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Abstract

We introduce a family of axioms, denoted Sliceκ, that claim the existence of nontrivial
decompositions of the form

2<κ =
⋃
α<κ

2<κ ∩Mα,

where {Mα| α < κ} is a sequence of transitive models of set theory. We study com-
patibility of these axioms with versions of Martin’s Axiom, and in particular show that
Sliceω1 is compatible only with some very weak form of MA.
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1 Introduction

1.1 How "compact" is the real line?
We introduce and study a family of axioms Sliceκ for cardinal numbers κ. The axiom Sliceκ
basically claims that there exists an increasing sequence {Mα| α < κ} of transitive models
of ZFC, that decomposes the sets 2δ , for δ < κ, into an increasing unions

2δ =
⋃
α<κ

2δ ∩Mα.

Our initial motivation was to find a single model of Martin’s Axiom, which doesn’t satisfy
typical consequences of PFA. This was in turn motivated by the following intuition:

If the universe is sufficiently complete, in the sense that it has many generic filters, then any
transitive submodel containing enough reals, contain all the reals.

This intuition is supported for example by the following result:

Theorem 1 (Thm. 8.6, [11]). If MM holds, then any inner model with correct ω2 contains
all reals.

The conclusion is quite strong, so it makes sense to ask what is left if we weaken MM to
MAω1

. This motivated us to formulate the axiom Sliceω1
, which turned out to be inconsistent

with MAω1
. The main results of this paper are the following

Theorem 2 (Thm. 11). Sliceω1 =⇒ ¬MAω1(σ-centered).
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Theorem 3 (Thm. 18). If κ is a regular cardinal such that κω = κ, then the following theory
is consistent

ZFC +MA(Suslin) + Sliceω1
+“2ω = κ”.

Theorem 4 (Thm. 25). Assume that ω < κ ≤ θ are regular cardinals, such that θ<κ = θ.
Then the following theory is consistent

ZFC +MA<κ + Sliceκ +“2ω = θ”.

The first of these results provides another argument in favor of the informal claim from
the beginning. The class of Suslin forcings is a class of c.c.c. forcings, which admit simple
(analytic) definitions (see Definition 17). This class is more extensively described in [2].
Martin’s Axiom for this class is a considerable weakening of the full MA.

Theorem 5 ([9]). MA(Suslin) implies each of the following:

1. Add(N ) = 2ω ,

2. Add(SN ) = 2ω ,

3. 2ω is regular,

4. each MAD family of subsets of ω has size 2ω .

It follows from 1. that all cardinal characteristics in the Cichoń’s diagram have value 2ω .
SN stands for the class of strong measure zero sets.

Theorem 6 ([9]). MA(Suslin) does not imply any of the following:

1. t = 2ω ,

2. s = 2ω ,

3. ∀κ < 2ω 2κ = 2ω ,

4. there is no Suslin tree.

For an elaborated discussion of cardinal invariants of the continuum we refer the reader
to [4]. Finally, it should be noted that our axiom Sliceω1

is very similar to the axiom ♢Cohen,
introduced recently in [6].

1.2 Preliminaries
All non-standard notions are introduced in the subsequent sections. By reals we mean ele-
ments of the sets ωω , 2ω , or seldom R. We take the liberty to freely identify Borel functions
with their Borel codes, so whenever we claim that

f ∈M,

for some Borel function f ⊆ 2ω × 2ω , and M |= ZFC, it should be understood that it is the
Borel code of f that belongs to M (so we don’t bother if, for instance, dom f ̸⊆M ).
When we write P = {Pα ∗ Q̇α| α < θ} for a finite-support iteration of forcings, we some-
times denote by P the final step of the iteration, that is P = Pθ. When dealing with infinite
iterations, we assume that P0 is the trivial forcing. A function i : P0 ↪→ P1 is a complete
embedding if the following assertions hold:

1. ∀p, q ∈ P0 p0 ≤ p1 =⇒ i(p0) ≤ i(p1),

2. ∀p, q ∈ P0 p0⊥p1 =⇒ i(p0)⊥i(p1),

3. If A ⊆ P0 is a maximal antichain, then i[A] ⊆ P1 is a maximal antichain.

We write P0 ⋖ P1 if P0 ⊆ P1 and the inclusion is a complete embedding. The importance of
complete embeddings comes from the closely related notion of quotient forcing. If P0 ⋖ P1,
and G ⊆ P0 is a filter generic over V , then V [G] contains the quotient forcing P1/G ⊆ P1,
consisting of all conditions p ∈ P1 that are compatible with every element of G. The crucial
property of this notion is that forcing with P1 is equivalent to forcing with a two-step iteration:
P0 ∗ P1/Ġ (see [10], p.244).

We will be frequently using the following two observations.
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Proposition 7. If V is a countable transitive model of ZFC, P0,P1 ∈ V , and P0 ⊆ P1 is an
inclusion of partial orders, then the following conditions are equivalent:

1. P0 ⋖ P1,

2. If a filter G ⊆ P1 is P1-generic over V then G ∩ P0 is P0-generic over V .

Proposition 8. Let P ⋖ S be any forcing notions, and fix p ∈ P. Let q̇, ṙ be P-names,
and finally let σ(−,−) be a formula with parameters in the ground model, which is also
absolute between transitive models of set theory (for example a Σ1

1 formula in the language
of arithmetic, or a bounded formula in the language of set theory). Then

p ⊩S σ(q̇, ṙ) ⇐⇒ p ⊩P σ(q̇, ṙ).

Proof. In the direction from left to right, if p ∈ G ⊆ P is generic over the ground model V ,
then we can extend G to a generic filter G′ ⊆ S. Notice that q̇[G] = q̇[G′], and ṙ[G] = ṙ[G′].
By the absoluteness of σ(−,−) we have

V [G] |= σ(q̇[G], ṙ[G]) ⇐⇒ V [G′] |= σ(q̇[G′], ṙ[G′]).

In the other direction, we proceed in a similar way, using the fact that for any generic filter
G ⊆ S, the intersection G ∩ P is P-generic.

2 The Slicing Axioms
Definition 9. Let κ be any uncountable cardinal. We will say that Sliceκ holds if there exists a
sequence of transitive classes (not necessarily proper) {Mα| α < κ}, such that the following
conditions are satisfied

• ∀ α < κ (Mα,∈) |= ZFC,

• ∀ α < κ ωMα
1 = ω1,

• ∀ δ ∈ [ω, κ) 2δ =
⋃
α<κ

2δ ∩Mα,

• ∀ α < β < κ ∀ δ ∈ [ω, κ) 2δ ∩Mα ⊊ 2δ ∩Mβ .

Notice, that the last requirement is equivalent to a seemingly weaker

∀ α < β < κ 2ω ∩Mα ⊊ 2ω ∩Mβ .

We will say that the sequence {Mα| α < κ} preserves cardinals if κ ∈ M0 and for each
cardinal λ ∈M0 and each α < κ, λMα is a cardinal.

Let us observe that the axiom Sliceκ is outright false for any singular κ.

Proposition 10. If Sliceκ is true, than κ is regular.

Proof. If δ = cof κ < κ, then Sliceκ gives us a nontrivial decomposition of the form

2δ =
⋃
α<κ

2δ ∩Mα,

and after passing to a cofinal sequence, we also have a decomposition

2δ =
⋃
α<δ

2δ ∩Mγα
.

For each α < δ we pick sα ∈ 2δ \Mγα
. Using a definable bijection between δ and δ × δ,

we see that the sequence (sα)α<δ must belong so some model Mα. But this contradicts the
choice of sα.

The most important of the slicing axioms is perhaps Sliceω1 , since it claims that the real
line can be decomposed into an increasing union of ω1 many sets, which belong to bigger
and bigger models. The fact that MAω1

is inconsistent with Sliceω1
shows, that the Martin’s

Axiom on ω1 imposes certain compactness on the real line.
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3 Slicing the real line
We begin with showing that Martin’s Axiom on ω1 is not compatible with Sliceω1

.

Theorem 11. Sliceω1 =⇒ ¬MAω1(σ-centered).

In the proof we will utilize a known result from [7]. Recall that a set A ⊆ R is a Q-set, if
each subset of A is a relative Fσ , i.e. for each B ⊆ A there exists an Fσ subset F ⊆ R such
that A ∩ F = B.

Theorem 12 ([7]). MAω1
(σ-centered) implies that each set of cardinality ω1 is a Q-set.

Proof of Theorem 11. Assume that MAω1 holds, and (Mα)α<ω1 is a sequence of models wit-
nessing Sliceω1

. M0 |= “2ω is uncountable”, so there exists a sequence of pairwise distinct
reals X = {xα| α < ω1} ∈ M0 (note that this sequence is really of the length ω1). Let
f : ω1 ↪→ 2ω be a function such that ∀α < ω1 f(α) /∈ Mα. We will obtain a contradiction,
by showing that there exists some η < ω1, for which rg(f) ⊆Mη .

For every natural number m, let Am = {xα| f(α)(m) = 1} = X ∩ Fm, where Fm is an
Fσ subset of reals. Since the sequence (Fm)m<ω can be coded by a real, clearly it belongs to
some modelMη . It is enough to show that using this sequence andX we can give a definition
of rg(f). But

rg(f) = {x ∈ 2ω| ∃α < ω1 ∀m < ω xα ∈ Fm ⇐⇒ x(m) = 1}.

It is compatible with any value of 2ω that Sliceω1
holds and is witnessed by a cardinal

preserving sequence.

Proposition 13. Let P be any finite-support product of c.c.c. forcings adding reals, and of the
length at least ω1. Then P ⊩ Sliceω1 , and the corresponding sequence of models is cardinal
preserving.

Proof. Let us consider a finite-support product of c.c.c. forcings

P =
∏
i∈I

Pi,

where each Pi adds some real number, and |I| ≥ ω1. We can decompose I into a strictly
increasing union I =

⋃
γ<ω1

Iγ . For each α < ω1 the product
∏
i∈Iα

Pi can be identified with a

complete suborder of P.
If G ⊆ P is generic over some model V , then Sliceω1

is witnessed by the sequence

Mα = V [G ∩
∏
i∈Iα

Pi].

Recall that a set of reals is called ω1-dense, if each nonempty open interval in this set
has size ω1. The following was proved by Baumgartner in [3]. The following was proved by
Baumgartner in [3].

Theorem 14 ([3]). It is consistent with MAω1
, that all ω1-dense subsets of reals are order-

isomorphic. In particular, each ω1-dense set of reals has a non-trivial order-automorphism.

The natural question whether this assertion follows fromMAω1 was resolved by Avraham
and the second author in [1].

Theorem 15 ([1]). It is consistent with MAω1
, that there exists a rigid ω1-dense real order

type.

This is also an easy consequence of Sliceω1
.

Theorem 16. Sliceω1 implies that there is an ω1-dense rigid subset of the real line.
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Proof. Let (Mα)α<ω1 be a sequence witnessing Sliceω1 . For each α, we choose

xα ∈ R ∩ (Mα \
⋃
β<α

Mβ).

We can easily arrange the construction, so that we hit each open interval ω1-many times. The
set X = {xα| α < ω1} is ω1-dense, and it remains to prove, that it is also rigid. Suppose
that f : X → X is an order isomorphism. f extends uniquely to a continuous function
f ′ : R → R, and each such function can be coded by a real number. Therefore there is some
η < ω1, such that f ′ ∈ Mη . Now, for any ξ > η, it is not possible that f(xη) = xξ, because
it would mean xξ ∈ Mη , contrary to the choice of xξ. But, likewise, it is not possible that
f−1(xη) = xξ. The conclusion is that for all ξ > η, f(xξ) = xξ. But this means that f is
identity on a dense set, and therefore everywhere.

4 Slicing the real line while preserving MA(Suslin)
We are going to show that Sliceω1 is consistent with a version of Martin’s Axiom which takes
into account only partial orders representable as analytic sets (see [2], Ch. 3.6, or [9]).

Definition 17. A partial order (P,≤) has a Suslin definition if P ∈ Σ1
1(ω

ω), and both ordering
and incompatibility relations in P are analytic relations on ωω . P is Suslin if it has a Suslin
definition and is c.c.c.

The following is the main result of this Section.

Theorem 18. If κ is a regular cardinal such that κω = κ, then the following theory is
consistent

ZFC +MA(Suslin) + Sliceω1
+“2ω = κ”.

Let ψ(−,−,−,−) be a universal analytic formula, i.e. a Σ1
1 formula with the property

that for each analytic set P ⊆ ωω × ωω × ωω there exists r ∈ ωω such that

P = {x ∈ ωω × ωω × ωω| ψ(x, r)}.

We want to use ψ to add generic filters to all possible Suslin forcings. We will say that
ψ(−,−,−, ṙα) defines Q̇α if ṙα is a Pα-name for a real and Pα forces each of the following

Q̇α is a separative partial order with the greatest element 0,

ψ(x, 1, 1, ṙα) ⇐⇒ x ∈ Q̇α,

ψ(x, y, 2, ṙα) ⇐⇒ x ≤Q̇α
y,

ψ(x, y, 3, ṙα) ⇐⇒ x⊥Q̇α
y.

We will write ψ∈(x, z) for ψ(x, 1, 1, z), ψ⊥(x, y, z) for ψ(x, y, 3, z), and ψ≤(x, y, z) for
ψ(x, y, 2, z).

We are going to iterate all Suslin forcings, each of them cofinally many times. More
precisely, we define by induction a finite-support iteration {Pα ∗ Q̇α| α < κ}:

• P0 = {0},

• Pα ⊩ “Q̇α = {x ∈ ωω| ψ(x, ṙα)} if this formula defines a Suslin forcing; else Q̇ =
{0}”,

The variable ṙα ranges over all reals, and all possible names for reals, each of them
cofinally many times. In order to iterate through all possible parameters using a suitable
bookkeeping, we introduce the class of simple conditions, following [2].

Definition 19. By induction on α we define simple conditions in Pα.

• α = 0. P0 = {0}, and we declare 0 to be simple.

• α+ 1. (p, q̇) ∈ Pα+1 is simple if p ∈ Pα is simple and

q̇ = {(m,n, pmn )| m,n < ω, pmn ∈ Pα},

where each pmn is a simple condition in Pα. (for each m ∈ ω, the set {pmn | n < ω} is a
maximal antichain deciding q̇(m), i.e. pmn ⊩ q̇(m) = n)
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• limα. p ∈ Pα is simple if for each β < α, p ↾ β ∈ Pβ is simple.

It is straightforward to check by induction, that the set of simple Pα-conditions is dense in
Pα, and that each Pα has at most κ many names for reals (if we restrict to names with simple
conditions). We declare the forcings Pα to consist only of simple conditions, so formally we
write

Pα+1 = {(p, q̇) ∈ Pα ∗ Q̇α| (p, q̇) is simple}.

Proposition 20. If κ is an uncountable regular cardinal such that κω = κ, then

Pκ ⊩MA(Suslin) + “2ω = κ”.

Proof. Let us denote byWα the corresponding extensions of V by Pα. Let (S,≤) be a Suslin
forcing inWκ. Assume S is defined by the formula ψ(−, r). We fix a family {Aγ | γ < λ} of
maximal antichains in S, where λ < κ. Of course the formula ψ(−, r) defines different sets
in different models of set theory, so following the common custom we will denote by SN the
interpretation of S in the model N , i.e.

SN = {x ∈ ωω ∩N | N |= ψ∈(x, r)}.

Notice that the family {Aγ | γ < λ} is a function from λ to [ωω]ω , and so is added in some
intermediate step if the iteration. Let us fix an ordinal δ < κ such that {Aγ | γ < λ} ∈ Wδ ,
and Pδ ⊩ ṙδ = r. Now Pδ ⊩ Q̇δ = SWδ , so Wδ+1 contains a filter G0 ⊆ SWδ intersecting
all Aγ’s (note that by absoluteness of ψ∈ and ψ⊥, the sets Aγ are maximal antichains in
SW δ

). The filter generated by G0 in SWκ is the required generic filter.

If N is a transitive class containing κ, we can define by induction the relativized iteration
PN
κ ⊆ Pκ, taking into account only names from N .

• PN
0 = {0},

• PN
α ⊩ “Q̇N

α = {x ∈ ωω| ψ∈(x, ṙα)} if this formula defines a Suslin forcing,
ṙα ∈ N , and ṙα is a PN

α -name; else Q̇N
α = {0}”,

• PN
α+1 = PN

α ∗ Q̇N
α .

We take direct limits in the limit step, so that PN
α is really a subset of Pα. Note, that we

do not define names ṙα inductively along the way, since they have already been defined in the
construction of Pκ, which we take as granted. This construction is inspired by the lemmas
1.4 and 1.5 from [9], and conceptually is very similar. In order for it to work as desired, we
prove by induction some properties of PN

α .

Theorem 21. If N is a transitive class containing κ, then for all α ≤ κ

PN
α ⋖ Pα.

Specifically:

1. If p0⊥p1 in PN
α , then p0⊥p1 in Pα.

2. If p0 ≤ p1 in PN
α , then p0 ≤ p1 in Pα.

3. If A ⊆ PN
α is a maximal antichain, then A is maximal in Pα.

Proof. We proceed by induction on α.
1.

• α = 0. Clear.

• α + 1. We can assume that Q̇N
α is defined by the formula ψ(−, ṙα), for otherwise

PN
α+1 = PN

α , and we are done by the induction hypothesis. Fix two incompatible
conditions p0, p1 ∈ PN

α+1. Then p0 = (p′0, q̇0), p1 = (p′1, q̇1), where p′0, p
′
1 ∈ PN

α , and

p′0 ⊩ ψ∈(q̇0, ṙα),

p′1 ⊩ ψ∈(q̇1, ṙα).
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The forcing relation used above is a relation from PN
α , however since ṙα, q̇0 and q̇1 are

PN
α -names, this is the same relation as coming from Pα (see Proposition 8). We aim to

show that p0⊥p1 in Pα+1.

If p′0⊥p′1 in Pα, then clearly p0⊥p1 in Pα+1, so assume otherwise, and fix p ≤ p′0, p
′
1

(in Pα). Let p ∈ G ⊆ Pα be a filter generic over V . Conditions p0 and p1 were
incompatible in PN

α+1 and, by the induction hypothesis, G ∩ PN
α ⊆ PN

α is generic over
V , therefore

V [G ∩ PN
α ] |= ψ⊥(q̇0[G], q̇1[G], ṙα[G]).

By absoluteness

V [G] |= ψ⊥(q̇0[G], q̇1[G], ṙα[G]).

Since p was arbitrary, it follows that p0⊥p1 in Pα+1.

• limα. Follows from the induction hypothesis, since conditions have finite supports.

2.

• α = 0. Clear.

• α + 1. Again, we can assume that Q̇N
α is defined by the formula ψ(−, ṙα). Fix two

conditions p0 ≤ p1 ∈ PN
α+1. Then p0 = (p′0, q̇0), p1 = (p′1, q̇1), where p′0, p

′
1 ∈ PN

α ,
and

p′0 ⊩ ψ∈(q̇0, ṙα),

p′1 ⊩ ψ∈(q̇1, ṙα).

By the induction hypothesis p′0 ≤ p′1 in Pα. Moreover ṙα, q̇0 and q̇1 are PN
α -names, so

– in the light of Proposition 8 – the forcing relation

p′0 ⊩ q̇0 ≤ q̇1

holds in PN
α as well as in Pα.

• limα. Follows from the induction hypothesis, since conditions have finite supports.

3.

• α = 0. Clear.

• limα. Let A be a maximal antichain in PN
α , and p ∈ A. Given that PN

α is a finite-
support iteration of c.c.c. forcings, it satisfies the countable chains condition, therefore
we can assume that A = {pn| n < ω}. There is some γ < α such that p ∈ Pγ .
{pn ↾ γ| n < ω} might not be an antichain in PN

γ , however each condition in PN
γ is

compatible with some pn ↾ γ. We can refine {pn ↾ γ| n < ω} to an antichain in PN
γ ,

and this antichain will remain maximal in Pγ by the induction hypothesis. Therefore
{pn ↾ γ| n < ω} meets every condition in Pγ , and in particular some pn ↾ γ is
compatible with p in Pγ . But then pn is compatible with p in Pα.

• α + 1. In the light of Proposition 7, it is sufficient to show that for any G ⊆ Pα+1

generic over V , G ∩ PN
α+1 is also generic over V .

Lemma 22. If G ⊆ Pα is generic over V , and H ⊆ Q̇α[G] is generic over V [G], then
H ∩ Q̇N

α [G] ⊆ Q̇N
α [G] is generic over V [G ∩ PN

α ].

Why is this sufficient? Let G ⊆ Pα ∗ Q̇α be a filter generic over V . Recalling the
notation from [10],

G = G ∗H = {(p, q̇)| p ∈ G, q̇[G] ∈ H},

where
G = {p ∈ Pα| ∃q̇ ∈ Q̇ (p, q̇) ∈ G},

and
H = {q̇[G]| ∃p ∈ G (p, q̇) ∈ G}.
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It is known that for any iteration P ∗ Q̇, if G ⊆ P is generic over V and H ⊆ Q̇[G]
is generic over V [G], then G ∗ H is generic for P ∗ Q̇ over V (for details consult for
example [10], Section 5, Chapter VIII). Let G′ = G∩ PN

α . It is generic for PN
α over V

by the induction hypothesis. Now for filters G and H defined above

(G ∗H) ∩ (PN
α ∗ Q̇N

α ) = {(p, q̇)| p ∈ G′, q̇[G] ∈ H, q̇ ∈ Q̇N
α } =

{(p, q̇) ∈ PN
α ∗ Q̇N

α | p ∈ G′, q̇[G′] ∈ H} = G′ ∗ (H ∩ Q̇N
α [G′]).

But if the conclusion of Lemma 22 holds, this is a PN
α ∗ Q̇N

α -generic filter over V .

We turn to the proof of Lemma 22.

Proof. Fix a maximal antichain A ⊆ Q̇N
α [G] = Q̇N

α [G′], belonging to V [G′]. As A is
a countable set of reals, it can be coded using a single real z ∈ ωω . Recall that Q̇N

α [G′]
is defined in V [G′] by the formula ψ with the parameter ṙα[G′] = ṙα[G]. It is standard
to check, that the following claim can be written as a Π1

1 formula.

ϕ(x, y) = “x is a real coding a maximal antichain in the partial ordering defined by
the formula ψ(−,−,−, y)”.

Now
V [G′] |= ϕ(z, ṙα[G

′]),

and so by absoluteness
V [G] |= ϕ(z, ṙα[G]).

Butψ(−, ṙα[G]) is the formula defining Q̇α[G] in V [G]. Therefore A remains maximal
in Q̇α[G], and the conclusion of the Lemma easily follows.

This concludes the proof.

Let us note that even if N is an inner model of ZFC, usually PN
κ /∈ N . Definition of PN

κ

makes use of a list of PN
α -names, for all α < κ, and although some such enumeration belongs

to N (as it is a model of AC), this particular might not. In what sense is PN
κ a relativized

version of Pκ, is explained by the next lemma.

Lemma 23. For each α ≤ κ, if p ∈ Pα is simple then p is definable (in the language of set
theory) with a parameter from κω .

Proof. We proceed by induction on α.

• α = 0. Clear, since each real is definable with a real parameter.

• α+ 1. Let r = (p, q̇) be simple. We can write

q̇ = {(m,n, pmn )| m,n ∈ ω, pmn ∈ Pα},

where each pmn is simple. By the induction hypothesis each pmn is definable with a
parameter from κω , and so is p. Clearly r can be defined from them, and so r is
definable with countably many parameters from κω . We can easily code them as a
single parameter.

• limα. Fix r ∈ Pα. r has finite support, so there exists β < α containing the support
of r. By the induction hypothesis p ↾ β is definable with a parameter from κω , and p is
definable with parameters p ↾ β, β, and α.

From this point, we fix a list {σα| α < κ} of sequences from κω , such that each name ṙα
is definable from σα.

Lemma 24. Let N be any transitive model of ZFC containing κ, and let M ≺ H((2κ)+)
be a countable elementary submodel such that {σα| α < κ} ∈ M , and M ∩ κω ⊆ N . Then
for any α ≤ κ, Pα ∩M ⊆ PN

α .
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Proof. We proceed by induction.

• α = 0. Clear.

• limα. Fix r ∈ Pα∩M . By the elementarity ofM , there exists γ ∈ α∩M that contains
the support of r. From the induction hypothesis it follows that r ↾ γ ∈ PN

γ . It is routine
to verify by induction that for all γ ≤ δ ≤ α, r ↾ δ ∈ PN

δ .

• α + 1. Fix r = (p, q̇) ∈ M ∩ (Pα ∗ Q̇α). Without loss of generality we can assume
that Q̇α is defined by the formula ψ(−, ṙα). We need to check that q̇ is a PN

α -name for
an element of Q̇N

α , which means that in particular Q̇N
α needs to be defined by the same

formula as Q̇α. In summary, our task is to verify the following three claims:

– q̇ is a (simple) PN
α -name,

– ṙα is a (simple) PN
α -name,

– ṙα ∈ N .

The condition q̇ is of the form q̇ = {(m,n, pmn )| m,n < ω, pmn ∈ Pα}. Given that all
conditions pmn belong to M , they also belong to PN

α by the induction hypothesis. This
shows that q̇ is a PN

α -name. For the same reason, ṙα is a PN
α -name, once we show that

ṙα ∈M . But the model M contains the list {σα| α < κ} and the ordinal α. Therefore
σα ∈ M , and ṙα ∈ M . Finally, given that σα ∈ κω ∩M ⊆ N , we conclude that
ṙα ∈ N .

Proof of Theorem 18. We start with a model V |= Sliceω1
+“2ω = κ”, and we assume

moreover that the sequence {Mα| α < ω1} witnessing Sliceω1
satisfies the following stronger

property:

κω =
⋃

α<ω1

κω ∩Mα.

Such a model is easy to get, for example by adding κ many Cohen reals to a model of
CH using the finite support-iteration, and proceeding like in the proof of Proposition 13. We
also assume that κ ∈M0.

Let P = {Pα ∗ Q̇α| α < κ} be the described iteration, which forces

MA(Suslin) + “2ω = κ”.

We claim that if G ⊆ P is generic over V , then the sequence V [G ∩ PMα ] witnesses Sliceω1

in V [G]. For this we need to show two things:

1. If r ∈ ωω ∩ V [G], then r ∈ V [G ∩ PMα ], for some α < ω1.

2. None of the models V [G ∩ PMα ] contains all reals from V [G].

Concerning 1. suppose that Pκ ⊩ ṙ ∈ ωω . We can assume that

ṙ = {(m,n, pmn )| m,n < ω},

and all conditions pmn are simple. Fix a countable elementary submodelM ≺ H((2κ)+), that
contains the list {σα| α < κ}, and the name ṙ. We pick α big enough, so thatM ∩κω ⊆Mα.
Applying Lemma 24 with M = M , and N = Mα, we see that ṙ is a PMα -name. Therefore
ṙ is a PMα -name, and so

ṙ[G] = ṙ[G ∩ PMα ] ∈ V [G ∩ PMα ].

Concerning 2. fix a real r ∈ ωω \Mα. There exists a representation of the Cohen forcing
as a Borel subset of ωω , from which the real r is definable. For concreteness, let us put

Cr = ω<ω ∪ {r} ⊆ ωω,

where ω<ω is identified with the set of sequences from ωω that are eventually equal zero. We
order ω<ω by the end-extension and we declare that

∀s ∈ ω<ω s⊥r.
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Since Cr is clearly Suslin, there exists a real r′ such that

Cr = {x ∈ ωω| ψ∈(x, r′)}.

We claim that r′ /∈Mα. Suppose otherwise. Let σ(x) stand for the formula

ψ∈(x, r′) ∧ x /∈ ω<ω.

Note that
V |= ∃ x ∈ ωω σ(x),

and so by absoluteness the same holds in Mα. Fix r′′ ∈ ωω ∩Mα, such that

Mα |= σ(r′′).

Again V |= σ(r′′) by absoluteness. But this shows that r = r′′, and therefore r ∈ Mα,
contradicting the choice of r.

Once we know that r′ /∈Mα, let us fix γ < κ such that Pγ ⊩ ṙγ = r′. It follows that

PMα
γ ⊩ Q̇Mα

γ = {0},

and
Pγ ⊩ Q̇γ = Cr.

The mapping from Cr into Pγ+1 given by the formula

x 7→ (1Pγ , x)

is a complete embedding, and it extends to a complete embedding

f : Cr ↪→ Pκ.

Let Ḣ be a PMα
κ -name for a generic filter. In the generic extension V [H], the function

f remains a complete embedding of a Cohen forcing into Pκ, and by the choice of γ, f is
in fact a a complete embedding into Pκ/H (since H ⊆ PMα

κ , each condition of the form
(1Pγ

, x) ∈ Pγ+1 is compatible with every condition from H). In conclusion, forcing with Pκ

adds a Cohen real over V [G ∩ PMα
κ ].

4.1 Computation of cardinal invariants
For any given group G, one can study an associated cardinal invariant c(Sym(G)) that stands
for the minimal cardinality κ, for which the group G can be represented as a union of a chain
of the length κ, consisting of proper subgroups of G. A substantial amount of literature is
devoted to study this cardinal invariant for symmetric groups of infinite sets (for example
[12], [15], [14], [8]). It is known that

g ≤ c(Sym(ω)) ≤ d,

where g is the groupwise density number. The lower bound was proved by Brendle and
Losada [5], and the upper bound is due to Sharp and Thomas [13].

It is easy to observe that Sliceω1
=⇒ “ c(Sym(ω)) = ω1”: if Sliceω1

is witnessed by
a sequence (Mα)α<ω1

, then the equality c(Sym(ω)) = ω1 is witnessed by the sequence of
groups (Mα ∩ Sym(ω))α<ω1 . As a matter of fact, this observation shows that Theorem 18
generalizes Lemma 2.6 from [16], which claims that the equality c(Sym(ω)) = ω1 is pre-
served under finite-support iterations of Suslin forcings.

Together with some well-known results (consult [4]), we have the following series of
inequalities:

c(Sym(ω)) ≥ g ≥ h ≥ t ≥ m ≥ ω1.

It follows that in our model all these invariants are equal ω1. Together with the fact that
MA(Suslin) decides all cardinal characteristics from the Cichoń’s diagram to be equal 2ω ,
we have computed all of the classical cardinal invariants of the continuum, except s. But
the proof of Theorem 18 shows that Sliceω1

is witnessed by some sequence (Mα)α<ω1
, for

which there exists a Cohen real over each of the models. Given that a Cohen real splits all
reals from the ground model, we conclude that s = ω1.
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5 Slicing 2<κ

AlthoughMAω1 is inconsistent with Sliceω1 , it is consistent with Sliceκ for any κ > ω1. The
idea of the proof is very much like that of Theorem 18, and actually even simpler, because
we don’t need to code the steps of the iteration as analytic sets.

Theorem 25. Assume that ω < κ ≤ θ are regular cardinals, and θ<κ = θ. Then the
following theory is consistent for any cardinal λ < κ:

ZFC +MAλ + Sliceκ +“2ω = θ”.

We are going to apply a finite-support iteration of the form

P = {Pα ∗ Q̇α| α < θ},

where for each α < θ
Pα ⊩ Q̇α = (λ, ≤̇α).

We also assume that 0 ∈ λ is always the largest element in Q̇α. We want to arrange the
iteration so that each c.c.c. partial order of size λ will appear cofinally many times (see [10],
p. 278), and for this reason, we will be considering only names of the form

≤̇α = {(ϕ(β), pβi )| i < ω, β < λ},

where ϕ : λ→ λ× λ is a fixed bijection, definable from λ. A standard induction shows that
for any α ≤ θ there exists at most θ-many such names, and |Pα| ≤ θ. Using an appropriate
bookkeeping, we can include all c.c.c. partial orders of size λ in the iteration, and therefore
we obtain:

Theorem 26. Under the assumptions of Theorem 25

Pθ ⊩MAλ + “2ω = θ”.

Definition 27. By induction on α, we define the class of simple Pα-conditions.

• α = 0. P0 = {0}, and we declare 0 to be simple.

• α + 1. (p, q̇) ∈ Pα+1 is simple if p ∈ Pα is simple, q̇ = {(γn, pn)| n < ω}, and
conditions pn are simple.

• limα. p ∈ Pα is simple if for each β < α, p ↾ β ∈ Pβ is simple.

Like in the previous section, it is easy to check that the set of simple conditions is always
dense.

Lemma 28. For each α ≤ θ, if p ∈ Pα is simple then p is definable (in the language of set
theory) with a parameter from θω .

Proof.

• α = 0. Clear.

• α+1. Let r = (p, q̇) be simple. We can write q̇ = {(γn, pn)| n < ω}, where conditions
pn are simple. By the induction hypothesis, each pn is definable with a parameter from
θω , and so is p. Clearly r can be defined from them, and so r is definable with countably
many parameters, which we can code as one.

• limα. Fix r ∈ Pα. r has finite support, so there exists β < α containing the support
of r. By the induction hypothesis, p ↾ β is definable with a parameter from θω , and so
p is definable with the parameters p ↾ β, β, and α.

An immediate consequence is that each of the names ≤̇α is definable with some parameter
σα ∈ θλ. Like previously, we fix a list of such parameters {σα| α < θ} ⊆ θλ. We define
by induction the relativized forcings PN

κ ⊆ Pκ, taking into account only names from some
transitive class N .
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• PN
0 = {0},

• Assume PN
α is defined. We define a PN

α -name Q̇N
α as follows

– Q̇N
α = Q̇α if Q̇α ∈ N , and Q̇α is a PN

α -name,

– Q̇N
α = {0} otherwise.

• PN
α+1 = PN

α ∗ Q̇N
α .

In limit steps we take direct limits, so PN
κ ⊆ Pκ.

Lemma 29. Let N be a transitive model of ZFC, containing θ. Let M ≺ H((2θ)+) be an
elementary submodel, such that λ + 1 ⊆ M , and {σα| α < θ} ∈ M (see the remark after
Lemma 28). We assume moreover, that θλ ∩M ⊆ N . Then for each α ≤ θ, Pα ∩M ⊆ PN

α .

Proof. We proceed by induction.

• α = 0. Clear.

• limα. Fix r ∈ Pα ∩ M . By the elementarity of M , there exists γ ∈ α ∩ M that
contains the support of r. From the induction hypothesis, it follows that r ↾ γ ∈ PN

γ .
It is routine to verify by induction that for all γ ≤ δ ≤ α, r ↾ δ ∈ PN

δ .

• α+ 1. Fix r = (p, q̇) ∈M ∩ (Pα ∗ Q̇α). Clearly p ∈ PN
α by the induction hypothesis.

The name q̇ is of the form
q̇ = {(γn, pn)| n < ω},

and for each n < ω, pn ∈ Pα ∩M ⊆ PN
α . This shows that q̇ is a PN

α -name. It remains
to show that PN

α ⊩ Q̇N
α = Q̇α, and this in turn reduces to showing that Q̇α is a PN

α -
name belonging to N . To see this, let us note that since (p, q̇) ∈ M , also α ∈ M , and
so σα ∈ θλ ∩M ⊆ N . It follows that Q̇α ∈M ∩N . Recall, that Q̇α is a Pα-name for
a partial ordering of the form

≤̇α = {(ϕ(β), piβ)| β < λ, i < ω}.

Given that λ+ 1 ⊆M , we conclude that each of the conditions piβ belongs to M , and
by the induction hypothesis, also to PN

α . This shows that ≤̇α, and in turn also Q̇α, are
PN
α -names, and concludes the proof.

Lemma 30. If N is a transitive class, then for all α ≤ θ

PN
α ⋖ Pα.

Specifically:

1. If p0⊥p1 in PN
α , then p0⊥p1 in Pα.

2. If p0 ≤ p1 in PN
α , then p0 ≤ p1 in Pα.

3. If A ⊆ PN
α is a maximal antichain, then A is maximal in Pα.

Proof. We proceed by induction on α.
1.

• α = 0. Clear.

• α + 1. Assume (p0, q̇0)⊥(p1, q̇1) in PN
α+1. If p0⊥p1 in PN

α , then by the induction
hypothesis p0⊥p1 in Pα and we are done. Suppose otherwise, and fix a condition
p ≤ p0, p1 in Pα. Let G ⊆ Pα be any filter generic over V , containing p. Since
p0, p1 ∈ G ∩ PN

α , we see that

q̇0[G ∩ PN
α ]⊥q̇1[G ∩ PN

α ]

in the model V [G ∩ PN
α ], and so in V [G] as well (see Proposition 8). Since p and G

were arbitrary, it follows that (p0, q̇0)⊥(p1, q̇1) in Pα+1.
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• limα. Follows from the induction hypothesis, since the supports are finite.

2.

• α = 0. Clear.

• α + 1. Assume (p0, q̇0) ≤ (p1, q̇1) in PN
α+1. From the induction hypothesis, we know

that p0 ≤ p1 in Pα, and p0 ⊩ q̇0 ≤ q̇1 in PN
α . We must show that the assertion

p0 ⊩ q̇0 ≤ q̇1

holds also in Pα. If Q̇N
α = {0} it is trivial. Otherwise Q̇N

α = Q̇α. In that case q̇0
and q̇1 are PN

α -names, and the ⊩ relation for them is the same in PN
α as in Pα, due to

Proposition 8.

• limα. Follows from the induction hypothesis, since the supports are finite.

3.

• α = 0. Clear.

• α + 1. The proof is exactly the same as in the paragraph after Lemma 22, so we need
to prove the conclusion of Lemma 22 in the current setting. But this is trivial, once we
recall that

PN
α ⊩ Q̇N

α = {0},
or

PN
α ⊩ Q̇N

α = Q̇α.

• limα. Let {pn| n < ω} be a maximal antichain in PN
α , and fix p ∈ Pα. There is

some γ < α such that p ∈ Pγ . The set {pn ↾ γ| n < ω} might not be an antichain
in PN

γ , however each condition in PN
γ is compatible with some pn ↾ γ. We can refine

{pn ↾ γ| n < ω} to an antichain in PN
γ , and this antichain will remain maximal in Pγ

by the induction hypothesis. Therefore {pn ↾ γ| n < ω} meets every condition from
Pγ , and in particular some pn ↾ γ is compatible with p in Pγ . But then pn is compatible
with p in Pα.

Proof of Theorem 25. Let us fix a model

V |= ZFC +GCH + Sliceκ,

and let P = Pθ be the forcing defined in the beginning of the Section. Suppose that a sequence
{Mα| α < κ} witnesses Sliceκ in V , and G ⊆ P is generic over V . We aim to show that the
sequence V [G ∩ PMα ] witnesses Sliceκ in V [G]. For this we need to show two things:

1. If F ∈ 2<κ ∩ V [G], then F ∈ V [G ∩ PMα ] for some α < κ.

2. None of the models V [G ∩ PMα ] contains all reals from V [G].

Concerning 1. assume that Pθ ⊩ Ḟ ∈ 2δ , for some ordinal δ < κ. Without loss of
generality δ = |δ| ≥ λ. We can also assume that

Ḟ = {(α, αn, p
α
n)| α < δ, n < ω},

and all conditions pαn are simple. We fix some elementary submodel M ≺ H((2θ)+) of size
δ, of which we assume that δ + 1 ⊆ M , and {σα| α < θ}, Ḟ ∈ M . Notice, that δ + 1 ⊆ M
guarantees that each of the conditions pαn is in M . We pick α < κ big enough, so that
M ∩ θλ ⊆ Mα. Now Lemma 29 shows that pαn ∈ Pn

α, for all α < δ, n < ω. This shows that
Ḟ is a PMα

θ -name, and it follows that

Ḟ [G] = Ḟ [G ∩ PMα ] ∈ V [G ∩ PMα ].

Concerning 2. fix a sequence F ∈ 2ω \Mα. Let CF be any representation of the Cohen
forcing, from which the sequence F is definable, and CF is of the form

CF = (λ,≤F ).

This of course leaves plenty of space for what specifically CF might be, but for the sake of
concreteness let us define ≤F as the transitive closure of the union of the following three
relations:
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1. ≤F ↾ ω × ω is isomorphic to the countable atomless Boolean algebra,

2. ∀ 1 ≤ α < ω α · ω <F α · ω + 1 ⇐⇒ F (α) = 1,

3. ∀ 1 ≤ α < ω α · ω >F α · ω + 1 ⇐⇒ F (α) = 0.

We pick γ < θ for which
Pγ ⊩ Q̇γ = CF .

In this case, we also have
PMα
γ ⊩ Q̇Mα

γ = {0},

since F /∈Mα.
The mapping from CF into Pγ+1 given by the formula

x 7→ (1Pγ
, x)

is a complete embedding, and it extends to a complete embedding

f : CF ↪→ Pθ.

Let Ḣ be a PMα

θ -name for a generic filter. In the generic extension V [H], the function
f remains a complete embedding of a Cohen forcing into Pθ, and by the choice of γ, f is
in fact a complete embedding into Pθ/H . In conclusion, forcing with Pθ adds a Cohen real
over V [G ∩ PMα

θ ].

Corollary 31. The following theories are consistent

ZFC +MAω1
+ Sliceω2

+“2ω = ω2”,

ZFC +MAω1 + Sliceω2 +“2ω = ω3”,

ZFC +MAω2
+ Sliceω3

+“2ω = ω29”.

6 Final comments
It is easy to see, that all sequences witnessing Sliceκ that we built are cardinal preserving.
Moreover, we proved that MAω1

and Sliceω1
are not compatible. It looks reasonable to

expect that for any regular cardinal κ

MAκ =⇒ ¬Sliceκ .

I thank prof. Piotr Zakrzewski for giving the idea of looking at the cardinal invariant
c(Sym(ω)).
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