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Abstract

Starting from an inaccessible cardinal, we construct a model of ZF +DC where
there exists a mad family and all sets of reals are Q-measurable for ωω-bounding

sufficiently absolute forcing notions Q. As a corollary, we obtain answers to
questions of Enayat and Henle-Mathias-Woodin.1

Introduction
Our study concerns the interactions between mad families and other types of patho-
logical sets of reals. Given a forcing notion Q whose conditions are subtrees of ω<ω
ordered by reverse inclusion, the notion of Q−measurability is naturally defined.
As the existence of mad families and non-Q−measurable sets follows from the ax-
iom of choice, one may consider the possible implications between the existence of
mad families and the existence of non-Q−measurable sets. The study of models
of ZF + DC where no mad families exist was initiated by Mathias in [Ma], more
results were obtained recently in [HwSh1090], [NN] and [To]. Models of ZF +DC
where all sets of reals are Q-measurable for various forcing notions Q were first
studied by Solovay in [So].
Our main goal is to show that Q−measurability for ωω-boundning sufficiently abso-
lute forcing notions does not imply the non-exsitence of mad families. In particular,
as Random real forcing is ωω-bounding, it will follow that Lebesgue measurability
for all sets of reals does not imply the non-existence of mad families.
We follow the strategy of [Sh218], where a model of ZF + DC + ”all sets of reals
are Lebesgue measurable but there is a set without the Baire Property” was con-
structed. Fixing an inaccessible cardinal κ, we define a partial order AP consisting
of pairs (P,Γ), where P is a forcing notion from H(κ) and Γ is an approximation of
the desired mad family such that finite unions of members of Γ are not dominated
by reals from V . We shall obtain our model by forcing with this partial order and
then with the partial order introduced generically by AP . The main point will be
an amalgamation argument for AP (over Q-generic reals for an appropriate Q),
which will allow us to repeat Solovay’s argument from [So].
Remark: It was brought to our attention by Paul Larson and Jindra Zapletal that
a model of “every set of reals is Lebesgue measurable and there is a mad family”
can also be constructed using the arguments from Section 5 of their paper [LZ].
However, they assume the existence of a proper class of Woodin cardinals, while in
this paper we only assume the existence of an inaccessible cardinal.

The main result
Hypothesis 1: Throughout the paper, f will be a fixed forcing frame (defined
below) with κf = κ a fixed inaccessible cardinal.
Definition 2: Let f = (κf ,Pf ,Qf ) = (κ,P,Q) be a forcing frame when:
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a. κ is the inaccessible cardinal from Hypothesis 1.
b. P is the set of forcing notions from H(κ).
c. Q is a family of ωω−bounding forcing notions with sufficiently absolute defini-
tions.
d. If P ∈ P and V P |= ”Q ∈ Q”, then Q ∈ H(κ)(V P).
Definition 3: Let AP = APf be the partial order defined as follows:
a. a ∈ AP iff a has the form (P,Γ) = (Pa,Γa) where:
1. P ∈ P and Γ is an infinite set of canonical P−names of reals such that 
P ”Γ is
almost disjoint”.
2. If τ

∼
∈ Γ, then 
P ”τ

∼
is an infinite subset of ω”.

3. For a ∈ AP , let Ωa be the set of τ
∼
∈ Γa which are objects and not just names.

4. If 1 ≤ n, a0
∼
, ..., an−1

∼
∈ Γa \ Ωa, a∼ = ∪

l<n
al
∼

and fa
∼

: ω → ω is the function

enumerating a
∼

in an increasing order, then 
P ”fa
∼
is not dominated by any f ∈

(ωω)V ”.
b. a ≤AP b iff
1. Pa l Pb.
2. Γa ⊆ Γb.
3. If a0

∼
, ..., an−1

∼
∈ Γb \ Γa, a∼ = ∪

l<n
al
∼

and fa
∼
enumerates a

∼
in an increasing order,

then 
Pb ”fa
∼
is not dominated by any member of (ωω)V [G∩Pa].

Observation 4: (AP,≤) is indeed a partial order.
Proof: Suppose that a ≤ b and b ≤ c. Let a0

∼
, ..., an−1

∼
∈ Γc \ Γa, and let a

∼
and fa

∼

be as in Definition 3(b)(3). We may assume wlog that for some 0 < m < n, al
∼
∈ Γb

iff l < m (the cases m = 0 and m = n are trivial). Let Gc ⊆ Pc be V -generic and
let Ga = Gc ∩ Pa and Gb = Gc ∩ Pb. Let g = (ni : i < ω) ∈ V [Ga], wlog g is
increasing. We shall prove that fa

∼
is not dominated by g.

Let ai = ai
∼

[Gc], a = a
∼

[Gc] and b = ∪
l<m

al.

Subclaim 1: For infinitely many i, [ni, ni+1) ∩ ( ∪
l<n

al) = ∅.

Subclaim 2: Subclaim 1 is equivalent to ”fa is not dominated by g”.
Proof of Subclaim 1: Let u = {i : [ni, ni+1) ∩ b = ∅} ∈ V [Gb]. By the fact that
a ≤ b and by subclaim 2, u is infinite. Let (i(l) : l < ω) ∈ V [Gb] be an increasing
enumeration of u, so (ni(l) : l < ω) ∈ V [Gb] is increasing. Let c = ∪

m≤l<n−1
al

and v = {l : [ni(l), ni(l+1)) ∩ c = ∅}. As before, v is infinite. If l ∈ v then
c ∩ [ni(l), ni(l+1)) = ∅ and therefore, c ∩ [ni(l), ni(l)+1) = ∅. Similarly, if l ∈ v
then i(l) ∈ u and therefore b ∩ [ni(l), ni(l)+1). It follows that l ∈ v → (b ∪ c) ∩
[ni(l), ni(l)+1) = ∅, and as v is infinite, we’re done.

Proof of Subclaim 2: Suppose that fa
∼
is not dominated by any g ∈ (ωω)V Pa and

let g = (ni : i < ω) ∈ V Pa be increasing. Choose f ∈ V Pc such that f is increasing,
l < f(l) for every l and |{i : ni ∈ [l, f(l))}| is sufficiently large (e.g. > 2l). By
our assumption, for infinitely many l, f(l) ≤ the lth member of a

∼
, and therefore
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|a
∼
∩ f(l)| ≤ l. Let u = {l : |a

∼
∩ f(l)| ≤ l}, so u is infinite. For l ∈ u, l +

1 < |{i : l ≤ i, [ni, ni+1) ⊆ [l, f(l))}|, and as u is infinite, for some i such that
l ≤ i, [ni, ni+1) ⊆ [l, f(l)) and [ni, ni+1) ∩ a

∼
= ∅. Therefore, for infinitely many i,

[ni, ni+1) ∩ a
∼

= ∅.

In the other direction, suppose that fa
∼
satisfies the condition of Subclaim 1. Let

g ∈ (ωω)V Pa , we shall prove that fa
∼
is not dominated by g. We may assume wlog

that g is increasing. Choose the sequence (ni : i < ω) by induction such that
n0 = 0 and ni+1 > ni + g(ni), so (ni : i < ω) ∈ V Pa . By the assumption, the
set u = {i : [ni, ni+1) ∩ ∪

l<n
al = ∅} is infinite. For every i ∈ u, |a ∩ ni| ≤ ni,

therefore ni < fa(ni). As [ni, ni+1)∩ a = ∅, it follows that ni+1 ≤ fa(ni), therefore
g(ni) < ni+1 ≤ fa(nni), so fa is not dominated by g. �
Observation 4: a. Every P ∈ P is κ − cc, and P is closed under l−increasing
unions of length < κ.
b. If P ∈ P and Q

∼
is a canonical P−name of a case of Q which is in H(κ), then

P ?Q
∼
∈ P. �

Observation 5: a. If a ∈ AP then ({0},Ωa) ∈ AP and ({0},Ωa) ≤ a.
b. AP is (< κ)−complete. �
Claim 6: (AP,≤) has the division property, namely, if a ≤ b and x

∼
is a Pb-name

of a real such that 
Pb ”(ωω)V [Pa] is cofinal in (ωω)
V [Pa,x

∼
]
”, then there is a1 ∈ AP

such that:
a. a ≤ a1 ≤ b.
b. Γa1 = Γa.
c. Pa1 = Pa ? x∼ in the natural sense. �

Claim 7 ((AP,≤) has the amalgamation property): Assume that a0 ≤ al
(l = 1, 2), then there are bl (l ≤ 3) and gl (l ≤ 2) such that:
a. b0 ≤ bl ≤ b3 (l = 1, 2).
b. gl is an isomorphism from bl to al.
c. g0 ⊆ gl (l = 1, 2).
Proof: We may assume wlog that Pa0 is trivial and that Ωa1 = Ωa2 = Γa0 (as we
can simply take the quotients).
We define Pb3 as follows:
a. p ∈ Pb3 iff p = (p1, p2) ∈ Pa1 × Pa2 and for some l(p), np, Ap,1, Ap,2, ap,1

∼
, ap,2
∼

the

following hold:
1. l(p) ∈ {1, 2} and np < ω.
2. Ap,l is a finite subset of Γal with union ap,l

∼
(l = 1, 2).

3. For every n > np, there is rn ∈ Pal(p) such that Pal(p) |= pl(p) ≤ rn and
rn 
 ”ap,l(p)

∼
∩ n ⊆ np”.

b. Pb3 |= p ≤ q iff
1. p = (p1, p2), q = (q1, q2) ∈ Pa1 × Pa2 .
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2. pl ≤ ql (l = 1, 2).
3. np ≤ nq.
4. Ap,l ⊆ Aq,l (l = 1, 2).
5. There is no n ∈ [np, nq) such that q1 1 ”n /∈ aq,1

∼
” and q2 1 ”n /∈ aq,2

∼
”.

We shall now define embeddings fl : Pal → Pb3 (l = 1, 2) as follows: For p ∈ Pal ,
fl(p) = q ∈ Pb3 will be the condition defined as follows:
a. ql = p and q3−l = 0Pa3−l

∈ Pa3−l .

b. l(q) = l, np = 0.
c. Aq,1 = ∅ = Aq,2.
Subclaim 0: Pb3 is a partial order.
Subclaim 1: For every p = (p1, p2) ∈ Pb3 and open dense I ⊆ P3−l(p), there is
q ∈ Pb3 above p such that l(q) = 3− l(p) and q3−l(p) ∈ I.
Proof: Let i = 3 − l(p) and let p′i ∈ I be above pi. By the definition of AP ,
fap,i
∼

is not dominated by any function from V . We shall prove that there are

qi ∈ Pai above p′i and n∗ > np such that for every n > n∗, there is q′ above qi
such that q′ 
 ”ap,i

∼
∩ [n∗, n) = ∅”. Actually, qi = p′i should work. Suppose not,

then for every n∗ > np there is n > n∗ such that there is no q′ above qi forcing
that ap,i

∼
∩ [n∗, n) = ∅. Now choose (nj : j < ω) by induction on j as follows:

n0 = np + 1, and nj+1 is the minimal n > nj such that there is no q′ above qi
forcing that ap,i

∼
∩ [nj , n) = ∅. By the same argument as in the proof of observation

4, as (nj : j < ω) ∈ V , p′i 
 ”ap,i
∼
∩ [nj , nj+1) = ∅ for infinitely many j”. Therefore,

there is q′ above p′i and i∗ such that q′ 
 ”a
∼
∩ [ni∗ , ni∗+1) = ∅”, contradicting the

choice of ni∗+1.
Now define q ∈ Pb3 as follows:
1. qi is as above.
2. ql(p) is any member of Pl(p) which is above pl(p) and forces that [n, n∗)∩ap,l(p)

∼
= ∅

(such condition exists by clause (a)(3) in the definition of Pb3).
3. l(q) = i.
4. nq = n∗.
5. Aq,l = Ap,l and aq,l

∼
= ap,l
∼

for l = 1, 2.

It’s now easy to check that q is as required.
Subclaim 2: a. {p ∈ Pb3 : l(p) = i} is dense in Pb3 for i = 1, 2.
b. In := {p ∈ Pb3 : np > n} is dense in Pb3 .
Proof: (a) follows from Subclaim 1. (b) follows from the proof of Subclaim 1, as
we note that nq = n∗ > np in that proof.
Subclaim 3: fl : Pal → Pb3 is a complete embedding for l = 1, 2.
Proof: It suffices to show that fl is a complete embedding into {p ∈ Pb3 : l(p) = l},
which follows from the existence of a projection π : {p ∈ Pb3 : l(p) = l} → Pal
defined in the natural way.
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Subclaim 4: For every finite A1 ⊆ Γa1 and A2 ⊆ Γa2 , the set {p ∈ Pb3 : ∧
i=1,2

Ai ⊆

Ap,i} is open dense.
Proof: In order to prove the claim by induction on |A1|+ |A2|, it suffices to prove
it when Ai = {b

∼
} and A3−i = ∅ for i ∈ {1, 2}. Let p ∈ Pb3 and suppose that

l(p) = 3− i, it’s now easy to extend p simply by adding b
∼
to Ap,i. If l(p) = i, then

by previous claims, there is q above p such that l(q) = 3− l(p), and now extend q
as in the previous case.
Subclaim 5: Let Γ := f1(Γa1) ∪ f2(Γa2), then Γ is a set of canonical Pb3-names of
infinite subsets of ω and 
P ”Γ is almost disjoint”.
Proof: The first part follows by the fact that f1 and f2 are complete embeddings.
In order to prove the second part, it suffices to show that if r

∼
∈ Γa1 and s

∼
∈ Γa2 ,

then 
P ”|r
∼
∩ s
∼
| < ℵ0”. Given p ∈ Pb3 , by Subclaim 4, there is a stronger condition

q such that r
∼
∈ Aq,1 and s

∼
∈ Aq,2. We shall prove that q 
 ”|r

∼
∩ s
∼
| < ℵ0”.

Recall that for every n, the set In = {r ∈ Pb3 : n ≤ nr} is dense. Now let G ⊆ Pb3
be generic over V such that q ∈ G, then for every nq < n, there is qn ∈ G such that
n ≤ nqn . By the definition of the partial order ≤Pb3 (clause (b)(5)), it follows that
q 
Pb3 ”|r

∼
∩ s
∼
| < ℵ0”.

Subclaim 6: Let b3 = (Pb3 ,Γb3) where Γb3 is Γ from the previous subclaim, then
b3 satisfies clauses (1) + (2) from Definition (3)(a). As Ωa1 = Ωa2 , it follows that
Ωb3 = Ωa1 = Ωa2 .
For l = 1, 2, let bl = fl(al) ∈ AP , then clauses (1) + (2) from Definition (3)(b) hold
for bl and b3.
Subclaim 7: b3 ∈ AP .
Proof: Let A ⊆ Γb3 \ Ωb3 be finite, so there are finite sets Al ⊆ Γal \ Ωal (l = 1, 2)
such that A = f1(A1) ∪ f2(A2). Let (ni : i < ω) ∈ (ωω)V be increasing and let
u
∼

= {i : [ni, ni+1) ∩ (∪{a
∼

: a
∼
∈ A}) = ∅}. Let (p1, p2) ∈ Pb3 and n < ω, we shall

find (q1, q2) and i > n such that (p1, p2) ≤ (q1, q2) ∈ Pb3 and (q1, q2) 
Pb3 ”i ∈ u
∼

”.
Without loss of generality, l((p1, p2)) = 2, and by Subclaim 4, wlog Ai ⊆ A(p1,p2),i
(i = 1, 2). For l = 1, 2, let al

∼
= ∪{a

∼
: a
∼
∈ Al}, so al

∼
is a Pal−name and 
Pal

”(∃∞i)(al
∼
∩ [ni, ni+1) = ∅)”. Choose (p1,l, j1,l : l < ω) by induction on l < ω such

that:
1. p1,0 = p1.
2. Pa1 |= p1,l ≤ p1,l+1.
3. j1,l > l + Σ

k<l
j1,k.

4. p1,l+1 
Pa1
”a1
∼
∩ [nj1,l , nj1,l+1) = ∅”.

For l < ω, let ml = nj1,l , so (ml : l < ω) ∈ (ωω)V is increasing. Let j be the
minimal j > n such that n(p1,p2) ≤ mj . By the proof of Subclaim 1, there are
p′1 above p1,j+1 and k∗ > n(p1,p2) such that for every k > k∗ there is p′′ above p′1
forcing that a(p1,p2),1

∼
∩ [k∗, k) = ∅. As l((p1, p2)) = 2, there is p′2 above p2 forcing

that a(p1,p2),2
∼

∩ [n(p1,p2), k
∗ +mj+1) = ∅. Now let (q1, q2) = (p′1, p′2), n(q1,q2) = k∗,

l((q1, q2)) = 1, A(q1,q1),i = A(p1,p2),i (i = 1, 2), it’s easy to see that (q1, q2) and j
are as required.
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Subclaim 8: bl ≤ b3 where bl = fl(al) (l = 1, 2).

Proof: By symmetry, it suffices to prove the claim for l = 1. Let a0
∼
, ..., an−1

∼
∈

Γb3 \ Γb1 , a∼ = ∪
l<n

al
∼

and let g
∼

be a Pb1-name of an increasing sequence from ωω,

we shall prove that 
Pb3 ”u
∼

:= {i : a
∼
∩ [g(i), g(i + 1)) = ∅} is infintie”. There are

a′l
∼
∈ Γa2 \ Ωa2 (l < n) such that ∧

l<n
f2(a′l
∼

) = al
∼
, let a′

∼
= ∪

l<n
a′l
∼
. Let (mi

∼
: i < ω)

be the Pa1 -name for f−1
1 ((g

∼
(i) : i < ω)). Let (p1, p2) ∈ Pb3 and n∗ < ω, we shall

find (q1, q2) ∈ Pb3 above (p1, p2) and n > n∗ such that (q1, q2) 
Pb3 ”n ∈ u
∼

”. We
can choose (p1,i,m1,i : i < ω) by induction on i < ω such that p1 ≤ p1,i ∈ Pa1 ,
p1,i ≤ p1,i+1 and p1,i+1 
Pa1

”mi
∼

= m1,i”. The rest of the proof is as in the previous
subclaim. �

Claim 8: For a dense set of a ∈ AP , 
Pa ”Γa is mad”.

Proof: Let λ0 = |Pa| and λ1 = 2λ0 . Let R1 = Col(ℵ0, λ1) and P = Pa×R1 ∈ H(κ).

In V P, ℵV P

1 = λ+
1 and Pa ∪ P(Pa) is countable, so (ωω)V Pa is countable and Γ :=

{τ
∼

: τ
∼
is a canonical P−name of a real such that the function listing τ

∼
dominates

(ωω)V Pa } is dense in [ω]ω. By the density of Γ, we can find Γ′ ⊆ Γ such that

P ”Γ′ ∪ Γa is mad”. Now let b = (P,Γ′ ∪ Γa), then (ignoring the obvious clauses)
we need to prove that b satisfies definition 3(a)(4) and that a ≤ b (for which we
need to prove that the requirement from 3(b)(3) is satisfied). We shall prove that
a and b satisfy requirement 3(b)(3), the proof that b satisfies 3(a)(4) is similar.
We shall work in V Pb . Let a0

∼
, ..., an

∼
∈ Γb \ Γa and let a

∼
= ∪

l≤n
al
∼
. Suppose that

(mi : i < ω) ∈ V Pa is increasing, choose a sequence (i(k) : k < ω) ∈ V Pa such
that i(k + 1) > mi(k)+1 + i(k) + (n+ 1)k and let m′k = mi(k)+1 (k < ω). For each
l ≤ n, the set ul

∼
= {k < ω : fal

∼

(k) > mi(k+1)} is cofinite (by the definition of Γ).

Therefore, for every k large enough, |al
∼
∩ mi(k+1)| < k (for every l ≤ n), hence

|a
∼
∩mi(k+1)| < (n+ 1)k. For each such k, |{i : i ∈ [i(k), i(k+ 1))∧ a

∼
∩ [mi,mi+1) 6=

∅}| < (n+ 1)k. As i(k + 1)− i(k) > (n+ 1)k, there is i ∈ [i(k), i(k + 1)) such that
a
∼
∩ [mi,mi+1) = ∅. Therefore, fa

∼
is not dominated by a real from V Pa . �

Claim 9: For every a ∈ AP and a Pa-name r
∼
of a member of [ω]ω, there is b ∈ AP

above a such that 
Pb ”there is s
∼
∈ Γb such that |r

∼
∩ s
∼
| = ℵ0”.

Proof: Follows directly from Claim 8. �

Observation 10: Let Q be a forcing notion from Q. Assume that a0 ≤ al, ηl
∼

is a Pal -name of a Q−generic real over V Pa0 (l = 1, 2), and Pa0 ? η1
∼

is isomorphic

to Pa0 ? η2
∼

over Pa0 (so wlog they’re equal to each other and we may denote the

generic real by η
∼
). By Claim 6, there is a′0 ∈ AP such that a0 ≤ a′0 ≤ al (l = 1, 2),

Pa′0 = Pa0 ? η
∼

and Γa′0 = Γa0 . By Claim 7, there are bl (l ≤ 3) and gl (l ≤ 2) as

there for (a′0, a1, a2) here. �

Definition 11: Let H ⊆ AP be generic over V and let V1 = V [H]. In V1, let P∼[H]
be ∪

a∈H
Pa.

Claim 12: 
AP ”P
∼
|= κ− cc”.
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Proof: Suppose towards contradiction that 
AP ”I
∼
⊆ P
∼

is a maximal antichain
of cardinality κ”. Choose by induction on α < κ a sequence (aα, pα : α < κ) such
that:

a. aα ∈ AP .

b. (aβ : β < α) is ≤AP -increasing cotinuous.

c. aβ+1 
AP ”pβ ∈ I∼ \ {pγ : γ < β}”.

d. pβ ∈ Pβ+1.

For every α < κ, there is qα ∈ Pa<α := ∪
γ<α

Paγ such that pα is compatible with
every r ∈ Pa<α above qα. Let γ(α) < α be the least γ such that qα ∈ Paγ . For some
γ(∗) < κ, S := {α : γ(α) = γ(∗)} is stationary. As |Paγ(∗) | < κ, there is S′ ⊆ S of
cardinality κ such that α1 < α2 ∈ S′ → qα1 = qα2 , which leads to a contradiction.
�

Definition 13: Let V1 be as in Definition 11 and let G ⊆ P[H]
∼

be generic over V1,

we shall denote V [H,G] by V2.

Caim 14: Every real in V2 is from V1[G ∩ Pa] for some a ∈ H.

Proof: Let r
∼

be a AP ? P
∼
-name of a real. By Claim 12, P

∼
[H] |= κ − cc in

V1. Therefore, for every n < ω there are AP−names p̄n = (pn,α
∼

: α < αn
∼

) and

t̄n = (tn,α
∼

: α < αn
∼

) such that:

a. αn
∼
< κ.

b. p̄n is a maximal antichain in P
∼

[H].

c. tn,α
∼

is a P
∼

[H]−name of an element of {0, 1}.

d. pn,α
∼


 ”n ∈ r
∼
iff tn,α

∼
= 1”.

For every n < ω and α < αn
∼
, there is an,α

∼
∈ H
∼

such that pn,α
∼
∈ Pan,α

∼

. Now let

a0 ∈ AP , we can find ≤AP -increasing sequence (an : n < ω) such that an+1 

”αn
∼

= α∗n” for some α∗n < κ. Let aω ∈ AP be an upper bound, and now choose an
increasing sequence (aω+α : α ≤ Σ

n<ω
α∗n) by induction on α ≤ Σ

n<ω
α∗n such that for

every n < ω and β < α∗n, aω+ Σ
l<n

α∗
l
+β+1 
 ”an,β

∼
= a∗n,β and pn,β

∼
= p∗n,β”. We may

assume wlog that a∗n,β ≤AP aω+ Σ
l<n

α∗
l
+β+1, so p∗n,β ∈ Paω++ Σ

l<n
α∗
l

+β+1 . It’s now easy

to see that r
∼
is a Paω+ Σ

n<ω
α∗n

-name. �

Theorem 15: a. In V2, let A = {a
∼

[G] : a
∼
∈ Γb for some b ∈ H} and let

V3 = HOD(R,A), then V3 |= ZF +DC + ”there exists a mad family” + ”all sets of
reals are Q−measurable for every Q ∈ Q”.

b. ZF + DC + ”every set of reals is Lebesgue measurable” + ”there exists a mad
family” is consistent relative to an inaccessible cardinal.

Proof: a. The existence of a mad family follows by Claim 8. Q−measurability for
Q ∈ Q follows from Claim 14 and Observation 10 as in Solovay’s proof.

b. Apply the previous clause to Q =Random real forcing. �
7
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As a corollary to the above theorem, we obtain an answer to a question of Henle,
Mathias and Woodin from [HMW]:
Corollary 16 (ZF + DC): The existence of a mad family does not imply that
ℵ1 ≤ R.
Proof: By Theorem 15 (applied to Random real forcing) and the fact that the
existence of an ω1-sequence of distinct reals implies the existence of a non-Lebesgue
measurable set of reals (see [Sh176]). �
Remark: The above result was also obtained by Larson and Zapletal in [LZ]
assuming the existence of a proper class of Woodin cardinals.
We conclude with a somewhat surprising observation, showing that the analog of
Theorem 15 fails at the lower levels of the projective hierarchy:
Observation 17: If every Σ1

3 set of reals is Lebesgue measurable, then there are
no Σ1

2-mad families.

Proof: By [Sh176], Σ1
3-Lebesgue measurability implies that ωL[x]

1 < ω1 for every
x ∈ ωω. By Theorem 1.3(2) in [To], it follows that there are no Σ1

2-mad families.
�

On a question of Enayat
We now address a question asked by Ali Enayat in [En]. The question is motivated
by the problem of understanding the relationship between Freiling’s axiom of sym-
metry, the continuum hypothesis and the Lebesgue measurability of all sets of reals
(see discussion in [Ch]).
As with the previous results, we were informed by Paul Larson that the following
results can also be obtained under the assumption of a proper class of Woodin
cardinals using the arguments from [LZ].
Definition 18: a. Let WCH (weak continuum hypothesis) be the statement that
every uncountable set of reals can be put into 1-1 correspondence with R.
b. Let AX (Freiling’s axiom of symmetry) be the following statement: Let F be the
set of functions f : [0, 1]→ Pω1([0, 1]), then for every f ∈ F there exist x, y ∈ [0, 1]
such that x /∈ f(y) and y /∈ f(x).
Remark: The term WCH has a different meaning in several papers by other au-
thors.
Theorem 19: ZF +DC + ¬WCH + ”every set of reals is Lebesgue measurable”
is consistent relative to an inaccessible cardinal.
Proof: Let V3 be the model from Theorem 15(b), we shall prove that V3 |= ¬WCH
by showing that there is no injection from R to the mad family A. Suppose toward
contradiction that for some (a, p

∼
) ∈ AP ?P

∼
(where P

∼
is as in Definition 11), a canon-

ical name for a real r
∼
and a first order formula φ(x, y, z,A), (a, p

∼
) 
 ”φ(x, y, r

∼
,A)

defines an injection Fr
∼
from R to A”. We may assume wlog that r

∼
is a canonical Pa-

name. We may also assume wlog that, for every s
∼
∈ Γa, (a, p

∼
) 
 ”if s

∼
∈ Ran(Fr

∼
),

then s
∼

= Fr
∼

(t) for some t ∈ RV Pa ”. This is possible as |Γa| < κ, so we may con-
struct an increasing sequence (aγ : γ < β) of length < κ, such that a0 = a and such
that the upper bound (aβ ,Γaβ ) satisfies the above requirement. ((aβ ,Γa), p

∼
) is then

as required. By increasing a, we may assume wlog that p
∼
is an object p (and not

just an AP -name) from Pa. Now let a2 ∈ AP be defined as a2 = (Pa ? Cohen,Γa)
8
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and let η
∼
be the Pa2-name for the Cohen real. There are a3 ∈ AP and a name ν

∼
such that a2 ≤ a3 and a3 
 ”p 
 ”φ(η

∼
, ν
∼
, r
∼
,A)””, so ν

∼
∈ A, and by the injectivity

of Fr
∼
, ν
∼
/∈ Γa. We may assume wlog that ν

∼
∈ Γa3 .

Let a4 be the amalgamation of two copies of a3 over a2 (i.e. as in the proof of
Claim 7) and let f0 : Pa3 → Pa4 and f1 : Pa3 → Pa4 be the corresponding complete
embeddings. As the amalgamation is over a2, it follows that f0(η

∼
) = f1(η

∼
) and

f0(r
∼

) = f1(r
∼

), and by the argument from the proof of Claim 7 (Subclaim 5),
f0(ν
∼

) 6= f1(ν
∼

). As fl (l = 0, 1) are isormorphisms between a3 and fl(a3) ≤ a4 such
that fl � Pa2 = Id, they induce an automorphism of (AP,≤AP ) mapping a3 to
fl(a3) and a2 to itself. Therefore, a4 
 ””f0(p) 
 ”φ(f0(η

∼
), f0(ν

∼
), f0(r

∼
),A)””,

a4 
 ””f1(p) 
 ”φ(f1(η
∼

), f1(ν
∼

), f1(r
∼

),A)”” and f0(p) = f1(p), a contradiction. �

Theorem 20: WCH is independent of ZF + DC + AX + ”all sets of reals are
Lebesgue measurable”.
Proof: By [We], AX is implied by ZF + DC + ”all sets of reals are Lebesgue
measurable”. Therefore, AX holds in the model V3 from Theorem 15(b) and in
Solovay’s model. By Corollary 19, V3 |= ¬WCH. By the fact that all sets of reals
in Solovay’s model have the perfect set property, it follows thatWCH holds in that
model. �
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