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Transcendence bases, well-orderings of the reals and the
axiom of choice

Haim Horowitz and Saharon Shelah
Abstract

We prove that ZF + DC + "there exists a transcendence basis for the reals” + "there is
no well-ordering of the reals” is consistent relative to ZFC. This answers a question of
Larson and Zapletal.!

Introduction

It’s well-known that the axiom of choice has far-reaching consequences for the
structure of the real line. Among them, to name a few, are the existence of non-
measurable sets of reals, nonprincipal ultrafilters on w, paradoxical decompositions
of the unit sphere, mad families and more. As the aforementioned statements are
consistently false over ZF + DC, it’s natural to study the possible implications
between them in the absence of choice. This direction of study has gained consid-
erable interest in recent years, with many consistency results showing mostly the
independence over ZF + DC between various properties of the real line implied by
the axiom of choice. We mention several such examples:

Theorem ([Sh:218]): It’s consistent relative to an inaccessible cardinal that ZF+
DC holds, all set of reals are Lebesgue measurable and there is a set of reals without
the Baire property.

Theorem ([HwSh:1113]): It’s consistent relative to an inaccessible cardinal that
ZF + DC holds, all sets of reals are Lebesgue measurable and there is a mad family.

Theorem ([LaZal]): It’s consistent relative to a proper class of Woodin cardinals
that there exists a mad family and there are no w; sequences of reals, nonatomic
measures on w and total selectors for Ej.

Our current paper will focus on two consequences of the axiom of choice for the real
line, namely the existence of a transcendence basis for the reals and the existence
of a well-ordering of the reals. The following question was asked by Larson and
Zapletal in their forthcoming book:

Question ([LaZa2]): Does the existence of a transcendence basis for the reals
imply the existence of a well-ordering of the reals?

We shall prove that the answer is negative, namely:

Main result: ZI'+ DC + "there exists a transcendence basis for the reals” + ”there
is no well-ordering of the reals” is consistent relative to ZFC.

It should be noted that in the recent papers [BSWY] and [BCSWY], models of
ZF + DC were constructed where there exists a Hamel basis and there is no well-
ordering of the reals. However, by [LaZa2], the existence of a Hamel basis (over
ZF+ DC) doesn’t imply the existence of a transcendence basis (as explained there,
the difference is related to certain model theoretic considerations involving the
associated pre-geometries).

Date: June 22, 2020

2010 Mathematics Subject Classification: 03E25, 03E35, 03E40, 12F20

Keywords: transcendence basis, well-ordering, axiom of choice, forcing, amalgamation
Publication 1093 of the second author

Partially supported by European Research Council grant 338821.

1



Paper Sh:1093, version 2021-12-03. See https://shelah.logic.at/papers/1093/ for possible updates.

The proof strategy will be similar to that of [Sh:218] and [HwSh:1113] (though no
inaccessible cardinals will be used in the current proof). Our forcing P will consist
of conditions p = (up,Qp, R,) where Q, is a ccc forcing from some fixed H(\)

that forces M Ay, and R, isNa set of Qy-names of reals that’s forced by Q, to be

a transcendence basis for the reals. The order will be defined naturally. The sets
of the form R, will approximate a transcendence basis in the final model, while

the forcing notions Q, will help us to prove the non-existence of a well-ordering of
the reals using a standard amalgamation argument. The fact that each Q, forces
M Ay, will guarantee that the relevant amalgamation will be ccc.

Acknowledgement: We would like to thank Jindra Zapletal for informing us
about a gap in a previous version of this paper.

The rest of the paper will be devoted to the proof of the main result mentioned
above. We shall assume basic familiarity with amalgamation of forcing notions (see,
e.g., [HwSh:1090]).

Proof of the main result

We will be forcing over a model of ZFC. The desired model will be obtained as an
inner model of the generic extension.

Hypothesis 1: Throughout the paper, we fix infinite regular cardinals A and &
and an infinite cardinal p such that p = ™ < A\, k = put or Xy < cf(k) <K < A
and (Va < k)([a]™ < k) (note that this follows from p = ™ Ak = pt).

Definition 2: We define the forcing notion P as follows:

A pePiff p=(u,Q,R) = (up, Qp, R ) where:
~ ~p

a. u € [A]<".
b. Q € H(\) is a ccc forcing such that u is its underlying set of elements.
c. lFg MAy,.

d. R is a set of canonical Q-names of reals that is forced by Q to be a transcen-

dence basis of the reals. A canonical Q-name of a real T will be represented by
{(Pg1.92>Mq1,92) * @1 < g1 are rationals} where for each ¢1 < g2, Pgi.q0 = (Pg1,g2,0 °
a < A7) lists without repetition a maximal antichain of Q, 7g, 4, € 2 ~ and
pqhq%awll— T € [q1, 2] iff 1, g, () =17

B. p <pqiff

a. up C ug.

b. Q, < Q.

c. R CR.

~p ~q

Definition 3: We define the following P names:
a. Q=U{Q,:pe QP}.
b. R=U{R :peG }.

Claim 4: a. P is a forcing notion of cardinality A<®, preserving cardinals and
cofinalities of cardinals < k and > A<*.
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b. If 6 < k is a limit ordinal and p = (p, : @ < §) is <p-increasing and satisfies
a<d— ﬂU Qp.. 5 < Qp,, then p has an upper bound ps such that p(ps) is <p-
<o

increasing continuous.
c. In clause (b), if Xy < ¢f(0), then ps can be chosen as the union of the pgs.

d. IFp ”Q is ccc and A is its underlying set of elements”.
e. IFp 7 IFg 7R is a transcendence basis for the reals.

f. Every permutation g of A naturally induces an automorphism § of P and Q which

maps R to itself.

Remark: Recall that a condition in P is a triple (u, Q, R) where Q is a forcing whose
universe is u € [A]<" and R is a set of canonical Q—na:nes. If ¢ is a permutation of
A, then we can let Q* be tNhe forcing isomorphic to Q whose universe is u* := g"u.
This isomorphism naturally maps Q-names to Q*-names, so R is mapped to a set
R* with the same properties. The desired automorphism of IP’NWill thus be defined
l;y 9(u, Q, ]N%) = (u*,Q*, ‘E*) We shall use the notation ¢ for the function induced

by g on P, as well as on the P-names and P * Q. We also remind the reader of the

standard fact that if § is an automorphism of a forcing P x Q and (p,7) Ik ¢(7),
then §(p,7) I $(3(7)).

Proof (of Claim 4): a. By clause (b), P is (< x)-complete, hence it preserves
cardinals and cofinalities < k. The rest should be straightforward.

b. As U(st“ is cce, it can be extended to a ccc forcing QQ,,, such that Ué(@pa <Qp,
a< a<
and IFQ% MAy,. As the union of the R is algebraically independent, we can

Pa

extend it to a transcendence basis for the reals.

c. Letting Q5 = Ué(@pu, obviously Qs is ccc. In order to show that IFg, M Ay, , it’s
a<

enough to show that for forcing notions of cardinality Ry in V@. As Ry < cf(0), the
names for a given ccc forcing in V& and Rj-many of its dense subsets are already
Qq-names for some a < §, and as lFg, M Ay,, we're done. Similarly, every Qs-
name for a real is already a Q,-name for some o« < d, hence U R is a Qs-name

a<é~p,

of a transcendence basis.

d. Let G C P be generic over V, we shall argue in V[G]. Given I = {¢, : a <
w1} € Q, as Pis (< k)-complete, it doesn’t add new sequences of ordinals of length
w1, hence I € V. For every p € IP, there is some ¢ € P above p such that I C Q.
Therefore, there is some p € G such that I C Q,. As Q, is ccc, there are two
elements of I that are compatible in Q, and hence they’re compatible in Q.
follows that Q is ccc. By a similar density argument, for every o < A, there is some
p € G such that o € Q, hence A is the underlying set of elements of Q.

e. As before, we shall argue in V[G] where G C P is generic over V. The algebraic
independence of R follows from G being directed. As for the maximality of R as
before, suppose that r is a Q-name for a real, then by a similar argument as in

clause (d), there is p G G such that r is a Qp-name. As R is a Qy-name of a
~ ~p
transcendence basis, we're done.
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f. This is straightforward. Note that the claim is that § maps the name R to itself,
that is, pIF 77 € R” iff §(p) IF 7§(7) € R”. In fact, for p € P and 7 we have that 7

is a member of R, iff §(7) is a member of Ry, O

~

Definition/Observation 5: Let Vi be the model HOD(R<* U {R} U V) inside
P+Q
V'~ (note that this means that if G C P % Q is generic over V, then R above is

interpreted as R[G]), then Vi is a model of ZF + DC.,, with the same reals as

P+Q
V' ~. In particular, V] contains a transcendence basis for the reals (using Claim

4(e)). O

We shall obtain the desired result by proving that there is no well ordering of the
reals in Vj. Before that, we shall prove our main amalgamation claim, towards
which we mention some basic definitions and facts regarding amalgamation: Sup-
pose that Py, Py, Py are forcing notions and f; : Pg — P; (I = 1,2) are complete
embeddings. The amalgamation of IP; and P; over Py, denoted Py x, ¢, P is the
set {(p1,p2) € P1 x Py : (3p € Po)(p Ikp "p1 € P1/fi(Po) Ap2 € P2/ f2(Po)")}
ordered in the natural way. If f; and fo are the identity mappings, we shall denote
this by Py xp, P2. We shall use the fact that forcing with Py xp, P2 is the same as
forcing with Pg* ((P1/Pg) X (P2/Py)). We shall also use the fact that M Ay, implies
that every ccc forcing is Knaster and that being Knaster is preserved under prod-
ucts. As a corollary, if Py, Py, Py are ccc and IFp, "M Ay, 7, then the amalgamation
Py xp, P is ccc. We refer the reader to [RoSh672] for more information on this
subject. We shall now turn to the proof of the main amalgamation claim:

Main amalgamation claim 6: (A) implies (B) where:

Ala. Q<@ (1=1,2).

b. kg, "B = {r;; : i < n;} is algebraically independent over RV,
~1 ~

c. Q=Q1 xq, Q2.
B. IFg "By U By is algebraically independent over RV,

Proof: Assume towards contradiction that there is a counterexample to the claim.
As forcing with Q is the same as forcing with Qo * ((Q1/Qo) x (Q2/Qy)), if there is a
counterexample to the claim, then by working in V@ we obtain a counterexample
where Q is trivial and Q = Q; x Q3. Therefore, we may assume wlog that Q =
Q1 x Q2 and Qy is trivial. We may also assume wlog that it’s forced by Q that r;
and 75 form a counterexample (if (g1, ¢2) € Q1 x Q2 forces that 71 and 7 form a

~

counterexample, then we can replace Q; by Q; [ ¢; for [ = 1,2).
Subclaim: We may assume wlog that Q; and Q2 are Cohen forcing.

Proof of Subclaim: Suppose that & = (Qq, Q2,77,72) form a counter example to

the amalgamation claim, we shall construct a counter example ' = (Qf, Q%, ], 7%)

where Q), QY are Cohen forcing. As Z is a counter example to the claim, there is
a nontrivial polynomial P = P(g, ..., Tn,1,Y0s - Yn,—1) With coeficients in RV
and a condition (p1,p2) € Q1 X Q2 such that (p1,p2) lFg,xq, "P(r1,72) = 07. It’s

now possible to choose (p1.n,P2.n,@1,n,02,,) by induction on n < w such that the
following conditions hold:

a. pin = Py v eEW") (1=1,2).
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b. Each p; . is a condition in Q; (I =1, 2).
c. fn=m+1,1€{1,2} and v € w" then p;mvtm < Pin,v-

- — + . n g
d. ajn = (alm,n,i,al’nm’i i E Wi < my).

1

< 3.

— + . + _ —
€ Qi and ) i ATE rationals such that Ui~ Ui

- +
f. pl,n,n“_(@, ”}/\ a‘lnni<rlai<alnni'
i<n; ©™M 2 11,

7

g fn=m+1, pecwm I e{l,2} ((a;,b;) : i < my) is a sequence of pairs of
rationals such that a; < b; for i < n; and p;m,p, ¥g, "~( A a; <1 < b;)”, then

<<ny

~

for some k < w, prp gy lFo 7 A ap <1 < b7
1<ny

h. Moreover, we have a; < a;n,p‘(k),i < alJ,rn,ka),i < b;.
i. Moreover, if n = m + 1 and v1,v5 € W™, then for some k; and ko, letting p; =

v(k;) (I =1,2) we have: For all 21, ..., %n,, Y1, s Yna» ifi</>L Upopri < Ti < alfn)phi
1

+ 1 1
and j</\n2al’n7p27j <Yj <a), ;5 then —55 < P21, Ty —1, Y15 s Yna—1) < 33

j- The i AT€ Increasing with 1 and the alfn,n,i are decreasing with 7.

The induction is straightorward where for clause (i) we use the fact that (p1, p2) IFg, x@,
"P(r1,72) =07

~ o~

For [ = 1,2 we define the following objects:
a. Q) = (w<¥, <) (where < is the usual inclusion for functions).

b. n; is the name for the generic real of Q.

. ;. . . — +
c. For ¢ <ny, r;; is the unique real in ngw(alm,m i O, ml)

Now Q; are equivalent to Cohen forcing, and by clause (i) of the induction, IFq/ xq,
"P(ri,r5) = 07. Therefore, in order to prove the subclaim, it suffices to show

~ o~

that H—Q; ”7"2)1, . rf,m_l are algebraically independent over RY”. Assume towards

contradiction that th:)re is some 1 € ] and a nontrivial polynomial P/ (zo, ..., Zn,—1)
such that n Ikg, "F/(r;) = 0”. By the assumption on (Qi,7), letting n = Ig(n),
Ping Fo, "P/(r) # 5”. Let G; C Q; be generic over V S:lCh that p;nn, € Gi,
so wlog P/ (r [Gr;]) > 0. By continuity, there are rationals a; < b; (i < n;) such
that V[G] |:N “for every zo,..., Tn,—1, K/\mai <z < b — P/(zg,...,Zn,—1) > 0
and r;;[Gi] € (a;,b;)”. Therefore, the first part of the statement holds in V' and

there is some ¢ € G such that p;,, < ¢ and g forces the second part of the
statement. In particular, p; .., ¥q, "=( A a; < r;; < b;)”. By clause (g) of the
<ny ~

K3

induction, there is some k < w such that pj,11,7) IFo, 7 A a; <7 < b;” and
1<ny

@i < Qs < gty < 0i- Now 1j(k) is a condition in Q) that forces
in Q) that r;;" € (a;,b;) for all ¢ < n;. It follows that 1(k) forces in Q] that

P/(ri0,...;rin—1") > 0, contradicting the choise of n and P —I’. It follows that
lFq; ™77 1,7l n,—1 are algebraically independent over RY”, which completes the

proof of the subclaim.



Paper Sh:1093, version 2021-12-03. See https://shelah.logic.at/papers/1093/ for possible updates.

We shall now return to the proof of the main amalgamation claim:

Let x > Ny be large enough and let N be a countable elementary submodel of
(H(x),€) such that Q;,7; € N (I = 1,2). As @ is Cohen, there is a Q;-name

7 for a Cohen real over V' that generates the generic for Q;. For each [ € {1,2}
and ¢ < n; there is a Borel function B;; such that r;; = By (), we may assume

that the By ;s belong to N as well. Let n; € V be Cohen over N, let G2 C Qs
be generic over V and let 1y = 12[G2]. 72 is Cohen over V and is also generic

over N[nj]. Therefore, (n],7n2) is generic for Q; x Qo over N. As it’s forced by
Q1 x Q2 over V that 7175 is a counterexample, there is a polynomial P witnessing

~ ~

this, i.e. V =7 kg, xq, "P(...,B1 l(n’l) vy ey Ba 1(772) ..) = 07”. By absoluteness,

the same stetement holds in N. By the genericity over N of (n},n2), N[ni,n2] E
P(....,B1;(n1),...s ..., Ba(n2),...) = 0. Therefore, there is p, € G2 C Q3 such that
N[n] E "p2 IFg, "r2 is not algebraically independent over RY, as witnessed by

(B1,:(n}) : 1 < nq)””, and by absoluteness, the same holds in V. This contradicts
assumption (A)(b) and completes the proof of the claim. O

Before proving the relevant conclusion for PP, we need the following algebraic obser-
vation:

Observation 7: Let p;,p2 € IP and suppose that p; < ps. Denote @), by Q; and
R,, by R, (I =1,2). Then IFg, "R \ Ry is algebraically independent over RV 7,

Proof: Suppose towards contradiction that there is some q¢ € Q2 and ro, ..., 7n,—1
(with no repetition) such that ¢ IFg, "ro, ..., Tn,—1 € R2\ R; are not algebr;aicallywin—
dependent over RV, By increasing ¢ if necessary, we may assume wlog that there

is a non-trivial polynomial P(zg, ..., ,,_1) over RV such that g lFg, "P(10, ey Tnp—1) =
0”. Therefore, there are Q1-names of reals so, e Sn171 and a polynomial Q?xm s mNnrl, Y0y ooy Ynq—1)
over the rationals such that ¢ IFg, "Q(zo, ..., Tny—1, 50, -+ snl,l) = P20, ., Tny—1)"
Recalling that R1 is a Q;-name of a transcendence basis over the rationals, then

by increasing q 1f necessary, there are Q;-names of reals to,...,t,,—1 such that

q kg, 7to, ... tno 1 € R1 (with no repetition)” and ¢ IFq, ”;0 8;_1 are alge-
braic oveNr Q[to, tno 1] (here Q denotes the field of ratlonaanumbers) It follows
that ¢ IFq, ”{to, nO 1,70, - rm 1} C R2 is not algebraically independent over

the rationals”. By the ch01cc of thc t S and the ns q kg, ”to, tno 1 ro, .. rn2 1

are without repetition”. Together, we get a contradlctlon to the deﬁnltlon of the
conditions in P and the fact that p, € P. I

Conclusion 8: Suppose that p;, ps € P such that p; < ps. Let g be a permutation
of X such that g | up, =id and g’ (up,) Nup, = up,, and let ps = G(p2). Then there
is ¢ € P such that ps, p3 < ¢ and Q,, Xq,, Qp; < Qq-

Proof: Let Q = Q,, Xq,, Qp;- As Qp, is ccc and I, "M Ay, +Qp,/Qp, = ccc+
Qps/Qp, = ccc”, it follows that Q is ccc (see e.g. [HwSh:1090] for details). By the
previous observation, for | = 2,3, Ikq, "Ry, \ R, is algebraically independent over

6
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RV** . Therefore, by Claim 6, IFq ”(Rp2 \Rpl) u (Rp3 \Rpl) is algebraically inde-

pendent over RYV™™" 7. Tt follows that Ik "Ry, Ulty, = B, U(Rp, \ B, )U (R \ )

is algebraically independent over the ratlonals” (recall that if {ao, vy Qp—1} are al-
gebraically independent over the rationals and {fy, ..., Bm—1} are algebraically inde-
pendent over a field F containing QU{«ayp, ..., @p—1}, then {ag, ..., @n—1, Bo, .-, Bm—1}
are algebraically independent over the rationals). By Hypothesis 1, there is a ccc
forcing Qg such that Q < Qq, IFg, M Ay, and |Q,| = ug for some ug € [A]<". As
IFq, ”Rp2 U Rp3 are algebraically independent over the rationals”, there is a set R,

of Q4-names of reals such that Rp2 URp3 C R and kg, "R, is a transcendence basis

for the reals”. Now let ¢ = (uq, Qq, ) it’s easy to Verlfy that q is as required. O

~

Recalling Observation 5, we shall complete the proof of the main result of the paper
by proving the following claim:

Claim 9: There is no well-ordering of the reals in V3.

Proof: Assume towards contradiction that there are (pi,71) € P x Q such that,
over V, (p1,71) IFpsg 7 f is a one-to-one function from R to Ord” andwsuch that f
is definable via a fO;mLTla ¢ from R and a sequence (776 € < €(x)) where €(*) < ;
and wlog each 17 is a Qp, name for a real (by a sumlar argument as in claims 4(d)

and 4(e), we can always extend p; to make this true). We shall apply Claim 4(f)
and the remark following it throughout the proof. Choose (pa,72) > (p1,71) and a

name of a real r such that (ps,r2) lp.g 77 € RY "2 \ RV " wlog ry € Q,,, and

by extending the condition if necessary, we may assume wlog that (ps,72) forces a
value v to f(r).

Let g be a permutation of X\ such that g [ w,, = id and ¢"(up,) N up, = up,.
We shall denote both of the induced automorphisms on P and Q by §. Clearly,
d(p1) = p1. Let ps = §(p2) and r3 = G(r2). By the previous claims, there is
q € P such that ps, p3 < g and Qp, Xq,, Qp; < Qy, and by the construction of the

. . Q 0 e
amalgamation, there is r € Q, above 7 and r3. As lFp.g "RV 7> NRYV ™ = RV "' 7,

it follows that (q,7) IFp«g ”r #* g( )" As (p2,712) < (q,7), (g,7) IFpsg 77f( ) 7.
Recalling that f is forced to be injective, we shall arrive at a contradlctlon by
showing that (q,r) IFp.g ”f( ( )) = +7. It’s enough to show that the statement

is forced by (ps,r3) = (g(pg) g(r2)), and in order to show that, it suffices to show
that f = g(f) Recalling that each e in the definition of f is a Q@p,-name and that

g is the 1dent1ty on up,, it follows that g(ne) = Tle- By Clalm 4(f), R is preserved
by §. As f is definable from R and (T]6 € < €(x )), it follows that g(f) = f. This

completes the proof of the claun O
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