Paper Sh:1113, version 2021-12-03. See https://shelah.logic.at/papers/1113/ for possible updates.

Madness and regularity properties
Haim Horowitz and Saharon Shelah
Abstract

Starting from an inaccessible cardinal, we construct a model of ZF + DC where
there exists a mad family and all sets of reals are Q-measurable for w*-bounding
sufficiently absolute forcing notions Q. As a corollary, we obtain answers to
questions of Enayat and Henle-Mathias-Woodin.!

Introduction

Our study concerns the interactions between mad families and other types of patho-
logical sets of reals. Given a forcing notion Q whose conditions are subtrees of w<*
ordered by reverse inclusion, the notion of QQ—measurability is naturally defined.
As the existence of mad families and non-Q—measurable sets follows from the ax-
iom of choice, one may consider the possible implications between the existence of
mad families and the existence of non-Q—measurable sets. The study of models
of ZF + DC where no mad families exist was initiated by Mathias in [Ma], more
results were obtained recently in [HwSh1090], [NN] and [To]. Models of ZF + DC
where all sets of reals are Q-measurable for various forcing notions Q were first
studied by Solovay in [So].

Our main goal is to show that Q—measurability for w“-boundning sufficiently abso-
lute forcing notions does not imply the non-exsitence of mad families. In particular,
as Random real forcing is w“-bounding, it will follow that Lebesgue measurability
for all sets of reals does not imply the non-existence of mad families.

We follow the strategy of [Sh218], where a model of ZF + DC + "all sets of reals
are Lebesgue measurable but there is a set without the Baire Property” was con-
structed. Fixing an inaccessible cardinal s, we define a partial order AP consisting
of pairs (P, T"), where PP is a forcing notion from H (k) and I is an approximation of
the desired mad family such that finite unions of members of ' are not dominated
by reals from V. We shall obtain our model by forcing with this partial order and
then with the partial order introduced generically by AP. The main point will be
an amalgamation argument for AP (over Q-generic reals for an appropriate Q),
which will allow us to repeat Solovay’s argument from [So].

Remark: It was brought to our attention by Paul Larson and Jindra Zapletal that
a model of “every set of reals is Lebesgue measurable and there is a mad family”
can also be constructed using the arguments from Section 5 of their paper [LZ].
However, they assume the existence of a proper class of Woodin cardinals, while in
this paper we only assume the existence of an inaccessible cardinal.

The main result

Hypothesis 1: Throughout the paper, f will be a fixed forcing frame (defined
below) with k¢ = k a fixed inaccessible cardinal.

Definition 2: Let f = (k¢, Pr, Qs) = (k, P, Q) be a forcing frame when:
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a. K is the inaccessible cardinal from Hypothesis 1.
b. P is the set of forcing notions from H (k).

c. Q is a family of w*—bounding forcing notions with sufficiently absolute defini-
tions.

d. IfPeP and VF = "Q € Q”, then Q € H(r)(V").
Definition 3: Let AP = AP be the partial order defined as follows:
a. a € AP iff a has the form (P,T") = (P,,T';) where:

1. P € P and T is an infinite set of canonical P—names of reals such that IFp "T" is
almost disjoint”.

2. If 7 € T, then IFp 77 is an infinite subset of w”.
3. For a € AP, let Q, be the set of TE I’y which are objects and not just names.

4. If 1 < n, ag, ..., an 1 €0\ Qq, a = Ual and fa : w — w is the function

enumerating a in an 1ncreasmg order, then H—p " fq is not dominated by any f €

().

b. a <ap b iff

1. P, < Py.

2. T, CT.

3. If aNO7 ...7anN,1 eIy \ Ty, a = lgnai and fg enumerates a in an increasing order,

then IFp, ”f, is not dominated by any member of (w®)V[GMFal,

Observation 4: (AP, <) is indeed a partial order.
Proof: Suppose that a < b and b < c. Let ao, . an 1 €T\ T, and let a and fa
be as in Definition 3(b)(3). We may assume Wlog that for some 0<m<n, ar € Fb

iff | < m (the cases m = 0 and m = n are trivial). Let G. C P, be V—generlc and
let G, = G.NP, and Gy = G. NPy, Let g = (n; 1 i < w) € V[G,], wlog g is
increasing. We shall prove that f, is not dominated by g.
Let a; = a;[G.], a = a[G.] and b= U aq;.

~ I<m

~

Subclaim 1: For infinitely many i, [n;,n;41) N (lU a;) = 0.
<n

Subclaim 2: Subclaim 1 is equivalent to ” f, is not dominated by g”.

Proof of Subclaim 1: Let u = {i : [n;,ns41) Nb = 0} € V[Gy]. By the fact that
a < b and by subclaim 2, v is infinite. Let (i(1) : | < w) € V[G}] be an increasing

enumeration of u, so (n;gy : | < w) € V[Gy] is increasing. Let ¢ = U a
m<l<n—1

and v = {l : [0y, n5041)) N ¢ = 0}. As before, v is infinite. If I € v then
c N [y, nig+1)) = O and therefore, ¢ N [n;), nigy41) = 0. Similarly, if [ € v
then i(l) € u and therefore b N [n;),ni1y41). It follows that I € v — (bUc) N
[75(1), ni1)+1) = 0, and as v is infinite, we’re done.

w)VPa

Proof of Subclaim 2: Suppose that f, is not dominated by any g € (w and

let g = (n; :i < w) € VFe be increasing. Choose f € VF< such that f is increasing,
I < f(l) for every I and |{i : n; € [I, f(I))}| is sufficiently large (e.g. > 2!). By
our assumption, for infinitely many I, f(I) < the Ith member of a, and therefore
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lan f()] < 1. Let w = {l : |an f(I)] <1}, so u is infinite. For I € w, | +
-

1 < |{’L 1 < ’L,[TLZ N4
I <1, [ng,nip1) C |

[ni,niv1) Na = 0.

[, f(1)}|, and as u is infinite, for some i such that
and [n;,n;+1) N a = (. Therefore, for infinitely many i,

In the other direction, suppose that f, satisfies the condition of Subclaim 1. Let

g € (w“’)v%, we shall prove that f, is not dominated by g. We may assume wlog

that ¢ is increasing. Choose the sequence (n; : ¢ < w) by induction such that

no = 0 and n;41 > n; + g(ng), so (n; : i < w) € VFa. By the assumption, the

set uw = {7 : [ng,nip1) N Ya = (0} is infinite. For every i € u, |a Nny| < ny,
<n

therefore n; < fo(n;). As [n;,n;11)Na =0, it follows that n;11 < f,(n;), therefore
g(n;) < nit1 < fa(nn,), so fu is not dominated by g. O

Observation 4: a. Every P € P is kK — cc, and P is closed under <—increasing
unions of length < k.

b. If P € P and Q is a canonical P—name of a case of Q which is in H(k), then
PxQeP. O

Observation 5: a. If a € AP then ({0},Q,) € AP and ({0},9,) < a.
b. AP is (< k)—complete. OJ
Claim 6: (AP, <) has the division property, namely, if a < b and z is a Py-name

V[Pa,z]
of a real such that IFp, ”(w®)VIPel is cofinal in (w®) ~
such that:

a. a<a; <b.

b. 'y, =T,.

c. Py, =P, x 2 in the natural sense. [J

” then there is a; € AP

Claim 7 ((AP,<) has the amalgamation property): Assume that ag < a
(1 =1,2), then there are b; (I < 3) and g; (I < 2) such that:

a. b() < bl < b3 (l = 1,2).
b. ¢; is an isomorphism from b; to a;.
C. go g g1 (l = 1,2).

Proof: We may assume wlog that P,, is trivial and that Q,, = Q,, =T, (as we
can simply take the quotients).

We define P, as follows:

a. p € Py, iff p=(p1,p2) € Py, x Pg, and for some I(p), ny, Ap.1, Ap2,ap1,0p 2 the
following hold: A

1. i(p) € {1,2} and n, < w.

2. A, is a finite subset of I';, with union a,; (I =1,2).

3. For every n > n,, there is r, € Pa, such that Pa,,, = Pip) < Tn and
o IF7ap ) Nn S nyp”.

b. Py, = p < qiff
L. p=(p1,p2),q = (q1,q2) € Po, X Pg,.
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2. <q (1=1,2).

3. ny < ng.

4. A, CA, (1=1,2).

5. There is no n € [n,,n,) such that g1 ¥ "n ¢ a,1” and g2 ¥ "n ¢ a, 2"

We shall now define embeddings f; : Py, — Py, (I = 1,2) as follows: For p € P,,,
fi(p) = q € Py, will be the condition defined as follows:

a. qq=pand gz_; = Op,, , €Pay_,-

b. I(¢) =1, n,=0.

c. Ag1=0=2A4,,.

Subclaim 0: Py, is a partial order.

Subclaim 1: For every p = (p1,p2) € Py, and open dense I C Ps_;(,, there is
q € Py, above p such that I(q) = 3 — I(p) and g3_;(, € I.

Proof: Let ¢ = 3 — I(p) and let p; € I be above p;. By the definition of AP,
fa,; is not dominated by any function from V. We shall prove that there are

¢; € Py, above p} and n, > n, such that for every n > n,, there is ¢’ above ¢;
such that ¢’ IF 7a,; N [n.,n) = 07. Actually, ¢; = p; should work. Suppose not,

then for every n, > n, there is n > n, such that there is no ¢’ above ¢; forcing
that a,; N [n.,n) = 0. Now choose (n; : j < w) by induction on j as follows:

ng = np + 1, and n;4; is the minimal n > n; such that there is no q' above g;
forcing that a,; N[n;,n) = 0. By the same argument as in the proof of observation

4,as (n;: j <No.)) eV, pilF"a,,; N [nj,njp1) =0 for infinitely many j”. Therefore,
there is ¢’ above p} and i, such that ¢’ I ”a N [n;,,n;,+1) = 07, contradicting the
choice of n;, 11. -

Now define g € Py, as follows:

1. g; is as above.

2. qy(p) is any member of IP;(,) which is above p;(,) and forces that [n, n.)Nay ;) = 0

~

(such condition exists by clause (a)(3) in the definition of Py,).
3. l(q) =1.
4. ng = Ny

5. AqJ = APJ and Qq,1 = Qp,l for | = 1, 2.

It’s now easy to check that ¢ is as required.

Subclaim 2: a. {p € Py, : I(p) = i} is dense in Py, for i =1,2.

b. I, :== {p € Py, : n, > n} is dense in Py,.

Proof: (a) follows from Subclaim 1. (b) follows from the proof of Subclaim 1, as
we note that ny = n. > n, in that proof.

Subclaim 3: f; : P,, = Py, is a complete embedding for [ =1, 2.

Proof: It suffices to show that f; is a complete embedding into {p € Py, : l(p) =1},
which follows from the existence of a projection 7 : {p € Py, : I(p) = I} — Py,
defined in the natural way.
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Subclaim 4: For every finite A1 C T, and Ay C T, the set {p € Py, : ‘_/} 2Ai -

A, ;} is open dense.

Proof: In order to prove the claim by induction on |A;| 4 |As|, it suffices to prove
it when A; = {b} and A3_; = 0 for ¢ € {1,2}. Let p € Py, and suppose that

I(p) = 3 —1, it’s now easy to extend p simply by adding b to A, ;. If [(p) = ¢, then

by previous claims, there is ¢ above p such that I(¢q) = 3 — I(p), and now extend ¢
as in the previous case.

Subclaim 5: Let T' := f1(Tq,) U f2(Ty,), then T is a set of canonical Pp,-names of
infinite subsets of w and IFp "T" is almost disjoint”.

Proof: The first part follows by the fact that f; and fo are complete embeddings.
In order to prove the second part, it suffices to show that if r € I'y, and s € I'y,,
then IFp ”|r Ns| < Ry”. Given p € Py,, by Subclaim 4, there is a stronger condition

g such that » € A, 1 and s € A, 2. We shall prove that ¢ IF ”|r N s| < Ry”.

Recall that for every n, the set I,, = {r € Py, : n < n,.} is dense. Now let G C P,
be generic over V' such that ¢ € G, then for every n, < n, there is ¢,, € G such that
n < ng,. By the definition of the partial order <p, (clause (b)(5)), it follows that
qlFp,, ”|C N f| < Ny

Subclaim 6: Let b3 = (Pp,,'s,) where I'y, is T' from the previous subclaim, then
bs satisfies clauses (1) 4 (2) from Definition (3)(a). As Q,, = Q,, it follows that

D, = Qay = Q-
For I =1,2, let b = fi(a;) € AP, then clauses (1) 4 (2) from Definition (3)(b) hold
for b; and b3.

Subclaim 7: b3 € AP.

Proof: Let A C Ty, \ Qp, be finite, so there are finite sets A; C Ty, \ Qq, (1 =1,2)
such that A = f1(A;) U f2(As). Let (n; : i < w) € (w*)" be increasing and let
w={i:[ni,ni41) N (U{a:a e A}) = 0}. Let (p1,p2) € Pp, and n < w, we shall
find (q1,¢2) and i > n such that (p1,p2) < (q1,92) € Py, and (g1, q2) IFp,, i € u’.
Without loss of generality, I[((p1,p2)) = 2, and by Subclaim 4, wlog A; € A, po).i
(i =1,2). For I =12, let ¢y = U{a : a € A}, so @ is a Py, —name and Irp,,
7(3%°4) (a; N [ni,nit1) = 0)”. Choose (p14, 41, : | < w) by induction on | < w such
that:
1. p1,o =p1.
2. Py, Ep1g < p1jgr-
3. j1 >0+ X gk

k<l

4. P1,i+1 ‘Hp’al a1 N [nj1,17nj1,z+1) =0

For | < w, let m; = nj,,, so (my : | < w) € (w¥)V is increasing. Let j be the
minimal j > n such that n(,, ,,) < m;. By the proof of Subclaim 1, there are
p} above py j11 and ki > np, ;) such that for every k& > k* there is p” above p}
forcing that ap, p,y1 N [k* k) = 0. As I((p1,p2)) = 2, there is py above py forcing

~

that Q(py,ps),2 [ [n(m,m)vk* + mj+1) = (). Now let (QIaQQ) = (pll,pé), N(q1,q2) = k7,

((q1,02)) = 1, Atgr,q1),i = Aprpa),i (8 = 1,2), it’s easy to see that (qi,¢2) and j
are as required.
5
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Subclaim 8: b; < bs where b; = fi(a;) (I =1,2).

Proof: By symmetry, it suffices to prove the claim for [ = 1. Let aq,...,ap—1 €

~

Tos \ Toy s a= lgnlil and let g be a P,,-name of an increasing sequence from w®,
we shall prove that IFp, "u := {i: an [9(7),9(i + 1)) = 0} is infintie”. There are
tﬁ € Ty, \ Qq, (I < n) such that lé\an((i;) = a, let ' = lgnci;. Let (7721 1< w)
be the P,,-name for f;*((g(i) : i < w)). Let (p1,p2) € Py, and n, < w, we shall
find (g1, q2) € Py, above (pwl,pg) and n > n, such that (q1,¢2) Ip,, "n € 1~L”. We

can choose (p1,;,m1,; : 4 < w) by induction on ¢ < w such that p1 < p1,; € P,,,
D10 < P11 and pi iy |hpa1 "m; = mq,;”. The rest of the proof is as in the previous

~

subclaim. [J
Claim 8: For a dense set of a € AP, IFp, "I, is mad”.
Proof: Let \g = |P,| and \; = 2*0. Let Ry = Col(Rg, \;) and P = P, xR, € H(k).

In VE, NYP = A and P, U P(P,) is countable, so (w“’)vﬂba is countable and ' :=
{7 : 7 is a canonical P—name of a real such that the function listing 7 dominates

(w‘”)vm} is dense in [w]“. By the density of I, we can find I" C T such that
IFp TV U T, is mad”. Now let b = (P,IV UT,,), then (ignoring the obvious clauses)
we need to prove that b satisfies definition 3(a)(4) and that a < b (for which we
need to prove that the requirement from 3(b)(3) is satisfied). We shall prove that
a and b satisfy requirement 3(b)(3), the proof that b satisfies 3(a)(4) is similar.
We shall work in VF. Let ag,...,a, € 'y \ [, and let a = lL<J a;. Suppose that

(m; i < w) € VFe is increasing, choose a sequence (i(k) : k < w) € VFa such
that i(k + 1) > m;)41 +i(k) + (n + 1)k and let mj, = m;y4+1 (K < w). For each
I <, the set u; = {k < w: fo,(k) > mj41)} is cofinite (by the definition of I').

Therefore, for every k large er:ough, lar "V mg1y| < k (for every I < n), hence
laNm;py1y| < (n+1)k. For each such &, [{i: i € [i(k),i(k+1)) Aanms,mi1) #
0} < (n+1)k. As i(k+ 1) —i(k) > (n+ 1)k, there is i € [i(k), i(k + 1)) such that

a N [mi,miy1) = 0. Therefore, f, is not dominated by a real from V¥, O

Claim 9: For every a € AP and a P,-name 7 of a member of [w]*, thereis b € AP
above a such that IFp, "there is s € I'y such Zhat \2 N £| =Ny".

Proof: Follows directly from Claim 8. [J

Observation 10: Let Q be a forcing notion from Q. Assume that ag < a;, 7
is a P,,-name of a Q—generic real over VP (I =1,2), and P,, x 7 is isomorphiNc
to Py, x 12 over Py, (so wlog they’re equal to each other and we ;ay denote the
generic real by 1). By Claim 6, there is a, € AP such that ag < af, < a; (I = 1,2),
Poy = Poy x 1 aNnd Loy =Ta,. By Claim 7, there are b; (I < 3) and ¢g; (I < 2) as
there for (a6,~a1,a2) here. [

Definition 11: Let H C AP be generic over V and let V3 = V[H]. In V4, let IE[H}
be agH]P’a.

Claim 12: lF4p "P E Kk — cc”.
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Proof: Suppose towards contradiction that IF4p 71 C P is a maximal antichain

~ ~

of cardinality x”. Choose by induction on o < k a sequence (an,pq : @ < k) such
that:

a. a, € AP.
b. (ag: B < ) is <4p-increasing cotinuous.

c. agy1lFap "pg € £\{p7 sy < B}

d. ps € Pay1.

For every a < &, there is qo € P,_, == L<J P, such that p, is compatible with
<o

every r € P, above qo. Let y(a) < a be the least v such that g, € P, . For some

Y(*) < K, § = {a:vy(a) = y(x)} is stationary. As [P, | <k, there is S’ C S of
cardinality s such that a1 < ag € S’ = ¢o; = Ga,, Which leads to a contradiction.
O

Definition 13: Let V;j be as in Definition 11 and let G C P[H] be generic over V7,
we shall denote V[H, G] by Va.

Caim 14: Every real in V3 is from V4[G NP,] for some a € H.
Proof: Let r be a AP * P-name of a real. By Claim 12, P[H] = k — cc in

V1. Therefore, for every n < w there are AP—names p, = (Pno : @ < ) and

tn = (tn,a : @ < ay,) such that:

~

a. op < K.

b. Py is a maximal antichain in IE[H ].

C. tn,q is a P[H]—name of an element of {0,1}.
d. ppolF"ne r iff t, o =1".

Now let

An,a"

For every n < w and o < ay, there is a, o € H such that p, , € P

ap € AP, we can find <4p-increasing sequence (a, : n < w) such that a,y; |-
"o, = ) for some o < k. Let a,, € AP be an upper bound, and now choose an

~

increasing sequence (Gy4q @ @ < g a2) by induction on o < g o such that for
nw nw
every n < w and 8 < o, Qw4 5 ap+B+1 IF"a, g = a; 3 and py, g = p25”~ We may
<n ~ ’ ~ ’

assume wlog that az’ﬁ <AP Gyt 5 a;+B+1, SO pflﬁ cP, It’s now easy
I<n

w++ I a;‘+ﬁ+1 '
I<n

to see that r isa P .« -name. [

Ayt =
n<w

Theorem 15: a. In Vp, let A = {a[G] : a € T}, for some b € H} and let

Vs = HOD(R, A), then V3 | ZF 4+ DC + "there exists a mad family” + "all sets of
reals are Q—measurable for every Q € Q.

b. ZF + DC + "every set of reals is Lebesgue measurable” + "there exists a mad
family” is consistent relative to an inaccessible cardinal.

Proof: a. The existence of a mad family follows by Claim 8. QQ—measurability for
Q € Q follows from Claim 14 and Observation 10 as in Solovay’s proof.

b. Apply the previous clause to Q@ =Random real forcing. [J
7
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As a corollary to the above theorem, we obtain an answer to a question of Henle,
Mathias and Woodin from [HMW]:

Corollary 16 (ZF + DC): The existence of a mad family does not imply that
N; <R.

Proof: By Theorem 15 (applied to Random real forcing) and the fact that the
existence of an wi-sequence of distinct reals implies the existence of a non-Lebesgue
measurable set of reals (see [Sh176]). O

Remark: The above result was also obtained by Larson and Zapletal in [LZ]
assuming the existence of a proper class of Woodin cardinals.

We conclude with a somewhat surprising observation, showing that the analog of
Theorem 15 fails at the lower levels of the projective hierarchy:

Observation 17: If every X1 set of reals is Lebesgue measurable, then there are
no Yi-mad families.

Proof: By [Sh176], Xi-Lebesgue measurability implies that wlL ) < wy for every
x € w¥. By Theorem 1.3(2) in [To], it follows that there are no X3-mad families.
O

On a question of Enayat

We now address a question asked by Ali Enayat in [En|. The question is motivated
by the problem of understanding the relationship between Freiling’s axiom of sym-
metry, the continuum hypothesis and the Lebesgue measurability of all sets of reals
(see discussion in [Ch]).

As with the previous results, we were informed by Paul Larson that the following
results can also be obtained under the assumption of a proper class of Woodin
cardinals using the arguments from [LZ].

Definition 18: a. Let WCH (weak continuum hypothesis) be the statement that
every uncountable set of reals can be put into 1-1 correspondence with R.

b. Let AX (Freiling’s axiom of symmetry) be the following statement: Let F be the
set of functions f : [0,1] = Py, ([0,1]), then for every f € F there exist z,y € [0,1]
such that z ¢ f(y) and y ¢ f(z).

Remark: The term WCH has a different meaning in several papers by other au-
thors.

Theorem 19: ZF + DC + -WCH + "every set of reals is Lebesgue measurable”
is consistent relative to an inaccessible cardinal.

Proof: Let V5 be the model from Theorem 15(b), we shall prove that V5 = -WCH
by showing that there is no injection from R to the mad family A. Suppose toward
contradiction that for some (a, p) € APxP (where P is as in Definition 11), a canon-

ical name for a real r and a first order formula ¢(z,y, z, A), (a, p) IF "¢(x,y, r,.A)
defines an injection F). from R to . A”. We may assume wlog that r is a canonical P,-

name. We may also assume wlog that, for every s € 'y, (a,p) I+ 7if s € Ran(F.),

then s = F, () for some t € RV, This is possible as IT.| < K, so we may con-

struct an increasing sequence (a, : v < ) of length < k, such that ap = a and such
that the upper bound (ag, I, ) satisfies the above requirement. ((ag,I's), p) is then

~

as required. By increasing a, we may assume wlog that p is an object p (and not

just an AP-name) from P,. Now let ay € AP be defined as ay = (P, x Cohen,T',,)
8
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and let n be the P,,-name for the Cohen real. There are ag € AP and a name v
such that as < asg and ag IF "p Ik "¢(n, v, r, A)””, so v € A, and by the injectivity
of F., v ¢ T',. We may assume wlog that v € T',.

Let a4 be the amalgamation of two copies of ag over ag (i.e. as in the proof of

Claim 7) and let fo : Py, — Pg, and f1 : Py, — P,, be the corresponding complete
embeddings. As the amalgamation is over ag, it follows that fo(n) = f1(n) and

fo(r) = fi(r), and by the argument from the proof of Claim 7 (Subclaim 5),
fo(v) # fi(v). As f; (I1=0,1) are isormorphisms between a3 and fi(as) < a4 such

that f; [ P,, = Id, they induce an automorphism of (AP, <,p) mapping a3 to
fi(as) and agy to itself. Therefore, aq I+ 77 fo(p) IF "¢(fo(n), fo(v), fo(r), A)””,

ar k7 fu(p) I "0(fa(m), f1(v), fa(7), A and fop) = fi(p), a contradiction.

Theorem 20: WCH is independent of ZF + DC' + AX + "all sets of reals are
Lebesgue measurable”.

Proof: By [We|, AX is implied by ZF 4+ DC + 7all sets of reals are Lebesgue
measurable”. Therefore, AX holds in the model V3 from Theorem 15(b) and in
Solovay’s model. By Corollary 19, V5 = -WCH. By the fact that all sets of reals
in Solovay’s model have the perfect set property, it follows that W CH holds in that
model. OJ
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