FORCING AXIOMS FOR λ-COMPLETE μ^{+}-C.C. SH1036

SAHARON SHELAH

Abstract

We consider forcing axioms for suitable families of μ-complete μ^{+}_ c.c. forcing notions. We show that some form of the condition " p_{1}, p_{2} have a $\leq_{\mathbb{Q}}-$ lub in \mathbb{Q} " is necessary. We also show some versions are really stronger than others.

[^0]
§ 0. Introduction

$\S 0(A)$. Is Well Met Necessary in Some Forcing Axiom.

We investigate the relationships between some forcing axioms related to pressing down functions for μ^{+}-c.c., mainly from [She00b]. This in particular is to answer Kolesnikov's question of having \mathbb{P} satisfying one condition but with no \mathbb{P}^{\prime} equivalent to \mathbb{P} satisfying another. A side issue is clarifying a point in [BKS09] (a rephrasing is $(2)_{c, D}^{\varepsilon}$ from 0.3). We intend to continue this considering related axioms in $\left[\mathrm{S}^{+}\right]$.

We justify the "well met, having lub" in some forcing axioms, e.g. condition (c) in $*_{\mu, \mathbb{Q}}^{1}$.

In [She78] such forcing axiom was proved consistent, for forcing notion satisfying (for $\mu^{<\mu}=\mu$; we may write " \mathbb{Q} satisfies $*_{\mu}^{1 "}$ instead $*_{\mu, \mathbb{Q}}^{1}$, similarly below):
$*_{\mu, \mathbb{Q}}^{1} \mathbb{Q}$ is a forcing notion such that:
(a) $(<\mu)$-complete, i.e. any increasing sequence of length $<\mu$ has an upper bound
(b) μ^{+}-regressive-c.c.: if $p_{\alpha} \in \mathbb{Q}$ for $\alpha<\mu^{+}$then for some club E of μ^{+} and pressing down function f on E we have $\left[\delta_{1} \in E \wedge \delta_{2} \in E \wedge\left(f\left(\delta_{1}\right)=\right.\right.$ $\left.f\left(\delta_{2}\right)\right) \wedge\left(\operatorname{cf}\left(\delta_{1}\right)=\mu=\operatorname{cf}\left(\delta_{2}\right)\right) \Rightarrow p_{\delta_{1}}, p_{\delta_{2}}$ are compatible]
(c) if $p_{1}, p_{2} \in \mathbb{Q}$ are compatible then p_{1}, p_{2} have a lub.

An easily stated version which is still enough is:
$*_{\mu, \mathbb{Q}}^{2} \mathbb{Q}$ is a forcing notion satisfying clause (a) and
$(b)^{\prime}$ if $p_{\alpha} \in \mathbb{Q}$ for $\alpha<\mu^{+}$then for some (E, \bar{q}, f) we have

- E a club of μ^{+}
- $\bar{q}=\left\langle q_{\alpha}: \alpha<\mu^{+}\right\rangle$
- $p_{\alpha} \leq_{\mathbb{Q}} q_{\alpha}$
- $\quad f$ is a pressing down function on E
- if $\delta_{1} \in E \wedge \delta_{2} \in E \wedge \operatorname{cf}\left(\delta_{1}\right)=\mu=\operatorname{cf}\left(\delta_{2}\right) \wedge f\left(\delta_{1}\right)=f\left(\delta_{2}\right)$ then $q_{\delta_{1}}, q_{\delta_{2}}$ has a lub.

An obvious fact used is
\boxplus Assume \mathbb{Q} is a forcing notion, $\varepsilon<\mu$ a limit ordinal, $\bar{p}_{\ell}=\left\langle p_{\ell, \alpha}: \alpha<\varepsilon\right\rangle$ is $\leq_{\mathbb{Q}}$-increasing for $\ell=1,2$ and for every $\alpha<\varepsilon$ the condition $p_{\alpha} \in \mathbb{Q}$ is a $\leq_{\mathbb{Q}^{-}}$-lub of $p_{1, \alpha}, p_{2, \alpha}$ (i.e. $\bigwedge_{\ell=1}^{2} p_{\ell, \alpha} \leq_{\mathbb{Q}} p_{\alpha}$ and $(\forall q)\left(p_{1, \alpha} \leq_{\mathbb{Q}} q \wedge p_{2, \alpha} \leq_{\mathbb{Q}} q \Rightarrow\right.$ $\left.p_{\alpha} \leq_{\mathbb{Q}} q\right)$). Then $\left\langle p_{\alpha}: \alpha<\varepsilon\right\rangle$ is $\leq_{\mathbb{Q}^{-}}$increasing, hence if $\left\{p_{\alpha}: \alpha<\varepsilon\right\}$ has an upper bound then so does $\left\{p_{1, \alpha}, p_{2, \alpha}: \alpha<\varepsilon\right\}$.

Now $\left[\mathrm{CDM}^{+} 17\right]$ mainly deal with consistency results for singular μ, but on the way has (with a complete proof of the iteration theorem) suggest a condition weaker than the one in [She78] and even the one in [She80] and is stronger than the one in [She00b, 1.7(1)], using a trivial strategy and $\varepsilon=\omega$. Using 0.2 , the condition from [She00b] is $(2)_{c, D}^{\varepsilon}$, where ε is a limit ordinal $<\mu$, and the condition from $\left[\mathrm{CDM}^{+} 17\right]$ is:
$*_{\mu, \mathbb{Q}}^{3} \mathbb{Q}$ a forcing notion such that:
(a) as above
(b) as above
(c) if, for every $n<\omega$ we have $p_{n} \leq p_{n+1}, q_{n} \leq q_{n+1}$ and p_{n}, q_{n} are compatible then the set $\left\{p_{n}, q_{n}: n<\omega\right\}$ has a common upper bound (here this is clause (3) $)_{b, \omega}$ of Def 0.2).
Our main conclusions are 1.9, 1.10, 2.1, 3.10.
The immediate reason for this paper is that the statement in Baldwin-KolesnikovShelah [BKS09, 3.6] is misquoting [She80, 4.12]. We shall show below that the statement is inconsistent because as stated it totally waives the condition "every two compatible members of \mathbb{P} have a lub". Also, it is stated that in [She80, 4.12] this was claimed, but quoting only [She78]. In Shelah-Spinas [SS] we consider another strengthening of the axioms.

More fully, [She80, 4.12] omits the condition above, but demands the existence of lub's of some pairs of conditions so that it holds in the cases it is actually used. So, in that case the proof of [She78] works, and see more in [She00b, Def.1.1] which gives an even weaker condition called $*_{\mu}^{\varepsilon}$.

Concerning $*_{\mu, \mathbb{Q}}^{1}$, the preservation of a related condition was proved independently by Baumgartner, who instead of (b) used a somewhat stronger condition $(b)^{+}$which says that \mathbb{Q} is the union of μ sets of pairwise compatible elements with lub, this is represented in Kunen-Tall [KT79], see history in the end of [She78] and see more in [She00b]. We thank Mirna Džamonja for drawing our attention to the problem and Ashutosh Kumar and Shimoni Garti for various corrections and the referee for helpful suggestions.

$\S 0(B)$. Are Some Versions of Axioms Equivalent?

To phrase our problem see the Definition below.
Kolesnikov asked:
Question 0.1 . Is there a forcing notion \mathbb{P} satisfying $(1)_{a},(2)_{b},(3)_{b, \omega}$ but not equivalent to a forcing notion \mathbb{P}^{\prime} satisfying $(1)_{a},(2)_{b},(3)_{a}$? (see Def 0.2 below).

Definition 0.2. Consider the following conditions on a forcing notion \mathbb{P} for a fixed $\mu=\mu^{<\mu}$ and $\theta<\mu$:
(A) completeness:
$\overline{(1)_{a} \quad \text { increasing }}$ chains of length $<\mu$ have a lub.
$(1)_{a,<\theta}=(1)_{a, \theta} \quad$ increasing chains of length $<\theta$ have a lub.
$(1)_{a, \leq \theta} \quad$ increasing chains of length $\leq \theta$ have a lub.
$(1)_{a,=\theta} \quad$ increasing chains of length θ have a lub.
$(1)_{b} \quad$ increasing chains of length $<\mu$ have a ub.
$(1)_{b,<\theta}=(1)_{b, \theta} \quad$ increasing chains of length $<\theta$ have an ub.
$(1)_{b, \leq \theta} \quad$ increasing chains of length $\leq \theta$ have an ub.
$(1)_{b,=\theta} \quad$ increasing chains of length θ have an ub.
$(1)_{c} \mathbb{P}$ is strategically α-complete for every $\alpha<\mu$, see Definition 0.11 .
(1) $)_{c, \alpha} \mathbb{P}$ is strategically α-complete; where here $\alpha \leq \mu$.
$(1)_{c}^{+} \quad$ there is a "stronger" order $<_{\text {st }}$ on \mathbb{P} which means:
$\bullet_{1} p_{1}<_{\text {st }} p_{2} \Rightarrow p_{1}<\mathbb{P} p_{2}$
$\bullet_{2} p_{1} \leq_{\mathbb{P}} p_{2}<_{\text {st }} p_{3} \leq_{\mathbb{P}} p_{4} \Rightarrow p_{1}<_{\text {st }} p_{4}$
\bullet_{3} any $<_{\text {st }}$-increasing chain of length $<\mu$ has a $\leq_{\mathbb{P}}$-ub (hence a $<_{\text {st }}-\mathrm{ub}$)
\bullet_{4} for every p there is q satisfying $p<_{\text {st }} q$
$(1)_{d,<\theta}=(1)_{d, \theta} \quad$ any increasing continuous chain of length $<\theta$ has a lub.
$(1)_{d,=\theta} \quad$ any increasing continuous chain of length θ has a lub.
(B) Strong μ^{+}-c.c.: for a stationary $S \subseteq S_{\mu}^{\mu^{+}}$, the default value being $S_{\mu}^{\mu^{+}}$, see $\overline{0.10 \text {; we may write }}(2)_{x}[S]$ when S is neither the default value nor clear from the context.
$(2)_{a}$ Given a sequence $\left\langle p_{i}: i<\mu^{+}\right\rangle$of members of \mathbb{P} there are a club C of μ^{+}and a regressive function \mathbf{h} on $C \cap S$ such that $(\alpha, \beta \in C \cap S) \wedge h(\alpha)=h(\beta) \Rightarrow p_{\alpha}, p_{\beta}$ have a lub.
$(2)_{b}$ like $(2)_{a}$ but demanding just that p_{α}, p_{β} have an ub.
$(2)_{a, \theta}^{+}$if $p_{\alpha} \in \mathbb{P}$ for $\alpha<\mu^{+}$then we can find a club E of μ^{+}and a regressive $\mathbf{h}: S \cap E \rightarrow \mu^{+}$such that: if $i(*)<1+\theta, \delta_{i} \in S \cap E$ for $i<i(*)$ and $\mathbf{h} \upharpoonright\left\{\delta_{i}: i<i(*)\right\}$ is constant then $\left\{p_{\delta_{i}}: i<i(*)\right\}$ has a lub
$(2)_{b, \theta}^{+}$like $(2)_{a, \theta}^{+}$but in the end the set has a ub
$(2)_{a, \theta}^{*}$ if $p_{\alpha} \in \mathbb{P}$ for $\alpha<\mu^{+}$then we can find \bar{q}, E, \mathbf{h} such that:
$\bullet_{1} \bar{q}=\left\langle q_{\alpha}: \alpha<\mu^{+}\right\rangle$
${ }^{-}{ }_{2} p_{\alpha} \leq_{\mathbb{P}} q_{\alpha}$
$\bullet_{3} E$ a club of μ^{+}
${ }^{-} 4 h$ is a regressive function on $S \cap E$
${ }^{{ }^{5}}$. if $\mathscr{U} \subseteq S \cap E$ has cardinality $<1+\theta$ and $\mathbf{h} \upharpoonright \mathscr{U}$ is constant, then $\left\{q_{\delta}: \delta \in \mathscr{U}\right\}$ has a lub.
$(2)_{b, \theta}^{*}$ like $(2)_{a, \theta}^{*}$ but in the end the set has a ub, (note that this is equivalent to $(2)_{b, \theta}^{+}$
(C) For $\varepsilon<\mu$ a limit ordinal, .e.g. ω :
$(3)_{a}$ any two compatible $p_{1}, p_{2} \in \mathbb{P}$ have a lub.
$(3)_{b, \varepsilon}$ if $\left\langle p_{\ell, \zeta}: \zeta<\varepsilon\right\rangle$ is increasing for $\ell=1,2$ and $p_{1, \zeta}, p_{2, \zeta}$ are compatible for every $\zeta<\varepsilon$ then $\left\{p_{\ell, \zeta}: \ell \in\{1,2\}, \zeta<\varepsilon\right\}$ has an upper bound; recall \boxplus of $\S(0 \mathrm{~A})$.
$(3)_{b, \theta, \varepsilon}$ if (a) then (b) where:
(a) $\bullet_{1} p_{\zeta, i} \in \mathbb{P}$ for $\zeta<\varepsilon$ and $i<i_{*}<\theta$
\bullet_{2} if $i<i_{*}$ then the sequence $\left\langle p_{\zeta, i}: \zeta<\varepsilon\right\rangle$ is $<_{\text {st }}$-increasing; (usually $<_{\text {st }}$ is from $\left.(1)_{c}^{+}\right)$
\bullet_{3} for each $\zeta<\varepsilon$ the set $\left\{p_{\zeta, i}: i<i_{*}\right\}$ has a common upper bound
(b) the set $\left\{p_{\zeta, i}: \zeta<\varepsilon, i<i_{*}\right\}$ has a common upper bound.
(3) $)_{a, \theta, \varepsilon}$ like $(3)_{b, \theta, \varepsilon}$ but in $(a) \bullet_{3}$ we have lub.

Definition 0.3. Assume first D a normal filter on μ^{+}to which $S_{\mu}^{\mu^{+}}$belongs (we may omit D when it is (the club filter on μ^{+}) $+S_{\mu}^{\mu^{+}}$, see Definition 0.12; also we may omit D if clear from the context). We may write S instead D when D is (the club filter on $\left.\mu^{+}\right)+S$. Second $2 \leq \theta \leq \mu$, we may omit θ when $\theta=2$; we may write $=\theta$ or $\leq \theta$ instead θ^{+}or (essentially equivalent) $\theta+1$. Third assume \mathbb{P} is a
forcing notion and $\varepsilon<\mu$ is an ordinal; a limit ordinal if not said otherwise. Writing $<\xi$ instead ε means "for every limit ordinal $<\xi$ ". Note that $(2)_{c, D}^{\varepsilon}$ defined below is equal to $*_{\mu, D}^{\varepsilon}$ of [She00b].

Then we define the following conditions on \mathbb{P} :
$(2)_{c, \theta, D}^{\varepsilon}=(2)_{c, \theta, D, \varepsilon}$ in the following game the COM player has a winning strategy:
(a) a play lasts ε moves
(b) in the ζ-th move a triple $\left(\bar{p}_{\zeta}, \mathbf{h}_{\zeta}, S_{\zeta}\right)$ is chosen such that:
(α) $\quad \bar{p}_{\zeta}=\left\langle p_{\zeta, \alpha}: \alpha \in S_{\zeta}\right\rangle$
(ß) $\quad p_{\zeta, \alpha} \in \mathbb{P}$
(γ) $\quad S_{\zeta} \in D$
($\delta) \quad S_{\zeta} \subseteq \cap\left\{S_{\xi}: \xi<\zeta\right\}$
(ε) if $\alpha \in S_{\zeta}$ then $\left\langle p_{\xi, \alpha}: \xi \leq \zeta\right\rangle$ is a $\leq_{\mathbb{P}}$-increasing sequence
$(\zeta) \mathbf{h}_{\zeta}$ is a pressing down function on S_{ζ}
(c) COM chooses ${ }^{1}\left(\bar{p}_{\zeta}, \mathbf{h}_{\zeta}\right)$ when $1+\zeta$ is even, INC chooses it when $1+\zeta$ is odd
(d) COM wins a play when it always could have made a legal move, and in the end there is $S_{\varepsilon} \in D$ included in $\bigcap_{\zeta<\varepsilon} S_{\zeta}$ such that:
if $i_{*}<\theta$ and $\alpha_{i} \in S_{\varepsilon}$ for $i<i_{*}$ and for each $i<i_{*}$ we have $\bigwedge_{\zeta<\varepsilon} \mathbf{h}_{\zeta}\left(\alpha_{i}\right)=$ $\mathbf{h}_{\zeta}\left(\alpha_{0}\right)$ then the set $\left\{p_{\alpha_{i}, \zeta}: \zeta<\varepsilon, i<i_{*}\right\}$ has an ub
$(2)_{d, \theta, D}^{\varepsilon}$ is defined as above replacing clause $(b)(\varepsilon)$ by:
$(\varepsilon)^{\prime} \quad$ if $\alpha \in S_{\zeta}$ then $\left\langle p_{\xi, \alpha}: \xi \leq \zeta\right\rangle$ is $\leq_{\mathbb{P}}$-increasing continuous.
Remark 0.4. 1) So for a forcing notion $\mathbb{Q},(2)_{c, D}^{\varepsilon}$ for ε limit $*_{D}^{\varepsilon}[\mathbb{Q}]$ is the same as [She00b, Th.0.7]. Also \mathbb{Q} satisfies $(1)_{b}+(2)_{b, 2, D}^{2}+(3)_{a}$ means $*_{\mu, \mathbb{Q}}^{1}$ from $\S 0(\mathrm{~A})$. Also \mathbb{Q} satisfies $(1)_{c}+(2)_{a, 2}^{1}$ mean $*_{\mu, \mathbb{Q}}^{2}$ from $\S 0(\mathrm{~A})$.
2) Note that " \mathbb{P} satisfies $(2)_{c, D}^{\varepsilon}$ " implies a weak version of strategic completeness (see $(1)_{b, \theta}$ for $\left.\theta=|\varepsilon|^{+}\right)$.

Definition 0.5. 1) For suitable x, y, z, (but we may omit e.g. (3) $\left.)_{z}\right)$ let $\mathrm{Ax}_{\lambda, \mu}\left((1)_{x},(2)_{y},(3)_{z}\right)$ mean: if (μ is as in 0.2 and) \mathbb{P} is a forcing notion satisfying those conditions and $\mathscr{I}_{i} \subseteq \mathbb{P}$ is dense open for $i<i(*)<\lambda \underline{\text { then }}$ some directed $\mathbf{G} \subseteq \mathbb{P}$ meets every \mathscr{I}_{i}.
2) We may omit λ if $\lambda=2^{\mu} \geq \mu^{+}$, we may more generally write $\mathrm{Ax}_{\lambda, \mu}(K)$ for K a property of forcing notion.
3) For an ordinal ${ }^{2} \varepsilon<\mu$, a limit ordinal if not said otherwise, let $\mathrm{Ax}_{\lambda, \mu}^{\varepsilon}$ mean: $\operatorname{Ax}_{\lambda, \mu}\left((1)_{c}+(2)_{c}^{\varepsilon}\right)$, we may omit λ if $\lambda=2^{\mu} \geq \mu^{+}$

See on more axioms Roslanowski-Shelah [RS01] parallel to forcing and [She00a] and references there. In $\S 1$ if we replace C_{δ} by a stationary, co-stationary subset of δ, we can iterate appropriate μ^{+}-c.c. $(<\mu)$-complete forcing notion. Earlier we have wondered (for answers on this question see $0.7(2)$):

[^1]Question 0.6. Assume $\mu=\mu^{<\mu}$

1) In [She78], can the demand "well met" cannot be omitted?
2) Is there an example \mathbb{P} where $(1)_{c}+(2)_{c}^{\theta}$ holds but $(1)_{c}+(2)_{c}^{\partial}$ fails for any $\partial \in \operatorname{Reg} \backslash\{\theta\}$ where $\theta=\operatorname{cf}(\theta)<\mu, \operatorname{cf}(\partial)=\partial<\mu$? The case $\partial=\aleph_{0}<\theta$ is natural.
3) Do we have an example for $\operatorname{Ax}\left((1)_{b}+(2)_{b}+(3)_{a}\right)$ but not $\mathrm{Ax}_{\mu}^{\varepsilon}$ with e.g. $\varepsilon=\omega$, ?

Discussion 0.7. 1) Note: if we have $(3)_{a}=$ called well met then we have $(2)_{a} \equiv$ $(2)_{b}$. If in addition to $(3)_{a}+(2)_{b}$ we have $(1)_{b}$ then we have $(2)_{c}^{\varepsilon}$ for every ε. Hence $0.6(2)$ may be the true question.
2) In $\S 1$ (see 1.9) we shall show that the demand "well met" cannot be omitted in [She78]; in other words, the statement $\operatorname{Ax}_{\mu}\left((1)_{a},(2)_{b}\right)$ is inconsistent.

In $\S 2$ for $\theta, \partial<\mu$ regular not equal we get the consistency of $\operatorname{Ax}_{\mu}\left((1)_{c}+(2)_{a,=\theta}^{+}\right)$ but not $\operatorname{Ax}_{\mu}\left((1)_{c}+(2)_{a, \partial}^{+}\right)$see 2.14, but this does not answer Question 0.6(2). In $\S 3$ we answer 0.6(2).
3) Suppose we consider a forcing notion as in $\S 1$, i.e. for $\S 2$ use $\theta=1$, but as in 3.3, for $\alpha \in C_{\delta} \cap S_{\theta}^{\mu^{+}}$no uniformization is demanded. This makes $\mathrm{Ax}_{\mu}^{\theta}$ holds for this forcing notion, but $*_{\mu}^{\partial}$ fail, so all seems fine.
4) Below, in fact for $\left\langle C_{\delta}, \mathbf{f}_{\delta}: \delta \in S\right\rangle$, we may force also the C_{δ} (in \mathbb{Q} in $\S 1$); we may not ask that C_{δ} is closed in δ and let $\bar{\alpha}_{\delta}^{*}=\left\langle\alpha_{\delta, \xi}^{*}: \xi<\mu\right\rangle$ list C_{δ} in increasing order so with limit δ, but generically we can have $\alpha_{\delta_{1}, \zeta}^{*}=\alpha_{\delta_{2}, \zeta}^{*}, \mathbf{f}_{\delta_{1}}\left(\alpha_{\delta_{1}, \zeta}^{*}\right) \neq \mathbf{f}_{\delta_{2}}\left(\alpha_{\delta_{2}, \zeta}^{*}\right)$ for ${ }_{\mu}^{1}$, i.e. anyhow seems reasonable.

Observation 0.8. Assume $\mu=\mu^{<\mu}$ and $\varepsilon<\mu$ limit.

1) If the forcing notion \mathbb{Q} satisfies the conditions $(1)_{b,|\varepsilon|^{+}},(3)_{a}$ and $(2)_{b}$, here equivalently $(2)_{a}$ then \mathbb{Q} satisfies $(2)_{c}^{\varepsilon}$ from Definition 0.3, .
2) If \mathbb{P} satisfies $(3)_{a}$ then \mathbb{P} satisfies $(3)_{a, \varepsilon}$.
3) If \mathbb{P} satisfies $(1)_{b,|\varepsilon|^{+}}+(2)_{a, 2}^{+}$then \mathbb{P} satisfies $(2)_{c}^{\varepsilon}$.
4) For any \mathbb{P} we have: $(1)_{a} \Rightarrow(1)_{b} \Rightarrow(1)_{c}^{+} \Rightarrow(1)_{c}$ and $(1)_{a} \Rightarrow(1)_{d, \mu} \Rightarrow(1)_{c}$.

Similarly $(1)_{a, \theta} \Rightarrow(1)_{b, \theta} \Rightarrow(1)_{c, \theta}$ and $(1)_{a,=\theta} \Rightarrow(1)_{b,=\theta}$ and $(1)_{a, \theta} \Rightarrow(1)_{d, \theta}$ and $(1)_{a,=\theta} \Rightarrow(1)_{d,=\theta}$.
5) For any \mathbb{P} we have $(2)_{a, \theta}^{+} \Rightarrow(2)_{a, \theta}^{*} \Rightarrow(2)_{b, \theta}^{+}$.
6) If \mathbb{P} satisfies $(2)_{c, D}^{\varepsilon}$ then forcing with \mathbb{Q} adds no new sequence of ordinals of length $\leq \varepsilon$.

Proof. Just read the definitions carefully.
E.g.
3) Recall \boxplus of $\S(0 \mathrm{~A}) . \quad \square_{0.8}$

Claim 0.9. 1) $\mathrm{Ax}_{\mu}^{\varepsilon}$, i.e. $\mathrm{Ax}_{\mu}\left((1)_{c}+(2)_{c}^{\varepsilon}\right)$ is equivalent to the axiom in [She00b]. 2) $\operatorname{Ax}_{\mu}\left((1)_{b},(2)_{a},(3)_{a}\right)$ is the axiom from [She78]. If θ, σ are regular cardinals $<\mu$ and $\mathrm{Ax}_{\mu}^{\theta}$ does not imply $\mathrm{Ax}_{\mu}^{\sigma}$ then $\mathrm{Ax}_{\mu}\left((1)_{b},(2)_{a},(3)_{a}\right)$ so the axiom from [She78], does not imply $\mathrm{Ax}_{\mu}^{\sigma}$.

Proof. Easy, too.
There are many works on forcing for uniformizing see [She77], [She03], [She98, Ch.VIII] and on ZFC results see [DS78], [She98, AP, $\S 1]$.

$\S 0(\mathrm{C})$. Preliminaries.

Notation 0.10. 1) For regular $\theta<\lambda$ let $S_{\theta}^{\lambda}=\{\delta<\lambda: \delta$ has cofinality $\theta\}$.
2) We may write $\theta(+)$ instead of θ^{+}in subscripts.

Definition 0.11. 1) We say that a forcing notion \mathbb{P} is strategically α-complete when for each $p \in \mathbb{P}$ in the following game $\partial_{\alpha}(p, \mathbb{P})$ between the players COM and INC, the player COM has a winning strategy.

A play lasts α moves; in the β-th move, first the player COM chooses $p_{\beta} \in \mathbb{P}$ such that $p \leq_{\mathbb{P}} p_{\beta}$ and $\gamma<\beta \Rightarrow q_{\gamma} \leq_{\mathbb{P}} p_{\beta}$ and second the player INC chooses $q_{\beta} \in \mathbb{P}$ such that $p_{\beta} \leq_{\mathbb{P}} q_{\beta}$.

The player COM wins a play if it has a legal move for every $\beta<\alpha$.
2) We say that a forcing notion \mathbb{P} is $(<\lambda)$-strategically complete when it is α strategically complete for every $\alpha<\lambda$.

Definition 0.12. For a filter D on a set I
(a) $D^{+}=\{A \subseteq I: I \backslash A \notin D\}$
(b) for $S \in D^{+}$let $D+S=\{A \subseteq I: A \cup(I \backslash S) \in D\}$.

Theorem 0.13. Assume $\mu=\mu^{<\mu}$ and D is a normal filter on μ^{+}to which $S_{\mu}^{\mu^{+}}$ belongs; not that in $\mathbf{V}^{\mathbb{P}}$ we interpret D as the normal filter on μ^{+}it generates. Assume further that $2 \leq \theta \leq \mu$. Then each of the following properties listed in (B) of forcing notions is preserved by $(<\mu)$-support iteration which mean clause (A) is satisfied; where:
(A) if $\mathbf{q}=\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \lg (\mathbf{q}), \beta<\lg (\mathbf{q})\right\rangle$ is a $(<\mu)$-support iteration and for each $\beta<\lg (\tilde{\mathbf{q}})$ we have $\Vdash_{\mathbb{P}_{\beta}}$ " \mathbb{Q}_{β} satisfies the property $\operatorname{Pr} "$ then the forcing notion $\mathbb{P}_{\mathbf{q}}=\mathbb{P}_{\lg (\mathbf{q})}$ satisfies the property Pr.
(B) the property Pr of forcing notion \mathbb{Q} is one of the following (where $\varepsilon<\mu$ is a limit ordinal):
(a) the property $(1)_{c}+(2)_{c, D}^{\varepsilon}$
(b) the property $(1)_{c, \theta}$
(c) the property $(1)_{c, \theta}^{+}$
(d) the property $(1)_{c}+(2)_{c, \theta, D}^{\varepsilon}$
(e) the property $(1)_{c}+(2)_{d, \theta, D}^{\varepsilon}$

Proof. Cases (b),(c) are well known.
CASE (a)
This holds by [She00b]
CASE (d)
See Shelah-Spinas [SS].
CASE (e)
Similalry.
§ 1. On μ^{+}-REGRESSIVE-C.C.; AN EXAMPLE
We shall show that in [She78], we have to use some form of the well met condition. First, we shall concentrate on the case μ is not strongly inaccessible.
Hypothesis 1.1. 1) $\mu=\mu^{<\mu}>\aleph_{0}$.
2) $S \subseteq S_{\mu}^{\mu^{+}}=\left\{\delta<\mu^{+}: \operatorname{cf}(\delta)=\mu\right\}$ is stationary, the main case is $S=S_{\mu}^{\mu^{+}}$.

Definition 1.2. \bar{C} is an S-club system when $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle, C_{\delta}$ a club of δ of order type μ.
Definition 1.3. 1) We say $(\mathscr{W}, \overline{\mathbf{f}})$ is an (S, \bar{C}, κ)-parameter or just a (\bar{C}, κ) parameter when :
(a) $S \subseteq S_{\mu}^{\mu^{+}}$is stationary; see 1.1(2),
(b) \bar{C} is an S-club-system so we may omit S
(c) $\kappa \leq \mu$ is ≥ 2, if $\kappa=2$ we may omit κ and write \bar{C}
(d) $\mathscr{W} \subseteq \mu$; if $\mathscr{W}=\mu$ we may omit \mathscr{W}
(e) $\overline{\mathbf{f}}=\left\langle\mathbf{f}_{\delta}: \delta \in S\right\rangle$
$(f) \mathbf{f}_{\delta}: C_{\delta} \rightarrow \kappa$
2) For $(\mathscr{W}, \overline{\mathbf{f}})$ an (S, \bar{C}, κ)-parameter we define a forcing notion $\mathbb{Q}=\mathbb{Q}_{(\mathscr{W}, \overline{\mathbf{f}}, \bar{C})}$ as follows:
$(A) p \in \mathbb{Q}$ iff p consists of:
(a) $v \in[S]^{<\mu}$
(b) h is a function with domain v
(c) if $\delta \in v$ then $h(\delta)$ is a non-empty bounded subset of μ closed in its supremum
(d) if $\delta_{1}, \delta_{2} \in v$ and $\alpha \in C_{\delta_{1}} \cap C_{\delta_{2}}$ and $\operatorname{otp}\left(\alpha \cap C_{\delta_{\ell}}\right) \in h\left(\delta_{\ell}\right)$ and $\operatorname{otp}\left(C_{\delta_{\ell}} \cap\right.$ $\alpha) \in \mathscr{W}$ for $\ell=1,2$ then $\mathbf{f}_{\delta_{1}}(\alpha)=\mathbf{f}_{\delta_{2}}(\alpha)$
(e) if $\delta_{1} \neq \delta_{2} \in v$ and $\beta \in C_{\delta_{1}} \cap C_{\delta_{2}}$ then for $\ell=1,2$ there is $\beta_{\ell} \in h_{p}\left(\delta_{\ell}\right)$ satisfying $\operatorname{otp}\left(C_{\delta_{\ell}} \cap \beta\right) \leq \beta_{\ell}$
($B) p \leq_{\mathbb{Q}} q$ iff:
(a) $v_{p} \subseteq v_{q}$
(b) $\delta \in v_{p} \Rightarrow h_{p}(\delta) \unlhd h_{q}(\delta)$.
3) if $\mathscr{W}=\mu$ we may omit it.

Definition 1.4. Let $(\mathscr{W}, \overline{\mathbf{f}})$ be a (\bar{C}, κ)-parameter and let $\mathbb{Q}=\mathbb{Q}_{\mathscr{W}, \overline{\mathbf{f}}, \bar{C}}$.

1) For $p \in \mathbb{Q}$ let g_{p} be the function
(a) with domain
$\left\{\alpha: \quad\right.$ some δ witnesses $\alpha \in \operatorname{Dom}\left(\mathbf{h}_{p}\right)$ which means $\delta \in v_{p}, \alpha \in C_{\delta}$, $\operatorname{otp}\left(C_{\delta} \cap \alpha\right) \in h_{p}(\delta)$ and $\left.\operatorname{otp}\left(C_{\delta} \cap \alpha\right) \in \mathscr{W}\right\}$
(b) for $\alpha \in \operatorname{Dom}\left(g_{p}\right)$ we have:

$$
g_{p}(\alpha)=\mathbf{f}_{\delta}(\alpha) \text { for every witness } \delta \text { for } \alpha \in \operatorname{dom}\left(g_{p}\right)
$$

2) Let g be the \mathbb{Q}-name for $\cup\left\{g_{p}: p \in \mathbf{G}\right\}$.
3) Let $\underset{\sim}{E} \delta=\underset{\sim}{E} \delta[\mathbb{Q}]$ be the \mathbb{Q}-name $\cup\left\{h_{p}(\delta): p \in \underset{\sim}{\mathbf{G}}, \delta \in v_{p}\right\}$ and let $\mathscr{\sim}_{\sim}^{\mathscr{W}}=\{\alpha \in$ \left.${\underset{\sim}{E}}_{\delta}: \operatorname{otp}\left(C_{\delta} \cap \alpha\right) \in \mathscr{W}\right\}$.
Claim 1.5. Assume $(\mathscr{W}, \overline{\mathbf{f}})$ is an (S, \bar{C}, κ)-parameter and $\mathbb{Q}=\mathbb{Q}_{(\mathscr{W}, \overline{\mathbf{f}}, \bar{C})}$.
4) \mathbb{Q} is $(<\mu)$-complete, moreover any $\leq_{\mathbb{Q}}$-increasing sequence of length $<\mu$ has a $\leq_{\mathbb{Q}}-l u b$ that is $(1)_{a}$.
5) If $\delta \in S$ and $\alpha<\mu \underline{\text { then }}$ the following subsets of \mathbb{Q} are dense and for \bullet_{1}, \bullet_{2} also open:
$\bullet_{1} \mathscr{I}_{\delta}=\left\{p \in \mathbb{Q}: \delta \in v_{p}\right\}$
$\bullet_{2} \mathscr{I}_{\delta, \alpha}=\left\{p \in \mathscr{I}_{\delta}: \alpha<\sup \left(h_{p}(\delta)\right)\right\}$
$\bullet_{3} \mathscr{I}_{\alpha}^{*}=\left\{p \in \mathbb{Q}:\right.$ if $\delta \in v_{p}$ then $\alpha<\sup \left(h_{p}(\delta)\right)$ and $h_{p}(\delta)$ has a last member $\}$.
6) For every $\delta \in S$, the function $\underset{\sim}{g}$ almost extends \mathbf{f}_{δ}, i.e. $\Vdash_{\mathbb{Q}}$ " $g \supseteq \mathbf{f}_{\delta} \upharpoonright\left\{\alpha \in C_{\delta}\right.$: $\left.\operatorname{otp}\left(\alpha \cap C_{\delta}\right) \in \mathscr{W}_{\delta}\right\}$, recalling $\mathscr{W}_{\delta}=\mathscr{W} \cap \underset{\sim}{E}{ }_{\delta}$. Also $\underset{\sim}{E}{\underset{\delta}{\delta}}$ is a club of μ and if $\mathscr{W}=\mu$ then \mathscr{W}_{\sim} is a club of μ ".

Proof. 1) Straightforward, see clause (A)(e) of Definition 1.3(2) in particular. 2),3) Also easy. \qquad
Claim 1.6. Let $(\mathscr{W}, \overline{\mathbf{f}}),(S, \bar{C}, \kappa), \mathbb{Q}$ be as above.
Then \mathbb{Q} satisfies clause $(2)_{b}$ of Definition 0.2 that is:
$*_{\mu}^{0}$ if $\bar{p}=\left\langle p_{\alpha}: \alpha \in S\right\rangle$ and $\alpha \in S \Rightarrow p_{\alpha} \in \mathbb{Q} \underline{\text { then }}$ there is a club E of μ^{+} and pressing down function $f: S \cap E \rightarrow \mu^{+}$, i.e. $f(\delta)<\delta$, such that: $\left(\delta_{1} \neq \delta_{2} \in S \cap E\right) \wedge f\left(\delta_{1}\right)=f\left(\delta_{2}\right) \Rightarrow p_{\delta_{1}}, p_{\delta_{2}}$ are compatible.

Proof. First, by $1.5(1)(2)$, we choose $\left\langle q_{\alpha}: \alpha \in S\right\rangle$ such that, for every $\alpha \in S$:
$\odot_{1}(a) \quad p_{\alpha} \leq q_{\alpha}$
(b) if $\delta \in v_{q_{\alpha}}$ but $\delta>\alpha$ then $\operatorname{otp}\left(C_{\delta} \cap \alpha\right)<\sup \left(h_{q_{\alpha}}(\delta)\right)$
(c) $\alpha \in v_{q_{\alpha}}$.
(d) $h_{q_{\alpha}}(\alpha)$ has a last element.

Second, choose a club E of μ^{+}such that $\alpha \in S \cap E \Rightarrow \sup \left(v_{q_{\alpha}}\right)<\min ((E \backslash(\alpha+$ 1)).

Third, choose a regressive function \mathbf{h} with domain $E \cap S$ such that:
\odot_{2} if $\delta(1)=\delta_{1}<\delta_{2}=\delta(2)$ are from $E \cap S$ and $\mathbf{h}\left(\delta_{1}\right)=\mathbf{h}\left(\delta_{2}\right)$ and $\left\langle\alpha_{\ell, i}: i<\right.$ $\left.\operatorname{otp}\left(v_{q_{\delta(\ell)}}\right)\right\rangle$ lists $v_{q_{\delta(\ell)}}$ in increasing order for $\ell=1,2$ then for some j_{*} :
(a) $\operatorname{otp}\left(v_{q_{\delta(1)}}\right)=\operatorname{otp}\left(v_{q_{\delta(2)}}\right)$ call it $i(*)$
(b) $j_{*}<i(*)$ and $\alpha_{1, j_{*}}=\delta_{1}, \alpha_{2, j_{*}}=\delta_{2}$
(c) if $j<j_{*}$ then $\alpha_{1, j}=\alpha_{2, j}$
(d) if $j>j_{*}$ but $j<i(*)$ then $C_{\alpha_{1, j}} \cap \delta_{1}=C_{\alpha_{2, j}} \cap \delta_{2}$
(e) $h_{q_{\delta(1)}}\left(\alpha_{1, i}\right)=h_{q_{\delta(2)}}\left(\alpha_{2, i}\right)$ for $i<i(*)$
(f) if $\varepsilon \in h_{q_{\delta(1)}}\left(\delta_{1}\right)$ then the ε-th member of $C_{\delta_{1}}$ is equal to the ε-th member of $C_{\delta_{2}}$.
Now it suffices to prove:
\odot_{3} if $\delta_{1} \neq \delta_{2} \in S \cap E$ and $\mathbf{h}\left(\delta_{1}\right)=\mathbf{h}\left(\delta_{2}\right)$ then $q_{\delta_{1}}, q_{\delta_{2}}$ are compatible in \mathbb{Q},

Why? Define q as follows:
$\bullet_{1} v_{q}=v_{q_{\delta(1)}} \cup v_{q_{\delta(2)}}$
$\bullet_{2} h_{q}(\delta)=h_{q_{\delta(\ell)}}(\delta)$ if $\ell \in\{1,2\}$ and $\delta \in v_{q} \backslash\left\{\delta_{\ell}\right\}$
$\bullet_{3} h_{q}\left(\delta_{\ell}\right)=h_{q_{\delta(\ell)}}\left(\delta_{\ell}\right) \cup\left\{\beta_{\ell}\right\}$ where $\beta_{\ell}<\mu, \beta_{\ell}>\max \left\{h_{q_{\delta(1)}}\left(\delta_{1}\right) \cup h_{q_{\delta(2)}}\left(\delta_{2}\right)\right\}$ and $\beta_{\ell}>\sup \left\{\operatorname{otp}\left(\alpha \cap C_{\delta_{\ell}}\right): \alpha \in C_{\delta_{1}} \cap C_{\delta_{2}}\right\}$.
First, q is well defined because in \bullet_{2}, if $h_{q}(\alpha)$ is defined in two ways, then $\alpha<\delta_{1}$ and they are equal because of \odot_{2}

Second, why $q \in \mathbb{Q}$? We have to check clauses (a)-(e) of Def $1.3(2)(\mathrm{A})$. Now clauses (a),(b),(c) are obvious. For clause (d), assume $\gamma_{1}, \gamma_{2} \in v_{q}$, and $\alpha \in C_{\gamma_{1}} \cap C_{\gamma_{2}}$ and $\operatorname{otp}\left(C_{\gamma_{\ell}} \cap \alpha\right) \in h_{q}\left(\gamma_{\ell}\right) \cap \mathscr{W}$ for $\ell=1,2$. If $\gamma_{1}, \gamma_{2} \in v_{q_{\delta(1)}}$ then use $q_{\delta(1)} \in \mathbb{Q}$, and similarly if $\gamma_{1}, \gamma_{2} \in v_{q_{\delta(2)}}$ then use $q_{\delta(2)} \in \mathbb{Q}$. So without loss of generality $\gamma_{1} \in v_{q_{\delta(1)}} \backslash v_{q_{\delta(2)}}$ and $\gamma_{2} \in v_{q_{\delta(2)}} \backslash v_{q_{\delta(1)}}$, so necessarily $\gamma_{1} \geq \delta(1), \gamma_{2} \geq \delta_{2}$ and $\alpha \in$ $C_{\gamma_{1}} \cap C_{\gamma_{2}} \subseteq \delta_{1} \cap \delta_{2}$ (using the choice of \bar{C} and E); using the notation of \odot_{2} let $i(\ell)$ be such that $\gamma_{\ell}=\alpha_{\ell, i(\ell)}$ so $i(\ell) \in[j(*), i(*))$ for $i(\ell)=1,2$. Now we get the result by applying clause (d) for $q_{\delta(2)} \in \mathbb{Q}$ for $\gamma_{1}, \gamma_{2}, \alpha_{2, i(1)} \alpha_{2, i(1)}, \alpha_{2, i(2)}=\gamma_{2}$ recalling $\odot(d),(e)$, noting that in the case $\left(\gamma_{1}, \gamma_{2}\right)=\left(\delta_{1}, \delta_{2}\right)$ necessarily $i_{1} \neq \beta_{1} \wedge i_{2} \neq \beta_{2}$ (as $\beta_{1}, \beta_{2}<\mu$ were chosen large enough) so otp $\left(C_{\delta(1)} \cap \alpha\right)=\operatorname{otp}\left(C_{\delta(2)} \cap \alpha\right) \in$ $h_{p_{\delta(1)}}(\alpha)=h_{p_{\delta(2)}}(\alpha)$ and if $i(1)=i(2)$ use the choice of \mathbf{h}.

We are left with clause (e) which is proved similarly, recalling \bullet_{3} above.
It is easy to check that $q \in \mathbb{Q}$ and $q_{\delta_{1}} \leq q, q_{\delta_{2}} \leq q$, so \odot_{3} holds indeed

Theorem 1.7. If (A) then (B) where
(A) $\mu, S, \bar{C}, \kappa, \theta$ satisfy
(a) $\mu=\mu^{<\mu}>\aleph_{0}$
(b) $S=S_{\mu}^{\mu+}$
(c) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ is an S-club system and for $\delta \in S$ we let $\eta_{\delta} \in^{\mu} \delta$ list C_{δ} in increasing order
(d) F is a function from \mathscr{F}_{μ} to κ where $\mathscr{F}_{\mu}=\{f: f$ is a function from some $u \in$ $\left[\mu^{+}\right]^{<\mu}$ to $\left.\mu\right\}$; the default case is $F(f)=f(\max (\operatorname{dom}(f))$ when well defined and zero otherwise.
(e) $\bar{a}=\left\langle a_{\delta, \alpha}: \delta \in S, \alpha<\mu\right\rangle$ where $a_{\delta, \alpha} \subseteq \eta_{\delta}(\alpha)+1$; the default value of $a_{\delta, \alpha}$ is $\left\{\eta_{\delta}(\alpha)\right\}$
(f) either μ is a (strongly) inaccessible cardinal, and $\theta<\kappa=\mu$ or $\kappa=$ $2, \theta<\mu=2^{\theta}$
(B) we can find $\overline{\mathbf{c}}$ satisfying:
(a) $\overline{\mathbf{c}}=\left\langle\mathbf{c}_{\delta}: \delta \in S\right\rangle$
(b) \mathbf{c}_{δ} is a function from C_{δ} to κ
(c) if f is a function from μ^{+}to κ, then for stationarily many $\delta \in S$, for stationarily many $\varepsilon \in C_{\delta}$ we have:
$\kappa=2 \Rightarrow \mathbf{c}_{\delta}(\alpha)=F\left(f \upharpoonright a_{\delta, \alpha}\right)$
and

$$
\kappa=\mu \Rightarrow \mathbf{c}_{\delta}(\alpha) \neq F\left(f\left\lceil a_{\delta, \alpha}\right)\right.
$$

Discussion 1.8. See [She98, AP.3.9,pg.990]. But there, only the case $\mu=\aleph_{1}, \kappa=2$ is really proved, the case μ an accessible cardinal and $\kappa=2$ is stated to be similar. In the case μ inaccessibe, $\kappa=2$, the statement consistently fail as said in [She98, $3.8(1)]$, see [She77], [She84] and [She03]. So by a request we give here a full proof.

Proof. Why?
Let λ be big enough (e.g., $\left.\left(2^{\mu^{+}}\right)^{+}\right)$, and M^{*} be an expansion of $(\mathscr{H}(\lambda), \in)$ by Skolem functions (so countably many; essentially, if we expand just by a definable well ordering it suffices).

Suppose toward contradiction that clause (A) holds but clause (B) fails. It is known that there is a function G from $\left\{A: A \subseteq \mu^{+},|A|<\mu\right\}$ to μ such that $G(A)=G(B)$ implies A, B have the same order type and their intersection is an initial segment of both (e.g. if $h_{\alpha}: \alpha \rightarrow \mu$ is one-to-one for $\alpha<\mu$, we let $G_{0}(A)={ }^{\mathrm{df}}\left\{\left(\operatorname{otp}(A \cap \alpha), \operatorname{otp}(A \cap \beta), h_{\beta}(\alpha)\right): \alpha \in A\right.$ and $\left.\beta \in A\right\}$. Now G_{0} is as required except that $\operatorname{Rang}\left(G_{0}\right) \nsubseteq \mu$ but $\left|\operatorname{Rang}\left(G_{0}\right)\right| \leq \mu$ so we can correct this by renaming).

We shall now define for any $\mathbf{p} \in \mathscr{H}(\lambda)$ a sequence $\left\langle\mathbf{c}_{\delta}^{\mathbf{p}}: \delta \in S\right\rangle$ where $\mathbf{c}_{\delta}^{\mathbf{p}}: \mu \rightarrow$ $\mathscr{H}(\mu)$, which we shall use later.

For every $\delta \in S, i<\mu$, let $N_{\delta, i}^{\mathbf{p}}$ be the minimal submodel of M^{*} (so closed under the Skolem functions) including $\{\delta, i, \mathbf{p}\}$ such that its intersection with μ is an ordinal so $N_{\delta, i}^{\mathbf{p}}$ has cardinality $<\mu$ and
$(*)_{1}$ let
(a) $\pi_{\delta, \alpha}^{\mathrm{p}}$ be the Mostowski collapse mapping from $N_{\delta, \alpha}^{\mathrm{p}}$
(b) $\mathbf{c}_{\delta}^{\mathbf{p}}$ is a function from μ into $\mathscr{H}(\mu)$
(c) for $\alpha<\mu$ we let $\mathbf{c}_{\delta}^{\mathbf{p}}(\alpha)={ }^{\mathrm{df}}\left\langle\left(\pi_{\delta, \alpha}^{\mathbf{p}}\left(N_{\delta, \alpha}^{\mathbf{p}}, \mathbf{p}, \delta, \alpha\right), G\left(N_{\delta, \alpha}^{\mathbf{p}} \cap \mu^{+}\right)\right\rangle\right.$which belongs to $\mathscr{H}(\mu)$.
Note that $\left(N_{\delta, i}^{\mathbf{p}}, \mathbf{p}, i, \delta\right)$ is $N_{\delta, i}^{\mathbf{p}}$ expanded by three individual constants.
Now recall that toward contradiction we are assuming that clause (B) of the theorem fail. This means that
$(*)_{2}$ for every sequence $\overline{\mathbf{c}}=\left\langle\mathbf{c}_{\delta}: \delta \in S\right\rangle$ where \mathbf{c}_{δ} is a function from C_{δ} to κ there is $h_{\mathbf{c}}: \mu^{+} \rightarrow \kappa$ such that:
for a closed unbounded set subset E of μ^{+}for every $\delta \in S \cap E$, for a closed unbounded set of $\alpha \in C_{\delta}$ we have $\mathbf{c}_{\delta}(\alpha)=F\left(h_{\overline{\mathbf{c}}} \mid a_{\delta, \alpha}\right)$; note that in the case $\kappa=2$, replacing non-equal by equal makes no difference!
Now
$(*)_{3}$ in $(*)_{2}$ we can replace κ by the set $\mathscr{H}(\mu)$, by changing F
[Why? If $\kappa=\mu$ this is obvious as μ and $\mathscr{H}(\mu)$ have the same cardinality. So we can assume $\kappa=2$, and we can replace $\mathscr{H}(\mu)$ by ${ }^{\theta} 2$ because both have cardinality μ. For $\varepsilon<\theta$ and h any function into ${ }^{\theta} 2$, let $h^{[\varepsilon]}$ be defined by $h^{[\varepsilon]}(\alpha)=(h(\alpha))(\varepsilon)$ for $\alpha \in \operatorname{Dom}(h)$. Define the function F^{*} by: $F^{*}(h)=\left\langle F\left(h^{[\varepsilon]}\right): \varepsilon<\theta\right\rangle$ so $F^{*}(h) \in{ }^{\theta} 2$. We shall prove that replacing F by F^{*}, the statement $(*)_{3}$ holds. So assume we are given $\left\langle\mathbf{c}_{\delta}: \delta \in S\right\rangle$ where $\mathbf{c}_{\delta} \in{ }^{\left(C_{\delta}\right)}\left({ }^{\theta} 2\right)$, i.e., $\mathbf{c}_{\delta}: C_{\delta} \rightarrow{ }^{\theta} 2$; then for $\varepsilon<\theta$ the function $\mathbf{c}_{\delta}^{[\varepsilon]} \in{ }^{\left(C_{\delta}\right)} 2$ is well defined for each $\delta \in S$. Now for each $\varepsilon<\theta$, we can apply $(*)_{2}$ so we can choose $h^{(\varepsilon)}: \mu^{+} \rightarrow 2$ such that for some club E of μ^{+}for every $\delta \in S \cap E$ for a club of $\alpha \in C_{\delta}$ we have

$$
\mathbf{c}^{[\varepsilon]}(\alpha)=F\left(h^{(\varepsilon)} \upharpoonright a_{\delta, \alpha}\right)
$$

Define $h: \mu^{+} \rightarrow{ }^{\theta} 2$ by $h(\alpha)=\left\langle h^{(\varepsilon)}(\alpha): \varepsilon<\theta\right\rangle$, it is as required. So $(*)_{3}$ holds indeed.]

Now we shall define by induction on $\varepsilon<\theta, \mathbf{p}(\varepsilon) \in \mathscr{H}(\lambda)$, and $h_{\varepsilon}: \mu^{+} \rightarrow \mathscr{H}(\mu)$.

Arriving to ε, let $\mathbf{p}(\varepsilon)=\left(\left\langle\left(h_{\zeta}, \mathbf{p}(\zeta), \bar{N}_{\zeta}\right): \zeta<\varepsilon\right\rangle, \bar{C}, F, \bar{a}, G\right)$ where $\bar{N}_{\zeta}=$ $\left\langle N^{\mathbf{p}}(\zeta)_{\delta, i}: \delta \in S, i<\mu\right\rangle$, see before $(*)_{1}$. Also let $\mathbf{c}_{\delta}^{\mathbf{p}(\varepsilon)}: \mu \rightarrow \mathscr{H}(\mu)$ be as we have defined above $\left(\right.$ in $\left.(*)_{1}\right)$, so by $(*)_{3}$
$(*)_{4}$ there are $h_{\varepsilon}, W^{\varepsilon}, \bar{W}_{\varepsilon}$ such that:
(a) $h_{\varepsilon}: \mu^{+} \rightarrow \mathscr{H}(\mu)$;
(b) $W^{\varepsilon} \subseteq \mu^{+}$is a closed unbounded subset of μ^{+}
(c) $\bar{W}_{\varepsilon}=\left\langle W_{\delta}^{\varepsilon}: \delta \in W \cap S\right\rangle$
(d) for every $\delta \in W^{\varepsilon} \cap S, W_{\delta}^{\varepsilon}$ is a closed unbounded subset of μ
(e) for $\alpha \in W_{\delta}^{\varepsilon}, \delta \in W^{n} \cap S$ we have: $\mathbf{c}_{\delta}^{\mathbf{p}(\varepsilon)}(\alpha)=F^{*}\left(h_{\varepsilon} \upharpoonright a_{\delta, \alpha}\right)$

Now
$(*)_{5}$ let
(a) let $W=\bigcap_{\varepsilon<\theta} W^{\varepsilon}$,
(b) for $\delta \in W \cap S$ let $W_{\delta}=\bigcap_{\varepsilon<\theta} W_{\delta}^{\varepsilon}$.

Clearly W is a closed unbounded subset of μ^{+}, and W_{δ} is a closed unbounded subset of μ for $\delta \in W \cap S$. So for every $\delta \in W \cap S$, we can choose $\alpha(\delta) \in W_{\delta}$; hence by Fodor lemma, for some $\alpha(*)<\mu^{+}$and ν, \bar{b} the set $S_{*}=\{\delta \in W \cap S: \alpha(\delta)=$ $\left.\alpha(*), \eta_{\delta} \upharpoonright(\xi+1)=\nu,\left\langle a_{\delta, i}: i \leq \alpha(*)\right\rangle=\bar{b}\right\}$ is stationary (in μ^{+}). As $\mu=\mu^{<\mu}$ holds there are δ_{1}, δ_{2} and $\xi<\mu$ such that:
$(*)_{6}$ (A) $\delta_{1}<\delta_{2}$ are from S_{*}
(B) $\xi \in W_{\delta_{\ell}}$ for $\ell=1,2$.
(C) $\eta_{\delta_{1}}(\xi)=\eta_{\delta_{2}}(\xi)$
(D) $\eta_{\delta_{1}} \upharpoonright(\xi+1)=\eta_{\delta_{2}} \upharpoonright(\xi+1)$
(E) $\left\langle a_{\delta_{1}, \alpha}: \alpha \leq \alpha(*)\right\rangle=\left\langle a_{\delta_{2}, \alpha}: \alpha \leq \alpha(*)\right\rangle$

So clearly we can assume
$(*)_{7}$ there are no $\delta_{1}^{\dagger}, \delta_{2}^{\dagger}$ satisfying (A)-(E) such that $\delta_{1}^{\dagger} \leq \delta_{1}, \delta_{2}^{\dagger} \leq \delta_{2}$ and $\left(\delta_{1}^{\dagger}, \delta_{2}^{\dagger}\right) \neq\left(\delta_{1}, \delta_{2}\right)$.
Now as $\delta_{1}<\delta_{2}$, for some $\alpha>\xi, \eta_{\delta_{1}}(\alpha) \neq \eta_{\delta_{2}}(\alpha)$, and there is a minimal such α; but as $\eta_{\delta_{1}}, \eta_{\delta_{2}}$ are increasing and continuous, α is a successor ordinal.

Let $v=\left\{\zeta<\mu: \eta_{\delta_{1}} \upharpoonright \zeta=\eta_{\delta_{2}} \upharpoonright \zeta, \eta_{\delta_{1}}(\zeta)=\eta_{\delta_{2}}(\zeta)\right.$ and $\left.\zeta \in W_{\delta_{1}} \cap W_{\delta_{2}}\right\}$. This set is non-empty (as ξ belongs to it), is closed (as $W_{\delta_{1}}, W_{\delta_{2}}$ are closed and $\eta_{\delta_{\ell}}$ are increasing continuous) and is bounded in μ (by the previous paragraph). Together we know that there is a maximal $\zeta \in v$.

So
$(*)_{8} \quad \mathbf{c}_{\delta_{1}}^{\mathbf{p}(\varepsilon)}(\zeta)=\mathbf{c}_{\delta_{2}}^{\mathbf{p}(\varepsilon)}(\zeta)$ for every $\varepsilon<\theta$
[Why? as both are equal to $F^{*}\left(h_{\varepsilon}\left\lceil a_{\delta_{\ell}, \zeta}\right)\right.$.]
Fix a non-zero $\varepsilon<\theta$ for a while. Looking at the definition of $\mathbf{c}_{\delta}^{\mathbf{p}(\varepsilon)}(\zeta)\left(\right.$ see $\left.(*)_{1}\right)$ we see that $N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)}$ is isomorphic to $N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)}$, and let the isomorphism be called g_{ε}. Note that the isomorphism is unique (as \in in those models is transitive and well founded) and maps \bar{C}, F, \bar{a} to themselves.

By the definition of $\mathbf{c}_{\delta}^{\mathbf{p}(\varepsilon)}(\zeta)$, clearly

$$
\begin{aligned}
&(*)_{9} \text { (a) } g_{\varepsilon}(\mathbf{p}(\varepsilon))=\mathbf{p}(\varepsilon) \text { hence } g_{\varepsilon}((\bar{C}, F, \bar{a}, G))=(\bar{C}, F, \bar{a}, G) \\
& \text { (b) } g_{\varepsilon}\left(\delta_{1}\right)=\delta_{2}, g_{\varepsilon}(\zeta)=\zeta, g_{\varepsilon}(\varepsilon)=\varepsilon \\
& \text { (c) } g_{\varepsilon}\left(\eta_{\delta_{1}}\right)=\eta_{\delta_{2}} \\
& \text { (d) } g_{\varepsilon}\left(W^{\xi}\right)=W^{\xi} \text { and } g_{\varepsilon}\left(W_{\delta_{1}}^{\xi}\right)=W_{\delta_{2}}^{\xi} \text { for every } \xi<\varepsilon \\
& \text { (e) } g_{\varepsilon}\left(N_{\delta_{1}, \zeta}^{\mathbf{p}(\xi)}\right)=g_{\varepsilon}\left(N_{\delta_{2}, \zeta}^{\mathbf{p}(\xi)}\right) \in N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)} \text { for every } \xi<\varepsilon
\end{aligned}
$$

[Why? Look at the definition of $\mathbf{p}(\varepsilon)$]
For $\xi<\varepsilon$, as $N_{\delta_{\ell}, \zeta}^{\mathbf{p}(\xi)}$ is of cardinality $<\mu$, its intersection with μ is an ordinal and it belongs to $N_{\delta_{\ell}, \zeta}^{\mathbf{p}(\varepsilon)}$, it is also included in it, hence $g_{\varepsilon} \upharpoonright N_{\delta_{1}, \zeta}^{\mathbf{p}(\xi)}$ is an isomorphism from $N_{\delta_{1}, \zeta}^{\mathbf{p}(\xi)}$ onto $N_{\delta_{2}, \zeta}^{\mathbf{p}(\xi)}$ hence (by the uniqueness of g_{ε} and $\left.(*)_{9}(b)\right)$:
$(*)_{10} \quad g_{\varepsilon} \supseteq g_{\xi}$ for $\xi<\varepsilon$.
We now stop fixing ε. For $\ell=1,2$, (recalling $\theta<\mu$ in both cases) let $N_{\ell}=$ $\bigcup_{\varepsilon<\theta} N_{\delta_{\ell}, \zeta}^{\mathbf{p}(\varepsilon)}$ and $g=\bigcup_{\varepsilon<\theta} g_{\varepsilon}$; so g is an isomorphism from N_{1} to N_{2}. By the definition of $\mathbf{c}_{\delta_{\ell}}^{\mathbf{p}(\varepsilon)}(\zeta)$, clearly the second coordinates are the same, thus:
$(*)_{11} \quad G\left(N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)} \cap \mu^{+}\right)=G\left(N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)} \cap \mu^{+}\right)$,
Hence those sets have their intersection an initial segment of both; as this holds for every $\varepsilon<\theta$, clearly $N_{1} \cap \mu^{+}, N_{2} \cap \mu^{+}$have their intersection an initial segment of both (as usual, we are not strictly distinguishing between a model and its universe), hence (recalling the choice of the $N_{\delta, i}^{\mathbf{p}}$-s), g is the identity on $N_{1} \cap N_{2} \cap \mu^{+}$.

Note that clearly $\delta_{1} \notin N_{2}$ as $g\left(\delta_{1}\right)=\delta_{2} \neq \delta_{1}$, hence $\delta_{2} \notin N_{1}$. Now
$(*)_{12} \quad$ (a) Letting $\delta_{\ell}^{*}={ }^{\mathrm{df}} \operatorname{Min}\left(\mu^{+} \cap N_{\ell} \backslash\left(N_{1} \cap N_{2}\right)\right)$, we have: $\delta_{\ell}^{*} \leq \delta_{\ell}$, is a limit ordinal
(b) $g\left(\delta_{1}^{*}\right)=\delta_{2}^{*}$ and so
(c) $\operatorname{cf}\left(\delta_{1}^{*}\right)=\operatorname{cf}\left(\delta_{2}^{*}\right)$.
(d) $\operatorname{cf}\left(\delta_{\ell}^{*}\right)=\mu$.

Why? Clauses (a), (b) are obvious and clause (c) follows (as $\delta_{\ell}^{*}<\mu^{+}$so $\operatorname{cf}\left(\delta_{\ell}^{*}\right) \leq$ μ which tell us $\operatorname{cf}\left(\delta_{\ell}^{*}\right) \in N_{\ell} \cap(\mu+1)$ and noting $N_{1}(\mu+1)=N_{2} \cap(\mu+1)$ we are done). Clause (d) (that is $\operatorname{cf}\left(\delta_{\ell}^{*}\right)=\mu$) holds as otherwise for some regular cardinal $\sigma<\mu$ we have $\operatorname{cf}\left(\delta_{1}^{*}\right)=\sigma$, and as $\delta_{1}^{*} \in N_{1}$ for some $\zeta<\theta, \delta_{1} \in N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)}$, hence there is $\left\{\beta_{\iota}: \iota<\sigma\right\} \in \delta_{1}^{*} \cap N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)}$ cofinal in δ_{1}^{*}. As $\sigma<\mu$ necessarily it is included in $N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)}$, without loss of generality β_{ι} is increasing with ι. By the choice of δ_{1}^{*}, if $\iota<\sigma$ then $\beta_{\iota} \in N_{1} \cap N_{2}$, hence $g\left(\beta_{\iota}\right)=\beta_{\iota}$; let $\beta^{*}=\min \left(N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)} \backslash \bigcup_{\iota} \beta_{\iota}\right)$, so $\beta^{*} \in N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)} \subseteq N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon+1)}$, so $\delta_{1}^{*}=\sup \left\{\beta_{\iota}: \iota<\sigma\right\}=\sup \left(\beta^{*} \cap N_{\delta_{2}, \zeta}^{\mathbf{p}(\varepsilon)}\right) \in N_{2}$, contradiction. So we have proved $(*)_{12}$.]

Now for $\ell=1,2$ let $\alpha_{\ell}={ }^{\mathrm{df}} N_{\ell} \cap \mu$, (this intersection is an initial segment of μ) and $\beta_{\ell}={ }^{\mathrm{df}} \sup \left(N_{\ell} \cap \delta_{\ell}^{*}\right)$ hence $\beta_{1}=\beta_{2}$ (by δ_{ℓ}^{*} definition) and call it β. As $\operatorname{cf}\left(\delta_{\ell}^{*}\right)=\mu$ clearly $\delta_{\ell}^{*} \geq \mu$, and clearly by g^{\prime} 's existence $\alpha_{1}=\alpha_{2}$ and call it $\alpha_{*}=\alpha(*)$, (also as $\mu \in N_{1} \cap N_{2} \cap \mu^{+}$, necessarily $\left.N_{1} \cap \mu=N_{2} \cap \mu\right)$.

As $\eta_{\delta_{1}^{*}}$ is a one to one function (being increasing) from μ, clearly
$(*)_{13}$ for every $\alpha<\mu$ we have $\eta_{\delta_{1}^{*}}(\alpha) \in N_{1} \Longleftrightarrow \alpha<\alpha(*)$.
Also $N_{1} \models$ " $\left\langle\eta_{\delta_{1}^{*}}(\alpha): \alpha<\mu\right\rangle$ " is unbounded below δ_{1}^{*} (remember $N_{1} \prec M^{*}$ as $N_{\delta_{1}, \zeta}^{\mathbf{p}(\varepsilon)} \prec M^{*}$ for each $\left.\varepsilon\right)$.

So clearly $\beta=\beta_{1}=\sup \left\{\eta_{\delta_{1}^{*}}(\alpha): \alpha<\alpha_{*}\right\}$; but $\eta_{\delta_{1}^{*}}$ is increasing continuous and α_{*} is a limit ordinal (being $\left.N_{\ell} \cap \mu\right)$, hence $\beta=\eta_{\delta_{1}^{*}}\left(\alpha_{*}\right)$.

For the same reasons $\beta=\eta_{\delta_{2}^{*}}\left(\alpha_{*}\right)$.
Similarly $\eta_{\delta_{1}^{*}} \upharpoonright \alpha_{*}=\eta_{\delta_{2}^{*}} \upharpoonright \alpha_{*}$ because $g\left(\eta_{\delta_{1}^{*}}\right)=\eta_{\delta_{2}^{*}}$, and $\alpha_{*} \in W_{\delta_{\ell}^{*}}^{\varepsilon}$ for each $\varepsilon<$ $\theta(\ell=1,2)$ as $N_{\ell} \models$ " $W_{\delta_{\ell}^{*}}^{\varepsilon}$ is a closed unbounded subset of μ ". For similar reasons $\delta_{\ell}^{*} \in W_{\varepsilon}$ for each $\varepsilon<\theta$: recall $W_{\varepsilon} \in N_{\delta_{\ell}, \zeta}^{\mathbf{p}(\varepsilon+1)}$ and so $W_{\varepsilon} \in N_{\ell}$ hence $W_{\varepsilon} \in N_{1} \cap N_{2}$, and as $N_{1}, N_{2} \prec M^{*}, M^{*}$ has Skolem functions, clearly $N_{1} \cap N_{2} \prec M^{*}$, so W_{ε}
is an unbounded subset of $N_{1} \cap N_{2} \cap \mu^{+}$. So in $N_{\ell}, W_{\varepsilon}$ is unbounded in $\delta_{\ell}^{*}=$ $\operatorname{Min}\left[\left(\mu^{+} \cap N_{\ell}\right) \backslash\left(N_{1} \cap N_{2}\right)\right]$, hence $N_{\ell} \models " \delta_{\ell}^{*} \in W_{\varepsilon}$ " hence $\delta_{\ell}^{*} \in W_{\varepsilon}$.

We can conclude that $\delta_{1}^{*}, \delta_{2}^{*}, \beta$ satisfy the requirements (A)-(E) of $(*)_{6}$ on $\delta_{1}, \delta_{2}, \xi$. Hence by $(*)_{7}$ we have $\delta_{1}=\delta_{1}^{*}, \delta_{2}=\delta_{2}^{*}$. But, $\zeta \in N_{\delta_{\ell}, \zeta}^{\mathbf{p}(\varepsilon)} \subseteq N_{\ell}$ hence $\zeta<\mu \cap N_{1} \cap N_{2}$ hence $\zeta<\alpha$, so clause $(*)_{8}$ contradicts the choice of ζ (chosen just before $(*)_{7}$), so we get a contradiction, thus finishing the proof of the theorem $\square_{1.7}$
Conclusion 1.9. The condition "have least upper bound" cannot be omitted in 3 [She78]. That is:
\boxplus there are \mathbb{Q} and $\mathscr{I}_{\alpha}\left(\alpha<\mu^{+}\right)$such that:
(a) \mathbb{Q} is a forcing notion, $(<\mu)$-complete, in fact every $\leq_{\mathbb{Q}}$-increasing sequence of length $<\mu$ has a lub, i.e. satisfies $(1)_{a}$
(b) \mathbb{Q} satisfies $(2)_{b}$, equivalently $*_{\mu, \mathbb{Q}}^{1}(b)$, see 1.6
(c) each \mathscr{I}_{α} is a dense open subset of \mathbb{Q}
(d) no directed $\mathbf{G} \subseteq \mathbb{Q}$ meets every $\mathscr{I}_{\alpha}, \alpha<\mu^{+}$.

Proof. Recall that $\mu^{<\mu}=\mu$. Let $\kappa=2$ and \bar{C} be an S-club system. If μ is a successor or just not strongly inaccessible, choose $\overline{\mathbf{f}}$ and $\overline{\mathscr{I}}=\left\langle\mathscr{I}_{\delta}, \mathscr{I}_{\delta, i}: \delta \in S, i<\right.$ $\mu\rangle$ as in 1.7 and $1.5(2)$ resp. so $\mathbb{Q}=\mathbb{Q}_{(\mathscr{W}, \overline{\mathbf{f}}, \bar{C})}$ from $1.3(2)$. So \mathbb{Q} satisfies clause (a) by $1.5(1)$, satisfies clause (b) by 1.6 and satisfies clauses (c), (d) by the choice of $\overline{\mathbf{f}}$ and $\overline{\mathscr{I}}$.

We are left with the case μ is strongly inaccessible, then we use 1.7 the case $\kappa=\mu$ instead of the case $\kappa=2$

In 1.9 above we get failure when we waive in [She78] the "well met condition".
Conclusion 1.10. In 1.9, we may replace (a) by (a)' and add (e) where:
$(a)^{\prime} \mathbb{Q}$ is a forcing notion strategically $(<\mu)$-complete (i.e. $\left.(1)_{c}\right)$, in fact some partial order $\leq_{\text {st }}$ witnesses it in a strong way (i.e. $\left.(1)_{c}^{+}\right)$,
(e) (well met) (3$)_{a}$ holds, that is if $p, q \in \mathbb{Q}$ are compatible then they have a lub, (so in clause (a)' above we get $\left.(2)_{a}\right)$.

Proof. We use a variant of the forcing from Def 1.3(2) but in clause (A)(c) there we demand $h_{p}(\delta)$ has a last element (so is closed) and we repeat the proof of 1.4. Actually similarly to the proof of 1.9 , see 2.1 in particular. In details, this forcing notion satisfies clause $(a)^{\prime}$ by $2.8(1),(2)$ below; clause (b), i.e. $(2)_{b}$, by $2.8(5)$ below. As for clauses (c),(d) we choose $\overline{\mathbf{f}}$ by 1.7.
$\square_{1.10}$
Remark 1.11. 1) In 1.6 and 1.5 we can moreover find $\left\langle\mathscr{I}_{\varepsilon}: \varepsilon<\mu\right\rangle$ such that $\mathscr{I}=\bigcup_{\varepsilon<\mu} \mathscr{I}_{\varepsilon} \subseteq \mathbb{Q}$ is dense and $p, q \in \mathscr{I}_{\varepsilon} \Rightarrow p, q$ are compatible (as in [KT79]).

Why? Let $\mathscr{I}=\left\{p \in \mathbb{Q}\right.$: if $\alpha_{1}<\alpha_{2}$ belongs to v_{p} then the set $h_{p}\left(\alpha_{1}\right)$ has a last member and there is $\alpha \in C_{\alpha_{2}} \backslash \alpha_{1}$ such that $\left.\operatorname{otp}\left(\alpha \cap C_{\alpha_{2}}\right) \in h_{p}\left(\alpha_{2}\right)\right\}$. By 1.5(2) we have \mathscr{I} is a dense subset of \mathbb{Q}.

For $p \in \mathscr{I}$ let
${ }^{\bullet} 1_{1} u_{p}=\left\{\alpha: \alpha \in v_{p}\right.$ or for some $\beta \in v_{p}$ we have $\alpha \in C_{\beta}$ and $\operatorname{otp}\left(\alpha \cap C_{\beta}\right) \leq$ $\max \left(h_{p}(\beta)\right)$ (implied by $\operatorname{otp}\left(\alpha \cap C_{\beta}\right) \in h_{p}(\beta)$ for some $\left.\left.\beta \in v_{p}\right)\right\}$

[^2]$\bullet_{2} \mathbf{E}_{1}=\left\{\left(p_{1}, p_{2}\right): p_{1}, p_{2} \in \mathscr{I}\right.$ and $\operatorname{otp}\left(u_{p_{1}}\right)=\operatorname{otp}\left(u_{p_{2}}\right)$ and the order preserving function g from $u_{p_{1}}$ onto $u_{p_{2}}$ maps $v_{p_{1}}$ onto $v_{p_{2}}, C_{\alpha} \cap u_{p_{1}}$ onto $C_{h(\alpha)} \cap u_{p_{2}}$ for $\alpha \in v_{p}$ and maps $h_{p_{1}}(\alpha)$ to $h_{p_{2}}(g(\alpha))$ for $\left.\alpha \in v_{p}\right\}$.

So \mathbf{E}_{1} is an equivalence relation on \mathscr{I} with $\leq \mu$ classes: it is known (see above) that there is an equivalence relation \mathbf{E}_{2} on $\left[\mu^{+}\right]^{<\mu}$ with μ equivalence classes such that $u_{1} \mathbf{E}_{2} u_{2} \Rightarrow u_{1} \cap u_{2} \unlhd u_{\ell}$.

Easily the equivalence relation $\left\{\left(p_{1}, p_{2}\right): p_{1} \mathbf{E}_{1} p_{2}\right.$ and $\left.u_{p_{1}} \mathbf{E}_{2} u_{p_{2}}\right\}$ on \mathscr{I} is as required.
[Why? Assume $p_{1} \mathbf{E}_{2} p_{2}$ and $g_{p_{\ell}}$ is as in the \bullet_{2} above, $\alpha_{\ell} \in v_{p_{\ell}}$ and $\alpha_{2} \in v_{p_{2}}, \gamma \in$ $C_{\alpha_{1}} \cap C_{\alpha_{2}}$ and $\operatorname{otp}\left(\gamma \cap C_{\alpha_{\ell}}\right) \in h_{p_{\ell}}\left(\alpha_{\ell}\right)$ for $\ell=1,2$. But then $\gamma \in u_{p_{1}} \cap u_{p_{2}}$ and $\gamma \in \operatorname{dom}\left(g_{p_{1}}\right) \cap \operatorname{dom}\left(g_{p_{2}}\right)$ hence necessarily $\operatorname{otp}\left(\gamma \cap C_{\alpha_{1}}\right)=\operatorname{otp}\left(\gamma \cap C_{\alpha_{2}}\right)$ and $g_{p_{1}}(\gamma)=g_{p_{2}}(\gamma)$. Let $v=v_{p_{1}} \cup v_{p_{2}}$ and choose $\left\langle\gamma_{\alpha}: \alpha \in v\right\rangle$ such that $\gamma_{\alpha} \in C_{\alpha}$ and $\delta \in v \Rightarrow \gamma_{\alpha}>\sup \left(C_{\delta} \cap v\right)$. Define $p \in \mathbb{Q}$ by:
$(*)_{8} \quad$ (a) $v_{p}=v$
(b) $u_{p}=u_{p_{1}} \cup u_{p_{2}} \cup\left\{\gamma_{\alpha}: \alpha \in v\right\}$
(c) $h_{p}(\alpha)=h_{p_{\ell}}(\alpha) \cup\left\{\gamma_{\alpha}\right\}$ when $\alpha \in v_{p_{\ell}}$
(d) $g_{p}=g_{p_{1}} \cup g_{p_{2}} \cup\left\{\left(\gamma_{\alpha}, \mathbf{f}_{\alpha}\left(\gamma_{\alpha}\right)\right): \alpha \in v\right\}$

We can easily check that p is well defined (that is in clause (c) if $\alpha \in v_{p_{1}} \cup v_{p_{2}}$ then the two definitions agree; similarly in clause (d).]
2) Note that for the forcing notion \mathbb{Q} from 1.10 , every $\leq \mathbb{Q}$-increasing continuous sequence of length $<\mu$ has a lub.

§ 2. Forcing axiom - NON EQUIVALENCE

We use Definitions $0.2,0.3$ freely; this section is dedicated to proving the following theorem:

Theorem 2.1. Assume $\theta+\aleph_{0}<\mu=\mu^{<\mu}$ and $2 \leq \theta<\mu$ and \mathbb{Q} is adding μ^{+} many μ-Cohen.

Then, in $\mathbf{V}^{\mathbb{Q}}$ we have:
$\boxplus_{\mu, \varepsilon}$ for some \mathbb{P}
(a) $(\alpha) \quad \mathbb{P}$ is a forcing notion
$(\beta) \quad \mathbb{P}$ satisfies $(2)_{c}^{\varepsilon}$ from Definition 0.3
$(\gamma) \quad \mathbb{P}$ has cardinality μ^{+}
$(\delta) \mathbb{P}$ is strategically μ-complete (i.e. satisfies $(1)_{c, \mu}$ or even $\left.(1)_{c}^{+}\right)$,
(ع) we have $(2)_{a, \mu}^{+}$
(ζ) if $p, q \in \mathbb{P}$ are compatible then they have a lub, that is $(3)_{a}$ holds;
(η) $(2)_{c}^{\varepsilon}$ holds for every limit $\varepsilon<\mu$
(b) $(\alpha) \mathbb{P}$ is not equivalent to any forcing notion satisfying $(1)_{c}+(2)_{a, \theta(+)}^{+}$
(β) moreover there is a sequence $\overline{\mathscr{I}}=\left\langle\mathscr{I}_{\alpha}: \alpha<\mu^{+}\right\rangle$of dense open subsets of \mathbb{P} such that: if \mathbb{R} is a forcing notion satisfying the conditions from $(b)(\alpha)$ above, then $\Vdash_{\mathbb{R}}$ "there is no directed $\mathbf{G} \subseteq \mathbb{P}$ which meets \mathscr{I}_{α} for $\alpha<\mu^{+} "$.
Remark 2.2. Hence the relevant forcing axioms are not equivalent!
Proof. By 2.8, 2.12, 2.13 below.
In details: let $\overline{\mathbf{f}}$ be from $2.12(1)$, (i.e. after the preliminary forcing \mathbb{Q}, in $\mathbf{V}^{\mathbb{Q}}$) and $\mathbb{P}=\mathbb{P}_{\overline{\mathbf{f}}, \theta}$, as defined in 2.6.
Clause $(a)(\alpha) \mathbb{P}$ a forcing notion, holds by Definition 2.6, i.e. first statement of 2.8(1).

Clause $(a)(\beta)$, i.e. for every limit ordinal $\varepsilon<\mu$ the statement $(2)_{c}^{\varepsilon}$ holds by 2.8(5)
Clause $(a)(\gamma), " \mathbb{P}$ of cardinality $\mu^{+} "$, holds by $2.8(1)$.
Clause $(a)(\delta),(1)_{c}^{+}$and so \mathbb{P} is strategically μ-complete, by $2.8(1),(2)$;
Clause $(a)(\varepsilon)$, means $(2)_{a}^{+}$which holds by $2.8(6)$
Clause $(a)(\zeta)$, "if p, q are compatible then they have a lub", holds by 2.8(3).
Clause $(b)(\alpha)$, "P not equivalent to a forcing satisfying $(1)_{b}+(2)_{b, \theta}^{+}$" holds, by Clause (b) (β). by D

Clause $(b)(\beta) \quad$ " \mathbb{R} satisfies $(1)_{b}+(2)_{a, \theta(+)}^{+}$, this holds by $2.13(2)$ below because it assumption holds by 2.12 .

Conclusion 2.3. If $\theta=\operatorname{cf}(\theta)<\mu=\mu^{<\mu}$ then $\left.\operatorname{Ax}_{\mu}\left((1)_{c}+(2)_{a, \theta}^{+}\right)\right)$does not imply $\mathrm{Ax}_{\mu}^{\theta}$ and even $\mathrm{Ax}_{\mu^{++}, \mu}\left((1)_{c}+(2)_{c}^{\theta}\right)$ from 0.5(3).

Proof. Let $\lambda=\lambda^{<\lambda}, \mathbb{Q}$ as in 2.1 and \mathbb{P} as in $2.1(\mathrm{~b})(\alpha)$ and $\mathbf{V}_{1}=\mathbf{V}^{\mathbb{Q}}$. In \mathbf{V}_{1} we can find a forcing notion \mathbb{R} which forces $\operatorname{Ax}_{\mu}\left((1)_{c}+(2)_{a, \theta(+)}^{+}\right)$and satisfies those conditions, we know such \mathbb{R} exists because $(<\mu)$-support iterations preserve the
property $\left.(1)_{c}+(2)_{a, \theta(+)}^{+}\right)$, see 0.13 . Now also in the universe $\mathbf{V}_{1}^{\mathbb{R}}$ the forcing notion \mathbb{P} satisfies the conditions in $\mathrm{Ax}_{\mu}^{\theta}$ from 0.5.

So by clause $(b)(\beta)$ of $T h .2 .1$, in $\mathbf{V}_{1}^{\mathbb{R}}$ the axiom $\mathrm{Ax}_{\mu}^{\theta}$ fail as exemplified by \mathbb{P} because of $3.1(\mathrm{a})$, so we are done proving the conclusion.

For this section (clearly if $\mu=\mu^{<\mu}>\aleph_{0}$ then there are such objects)
Hypothesis 2.4. 1) $\mu=\mu^{<\mu}>\theta \geq 2$ and $\mu>\aleph_{0}$
2) $S=S_{\mu}^{\mu^{+}}=\left\{\delta<\mu^{+}: \operatorname{cf}(\delta)=\mu\right\}$ or S just a stationary subset of $S_{\mu}^{\mu^{+}}$.
3) \bar{C} is an S-club sytem, see Definition 1.2.
4) $\overline{\mathbf{f}}$ is as in 2.6 but $\mathbf{f}_{\delta}: C_{\delta} \rightarrow \theta$

Discussion 2.5. 1) A major difference between the forcing in Def 2.6 below and the one in $1.3(2)$ above is that:
(A) there the generic gives a function $\underset{\sim}{g}$ from λ to κ such that for every $\delta \in S$ for "most" $\alpha \in C_{\delta}$ " we have $g(\alpha) \tilde{=} \mathbf{f}_{\delta}(\alpha)$
(B) here the generic gives a function $\underset{\sim}{g}$ such that for every $\delta \in S$ for "most" $\alpha \in C_{\delta}$ we have $\mathbf{f}_{\delta}(\alpha) \in \underset{\sim}{g}(\alpha)$
2) See more in $2.7(2)$
3) Also here g_{p} is part of the condition instead being defined, a minor change
4) In addition $h_{p}(\delta)$ is here a subset of C_{δ} instead of a subset of μ.

Definition 2.6. For $\overline{\mathbf{f}}$ an (S, \bar{C}, θ)-parameter, see Definition 1.3, we define a forcing notion $\mathbb{P}=\mathbb{P}_{\overline{\mathbf{f}}, \theta}$ as follows (but abusing our notation we may omit θ):
(A) $p \in \mathbb{P}$ iff p consists of (so $u_{p}=u$, etc.):
(a) $u \in\left[\mu^{+}\right]^{<\mu}$
(b) $g: u \rightarrow[\mu]^{<\theta}$, (can use $g: u \rightarrow \theta$ when $\theta=\operatorname{cf}(\theta) \geq \aleph_{0}$ because $\left.\bigwedge \operatorname{Rang}\left(\mathbf{f}_{\delta}\right) \subseteq \theta\right)$
δ
(c) $v \subseteq S$ of cardinality $<\mu$
(d) h a function with domain v
(e) if $\delta \in v$ then
$(\alpha) \quad h(\delta)$ is a closed bounded non-empty subset of C_{δ}
$(\beta) \quad h(\delta) \subseteq u$
$(\gamma) \quad$ if $\beta \in h(\delta)$ then $\beta \in u$ and $\mathbf{f}_{\delta}(\beta) \in g(\beta)$
(B) $p \leq q$, i.e. $\mathbb{P}_{\overline{\mathbf{f}}} \models " p \leq q$ " $\underline{\text { iff }}$
(a) $u_{p} \subseteq u_{q}$ and $g_{p} \subseteq g_{q}$
(b) $v_{p} \subseteq v_{q}$
(c) if $\delta \in v_{p}$ then $h_{p}(\delta)$ is an initial segment of $h_{q}(\delta)$
(d) if $\delta \in v_{p}$ and $\alpha \in h_{q}(\delta) \backslash h_{p}(\delta)$ (hence $h_{q}(\delta) \neq h_{p}(\delta)$), then $u_{p} \cap C_{\delta} \subseteq \alpha$
(C) we define $<_{\mathrm{st}}=<_{\mathrm{st}}^{\mathbb{P}}$, the strong order by: $p<_{\mathrm{st}} q$ iff $p \leq q$ and
(e) if $\delta \in v_{p}$ and $h_{p}(\delta) \neq h_{q}(\delta)$ then $\sup \left(h_{q}(\delta)\right)>$
$\sup \left(\cup\left\{\delta \cap C_{\gamma}: \gamma \in v_{p} \backslash\{\delta\}\right\}\right)$.
(D) Let $\underset{\sim}{g}=\left\{g_{p}: p \in \mathbf{G}\right\}$ and $\underset{\sim}{h}=\left\{h_{p}: p \in \mathbf{G}\right\}$

Remark 2.7. 1) In Definition 2.6 we may choose $\overline{\mathbf{f}}$ such that \mathbf{f}_{δ} is a function to $\kappa=\mu$ instead of to $\kappa=\theta$ the forcing is defined similarly. It has similar properties but it seems that the case $\kappa=\theta$ is enough for us.
2) If in clause $(A)(e)(\alpha)$ of 2.6 we would have demanded only " $h(\delta)$ is only closed in its supremum but if $\alpha=\sup \left(h(\delta) \notin h(\delta)\right.$ then $\left\{\mathbf{f}_{\delta}(\alpha): \delta \in v, \alpha \in C_{\delta}\right\}$ has cardinality $<\theta$ " then we get an equivalent forcing, we lose some nice properties but gain others. Mainly we gain in having more cases of having a lub, in particular for increasing sequence which has an upper bound, really any set of $<\operatorname{cf}(\theta)$ members which has an upper bound; but we lose for Δ-systems, i.e. $2.8(6)$. Also we have to be more careful in 2.9 . We shall use the "closed in its supremum" version also in §3.

Claim 2.8. Let $\overline{\mathbf{f}}$ be an (S, \bar{C}, θ)-parameter as in 1.1, so S is a stationary subset of $S_{\mu}^{\mu^{+}}$.

1) $\mathbb{P}_{\overline{\mathbf{f}}}$ is a forcing notion of cardinality μ^{+}, also $<_{\text {st }}$ is a partial order $\subseteq<\mathbb{P}$ and $p_{1} \leq p_{2}<_{\text {st }} p_{3} \leq p_{4} \Rightarrow p_{1}<_{\text {st }} p_{4}$ and $(\forall p)(\exists q)\left(p<_{\text {st }} q\right)$.
2) Any $<_{\text {st }}$-increasing sequence in $\mathbb{P}_{\overline{\mathbf{f}}}$ of length $<\mu$ has an upper bound (this is a strong/no memory version of strategic μ-completeness), i.e. $<_{\text {st }}$ exemplifies $(1)_{c}^{+}$.
3) If $p_{1}, p_{2} \in \mathbb{P}_{\overline{\mathbf{f}}}$ are compatible then they have a lub.
4) The set $\left\{p_{i}: i<i(*)\right\}$ has $a \leq-l u b$ in $\mathbb{P}_{\overline{\mathbf{f}}}$ when
(a) $\bigwedge_{i, j<i(*)}\left(p_{i}, p_{j}\right.$ are compatible)
(b) $i(*)$ is finite or $i(*)<\mu$ and for every δ, the set $\left\{h_{p_{i}}(\delta): i<i(*)\right.$ satisfies $\left.\delta \in v_{p_{i}}\right\}$ is finite or at least has a maximal member. Note this set is linearly ordered by being an initial segment.
4A) The set $\left\{p_{i}: i<i(*)\right\}$ has an ub when $i(*)<\mu$ and $\left\{p_{i}: i<i(*)\right\}$ is a set of pairwise compatible members of $\mathbb{P}_{\overline{\mathbf{f}}}$ and $i(*)$ is finite or $i(*)<\theta$ or at least $i(*)<\mu$ and for every limit ordinal α the following set has cardinality $<\theta$:

- $\left\{\delta \in \bigcup_{i} v_{p_{i}}: \alpha=\sup \left\{h_{p_{i}}(\delta)+1: i<i(*)\right.\right.$ and $\left.\left.\delta \in v_{p_{i}}\right\}\right\}$.

5) The forcing notion $\mathbb{P}_{\overline{\mathbf{f}}}$ satisfies $(2)_{c}^{\varepsilon}$ for $\varepsilon<\mu$.
6) $\mathbb{P}_{\overline{\mathbf{f}}}$ satisfies clauses $(2)_{a},(2)_{a, \partial}^{+}$of Definition 0.2 when $\partial \leq \mu$.

Proof. 1) Recall that $\mu=\mu^{<\mu}$ hence $\mu^{+}=\left(\mu^{+}\right)^{<\mu}$ and easily $|\mathbb{P}|=\mu^{+}$. Also the statements on $<_{\text {st }}$ are obvious. What about $\mathbb{P}_{\overline{\mathbf{f}}}$ being a quasi order? Assume that $p_{1} \leq p_{2} \leq p_{3}$ and we shall prove that $p_{1} \leq p_{3}$; clauses (a),(b),(c) of $2.6(\mathrm{~B})$ are immediate and we shall elaborate on clause (d). So assume $\delta \in v_{p_{1}}$ and $\alpha \in$ $h_{p_{3}}(\delta) \backslash h_{p_{1}}(\delta)$ and we should prove that $u_{p_{1}} \cap h_{p_{1}}(\delta) \subseteq \alpha$. First assume $\alpha \in h_{p_{2}}(\delta)$, then $p_{1} \leq p_{2}$ implies $u_{p_{1}} \cap C_{\delta} \subseteq \alpha$ as required. Second assume $\alpha \notin h_{p_{2}}(\delta)$ then $p_{2} \leq p_{3}$ implies $u_{p_{2}} \cap h_{p_{2}}(\delta) \subseteq \alpha$ but $u_{p_{1}} \subseteq u_{p_{2}}$ so we are done.
2) Let $\gamma<\mu$ be a limit ordinal and $\bar{p}=\left\langle p_{i}: i<\gamma\right\rangle$ be a $<_{\text {st }}$-increasing sequence of members of $\mathbb{P}_{\overline{\mathbf{f}}}$.

Let
$(*)_{1} \quad(a) \quad v_{*}=\bigcup_{i}\left\{v_{p_{i}}: i<\gamma\right\}$
(b) let $\mathbf{i}: v_{*} \rightarrow \gamma$ be $\mathbf{i}(\delta)=\min \left\{i<\gamma: \delta \in v_{p_{i}}\right\}$
(c) let $v_{2}^{*}=\left\{\delta \in v_{*}\right.$: the sequence $\left\langle h_{p_{i}}(\delta): i \in[\mathbf{i}(\delta), \gamma)\right\rangle$ is not eventually constant $\}$
(d) for $\delta \in v_{2}^{*}$ let $\zeta_{\delta}=\sup \left(\cup\left\{h_{p_{i}}(\delta): i \in[\mathbf{i}(\delta), \gamma)\right\}\right.$,
(e) let $v_{1}^{*}=v_{*} \backslash v_{2}^{*}$.

We try naturally to define $p=\left(u_{p}, v_{p}, g_{p}, h_{p}\right)$ almost as $\bigcup_{i<\gamma} p_{i}$, that is
$(*)_{2}(a) \quad v_{p}=v_{*}:=\cup\left\{v_{p_{i}}: i<\gamma\right\}$
(b) $u_{p}=\cup\left\{u_{p_{i}}: i<\gamma\right\} \cup\left\{\zeta_{\delta}: \delta \in v_{2}^{*}\right\}$
(c) $g_{p}=\cup\left\{g_{p_{i}}: i<\gamma\right\} \cup\left\{\left\langle\zeta_{\delta},\left\{\mathbf{f}_{\delta}\left(\zeta_{\delta}\right)\right\}\right\rangle: \delta \in v_{2}^{*}\right\}$
(d) h_{p} is a function with domain v_{p} such that
$(\alpha) \quad$ if $\delta \in v_{1}^{*}$ then $h_{p}(\delta)=p_{i}(\delta)$ for $i<\delta$ large enough
$(\beta) \quad$ if $\delta \in v_{2}^{*}$ then $h_{p}(\delta)=\cup\left\{h_{p_{i}}(\delta): i \in[\mathbf{i}(\delta), \gamma)\right\} \cup\left\{\zeta_{\delta}\right\}$.
The point is to check that $p \in \mathbb{P}$, because $i<\gamma \Rightarrow p_{i} \leq p$ is immediate:

- $u_{p} \in\left[\mu^{+}\right]^{<\mu}$ because $u_{p_{i}} \in\left[\mu^{+}\right]^{<\mu}$ and $\gamma<\mu=\operatorname{cf}(\mu)$ and $\left|v_{2}^{*}\right| \leq \Sigma\left\{\left|v_{p_{i}}\right|\right.$: $i<\gamma\}<\mu$
- $v_{p} \in[S]^{<\mu}$ because $v_{p_{i}} \in[S]^{<\mu}$ and $\gamma<\mu=\operatorname{cf}(\mu)$
- h_{p} is a function with domain v_{p} such that $\delta \in v_{p} \Rightarrow h_{p}(\delta)$ is a bounded closed subset of C_{δ} (check the two cases)
- g_{p} is a function from u_{p} to θ as each $g_{p_{i}}$ is a function from $u_{p_{i}}$ to λ and \bar{p} is $<_{\text {st }}$-increasing and:
$(*) \quad$ if $\delta \in v_{2}^{*}$ then $\zeta_{\delta} \notin \bigcup_{i} u_{p_{i}}$
[Why? This holds by $2.6(\mathrm{~B})(\mathrm{d})$ applied to $p_{i} \leq p_{j}$ for $i<j<\gamma$.]
$(* *) \quad$ if $\delta_{1} \neq \delta_{2} \in v_{2}^{*}$ then $\zeta_{\delta_{1}} \neq \zeta_{\delta_{2}}$ and $\zeta_{\delta_{1}} \notin C_{\delta_{2}}$.
[Why? see 2.6(C)(e)].

3) Assume $p_{1}, p_{2} \in \mathbb{P}$ have a common upper bound.
$(*)_{1}$ We define $p \in \mathbb{P}$ as follows:
(a) $v_{p}=v_{p_{1}} \cup v_{p_{2}}$
(b) $u_{p}=u_{p_{1}} \cup u_{p_{2}}$
(c) $g_{p}=g_{p_{1}} \cup g_{p_{2}}$
(d) h_{p} is the function with domain v_{p} and for $\delta \in v_{p}$ we have
\bullet_{1} if $\delta \in v_{p_{1}} \backslash v_{p_{2}}$ then $h_{p}(\delta)=h_{p_{1}}(\delta)$
\bullet_{2} if $\delta \in v_{p_{2}} \backslash v_{p_{1}}$ then $h_{p}(\delta)=h_{p_{2}}(\delta)$
\bullet_{3} if $\delta \in v_{p_{1}} \cap v_{p_{2}}$ then $h_{p}(\delta)=h_{p_{1}}(\delta) \cup h_{p_{2}}(\delta)$
Now indeed
$(*)_{2} p \in \mathbb{P}$
Also
$(*)_{3} p_{\ell} \leq p$ for $\ell=1,2$
[Why? E.g. for clause $2.6(\mathrm{~B})(\mathrm{d})$, let $\delta \in v_{p}$ and $\alpha \in h_{p}(\delta) \backslash h_{p_{\ell}}(\delta)$. By the choice of p, necessarily $\alpha \in h_{p_{3-\ell}}(\delta) \backslash h_{p_{\ell}}(\delta)$. Let q be a common upper bound of p_{1}, p_{2}, exist by our present assumption; so clearly $\alpha \in h_{q}(\delta) \backslash h_{p_{\ell}}(\delta)$ hence $u_{p_{\ell}} \cap C_{\delta} \subseteq \alpha$ as promised.]
$(*)_{4}$ if q is a common upper bound of p_{1}, p_{2} then $p \leq q$
[why? E.g. for $2.6(\mathrm{~B})(\mathrm{d})$, assume $\delta \in v_{p}$ and $\alpha \in h_{q}(\delta) \backslash h_{p}(\delta)$ we should prove that $u_{p} \cap C_{\delta} \subseteq \alpha$. Now for $\ell=1,2$ we have $p_{\ell} \leq q, \delta \in v_{p_{\ell}}$ and $\left.\left.\alpha \in h_{q}(\delta)\right) \backslash h_{p_{\ell}}(\delta)\right)$ hence $u_{p_{\ell}} \cap C_{\delta} \subseteq \alpha$. So clearly

$$
u_{p} \cap C_{\delta}=\left(u_{p_{1}} \cup u_{p_{2}}\right)=\left(u_{p_{1}} \cap C_{\delta}\right) \cup\left(u_{p_{2}} \cap C_{\delta}\right) \subseteq \alpha
$$

So we are done
4) The proof is similar.

4A) Similar to the proof of part (2).
5) The statement (2) ${ }_{c}^{\varepsilon}$ holds by parts (2), (3)
6) For (2) a_{a} by the proof of 1.6 , that is defining \mathbf{h} as there, recalling part (3)

For (2) $)_{a, \partial}$ for $\partial \leq \mu$ choose \mathbf{h} as above, using part (4) instead of part (3).

Claim 2.9. 1) $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}$ is a dense open subset of $\mathbb{P}_{\overline{\mathbf{f}}}$ where:

- $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}=\left\{p \in \mathbb{P}_{\overline{\mathbf{f}}}: \alpha \in u_{p}\right.$ and $\left.\alpha \in S \Rightarrow \alpha \in v_{p}\right\}$.

2) If $\delta \in S$ and $\alpha \in C_{\delta}$ then $\mathscr{I}_{\delta, \alpha}$ is a dense open subset of $\mathbb{P}_{\overline{\mathbf{f}}}$ where:

- $\mathscr{I}_{\delta, \alpha}=\left\{p \in \mathbb{P}_{\overline{\mathbf{f}}}: \delta \in v_{p}\right.$ and $\left.h_{p}(\delta) \nsubseteq \alpha\right\}$

Proof. 1) Assume $p \in \mathbb{P}_{\overline{\mathbf{f}}}$ and we shall find $q \in \mathscr{\mathscr { F }}_{\overline{\mathbf{f}}, \alpha}$ such that $p \leq q$. Note that α is fixed.

Case 1: If ($\alpha \notin S \vee \alpha \in v_{p}$) and $\alpha \in u_{p}$
Let $q=p$.
Case 2: If ($\alpha \notin S \vee \alpha \in v_{p}$) and $\alpha \notin u_{p}$
Define q by:

- $u_{q}=u_{p} \cup\{\alpha\}$
- $v_{q}=v_{p}$
- $g_{q}=g_{p} \cup\{\langle\alpha,\{0\}\rangle\}$
- $h_{q}=h_{p}$.

Now check that $q \in \mathbb{P} \wedge \alpha \in u_{q}$. Also $p \leq q$ is clear, e.g clause 2.6(B)(d) holds because $\delta \in v_{p} \Rightarrow h_{p}(\delta)=h_{q}(\delta)$.
Case 3: $\alpha \in S$ and for simplicity assume $\alpha \notin v_{p}$
Let $\beta \in C_{\alpha}$ be such that $\delta \in v_{p} \backslash\{\alpha\} \Rightarrow \beta>\sup \left(C_{\delta} \cap \alpha\right)$ and $\sup \left(u_{p} \cap \alpha\right)<\beta$ and define $q \in \mathbb{P}_{\overline{\mathbf{f}}}$ by:
${ }^{\bullet} 1_{1} u_{q}=u_{p} \cup\{\beta\}$,
${ }^{\bullet}{ }_{2} v_{q}=v_{p} \cup\{\alpha\}$

- ${ }_{3} g_{q}=g_{p} \cup\left\{\left(\beta,\left\{\mathbf{f}_{\alpha}(\beta)\right\}\right)\right\}$
\bullet_{4} for $\delta \in v_{q}$ we define $h_{q}(\delta)$ as:
(a) $h_{p}(\delta)$ when $\delta \neq \alpha$
(b) $\{\beta\}$ when $\delta=\alpha \notin v_{q}$
(c) $h_{p}(\delta) \cup\{\beta\}$ when $\delta=\alpha \in v_{p}$

Clearly $p \leq q \in \mathscr{I}_{\overline{\mathbf{f}}, \alpha}$.
2) Similarly.

Definition 2.10. 1) We say that $\overline{\mathbf{f}}$ is (κ, ∂)-generic enough when $(A) \Rightarrow(B)$ and recall, $\overline{\mathbf{f}}=\left\langle\mathbf{f}_{\delta}: \delta \in S\right\rangle, \mathbf{f}_{\delta}: C_{\delta} \rightarrow \theta$ where ∂ is a regular cardinality $<\mu$ and $\kappa \in[\theta, \mu)$ (and recall θ is a cardinal $[2, \mu)$ and $\left\langle\alpha_{\delta, i}: i<\mu\right\rangle$ list C_{δ} in increasing order):
(a) E is a club of μ^{+}
(b) $\left\langle\alpha_{\delta, \zeta}: \zeta<\mu\right\rangle$ is an increasing continuous sequence of the members of C_{δ} for $\delta \in E \cap S$
(c) h_{ζ} is a pressing down function from $E \cap S$ for $\zeta<\mu$
(B) we can find $\xi<\mu$ of cofinality ∂ and a sequence $\left\langle\delta_{i}: i<\kappa\right\rangle$ of ordinals from $E \cap S$ such that:
$\bullet_{1} \quad$ if $\zeta<\xi$ then $h_{\zeta} \upharpoonright\left\{\delta_{i}: i<\kappa\right\}$ is constant
$\bullet_{2}\left\langle\alpha_{\delta_{i}, \zeta}: \zeta<\xi\right\rangle$ does not depend on $i<\kappa$ hence also $\alpha=\alpha_{\delta_{i}, \xi}$ by continuity
$\bullet_{3} \quad$ the set $\left\{\mathbf{f}_{\delta_{i}}(\alpha): i<\kappa\right\}$ is equal to θ where α is from \bullet_{2}.
2) We say that $\overline{\mathbf{f}}$ is weakly (κ, ∂)-generic enough when as above except that in $(B) \bullet_{3}$ we demand just that the set has cardinality θ.
Remark 2.11. 1) This is used when we demand: any $<\theta$ has an ub inside the proof of 2.13 .
2) For $\theta=2$ as $2.8(2)$ does not apply, we shall in 2.13 need a stronger version with the game, see $\S 3$.
3) In 2.10 we may add:
${ }^{\bullet} 4\left\{\alpha \in C_{\delta_{i}}: \alpha<\alpha_{\delta_{i}, \zeta}\right\}$ for some $\zeta<\xi$ does not depend on i
${ }^{-} 5$ the $\mathbf{f}_{\delta_{i}}$'s agree on this set.
Now in $2.12,2.13$ we shall arrive at the main point
Claim 2.12. 1) For ∂ as in 2.10 assume \mathbb{Q} is the forcing notion for adding μ^{+}many μ-Cohens. Then in $\mathbf{V}^{\mathbb{Q}}$, there is an (S, \bar{C}, μ)-parameter $\overline{\mathbf{f}}$ which is (κ, ∂)-generic enough (in the sense of 2.10) for our cardinals $\theta \in[2, \mu)$ and regular $\partial \in\left[\aleph_{0}, \mu\right)$ 2) If \diamond_{S} then there is $\overline{\mathbf{f}}$ as above.

Proof. 1) Now (modulo equivalence, so without loss of generality) \mathbb{Q} can be described as follows:
$(*)_{1}(a) \quad p \in \mathbb{Q}$ iff p is a function, $\operatorname{dom}(p) \in[S]^{<\mu}$ and for every $\delta \in \operatorname{dom}(p), p(\delta)$ is a function from some strict initial segment of C_{δ} into θ recalling $C_{\delta} \subseteq \delta$ is a club of δ of order type μ
(b) $\mathbb{Q} \mid=" p \leq q "$ iff $\alpha \in \operatorname{dom}(p) \Rightarrow(\alpha \in \operatorname{dom}(q)) \wedge(p(\alpha) \unlhd q(\alpha))$
(c) let ${\underset{\sim}{f}}_{\delta}$ for $\delta \in S$ be $\cup\left\{p(\delta): p \in \mathbf{G}_{\mathbb{Q}}\right.$ satisfies $\left.\delta \in \operatorname{dom}(p)\right\}$.

It suffices to prove $\vdash_{\mathbb{Q}}$ " $\left\langle\underset{\sim}{\mathbf{f}_{\delta}}: \delta \in S\right\rangle$ is as required".
So assume
$(*)_{2} p_{*} \vdash_{\mathbb{Q}}$ " h_{\sim} is a pressing down function on S for $\zeta<\mu$ and $\left\langle\alpha_{\sim} \delta_{\delta, \zeta}: \zeta<\mu\right\rangle$ is increasing continuous sequence of members of C_{δ} for $\delta \in S^{\prime \prime}$.

It suffices to find a condition q above p_{*} forcing that there are $\left\langle\delta_{i}: i<\kappa\right\rangle$ and ξ as in clause (B) of Definition 2.10. For each $\delta \in S$ we choose $\left(p_{\delta, \varepsilon}, \xi_{\delta, \varepsilon}, \bar{\alpha}_{\delta, \varepsilon}\right\rangle$ by induction on $\varepsilon<\partial$ such that:
$(*)_{\delta, \varepsilon}^{3}(a) \quad p_{\delta, \varepsilon} \in \mathbb{Q}$ is above p_{*}
(b) $\varepsilon(1)<\varepsilon \Rightarrow p_{\delta, \varepsilon(1)} \leq_{\mathbb{Q}} p_{\delta, \varepsilon}$
(c) $\delta \in \operatorname{dom}\left(p_{\delta, \varepsilon}\right)$
(d) $\xi_{\delta, \varepsilon}=\operatorname{otp}\left(\operatorname{dom}\left(p_{\delta, \varepsilon}(\delta)\right)\right)$
(e) if $\varepsilon=\varepsilon(1)+1$ then
${ }^{\bullet}{ }_{1} \quad p_{\delta, \varepsilon}$ forces a value $h_{\zeta}^{*}(\delta)$ to ${\underset{\sim}{h}}^{h_{\zeta}}(\delta)$ for $\zeta<\xi_{\delta, \varepsilon(1)}$
$\bullet_{2} \quad p_{\delta, \varepsilon}$ forces a value $\bar{\alpha}_{\delta, \varepsilon(1)}$ to $\left\langle\underset{\sim}{\alpha} \alpha_{\delta, \zeta}: \zeta \leq \xi_{\delta, \varepsilon(1)}+1\right\rangle$
$\bullet_{3} \quad \xi_{\delta, \varepsilon}>\xi_{\delta, \varepsilon(1)}$ and $\operatorname{rang}\left(\bar{\alpha}_{\delta, \varepsilon(1)}\right) \subseteq \operatorname{dom}(p(\delta))$.
There is no problem to carry the induction. Let $\xi_{\delta}=\cup\left\{\xi_{\delta, \varepsilon}: \varepsilon<\partial\right\}<\mu, \alpha_{\delta}^{*}=$ $\sup \left\{\operatorname{dom}\left(p_{\delta, \varepsilon}(\delta)\right): \varepsilon<\partial\right\}, p_{\delta}=\cup\left\{p_{\delta, \varepsilon}: \varepsilon<\partial\right\}$.

Now we can define a pressing down function h on S such that:
$(*)_{4}$ if $\delta_{1}, \delta_{2} \in S$ and $h\left(\delta_{1}\right)=h\left(\delta_{2}\right), \varepsilon<\partial$ then:
(a) $\bar{\alpha}_{\delta_{1}, \varepsilon}=\bar{\alpha}_{\delta_{2}, \varepsilon}$
(b) for every $\alpha \in \operatorname{Rang}\left(\bar{\alpha}_{\delta_{1}, \varepsilon}\right)$ we have
${ }^{\bullet}{ }_{1}\left(C_{\delta_{1}} \cap \alpha\right)=\left(C_{\delta_{2}} \cap \alpha\right)$,
$\bullet_{2} p_{\delta_{1}}\left(\delta_{1}\right) \upharpoonright\left(C_{\delta_{1}} \cap \alpha\right)=p_{\delta_{2}}\left(\delta_{2}\right) \upharpoonright\left(C_{\delta_{2}} \cap \alpha\right)$
(c) $h_{\varepsilon}^{*}\left(\delta_{1}\right)=h_{\varepsilon}^{*}\left(\delta_{2}\right)$ so $\xi_{\delta_{1}}=\xi_{\delta_{2}}$ and $p_{\delta_{1}, \varepsilon}\left|\delta_{1}=p_{\delta_{2}, \varepsilon}\right| \delta_{2}$.

Next choose an increasing sequence $\left\langle\delta_{i}: i<\kappa\right\rangle$ of members of S such that h is constant on $\left\{\delta_{i}: i<\kappa\right\}$ and $i<j \Rightarrow \operatorname{dom}\left(p_{\delta_{i}}\right) \subseteq \delta_{j}$.

Define $q \in \mathbb{Q}$:
$(*)_{5}(a) \quad \operatorname{dom}(q)=\cup\left\{\operatorname{dom}\left(p_{\delta_{i}, \varepsilon}: i<\kappa, \varepsilon<\kappa\right\}\right.$
(b) if $i<\kappa$ then $q\left(\delta_{i}\right)=\cup\left\{p_{\delta_{i}, \varepsilon}\left(\delta_{i}\right): \varepsilon<\partial\right\} \cup\left\{\left\langle\alpha_{\delta}^{*}, i\right\rangle\right\}$ where $j=i$ when $i<\theta$ and $j=0$ otherwise
(c) if $\delta \in \operatorname{dom}(q) \backslash\left\{\delta_{i}: i<\kappa\right\}$ then $q(\alpha)=\cup\left\{p_{\delta_{i}, \varepsilon}(\alpha): \alpha \in\right.$ $\left.\operatorname{dom}\left(p_{\delta_{i}, \varepsilon}\right)\right\}$.
2) Also easy.

Claim 2.13. 1) There are dense sets $\mathscr{I}_{\alpha} \subseteq \mathbb{P}=\mathbb{P}_{\overline{\mathbf{f}}}$ for $\alpha<\mu^{+}$, such that if $\mathbf{G} \subseteq \mathbb{P}$ is directed and meets every \mathscr{I}_{α}, then \mathbf{G} is θ^{+}-directed and even $(<\mu)$-direccted.
2) If $\overline{\mathbf{f}}$ is weakly (θ, ∂)-generic enough and the forcing notion \mathbb{R} satisfies $(1)_{c}+$
$(2)_{a, \theta(+)}^{+}$, see 0.13 then in $\mathbf{V}^{\mathbb{R}}$ there is no $(<\mu)$-directed $\mathbf{G} \subseteq \mathbb{P}=\mathbb{P}_{\overline{\mathbf{f}}}$ meeting all the sets from 2.9.
3) Also there is no such \mathbb{R} satisfying $(2)_{c, \theta, D}^{\varepsilon}$ when $\varepsilon<\mu$ is a limit ordinal

Proof. 1) Let $\mathscr{S}=\{\bar{p}: \bar{p}$ is a directed sequence of conditions in \mathbb{P} of limit length $<$ $\mu\}$. Since $\mu^{<\mu}=\mu$ and $|\mathbb{P}|=\mu^{+}$it follows that $|\mathscr{S}| \leq \mu^{+}$. For each $\bar{p}=\left\langle p_{i}: i<\right.$ $\left.i_{*}\right\rangle \in \mathscr{S}$, let $\mathscr{I}_{\bar{p}}=\left\{q \in \mathbb{P}: q\right.$ is either incompatible with p_{i} for some $i<i_{*}$ or $p_{i} \leq$ q, for every $\left.i<i_{*}<\mu\right\}$. Since \mathbb{P} is μ-strategically complete (by Claim 2.8(1),(2)), the set $\mathscr{I}_{\bar{p}}$ is dense and open. Let \mathbf{G} meet $\mathscr{I}_{\bar{p}}$, for every $\bar{p} \in \mathscr{S}$. Then \mathbf{G} is θ^{+}-directed.
2) Towards contradiction, assume $p_{*} \vdash_{\mathbb{R}}$ " $\mathbf{\sim}$ © $\subseteq \mathbb{P}$ is $(<\mu)$-directed, meeting all the sets from 2.9 ". Using $(1)_{c, \mu}$, fix a winning strategy st for COM, the completeness player in the game $\partial_{\mu}\left(p^{*}, \mathbb{R}\right)$, see Def $0.11(1)$ choose $\left(E_{\zeta}, \bar{q}_{\zeta}, \bar{r}_{\zeta}, \overline{\mathbf{h}}_{\zeta}, \bar{p}_{\zeta}, \bar{\alpha}_{\zeta}\right)$ by induction on $\zeta<\mu$ such that:
(*) (a) $\quad \bar{q}_{\zeta}=\left\langle q_{\zeta, \delta}: \delta \in E_{\zeta}\right\rangle$ and $\bar{r}_{\zeta}=\left\langle r_{\zeta, \delta}: \delta \in E_{\zeta}\right\rangle$
(b) $p_{*} \leq q_{\zeta, \delta} \leq r_{\zeta, \delta}$ are from \mathbb{R}
(c) $\left\langle\left(q_{\xi, \delta}, r_{\xi, \delta}\right): \xi \leq \zeta\right\rangle$ is an initial segment of a play of $\partial_{\mu}\left(p^{*}, \mathbb{R}\right)$ in which the player COM uses st
(d) $E_{\zeta} \subseteq \mu^{+}$is a club
(e) \mathbf{h}_{ζ} is a regressive function on $S \cap E_{\zeta}$
$(f) \quad$ if $\mathscr{U} \subseteq E_{\zeta} \cap S,|\mathscr{U}|<\theta$ and $\mathbf{h}_{\zeta} \mid \mathscr{U}$ is constant, then $\left\{r_{\zeta, \delta}: \delta \in \mathscr{U}\right\}$ has a lub in \mathbb{R}
(g) $\bar{p}_{\zeta}=\left\langle p_{\zeta, \delta}: \delta \in E_{\zeta}\right\rangle$
(h) $r_{\zeta, \delta} \Vdash_{\mathbb{R}}$ " $p_{\zeta, \delta} \in \underset{\sim}{\mathbf{H}}$ is above $p_{\xi, \delta}$ for $\xi<\zeta$ "
(i) $\bar{\alpha}_{\zeta}=\left\langle\alpha_{\delta, \zeta}: \delta \in S \cap E_{\zeta}\right\rangle$
(j) $\quad \alpha_{\delta, \zeta}$ is a member of $h_{p_{\zeta, \delta}}(\delta)$ above $\operatorname{dom}\left(h_{p_{\xi, \delta}}(\delta)\right)$ for every $\xi<\varepsilon$.

For clauses (e) $+(\mathrm{f})$, we use condition $(2)_{a, \theta}^{+}$.
Since $\overline{\mathbf{f}}$ is (θ, θ)-generic enough, we can find $\left\langle\delta_{i}: i<\theta\right\rangle$ and ξ as in Definition 2.10 and let $\left\langle\zeta_{i}: i<\theta\right\rangle$ be increasing with limit ξ.

By clause (f), for each $j<\theta$, the set $\left\{r_{\zeta_{j}, \delta_{i}}: i<j\right\}$ has a lub $r_{j}^{*} \in \mathbb{R}$ - so necessarily $j_{1}<j_{2}<\theta \Rightarrow r_{j_{1}}^{*} \leq r_{j_{2}}^{*}$. Hence the sequence $\left\langle r_{j}^{*}: j<\theta\right\rangle$ has an upper bound r_{*} (by $\left.(1)_{b,=\theta}\right)$. So $r_{*} \Vdash_{\mathbb{R}}$ " $\left\{p_{\zeta_{i}, \delta_{j}}: i<j<\theta\right\} \subseteq \underset{\sim}{\mathbf{H}}$ ". As $r_{*} \Vdash_{\mathbb{R}}$ " $\underset{\sim}{\mathbf{H}}$ is $<\theta^{+}$-directed", we can find some $p \in \mathbb{P}, r_{* *} \geq r_{*}$ such that $r_{* *} \Vdash_{\mathbb{R}} p \in \underset{\sim}{\mathbf{H}}$ is an upper bound for $\left\{p_{\zeta_{i}, \delta_{j}}: i<j<\theta\right\}$.

So, on one hand, $g_{p}\left(\alpha_{\delta_{0}, \xi}\right)$ is a subset of μ of cardinality $<\theta$ - by the definition of \mathbb{P}. On the other hand, $i<\theta \Longrightarrow \alpha_{\xi, \delta_{i}}=\alpha_{\xi, \delta_{0}}$ and $\mathbf{f}_{\delta_{i}}\left(\alpha_{\delta_{i}, \xi}\right) \in g_{p}\left(\alpha_{\delta_{i}, \xi}\right)$. But by Definition $2.10(\mathrm{~B}) \bullet_{3}$ this is impossible.
Conclusion 2.14. If $\lambda=\lambda^{<\lambda}>\mu=\mu^{<\mu}>\aleph_{0}$ and $\theta \neq \partial, \partial=\operatorname{cf}(\partial)<\mu$ (and recall $2 \leq \theta \leq \mu$) then for some forcing notion \mathbb{R} we have:
(a) \mathbb{R} satisfies $(1)_{c}+(2)_{a,=\theta}^{+}$, of cardinality λ (so adds no new sequences of length $<\mu$, collapses no cardinality, changes no cofinality and the only possible change in cardinal arithmetic is making $2^{\mu}=\lambda$)
(b) in $\mathbf{V}^{\mathbb{R}}$ we have $\mathrm{Ax}_{\lambda, \mu}\left((1)_{c}+(2)_{a, \theta(+)}^{+}\right)$
(c) in $\mathbf{V}^{\mathbb{R}}$ the axiom $\operatorname{Ax}\left((1)_{c}+(2)_{a, \partial}^{+}\right)$fails.
§ 3. Separating $\mathrm{Ax}_{\mu}^{\theta}$, $\mathrm{Ax}_{\mu}^{\partial}$ For Regular θ, ∂
Recall that $\operatorname{Ax}_{\mu, D}^{\theta}$ is $\operatorname{Ax}_{\mu}\left((1)_{c}+(2)_{c, D}^{\theta}\right)$, we usually omit D and μ is understood from the context.

Hypothesis 3.1. 1) $\mu=\mu^{<\mu}$.
2) $S \subseteq S_{\mu}^{\mu^{+}}$stationary.
3) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle, C_{\delta}$ a closed unbounded subset of δ of order type μ, listed by $\left\langle\alpha_{\delta, \zeta}^{*}: \zeta<\mu\right\rangle$ in increasing order.
4) $\overline{\mathbf{f}}$ as in 3.2.
5) $\Theta \subseteq \operatorname{Reg} \cap \mu^{+}$, let $S_{\Theta}^{\mu^{+}}=\left\{\delta<\mu^{+}: \operatorname{cf}(\delta) \in \Theta\right\}$.
6) $2 \leq \theta<\mu$ but our main interest is $\theta=2$.

Definition 3.2. We say $\overline{\mathbf{f}}$ is a (\bar{C}, θ)-parameter (or uniformization problem) when $\overline{\mathbf{f}}=\left\langle\mathbf{f}_{\delta}: \delta \in S\right\rangle, \mathbf{f}_{\delta}: C_{\delta} \rightarrow \theta$.

Definition 3.3. 1) We define $\mathbb{P}_{\mathbf{f}}^{1}$ and $<_{\text {st }}$ as in Definition 2.6 but we change clause $(A)(e)$ by:
$(e)^{\prime}$ if $\delta \in v_{p}$ then
$(\alpha) h_{p}(\delta)$ is a bounded subset of C_{δ} closed only in its supremum,
$(\beta) h_{p}(\delta) \subseteq u_{p}$
(γ) if $\beta \in h_{p}(\delta)$ so $\delta \in v_{p}$ then $\operatorname{cf}(\beta) \in \Theta \Rightarrow \mathbf{f}_{\delta}(\beta) \in g_{p}(\beta)$ (so really only $g_{p} \upharpoonright\left(u_{p} \cap S_{\Theta}^{\mu^{+}}\right)$matters $)$
(δ) if $\beta \in h_{p}(\delta)$ and $\operatorname{cf}(\beta) \notin S_{\Theta}^{\mu^{+}}$then $g_{p}(\beta)=\emptyset$
2) We define $\mathscr{I}_{\mathbf{f}, \alpha}^{1} \subseteq \mathbb{P}_{\overline{\mathbf{f}}}^{1}$ as in Definition 2.9.

Claim 3.4. $\mathbb{P}_{\mathbf{f}}^{1}$ satisfies
(a) any increasing sequence of length $\delta<\mu, \operatorname{cf}(\delta) \notin \Theta$ has a lub, i.e. (1) $)_{a,=\partial}$ for $\partial \notin \Theta$
(b) a set of pairwise compatible conditions of cardinality $<\min (\Theta \cup\{\theta\})$ has a lub - the union, i.e. $(1)_{a,<\min (\Theta)}$ holds.

Proof. Easy.
Claim 3.5. $\mathbb{P}_{\overline{\mathbf{f}}}^{1}$ satisfies:
(a) we have $(1)_{c}^{+}$, i.e.
$(\alpha)<_{\text {st }}$ is a partial order and $p_{1} \leq p_{2}<_{\text {st }} p_{3}<p_{4} \Rightarrow p_{1}<_{\text {st }} p_{4}$
(β) any $<_{\text {st }}$-increasing chain of length $<\mu$ has an $u b$
(b) $(\alpha) \quad$ we have $(3)_{a}$, i.e. if $p, q \in \mathbb{P}_{\overline{\mathbf{f}}}^{\frac{1}{\mathbf{~}}}$ are compatible then they have a lub
(β) $\quad\left\{p_{i}: i<i(*)\right\}$ has a lub when $i(*)<\mu$ and $\left\{p_{i}: i<i(*)\right\}$ is a set of pairwise compatible conditions and for each $\delta \in S$,
the set $\left\{h_{p_{i}}(\delta): i<i(*)\right.$ and $\left.\delta \in v_{p_{i}}\right\}$ is finite; note that this set is linearly ordered by being an initial segment
$(\gamma) \quad\left\{p_{i}: i<i(*)\right\}$ has a ub when $i(*)<\mu$ and $\left\{p_{i}: i<i(*)\right\}$ is a set of pairwise compatible conditions and if $\operatorname{cf}(\alpha) \in \Theta$ then
$\left|w_{p, \alpha}\right|<\theta$ where $w_{p, \alpha}=\left\{\delta: \delta \in \bigcup_{i} v_{p_{i}}\right.$ and $\alpha=\sup \left\{\sup \left(g_{p_{i}}(\delta)\right)+1:\right.$
$i<i(*)$ and $\left.\left.\delta \in v_{p_{i}}\right\}\right\}$
(c) $(\alpha)(2)_{a}$ holds
(β) (2) ${ }_{c}^{\partial}$ that is $*_{\mu}^{\partial}$ holds if $\partial<\mu$ is regular and $\theta \geq 2 \vee \partial \notin \Theta$
(d) $(3)_{b, \varepsilon}$ holds if $\kappa=\operatorname{cf}(\varepsilon) \in \mu \backslash \Theta$ so is regular.

Proof. Like 2.8, e.g.
Clause (a): As in 2.8(1),(2).
Clause (b): Should be clear.
Clause (c): If $\theta \geq 2$ we use $(3)_{a}$, i.e. the parallel of 2.8(3). If $\theta=1$ and $\partial \notin \Theta$ use clause (d).
Clause (d): Just recall $(e)(\gamma)$ of Definition 3.3.
Claim 3.6. $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}$ is a dense open subset of $\mathbb{P}_{\overline{\mathbf{f}}}^{1}$ where

- $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}=\left\{p \in \mathbb{P}_{\overline{\mathbf{f}}}: \alpha \in u_{p}\right.$ and $\left.\alpha \in S \Rightarrow \alpha \in v_{p}\right\}$.

Proof. Should be clear.
Definition 3.7. For $(\mu, \theta, \partial, D, \overline{\mathbf{f}})$ as in clause (A) below we define a game $\partial_{\mathrm{gn}}(\overline{\mathbf{f}}, \theta, \partial, D)$ in clause (B) below where:
(A) (a) $\quad \mu=\mu^{<\mu}>\partial=\operatorname{cf}(\partial) \geq \aleph_{0}$ and
(b) $S \subseteq S_{\mu}^{\mu^{+}}, \bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ a club sytem
(c) D is a normal filter on μ^{+}to which S belongs
(d) $\overline{\mathbf{f}}=\left\langle\mathbf{f}_{\delta}: \delta \in S\right\rangle, \mathbf{f}_{\delta}$ is a function from C_{δ} to θ
(B) (a) a play lasts ∂ moves
(b) in the ζ-th move, the players choose $S_{\zeta}^{\ell} \in D$ such that $S_{\zeta}^{2} \subseteq S_{\zeta}^{1} \subseteq$ $S \wedge(\forall \xi<\zeta)\left(S_{\zeta}^{1} \subseteq S_{\xi}^{2}\right)$
and $\bar{\alpha}^{\ell}=\left\langle\alpha_{\zeta, \delta}^{\ell}: \delta \in S_{\zeta}^{\ell}\right\rangle, \alpha_{\zeta, \delta}^{\ell} \subseteq C_{\delta}, \alpha_{\zeta, \delta}^{2}>\alpha_{\zeta, \delta}^{1}>$
$\sup \left\{\alpha_{\xi, \delta}^{2}: \xi<\delta\right\}$ and $\mathbf{h}_{\zeta}^{\ell}$ pressing down functions on S_{ζ}^{ℓ}
(c) in the ζ-th move, the anti-generic player chooses $S_{\zeta}^{1}, \bar{\alpha}_{\zeta}^{1}, \mathbf{h}_{\zeta}^{1}$ and then the generic player chooses $S_{\zeta}^{2}, \bar{\alpha}^{2}, \mathbf{h}_{\zeta}^{2}$
(d) in the end of the play the generic player wins when for some $\delta_{1}<\delta_{2}$ from $\cap\left\{S_{\zeta}^{2}: \zeta<\partial\right\}$ we have $\sup \left\{\alpha_{\zeta, \delta_{1}}^{\ell}: \zeta<\overline{\partial, \ell}=1,2\right\}=$ $\sup \left\{\alpha_{\zeta, \delta_{2}}^{\ell}: \zeta<\partial, \ell=1,2\right\}$, call it α and $\mathbf{f}_{\delta_{1}}(\alpha) \neq \mathbf{f}_{\delta_{2}}(\alpha)$, $\bigwedge_{k<\partial} h_{k}^{\ell}\left(\delta_{1}\right)=h_{k}^{\ell}\left(\delta_{2}\right)$.
Theorem 3.8. If $\sigma \in \Theta, \theta=2$ and $\overline{\mathbf{f}}$ is such that in the game $\partial_{\mathrm{gn}}(\overline{\mathbf{f}}, \theta, \sigma, D)$ from Definition 3.7 the generic player wins or just does not lose, (so D is a normal filter on $\left.\mu^{+}, S_{\mu}^{\mu^{+}} \in D\right) \underline{\text { then : }}$
(a) $\mathbb{P}_{\overline{\mathbf{f}}}^{1}$ fails $\mathrm{Ax}_{\mu}^{\sigma}$.
(b) no forcing satisfying $*_{\mu, D}^{\sigma}$ adds a generic to $\mathbb{P}_{\mathbf{f}}^{1}$, moreover
(c) no forcing satisfying $*_{\mu, D}^{\sigma}$ adds a $(<\mu)$-directed or just $<\left(\sigma^{+}\right)$-directed $\mathbf{G} \subseteq \mathbb{P}_{\overline{\mathbf{f}}}^{1}$ meeting $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}$ for every $\alpha<\mu^{+}$(defined in 2.9).
Proof. As in the proof of 2.13(1), e.g.
Clause (c):
In the proof of $2.13(1)$, we replace st by a winning strategy of the completeness player in the game for $(2)_{d, D}^{\sigma}$, see 0.3 and toward contradiction assume $\overline{\mathbf{f}}$ is an (S, \bar{C}, θ)-parameter, $p_{*} \in \mathbb{P}_{\overline{\mathbf{f}}}^{1}$ and $p_{*} \Vdash{ }^{\|} \underset{\sim}{\mathbf{H}} \subseteq \mathbb{P}_{\overline{\mathbf{f}}}^{1}$ is a $\left(<\sigma^{+}\right)$-directed and meets every $\mathscr{I}_{\overline{\mathbf{f}}, \alpha}, \alpha<\mu^{+}$".

Now for $\zeta<\sigma$ let \mathbf{Y}_{ζ} be the set of $\left(\bar{q}_{\zeta}, \bar{r}_{\zeta}, \mathbf{h}_{\zeta}, E_{\zeta}, \bar{p}_{\zeta}, \bar{\alpha}_{\zeta}\right)$ such that:
$\boxplus(a)\left\langle\bar{q}_{\xi}, \bar{r}_{\xi}, h_{\xi}: \xi \leq \zeta\right\rangle$ is an initial segment of a play of the game from Definition 0.3 in which the player COM uses the strategy st
(b) so $\bar{q}_{\zeta}=\left\langle q_{\zeta, \delta}: \delta \in S_{\zeta}\right\rangle, \bar{r}_{\zeta}=\left\langle r_{\zeta, \delta}: \delta \in S_{\zeta}\right\rangle, S_{\zeta} \in D$ and $S_{\zeta} \subseteq\left\{S_{\xi}:\right.$ for $\left.\xi<\zeta\right\}$
(c) $\bar{p}_{\zeta}=\left\langle p_{\zeta, \delta}: \delta \in S_{\zeta}\right\rangle$ and $p_{\zeta, \delta} \in \mathbb{P}_{\overline{\mathbf{f}}}^{1}$
(d) $r_{\zeta, \delta} \Vdash_{\mathbb{R}} " p_{\zeta, \delta} \in \underset{\sim}{\mathbf{H}} "$
(e) $\delta \in v_{p_{\zeta, \delta}}$
$(f) \quad\left\langle\sup \left(\operatorname{dom}\left(h_{p_{\xi, \delta}}\right)\right): \xi \leq \zeta\right\rangle$ is strictly increasing.
Now we use the definition of the game $\partial_{\mathrm{gn}}(\overline{\mathbf{f}}, \theta, \sigma, D)$ to finish as in 2.10.
The above theorem helps for further problem as
Claim 3.9. 1) If a forcing notion \mathbb{P} satisfies $(1)_{b}+(2)_{a}$ and $\sigma \in \operatorname{Reg} \cap \mu$ then \mathbb{P} satisfies (2) ${ }_{c}^{\sigma}$.
2) If \mathbb{Q} is adding μ^{+}, μ-Cohen $\left\langle\eta_{\alpha}: \alpha<\mu^{+}\right\rangle, \eta_{\alpha} \in{ }^{\mu} \theta$ and $\theta \leq \mu, \aleph_{1} \leq \sigma=\operatorname{cf}(\sigma)<$ μ, D is a normal filter on μ^{+}such that $S_{\mu}^{\mu^{+}} \in D$ then $\Vdash_{\mathbb{Q}}$ " $\left\langle\eta_{\alpha}: \alpha<\mu^{+}\right\rangle$is a (\bar{C}, μ)-parameter and is (θ, σ)-generic enough and also the generic player wins in the game $\partial_{\mathrm{gn}}(\bar{\eta}, 2, \sigma, D)$ ", pedantically replacing D by the normal filter it generates.

Explain 3.9(2).
Conclusion 3.10. Assume $\aleph_{0} \leq \sigma=\operatorname{cf}(\sigma)<\mu=\mu^{<\mu}$ and \mathbb{Q} is the forcing notion of adding μ^{+}, μ-Cohens.

1) In $\mathbf{V}^{\mathbb{Q}}$, there is a forcing notion \mathbb{P} satisfying $(1)_{c}^{+},(2)_{c}^{\theta}$ for $\theta \in \operatorname{Reg} \cap \mu \backslash\{\sigma\}$ but not $(2)_{c}^{\sigma}$.
2) Moreover in $\mathbf{V}^{\mathbb{Q}}$, if \mathbb{R} is a forcing notion satisfying $(1)_{b},(2)_{c}^{\sigma}$ then it adds no generic to \mathbb{P}, in fact $|\mathbb{P}|=\mu^{+}$and we should demand " $\mathbf{G} \subseteq \mathbb{P}$ is σ^{+}-directed, $\mathbf{G} \cap \mathscr{I}_{\alpha} \neq \emptyset$ for $\alpha<\mu^{+}$" for some dense $\mathscr{I}_{\alpha} \subseteq \mathbb{P}$ for $\alpha<\mu^{+}$.
3) So for some $(<\mu)$-complete μ^{+}-c.c. forcing notion (satisfying $\left.(1)_{b}+(2)_{c}^{\sigma}\right)$, in $\left(\mathbf{V}^{\mathbb{Q}}\right)^{\mathbb{P}}$ we have $\mathrm{Ax}_{\mu}^{\sigma}$ but no $\mathbf{G} \subseteq \mathbb{P}$ as above.

Proof. In $\mathbf{V}^{\mathbb{Q}}$ let $\overline{\mathbf{f}}$ be from 3.9(2), \mathbb{P} be $\mathbb{P}_{\overline{\mathbf{f}}}^{1}$ from Definition 3.3.
Now (1) follows from (2). For (2) use 3.8 and 3.4, 3.5, 3.6. For part (3) use the forcing from [She00b, 1.1-1.18].
§ 4. Proofs For the Journal
2021-11-19 14:51
Page 1 line 46- add a dot REPLACE
iv
BY:
iv.

Page 1 line 47- add a dot REPLACE
v
BY:
v.

Page 2 line 26- replace s by a
REPLACE
used s
BY:
used a

Page 3 line 26 -line starting with "For", no indent; ; like "strong...) in line 8

Page 3 line 39-
REPLACE
$S_{\mu}^{\mu^{+}}$
BY:
S
Page3 line 41-
REPLACE
Writing ξ
BY
Writing $<\xi$
Page 4 line 2
REPLACE:
chooses1(
BY (footnote sign should be superscript and space):
chooses ${ }^{1}$ (
Page 4 line 14-
REPLACE
is $*_{D}^{\varepsilon}[\mathbb{Q}][14,7]$
BY:
is $*_{D}^{\varepsilon}[\mathbb{Q}]$ is the same as $[14$, Th.0.7]

Page 4 line 24-
REPLACE
ordinal2 ε
BY (footnote sign should be superscript):
ordinal $^{2} \varepsilon$
Page 4 line 25-
REPLACE
$>\lambda^{+}$
by
$\geq \mu^{+}$
Page 6 line 29
REPLACE
(a)
by
(A)

Page 6 line 36
REPLACE
(b)
by
(B)

Page 6 line 50
REPLACE
$\mathbf{f}_{\delta}(\alpha)\left(h_{\delta}(\alpha)\right)$
by
$g_{p}(\alpha)=\mathbf{f}_{\delta}(\alpha)$

Page 7 line 1 -
REPLACE
lub, that is $(1)_{a}$.
BY:
lub.
Page 7 line 2-
REPLACE
lub.
BY:
lub that is $(1)_{a}$.
Page 7 line 50 -add)
REPLACE
$\cap \alpha$
BY:
$\cap \alpha)$
Page 7 line 52 add space
REPLACE

```
generality\gamma
by
generality }
Page 7 line 53- not bold
REPLACE
\overline{C}
BY:
C}
Page 7 line 53 - add ) REPLACE
\alpha
BY:
\alpha
```

Page 8 line 3
ADD (at the end of the line):
and if $i(1)=i(2)$ then by the choice of \mathbf{h}.
Page 8 line 17- add space
REPLACE
or κ
BY:
or κ
Page 8 line 34 - add a space
REPLACE
Aand
BY:
A and
Page 8 line 44-
REPLACE
${ }_{\left({ }_{\delta, \alpha}\right.}^{\mathbf{p}}$
BY:
"
Page 8 line 49-
REPLACE
$<\mu$
BY:
$\in C_{\delta}$
Page 8 line 50 -
REPLACE
$a_{\delta, \alpha}$
BY:
$\left.a_{\delta, \alpha}\right)$

PAGE 9 line 4 REPLACE:

```
\mu(}\mp@subsup{}{}{0}2
BY:
(C\delta (}\mp@subsup{}{}{\vartheta}2
```

Page 9 line 5 -
REPLACE
$\mu \rightarrow$
BY:
$C_{\delta} \rightarrow$
Page 9 line 5 -
REPLACE
${ }^{\mu} 2$
BY:
$C_{\delta} 2$
Page 9 line 7 -
REPLACE
$\alpha<\mu$
BY:
$\alpha \in C_{\delta}$
Pages 9,10,11 -
REPLACE all (marked by green)
Bold ε by ε
Page 9 line 26 -
REPLACE
$\delta \in W$
BY:
$\delta \in W \cap S$
Page 9 line 42 -
REPLACE
and continuous.
BY:
and continuous, clearly α is a successor ordinal.
Page 9 line 44 -
REPLACE
(as $W_{\delta 1}, W_{u d_{2}}$
BY:
(as $W_{\delta_{1}}, W_{\delta_{2}}$
Page 9 line 53 -
REPLACE
well founded
BY:
well founded)
Page 9 line 53 -

REPLACE

.).
BY:

Page 10 line 31 -
REPLACE
for some ε
BY:
for some ζ
Page 11 line 5 -
REPLACE
in3
BY (footnotes sign are normally in superscript):
$i n^{3}$
Page 11 line 17 -
ADD:(at the end of the line) end of the proof sign
Page 11 line 33 -
REPLACE
$h_{p}(\alpha)$
BY:
$h_{p}\left(\alpha_{1}\right)$
Page 11 line 37 -
REPLACE
implies
BY:
implied by
Page 11 line 40 -
REPLACE
$h_{p_{2}}(h(\alpha))$ or $h_{p_{2}}(\alpha)$
BY:
$h_{p_{2}}(g(\alpha))$
Page 11 line 46 -
OMIT:
Why?
Page 11 line 46 -
REPLACE
$C_{\delta} \cap \alpha$
BY:
$C_{\delta} \cap v$
Page 12 line 2 -
REPLACE
\mathbf{c}_{α}

BY:
$\mathbf{f}_{\alpha}\left(\gamma_{\alpha}\right)$
Page 12 line 46 -
REPLACE
\mathbb{Q} as in
BY:
\mathbb{Q}, \mathbb{P} as in
Page 13 line 39 - sub-clauses (B)(e) on are not part of clause (B) so REPLACE
(e)

BY (without indent, upper case C):
(C)

Page 13 line 40 -
REPLACE
(f)

BY:
(e)

Page 13 line 41 - similarly, a new clause
REPLACE
(g)

BY (without indent, upper case D):
(D)

Page 13 line 46 -
REPLACE
supremum
BY:
supremum but if $\alpha=\sup (h(\delta)) \notin h(\delta)$ then $\left\{\mathbf{f}_{\delta}(\alpha): \delta \in v, \alpha \in C_{\delta}\right\}$ has cardinality $<\theta$

Page 13 line 49 -
REPLACE
set of $<\mu$
BY:
set of $<\operatorname{cf}(\theta)$
Page 14 line 50 -
REPLACE
$\zeta_{\delta_{1}} \neq \zeta_{\delta_{2}}$
BY:
$\zeta_{\delta_{1}} \neq \zeta_{\delta_{2}}$ and $\zeta_{\delta_{1}} \notin C_{\delta_{2}}$
Page 15 line 48 -
REPLACE
$\alpha \in S$ and
BY:
$\alpha \in S$ and for simplicity

```
Page 16 line 2-
REPLACE
i
BY:
(a)
```

Page 16 line 3 -
REPLACE
ii
BY:
(b)
Page 16 line 4 -
REPLACE
iii
BY:
(c)

Page 17 line 22 -
REPLACE
where $j=i$ is
BY:
where $j=i$ if
Page 17 line 23 -
REPLACE
(c) is

BY:
(c)if

Page 18 line 49 -
REPLACE
$\min (\Theta)$
BY:
$\min (\Theta) \cup\{\theta\})$
Page 19 line 6 -
REPLACE
when $i(*)$
BY (put a space):
when $i(*)$
Page 19 line 9 -
REPLACE
when $i(*)$
BY (put a space):
when $i(*)$

References

[BKS09] John T. Baldwin, Alexei S. Kolesnikov, and Saharon Shelah, The amalgamation spectrum, J. Symbolic Logic 74 (2009), no. 3, 914-928. MR 2548468
$\left[\mathrm{CDM}^{+} 17\right]$ James Cummings, Mirna Džamonja, Menachem Magidor, Charles Morgan, and Saharon Shelah, A framework for forcing constructions at successors of singular cardinals, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7405-7441, arXiv: 1403.6795. MR 3683113
[DS78] Keith J. Devlin and Saharon Shelah, A weak version of \diamond which follows from $2^{\aleph_{0}}<$ $2^{\aleph_{1}}$, Israel J. Math. 29 (1978), no. 2-3, 239-247. MR 0469756
[KT79] Kenneth Kunen and Franklin D. Tall, Between martin's axiom and souslin's hypothesis, Fundamenta Mathematicae 102 (1979), 173-181.
[RS01] Andrzej Rosłanowski and Saharon Shelah, Iteration of λ-complete forcing notions not collapsing λ^{+}, Int. J. Math. Math. Sci. 28 (2001), no. 2, 63-82, arXiv: math/9906024. MR 1885053
$\left[\mathrm{S}^{+}\right] \quad$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F1856.
[She] Saharon Shelah, Dependent dreams: recounting types, arXiv: 1202.5795.
[She77] , Whitehead groups may be not free, even assuming CH. I, Israel J. Math. 28 (1977), no. 3, 193-204. MR 0469757
[She78] , A weak generalization of MA to higher cardinals, Israel J. Math. $\mathbf{3 0}$ (1978), no. 4, 297-306. MR 0505492
[She80] , Simple unstable theories, Ann. Math. Logic 19 (1980), no. 3, 177-203. MR 595012
[She84] , Diamonds, uniformization, J. Symbolic Logic 49 (1984), no. 4, 1022-1033. MR 771774
[She98] , Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR 1623206
[She00a] , Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 1624-1674, arXiv: math/9804155. MR 1812172
[She00b] , Was Sierpiński right? IV, J. Symbolic Logic 65 (2000), no. 3, 1031-1054, arXiv: math/9712282. MR 1791363
[She03] , Not collapsing cardinals $\leq \kappa$ in $(<\kappa)$-support iterations, Israel J. Math. 136 (2003), 29-115, arXiv: math/9707225. MR 1998104
[SS] Saharon Shelah and Otmar Spinas, Different cofinalities of tree ideals.
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: 2021-11-21b.
 2010 Mathematics Subject Classification. Primary: 03E35; Secondary: 03E05.
 Key words and phrases. set theory, forcing, λ-complete, iteration, counterexample.
 Research supported by the US-Israel Binational Science Foundation (Grant No. 2010405).
 References like [She, Th0.2=Ly5] means the label of Th. 0.2 is y5. The reader should note that the version in my website is usually more updated than the one in the mathematical archive. The author thanks Alice Leonhardt for the beautiful typing. First typed July 31, 2012.

[^1]: ${ }^{1}$ Why $1+\zeta$ not, e.g. $\zeta+1$? First, we like the INC to have the first move so that if \mathbb{P} satisfies the condition and $p \in \mathbb{P}$ then $\mathbb{P} \upharpoonright\left\{q: p \leq_{\mathbb{P}} q\right\}$ satisfies the condition. Second, we like the player COM to move in limit stages, as this is a weaker demand.
 2^{2} really omitting $(1)_{b}$ does not make a real difference but is natural

[^2]: 3 and the related works

