), IDc(F ) are normal ideals, and ID1(F ) ⊆ IDb(F ) ⊆ IDc(F ) ⊆

WDmIdλ.
(5) ID1(F⊗) = WDmIdλ(F⊗).
(6) WDmIdλ =

⋃
{IDι(F ) : F a function from λ>2 to 2} =

⋃
{ID1(F ) :

F a function from λ>2 to 2} ∪ {WDmIdλ(F ) : F a function from λ>2 to 2}
for ι = a, b, c.

Proof. (1) It follows from 1.3(3) that IDγ(F ) increases with γ and
β < γ, IDβ(F ) = IDβ+1 implyies IDβ(F ) = IDγ ; so the assertion should be
clear.

(2) By the definition (and 1.12(c)).
(3) Assume that IDα(F ) is λ+-saturated and λ �∈ WDmIdλ. By induc-

tion on β < λ+ we try to choose colourings Fβ such that
(a) ID(F ) ⊆ ID(Fβ)
(b) if β < γ then IDa(Fβ) ⊆ IDa(Fγ),
(c) IDa(Fβ) �= IDa(Fβ+1).

So we let F0 = F . If β is limit then we use 1.9(2) to choose Fβ so
that (∀γ < β)(Fγ ≤ Fβ). Finally, if β = γ + 1 then we let F ′

β = (Fγ)⊗ (so
IDa(Fγ) ⊆ ID1(F ′

β) = IDa(F ′
β) ⊆ WDmIdλ). If IDa(F ′

β) �= WDmIdλ then we
choose a set A ∈ WDmIdλ \ IDa(F ′

β) and F ∗
β witnessing A ∈ WDmIdλ. We

may assume that (∀α ∈ λ \A)(∀η ∈ α2)(F ∗
β (η) = 0). Now take a colouring

Fβ such that F ′
β, F

∗
β ≤ Fβ .

After carrying out the construction choose S0
β ∈ IDa(Fβ+1)\ IDa(Fβ) (for

β < λ+) and let Sβ = S0
β \ ∇γ<β S

0
γ . Then 〈Sβ : β < λ+〉 is a sequence of

pairwise disjoint members of P(λ) \ IDa(F0) ⊆ P(λ) \ IDα(F ), contradicting
our assumptions.

(4), (5), (6) Easy too. �

For the rest of this section we will assume the following

Hypothesis 1.14. (1) We assume that
(a) λ is a regular uncountable cardinal,
(b) F is a λ-colouring,
(c) λ �∈ IDb(F⊗), and
(d) IDb(F⊗) is λ+-saturated, that is there is no sequence 〈Aα : α <

λ+〉 such that for each α < β < λ+

Aα �∈ IDb(F⊗) and ‖Aα ∩ Aβ‖ < λ.

(2) For each limit ordinal α ∈ [λ,λ+) fix an enumeration 〈εαi : i < λ〉 of α.
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Construction 1.15. Fix a sequence η ∈ λ2 for a moment. We choose
a sequence 〈

Sα[η], Aα[η], Bα[η], �α[η],mα[η], fα[η] : α < α∗[η]
〉

as follows. By induction on α < λ+ we try to choose Sα[η] = Sα, Aα[η] = Aα,
Bα[η] = Bα, �α[η] = �α, mα[η] = mα, fα[η] = fα such that:

(a) Sα, Aα, Bα ⊆ λ, �α,mα ∈ {0, 1}, fα ∈ λ2,
(b) Aα �∈ IDb(F⊗), Aα ∩ Sα = ∅,
(c) if α = 0 then Sα = ∅
(d) Sα+1 = Sα ∪Aα;
(e) if α < λ is limit then Sα =

⋃
β<α Sβ ; if α ∈ [λ, λ+) is limit then Sα =

{γ < λ : (∃i < γ)(γ ∈ Sεαi )},
(f) Bα ∈ IDb(F⊗),
(g) for every δ ∈ λ \ (Sα ∪Bα)

η(δ) = mα ⇒ F (fα�δ) = �α,

(h) Aα = {δ ∈ λ \ Sα : F (fα�δ) = 1− �α}.
It follows from 1.14 that at some stage α∗ = α∗[η] < λ+ we get stuck

(remember clause (b) above). Still, we may define Sα∗ as in clause (c).

Proposition 1.16. Assume 1.14. Then:
(1) There exists η ∈ λ2 such that

λ \ Sα∗[η][η] �∈ IDb(F⊗).

(2) If S ∈ B(F⊗) \ IDb(F⊗) then we can demand S ⊆ Sα∗[η][η].

Proof. Assume not. Then for each η ∈ λ2 the set Bα∗ [η] def= λ \ Sα∗[η]

is in IDb(F⊗). Now,{
α ∈ Bα∗ [η] : η(α) = 1

}
∈ IDb(F⊗) ⊆ B(F⊗)

(see 1.7).

Claim 1.16.1. For each α, Sα ∈ B(F⊗).

Proof. We show it by induction on α. If α = 0 then Sα = ∅ ∈ B(F⊗)
(see 1.15(c)). If α < λ is a limit ordinal then Sα =

⋃
β<α Sβ and by the

inductive hypothesis Sβ ∈ B(F⊗), so by 1.15(e) we are done (as B(F⊗) is
closed under unions of < λ elements). If α ∈ [λ, λ+) is limit then we use
the fact that B(F⊗) is closed under diagonal unions. If α = β + 1 then Aβ

∈ B(F⊗) or λ \Aβ ∈ B(F⊗) and hence we may conclude that Aβ ∈ B(F⊗)
(remember 1.12(e)). Since B(F⊗) is closed under unions of length < λ we
are done. �
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Claim 1.16.2. For each α, Yα
def= {β < λ : η(β) = 1} ∩ Sα ∈ B(F⊗).

Proof. We prove it by induction on α. If α = 0 then Yα = ∅ and there is
nothing to do. The case of limit α is handled like that in the proof of 1.16.1.
So suppose that α = β + 1. It suffices to show that the set Yα ∩ (Sα \ Sβ)
is in B(F⊗), which means that Yα ∩Aα is there (remember clauses (g) and
(h) of 1.15). Note that if δ ∈ Aα \Bα then F (fα�δ) = 1− �α �= �α and hence
η(δ) �= mα so η(δ) = 1−mα. Consequently Yα ∩ (Aα \Bα) ∈ {Aα \Bα, ∅}.
But P(Bα) ⊆ B(F⊗) so together we are done. �

It follows from 1.16.1, 1.16.2 that

{β : η(β) = 1} ∩ Sα∗[η][η] ∈ B(F⊗).

But λ \Sα∗[η][η] ∈ IDb(F⊗), so P(λ \ Sα∗[η][η]) ⊆ B(F⊗) so we get a contra-
diction. �

Conclusion 1.17. Assume 1.14. Let η ∈ λ2, X�[η] = (λ \ Sα∗[η][η])
∩ η−1({�}) (for � = 0, 1). Then one of the following occurs:

(A) λ \ Sα∗[η][η] ∈ IDb(F⊗),
(B) X0[η],X1[η] �∈ IDb(F⊗), and X0[η] ∪X1[η] ∈ B(F⊗), X0[η] ∩X1[η]

= ∅, and for every f ∈ λ2,
either the sequence 〈F (f�δ) : δ ∈ (λ \ Sα∗[η][η])〉 is IDb(F⊗)-almost con-

stant
or both sequences 〈F (f�δ) : δ ∈ X0[η]〉 and 〈F (f�δ) : δ ∈ X1[η]〉 are not

IDb(F⊗)-almost constant.

Proof. Assume that the first possibility fails, so λ\Sα∗[η][η] �∈ IDb(F⊗).
Assume X0[η] ∈ IDb(F⊗). Take any fα∗[η] ∈

λ2 and choose �α∗[η] ∈ {0,1}
so that {

δ ∈ λ \ Sα∗[η][η] : F (fα∗[η]�δ) = 1− �α∗[η]
}
�∈ IDb(F⊗).

Putting mα∗[η] = 0 and Bα∗[η] = X0[η] we get a contradiction with the defi-
nition of α∗[η]. Similarly one shows that X1[η] �∈ IDb(F⊗).

Suppose now that f ∈ λ2 and the sequence 〈F (f�δ) : δ ∈ (λ \ Sα∗[η][η])〉
is not IDb(F⊗)-almost constant but, say, the sequence 〈F (f�δ) : δ ∈ X0[η]〉
is IDb(F⊗)-almost constant (and let the constant value be �α∗[η]). Let
mα∗[η]=0, Bα∗[η]={δ ∈ X0[η] : F (f�δ)=1−�α∗[η]}. Then Bα∗[η] ∈ IDb(F⊗)
and since necessarily{

δ ∈ X0[η] ∪X1[η] : F (f�δ) = 1− �α∗[η]
}
�∈ IDb(F⊗),

we immediately get a contradiction. Similarly in the symmetric case. �
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Remark 1.18. Note that, in 1.17, if S ∈ B(F⊗) \ IDb(F⊗) then there
is η ∈ λ2 such that η−1[{0}] ⊇ λ \ S and above X0,X1 ⊆ S and possibility
(A) fails.

Proposition 1.19. Assume 1.14.
(1) We can find S∗

F , S
∗
0 and S∗

1 such that:
(a) S∗

F ∈ B(F⊗),
(b) S∗

F = S∗
0 ∪ S∗

1 , S
∗
0 ∩ S∗

1 = ∅, and S∗
0 , S

∗
1 witness S∗

F ∈ IDc(F⊗)
(c) if S∗

F �= λ then IDc(F⊗)�P(λ \ S∗
F ) = WDmIdλ(F⊗)�P(λ \ S∗

F ),
λ \ S∗

F �∈ IDc(F⊗).
(d) if S∗

F �= ∅ then S∗
F �∈ IDb(F⊗) and

{
(
S∗

0 ∩ F⊗(f)/IDb(F⊗), S∗
1 ∩ F⊗(f)/IDb(F⊗)

)
: f ∈ DOMλ }

is an isomorphism from P(S∗
0)/ID

b(F⊗) onto P(S∗
1)/ID

b(F⊗).
(2) If in 1.17, S∗

F ⊆ Sα∗[η][η] mod IDb(F ) then we can add

(�) for some ρ ∈ X12 for every f ∈ λ2 we have

{
δ ∈ X1 : F (f�δ) = ρ(δ)

}
�= ∅ mod IDb(F⊗).

Proof. (1) We try to choose by induction on α < λ+ sets Sα, Sα,0, Sα,1
such that

(a) Sα ⊆ λ,
(b) Sα = Sα,0 ∪ Sα,1, Sα,0 ∩ Sα,1 = ∅,
(c) if β < α and � < 2 then

Sβ ⊆ Sα mod IDb(F⊗) and Sβ,� ⊆ Sα,� mod IDb(F⊗),

(d) the sets Sα,0, Sα,1 witness that Sα ∈ IDc(F⊗) (see 1.2(4)).
At some stage α < λ+ we have to be stuck (as IDb(F⊗) is λ+-saturated)

and then (Sα, Sα,0, Sα,1) can serve as (S∗
F , S

∗
0 , S

∗
1).

(2) By the choice of S∗
F , for some � < 2 we have

P(X�) �= {F⊗(f) ∩X� : f ∈ λ2},

so let Y ⊆ X� be such that Y �∈ {F⊗(f)∩X� : f ∈ λ2}. Let ρ = 0Y ∪ 1X�\Y .
Since without loss of generality � = 1, we are done. �

Remark 1.20. (1) Recall that if λ �∈ WDmIdλ then S∗
F �= λ.

(2) Recall: IDa(F⊗)) = WDmIdλ(F⊗) is a normal ideal and IDb(F⊗) ⊆
IDc(F⊗) are normal ideals extending it.
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2. Weak diamond for more colours

In this section we deduce a weak diamond for, say, three colours, assum-
ing the weak diamond for two colours and assuming that a certain ideal is
saturated.

Proposition 2.1. Assume that λ is a regular uncountable cardinal and

μ ≤ 2<λ. Let Fi : λ>2 −→ {0, 1} be λ-colourings for i < μ. Then there is a

colouring F : λ >2 −→ {0, 1} such that Fi ≤ F for every i < μ.

Proof. Case 1: μ ≤ 2‖α‖ for some α < λ. Let ρi ∈
α2 for i < μ be

pairwise distinct. For η ∈ λ>2 let hi(η) = ρi
�η. Define F by:

F (ν) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if �g(ν) < α, or �g(ν) ≥ α

but ν � α �∈ {ρi : i < μ},

Fi(〈ν(α+ ε) : ε < �g(ν)− α〉) if �g(ν) ≥ α

and for some i < μ, ν � α = ρi.

It is easy to see that F : λ>2 −→ {0, 1} and hi exemplifies that Fi ≤ F .
Case 2: μ = λ. For η ∈ λ>2, i < μ, we define hi(η) ∈ i+1+�g(η)2 as fol-

lows: for γ < i+ 1 + �g(η) we let

hi(η)(γ) =

⎧⎪⎨
⎪⎩
0 if γ < i,

1 if γ = i,

η(γ − (i+ 1)) otherwise.

Next, for ν ∈ λ>2 define:

F (ν) =

{
Fi(〈ν(i+ 1 + γ) : γ < �g(ν)− (i+ 1)〉) if i = min{j : ν(j) = 1}
0 if there is no such i.

Now check.
Case 3: Otherwise, for each α < λ choose Fα : λ>2 −→ {0, 1} such that

(∀i < 2‖α‖)(Fi ≤ Fα) (exists by Case 1). Let F : λ>2 −→ {0,1} be such that
(∀α < λ)(Fα ≤ F ) (exists by Case 2).

The proposition follows. �

Theorem 2.2. If (A) then (B) where
(A) (a) λ is a regular uncountable cardinal.

(b) F tr : λ>2 −→ 3.
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(c) For i < 3 let Fi : λ>2 −→ {0, 1} be such that

Fi(η) =

{
1 if F tr(η) = i,

0 otherwise,

(d) Let F : λ>2 −→ {0, 1} be such that (∀i < 3)(Fi ≤ F ). More-
over F ′

2 ≤ F where F ′
2 is the function with domain λ<2 defined by F ′

2(η) =
min{1, F (η)} (remember 1.11(3)).

(e) IDb(F⊗) is λ+-saturated, i.e. there is no sequence 〈Aα : α < λ+〉 such
that3

(∀α < β < λ+)(Aα �∈ IDb(F⊗) & ‖Aα ∩Aβ‖ < λ).

(B) Then there is a weak diamond sequence for F tr, even for every
S ∈ B(F⊗) \ IDc(F⊗).

Proof. Let S∗
F be as in 1.19. Since we are assuming λ �∈ IDc(F⊗) nec-

essarily λ \ S∗
F �∈ IDb(F⊗).

[Why? because by 1.20(1)(b) we have IDc(F⊗) = IDb(F⊗) + S∗
F ].

It follows from 1.16 and 1.17 that there are disjoint sets X0,X1 ⊆ λ (even
disjoint from S∗

F from 1.19) such that X0,X1 �∈ IDb(F⊗), X0 ∪X1 ∈ B(F⊗)
and for every f ∈ λ2 we have one of the following:

(a) the sequence 〈F (f�δ) : δ ∈ X0 ∪X1〉 is IDb(F⊗)-almost constant, or
(b) both sequences 〈F (f�δ) : δ ∈ X0〉 and 〈F (f�δ) : δ ∈ X1〉 are not

IDb(F⊗)-almost constant.
It follows from 1.19(2) that we may assume that there is η ∈ X12 such

that for every f ∈ λ2 the set

{δ ∈ X1 : F (f�δ) = η(δ)}

is stationary. Define a function ρ ∈ λ2 as follows:

ρ(α) =

{
1 + η(α) if α ∈ X1,

0 otherwise.

Claim 2.2.1. ρ is a weak diamond sequence for F tr even on X0 ∪X1.

Proof of the claim. Let f ∈ λ2 and we shall prove that Yf = {δ ∈ X0
∪X1 : F tr(η�δ) = η(δ)} �= ∅ mod IDb(F⊗).

3 As is well known, writing below Aα ∩Aβ ∈ IDb(F⊗) instead ‖Aα ∩Aβ‖ < λ does not change
anything.
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If {α ∈ X0 : F tr(f�α) = 2} �∈ IDb(F ) then we are done (remember 1.3(3)).
Otherwise (by the definition of F0), we have

{α ∈ X0 : F2(f � α) = 1} ∈ IDb(F ).

For � < 3, as F� ≤ F let f� ∈
λ2 be such that the set {α < λ : F�(f�α) =

F (f��α)} contains a club of λ and g ∈ λ2 such that the set {α < λ : F ′
2(g�α) =

F (f�α)} contains a club of λ, exist by clause (A)(d) of the assumption of
the theorem.

We now use f2. Then

{α ∈ X0 : F (f2�α) = 1} ∈ IDb(F⊗),

and hence, by the choice of the sets X0,X1, clause (b) there fails hence clause
(a) holds, so

{α ∈ X1 ∪X1 : F (f2�α) = 1} ∈ IDb(F⊗).

Consequently,

Z = {α ∈ X1 : F tr(f�α) = 2} = {α ∈ X1 : F2(f�α) = 1} ∈ IDb(F⊗).

Now we use the choice of η, by it we know that the set

Y = {δ ∈ X1 : F (g�δ) = η(δ)}

is stationary and even �= ∅ mod IDb(F⊗). Hence for some k ∈ {0, 1} the set

Yk = {δ ∈ X1 : F (g�δ) = k = η(δ)}

is stationary and even �= ∅ mod IDb(F⊗), but {δ ∈ X1 : F (g�δ) = F ′
2(f�δ)}

contains a club. Hence

Y ∗
k = {δ ∈ X1 : F (g�δ) = k = η(δ) and F (g�δ) = F ′

2(f�δ) and δ �∈ Z}

is stationary and even �= ∅ mod IDb(F⊗). Finally note that

δ ∈ Y ∗
k ⇒ F (f1�δ) = η(δ) = F1(f�δ) = k ⇒ F tr(f�δ) = k.

Thus the claim and the theorem are proved. � �

Theorem 2.3. Suppose F tr is a (λ, θ)-colouring, θ ≤ λ and Fi (for
i < θ) are given by

Fi(f) =

{
1 if F (f) = i,

0 otherwise.
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Let F : λ>2 −→ 2 be such that (∀i < θ)(Fi ≤ F ) and let F⊗ be as in 1.5
for F . Suppose that IDb(F⊗) is λ+-saturated, and S∗

F⊗ �= λ (equivalently
λ �∈ IDc(F⊗)).

If (⊗) then (	) where:
(⊗) there are sets Yi ⊆ λ \ S∗

F⊗ for i < θ such that

(a) (∀i < θ)(Yi �∈ IDb(F⊗)),
(b) the sets Yi are pairwise disjoint or at least

(∀i < j < θ)(Yi ∩ Yj ∈ IDb(F⊗)),

(c)
⋂

i<θ minF⊗(Yi) �∈ IDb(F⊗), see 1.12(h).
(	) there is a weak diamond sequence η ∈ λθ for F tr, i.e.

(∀f ∈ λ2)
(
{δ < λ : F tr(f�δ) = η(δ)} is stationary
and even �= ∅ mod IDb(F⊗)

)
;

moreover

(∀f ∈ λ2)({δ < λ : F tr(f�δ) = η(δ)} �∈ IDb(F⊗)).

Proof. We may assume that the sets 〈Yi : i < θ〉 are pairwise disjoint
(otherwise we use Y ′

i =Yi \
⋃

j<i Yj). Let η∈λθ be such that (∀i<θ)(η�Yi= i).
Note that if

{δ ∈ Yi : F tr(f�δ) = i} ∈ IDb(F⊗)

then we also have

{δ < λ : F tr(f�δ) = i} ∈ B(F⊗)

(use Fi ≤ F ≤ F⊗). Consequently, in this case, we have

{δ ∈ min
F⊗

(Yi) : F tr(f�δ) = i} ∈ IDb(F⊗).

If this occurs for every i < θ then{
δ ∈

⋂
i<θ

min
F⊗

(Yi) : (∃i < θ)(F (f�δ) = i)
}

∈ IDb(F⊗),

but for each δ, for some i < θ we have F (f�δ) = i, a contradiction. �

Proposition 2.4. Under the assumptions of 2.3 (so the ideal IDb(F⊗)
is λ+-saturated), if X ⊆ λ \ S∗

F⊗ , X �∈ IDb(F⊗) then there is a partition
(X0,X1) of X (so X0 ∪X1 = X , X0 ∩X1 = ∅) such that

X0,X1 �∈ IDb(F⊗), and min
F⊗

(X0) = min
F⊗

(X1) = min
F⊗

(X).
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Proof. Let

AF⊗

def=
{
Z ⊆ λ : Z �∈ IDb(F⊗) and there is a partition (Z0, Z1)
of Z such that minF⊗(Z0) = minF⊗(Z1) mod IDb(F⊗)

}
.

Note that, by 1.12(h),
(∗) (∀Y ∈ IDb(F⊗)+)(∃Z ∈ AF⊗)(Z ⊆ Y ).
Let X ⊆ λ, X �∈ IDb(F⊗) and let 〈Zα : α < α∗〉 be a maximal sequence

such that for each α < α∗:

Zα ∈ AF⊗ , Zα ⊆ X, and (∀β < α)(Zα ∩ Zβ ∈ IDb(F⊗)).

Necessarily α∗ < λ+, so without loss of generality α∗ ≤ λ, min(Zα) > α and
Zα ∩ Zβ = ∅ for α < β < α∗. Let 〈Z0

α, Z
1
α〉 be a partition of Zα witnessing

Zα ∈ AF⊗ . Put

Z0
def=

⋃
α<α∗

Z0
α and Z1

def=
⋃

α<α∗

Z1
α.

Then Z0 ∩Z1 = ∅, Z0∪Z1 ⊆ X . Note that
⋃

α<α∗ Zα is equal to the diagonal
union and, by (∗) above, X \

⋃
α<α∗ Zα ∈ IDb(F⊗). Consequently we may

assume Z0 ∪ Z1 =
⋃

α<α∗ Zα = X . Next, since

min
F⊗

(Z0) ⊇ min
F⊗

(Z0
α) ⊇ Z0

α ∪ Z1
α = Zα,

we get

min
F⊗

(Z0) ⊇
⋃

α<α∗

Zα = X = Z0 ∪ Z1,

and similarly one shows that minF⊗(Z1) ⊇ X . Now we use 1.12(h) to finish
the proof. �

Proposition 2.5. Under the assumptions of 2.3:
(1) If 2θ < λ then there is a sequence 〈Yi : i < θ〉 as required in 2.3(⊗)
(2) Similarly if θ ≤ ℵ0.
(3) In both cases, if S �∈ IDb(F⊗) then we can demand (∀i < θ)(Yi ⊆ S).

Proof. (1) By induction on α ≤ θ we choose sets Xη ⊆ λ for η ∈ α2
such that:

(i) X〈〉 �∈ IDb(F⊗),
(ii) if α is limit then Xη =

⋂
i<αXη�i,

(iii) if α = β+1, η ∈ β2 andXη ∈ IDb(F⊗) thenXη�〈0〉 = Xη, Xη�〈1〉 = ∅;

if α = β + 1, η ∈ β2 and Xη �∈ IDb(F⊗) then (Xη�〈0〉,Xη�〈1〉) is a
partition of Xη such that minF⊗(Xη�〈0〉) = minF⊗(Xη�〈1〉) = minF⊗(Xη). It
follows from 2.4 that we can carry out the construction.
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Clearly 〈Xη : η ∈ θ2〉 is a partition of X〈〉, so (as 2θ < λ and IDb(F⊗) is
λ-complete) we can find a sequence η ∈ θ2 such that Xη �∈ IDb(F⊗). Then

(∀α < θ)(Xη�α �∈ IDb(F⊗))

(as each of these sets includes Xη). Moreover, for each α < θ and for � = 0, 1
we have

min
F⊗

(Xη�α�〈�〉) ⊇ Xη�α ⊇ Xη.

Put Yα = Xη�α�〈1−η(α)〉. Then 〈Yα : α < θ〉 is a sequence of pairwise disjoint
sets (as Xη�α�〈0〉 ∩Xη�α�〈1〉 = ∅) and for every α < θ

Yα �∈ IDb(F⊗) and min
F⊗

(Yα) ⊇ Xη�α ⊇ Xη.

Hence
⋂

α<θ minF⊗(Yα) �∈ IDb(F⊗). Let Zα = Yα ∩minF⊗(Xη). Note that
minF⊗(Zα) = minF⊗(Xη) (the “≤” is clear; if minF⊗(Zα) < minF⊗(Xη) then
minF⊗(Xη) \minF⊗(Zα) contradicts the definition of minF⊗(Yα)). Thus the
sequence 〈Zα : α < θ〉 is as required. Moreover

min
F⊗

(Zα) =
⋃
β<α

min
F⊗

(Zβ).

(2) Let X ⊆ λ, X �∈ IDb(F⊗). By induction on n we choose sets X ′
n, X

′′
n

such that X ′
n ∩X ′′

n = ∅, X ′
n ∪X ′′

n ⊇ X , and

min
F⊗

(X ′
n) = min

F⊗
(X ′′

n) = min
F⊗

(X).

For n = 0 we use 2.4 for X to get X ′
0,X

′′
0 . For n+ 1 we use 2.4 for X ′′

n to
get X ′

n+1,X
′′
n+1.

Finally we let Yn = X ′′
n (note that minF⊗(Yn) = minF⊗(X)). �

Conclusion 2.6. Assume that
(A) λ is a regular uncountable cardinal,
(B) F is a (λ, θ)-colouring such that λ �∈ IDb(F ) and IDb(F ) is λ+-satu-

rated,
(C) 2θ < λ or θ = ℵ0,
(D) (∃μ<λ)(2μ=2<λ<2λ) or at least λ �∈WDmIdλ or at least λ �∈ IDc(F ).
Then there is a weak diamond sequence for F . Moreover, there is η ∈ λθ

such that for each f ∈ DOMλ(F ) we have

{δ < λ : F (f�δ) = η(δ)} �∈ IDb(F ).
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3. An application of Weak Diamond

In this section we present an application of Weak Diamond in model
theory. For more on model–theoretic investigations of this kind we refer the
reader to [11] and earlier work [8] (and see [13]), and to an excellent survey
by Makowsky, [4].

Definition 3.1. Let K be a collection of models.
(1) For a cardinal λ, Kλ stands for the collection of all members of K of

size λ.
(2) We say that a partial order ≤K on Kλ is λ-nice if

(α) ≤K is a suborder of ⊆ and it is closed under isomorphisms of mod-
els (i.e. if M,N ∈ Kλ, M ≤K N and f : N −→ N ′ ∈ Kλ is an isomorphism
then f [M ] ≤K N ′),

(β) (Kλ,≤K) is λ-closed (i.e. any ≤K-increasing sequence of length ≤ λ
of elements of Kλ has a ≤K-upper bound in Kλ) and

(γ) if M̄ = 〈Mα : α < λ〉 is an ≤K-increasing sequence of elements
of Kλ then

⋃
α<λ Mα is the ≤K-upper bound to M̄ (so

⋃
α<λ Mα ∈ Kλ).

(3) Let N ∈ Kλ, A ⊆ |N |. We say that the pair (A,N) has the w. amal-
gmation property in Kλ if for every N1,N2 ∈ Kλ such that N ≤K N1,
N ≤K N2 there are N∗ ∈ Kλ and ≤K-embeddings F1, F2 of N1,N2 into
N∗, respectively, such that f1(A) = f2(A). (In words: N1,N2 can be amal-
gamated over (A,N) setwise.)

(4) We say that (K,≤K) has the amalgamation property for λ if for every
M0,M1,M2 ∈ Kλ such that M0 ≤K M1, M0 ≤K M2 there are M ∈ Kλ and
≤K-embeddings F1, F2 of M1,M2 into M , respectively, such that

M0 ≤K M and f1�M0 = f2�M0 = idM0
.

Theorem 3.2. Assume that λ is a regular uncountable cardinal for which
the weak diamond holds (i.e. λ �∈ WDmIdλ). Suppose that K is a class of
models, K is categorical in λ (i.e. all models from Kλ are isomorphic), it is
closed under isomorphisms of models, and ≤K is a λ-nice partial order on Kλ

and M ∈ Kλ. Let Ā = 〈Aα : α < λ〉 be an increasing continuous sequence of
subsets of |M | such that

(∀α < λ)(‖Aα‖ < λ) and
⋃
α<λ

Aα = M.

Then the set

SĀ
M

def=
{
α < λ : (Aα,M) does not have the w. amalgmation property

}
is in WDmIdλ.
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Proof. Assume that SĀ
M �∈ WDmIdλ.

We can fix a partition 〈Di : i < λ〉 of λ to sets each of cardinality λ.
We may assume that |M | = λ. By induction on i < λ we choose pairs

(Bη,Nη) and sequences 〈Cη
j : j < λ〉 for η ∈ i2 such that

(a) ‖Bη‖ < λ, Nη ∈ Kλ, Bη ⊆ |Nη | ⊆ ∪{Dj : j < 1 + �g(η)}
(b) 〈Cη

j : j < λ〉 is increasing continuous,
⋃

j<λC
η
j = |Nη |, ‖C

η
j ‖ < λ,

(c) if ν � η then Nν ≤K Nη and Bν ⊆ Bη ,
(d) if j1, j2 < i then Cη�j1

j2
⊆ Bη ,

(e) if the pair (Bη,Nη) does not have the w. amalgmation property in Kλ

then Nη�〈0〉, Nη�〈1〉 witness it (i.e. they cannot be w. amalgmated over Bη),
(f) if i is limit and η ∈ i2 then Bη =

⋃
j<iBη�j ,

⋃
j<iNη�j ⊆ Nη .

There are no problems with carrying out the construction (remember
that ≤K is a nice partial order. Finally, for η ∈ λ2 we let Bη =

⋃
i<λBη�i

and Nη =
⋃

i<λ Nη�i. Clearly, by 3.1(2)(γ), we have Nη ∈ K and Bη ⊆ |Nη |

for each η ∈ λ2. Moreover,

|Nη| =
⋃
j<λ

|Nη�j | =
⋃
j<λ

⋃
i<λ

Cη�j
i =

⋃
j∗<λ

⋃
j1,j2<j∗

Cη�j1
j2

⊆
⋃
j∗<λ

Bη�j∗ = Bη,

and thus Bη = |Nη|. Since K is categorical in λ, for each η ∈ λ2 there is an
isomorphism fη : Nη

onto
−→ M .

Fix η ∈ λ2 for a moment.
Let Eη = {δ < λ : fη[Bη�δ] = Aδ = δ}. Clearly, Eη is a club of λ. Note

that if δ ∈ Eη then:

(�) δ ∈ SĀ
M ⇒ (Aδ,M) does not have the w. amalgmation property

⇒ (Bη�δ,Nη) fails the w. amalgmation property

⇒ (Bη�δ,Nη�δ) fails the w. amalgmation property

⇒ Nη�δ�〈0〉, Nη�δ�〈1〉 cannot be w. amalgmated

over (Bη�δ,Nη�δ)

⇒ for each ν ∈ λ2 such that η�δ�〈1− η(δ)〉 � ν

we have fν�Bη�δ �= fη�Bη�δ.

We define a colouring

F :
⋃
α<λ

α(H(λ)) −→ {0, 1}
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by letting, for f ∈ DOMα, α < λ,

F (f) = 1 iff (∃η ∈ λ2)
(
η(α) = 0 & (∀i < α)(f(i) = (η(i), f−1

η (i)))
)
.

We have assumed SĀ
M �∈ WDmIdλ, so there is ρ ∈ λ2 such that for each

f ∈ DOMλ the set

Sf = {δ ∈ SĀ
M : ρ(δ) = F (f�δ)}

is stationary and even �= ∅ mod IDb(F⊗). Let f ∈ DOMλ be defined by
f(i) = (ρ(i), f−1

ρ (i)) (for i < λ). Note that if α ∈ Eρ, ρ(α) = 0 then ρ is a
witness to F (f�α) = 1 and hence α �∈ Sf .

Since Sf is stationary and even �= ∅ mod IDb(F⊗) and Eρ is a club
of λ we may pick δ ∈ Sf ∩Eρ. Then ρ(δ) = 1 and hence F (f�δ) = 1, so let
ηδ ∈

λ2 be a witness for it. It follows from the definition of F that then
ηδ(δ) = 0, and ηδ�δ = ρ�δ, and f−1

ηδ
�δ = f−1

ρ �δ. Hence fηη
�Bηδ�δ = fρ�Bρ�δ ,

so both have range Aδ = δ (and δ ∈ Eηδ
∩Eρ ∩ SĀ

M ). But now we get a
contradiction with (�). �
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