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1. Introduction

The construction of saturated models of a theory T is sensitive to the combinatorial properties of sets 
definable in T . Consequently, properties of saturated models and their constructions are often reflected 
in model-theoretic dividing lines, defined in terms of synactic properties of a formula. For example, it is 
well known that a stable theory has a saturated model in every cardinal in which it is stable [11, Theorem 
III.3.12]. In a similar vein, the third-named author characterized the simple theories in terms of the saturation 
spectrum of a theory, namely, the set of cardinal pairs (λ, κ) with λ ≥ κ and every model of size λ extends 
to a κ-saturated model of the same size [10, Theorem 4.10]. Subsequent work on transferring saturation, 
Keisler’s order, and the interpretability order all suggest that comparisons between saturated models and 
their constructions yield meaningful measures of model-theoretic complexity [1,4,8].

A theory T is said to have exact saturation at the cardinal κ if there is a κ-saturated model of T which 
is not κ+-saturated. If κ is regular and > |T |, every theory has models with exact saturation at κ [7, 
Theorem 2.4, Fact 2.5], but for singular κ, this property connects with notions from classification theory. 
The simplest example of a theory without exact saturation at singular κ is the theory of dense linear orders. 
Given a singular cardinal κ and a κ-saturated dense linear order I and given any subsets A < B from 
I with |A| = |B| = κ, there are cofinal and coinitial subsets A0 and B0 of A and B respectively with 
|A0| = |B0| < κ. It follows from the κ-saturation of I that there is some c ∈ I with a < c < b for all a ∈ A0

and b ∈ B0, hence for all a ∈ A and b ∈ B. By quantifier elimination for the theory of dense linear orders, 
it follows that I is κ+-saturated. This example suggests that failures of exact saturation are related to the 
presence of orders. Indeed, it was shown in [7, Theorem 4.10] that an NIP theory T has exact saturation at 
a singular cardinal κ if and only if T is not distal (assuming 2κ = κ+ and κ > |T |).

Additionally, [7, Theorem 3.3] showed that if T is simple then T has exactly μ-saturated models for 
singular μ of cofinality greater than |T | (again assuming 2μ = μ+ and, additionally, �μ). In the unstable 
case, this argument started from a witness ϕ(x; y) to the independence property along an indiscernible 
sequence I of length κ and inductively constructed a model M containing I so that every type over fewer 
than μ parameters is realized and also so that, for every tuple c from M , there is an interval from the 
indiscernible sequence that is indiscernible over c. This ensures that the model is both μ-saturated yet 
omits the type {ϕ(x; ai)i even : i ∈ I}. Simplicity theory, via the independence theorem and the forking 
calculus, played an important role in that argument.

Here, we are interested in both finding criteria for exact saturation in broader model-theoretic contexts 
but also understanding the reach of the argument of [7], which was tailored to simple theories. We introduce 
shredding, a notion that refines forking and exactly captures the obstacle to ensuring that one can realize 
a formula such that a large interval of a given indiscernible sequence is additionally indiscernible over the 
realization. This notion is defined with exact saturation in mind, but it appears to be a fairly fundamental 
notion and may have uses beyond the context explored here. We use shredding to define the class of 
unshreddable theories, which are roughly the theories with a bound on the number of times a type can 
shred, and observe that both NIP and simple theories are unshreddable. Our main theorem is that one may 
construct exactly saturated models of unshreddable theories with the independence property for singular 
cardinals satisfying certain set-theoretic hypotheses. We follow the rough outline of the argument of [7] but, 
in contrast to the approach taken there, which faced considerable technical issues in adapting the tools of 
simplicity theory for the construction of an exactly saturated model, our proof, in addition to being more 
general, is considerably simpler and more direct.

In section 4, we focus on the way that the class of unshreddable theories compares to other classes from 
classification theory. We show that there is an unshreddable theory with SOP3, which suggests that the class 
of unshreddable theories is substantially broader than the simple theories. However, we show subsequently 
that neither NSOP1 nor NTP2 imply that a theory is unshreddable.
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In section 5, we consider the dual problem of which conditions on a theory imply the inability to construct 
exactly saturated models, which we call singular compactness. We formulate one such criterion and show 
that this condition entails a considerable amount of complexity: theories that meet our condition for every 
formula have TP2 and SOPn for all n. Nonetheless, we show that our condition restricted to a fixed finite 
set of formulas implies a local version of singular compactness. For this local variant, we show that there is 
an example which satisfies the condition for a fixed finite set of formulas which is NSOP4.

2. Shredding

2.1. Basic definitions

From now on, T will denote a complete first-order theory with monster model M. Our model-theoretic 
notation and terminology is standard. Following standard model-theoretic usage, we say the A-indiscernible 
sequence I is extracted from J if I realizes the EM-type of I over A. The existence of such a sequence follows 
by Ramsey and compactness. In this subsection, we will describe shredding and show that it can be given 
a finitary characterization.

Definition 2.1. Let A be a set of parameters and λ an infinite cardinal.

(1) We say that ϕ(x; a) λ-shreds over A when there is b such that:

(a) b = 〈bα : α < λ〉 is an indiscernible sequence over A.
(b) For no α < λ and c ∈ ϕ(M, a) is b≥α an indiscernible sequence over Ac.

(2) We say a type λ-shreds over A if it implies a formula that λ-shreds over A, respectively.
(3) We say p ∈ S(B) λ-shreds over A with a built-in witness if A ⊆ B and an indiscernible sequence 

witnessing λ-shredding is contained in B.
(4) For the above notions, we may omit λ when λ = (|T | + |A|)+.
(5) We define κm

shred(T ) to be the minimal regular cardinal κ such that there is no increasing continuous 
sequence of models 〈Mi : i ≤ κ〉 and p ∈ Sm(Mκ) so that p � Mi+1 shreds over Mi with a built-in 
witness, if such a cardinal exists (where continuous means Mδ =

⋃
i<δ Mi for limit δ). Otherwise, we 

set κm
shred(T ) = ∞. The cardinal κshred(T ) = supm κm

shred(T ).
(6) We say T is unshreddable if κshred(T ) < ∞.

Remark 2.2. Though we do not use it, it is natural to additionally introduce an associated notion of forking: 
say ϕ(x; a) λ-shred-forks over A if ϕ(x; a) 	

∨
i<k ψi(x; ai) where each ψi(x; ai) λ-shreds over A. This satisfies 

extension, by the same argument as for forking. Note that, if ϕ(x; a) λ-shreds over A, then, unless ϕ(x; a)
is inconsistent, we know a is not contained in A.

The following lemma gives a finitary equivalent to λ-shredding.

Lemma 2.3. Assume λ = cf(λ) > |T | + |A|. The following are equivalent:

(1) The formula ϕ(x; a) λ-shreds over A.
(2) There are n, b, η, and ψ satisfying:

(a) b = 〈bα : α < λ〉 is an A-indiscernible sequence.
(b) η = 〈ηi : i < k〉 is a finite sequence of increasing functions in n(2n).
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(c) ψ = 〈ψl(x; y0, . . . , yn−1; a′l) : l < k〉 is a sequence of formulas with a′l ∈ A.
(d) For every δ < λ divisible by 2n (or just for every limit δ < λ), we have

ϕ(x; a) 	
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1, a

′
l) ↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1), a

′
l)
]
.

Proof. (2) =⇒ (1) is clear by definition of λ-shredding.
(1) =⇒ (2). Suppose ϕ(x; a) λ-shreds over A witnessed by the indiscernible sequence b = 〈bα : α < λ〉. 

Then for each δ < λ consider the set of formulas Γδ(x) containing ϕ(x; a) and every formula of the form

χ(x; bδ, . . . , bδ+m−1) ↔ χ(x; bδ+ν(0), . . . , bδ+ν(m−1))

for every m < ω, χ ∈ L(A), and increasing function ν ∈ mλ. Note that if c |= Γδ(x), then b≥δ is Ac-
indiscernible so Γδ(x) is inconsistent for all δ < λ by the definition of λ-shredding. It follows by compactness 
that, for each δ < λ, there is a finite sequence χδ = 〈χδ

l (x; yδ) : l < kδ〉 with each χδ
l (x; yδ) ∈ L(A), and 

(after adding dummy variables to ensure all formulas in χ have the same parameter variables) there are 
mδ < ω and a sequence of increasing functions νδ = 〈νδ,l : l < kδ〉 from mδλ such that

ϕ(x; a) 	
∨
l<kδ

χδ
l (x; bδ, . . . , bδ+mδ−1) ↔ ¬χδ

l (x; bδ+νδ,l(0), . . . , bδ+νδ,l(mδ−1)).

Let uδ = {i : i < mδ} ∪ {νδ,l(i) : i < mδ, l < kδ}. Let nδ be the least natural number such that |uδ| < nδ.
By the pigeonhole principle and the regularity of λ, there is a subset of limit ordinals X ⊆ λ of size λ, 

n, m < ω and χ = 〈χl : l < k〉 so that δ ∈ X implies nδ = n, kδ = k, mδ = m, and χδ = χ. Further refining 
X, we may assume δ < δ′ from X implies δ + i < δ′ for all i ∈ uδ. Let Y = {δ + i : δ ∈ X, i ∈ uδ} ⊆ λ. Let 
〈αi : i < λ〉 be an increasing enumeration of a subset of λ containing Y so that 〈α(2n)·i : i < λ〉 enumerates 
X (which is possible by the choice of n). Then if δ = α(2n)·j ∈ X, we can find for each l < k an increasing 
function ηδ,l ∈ n(2n) so that

δ + νδ,l(i) = α(2n)·j+ηδ,l(i),

for all i < m (we do not place any constraints on ηδ,l(i) for m ≤ i < n other than the requirement that 
ηδ,l is an increasing function—note that α(2n)·j+ηδ,l(i) < α(2n)(j+1), which is the next ordinal in X after 
δ). Write ηδ for this sequence of functions. By one last application of the pigeonhole principle, we can find 
X ′ ⊆ X of size λ and η so that δ ∈ X ′ implies η = ηδ and let 〈α′

i : i < λ〉 be an increasing enumeration of 
{αi+j : αi ∈ X ′, j < 2n}. Write b

′ = 〈b′i : i < λ〉 for the subsequence of b defined by b′i = bα′
i
. Note that if δ

is divisible by 2n, then α′
δ ∈ X ′.

Unraveling definitions, we see that

ϕ(x; a) 	
∨
l<k

χl(x; b′δ, . . . , b′δ+m−1) ↔ ¬χl(x; b′δ+ηl(0), . . . , b
′
δ+ηl(m−1)),

for all δ < λ divisible by 2n. Because m < n, by adding dummy variables to each χl, we obtain formulas ψl

so that

ϕ(x; a) 	
∨
l<k

ψl(x; b′δ, . . . , b′δ+n−1) ↔ ¬ψl(x; b′δ+ηl(0), . . . , b
′
δ+ηl(n−1)),

as desired. �
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Remark 2.4. The proof shows, in fact, that any sequence witnessing that ϕ(x; a) λ-shreds over A gives rise 
to a sequence b as in (2) by restricting to a subsequence.

Corollary 2.5. Assume λ = cf(λ) > |T | + |A| and ϕ(x; a) λ-shreds over A. Then there is an A-indiscernible 
sequence 〈bα : α < λ〉 and m < ω so that

• 〈(bm·α, bm·α+1, . . . , bm·α+m−1) : α < λ〉 is Aa-indiscernible.
• 〈bα : α < λ〉 witnesses that ϕ(x; a) λ-shreds over A and, additionally, for every c ∈ ϕ(M, a) and α < λ, 

the finite sequence (bm·α, bm·α+1, . . . , bm·α+m−1) is not Ac-indiscernible.

Proof. Suppose ϕ(x; a) λ-shreds over A. By Lemma 2.3, there is an A-indiscernible sequence 〈cα : α < λ〉, a 
number n < ω, a sequence of L(A)-formulas ψ = 〈ψl(x; y0, . . . , yn−1) : l < k〉, and a sequence η = 〈ηl : l < k〉
with each ηl ∈ n(2n) an increasing function, such that, for every δ < λ divisible by 2n,

ϕ(x; a) 	
∨
l<k

[
ψl(x; cδ, . . . , cδ+n−1) ↔ ¬ψl(x; cδ+ηl(0), . . . , cδ+ηl(n−1))

]
.

Let m = 2n and extract an Aa-indiscernible sequence 〈(bm·α, bm·α+1, . . . , bm·α+m−1) : α < λ〉 from 
〈(cm·α, cm·α+1, . . . , cm·α+m−1) : α < λ〉. Then for all δ < λ divisible by 2n,

ϕ(x; a) 	
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1) ↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))

]

and 〈bα : α < λ〉 is an A-indiscernible sequence, so we are done. �
From Lemma 2.3, we obtain a variant of shredding that is somewhat more cumbersome and less natural, 

but will be useful in the arguments below.

Definition 2.6. For an infinite cardinal λ, we say ϕ(x; a) explicitly λ-shreds over A if there are n, b, η, and 
ψ satisfying:

(1) b = 〈bα : α < λ〉 is an A-indiscernible sequence.
(2) η = 〈ηl : l < k〉 is a finite sequence of increasing functions in n(2n).
(3) ψ = 〈ψl(x; y0, . . . , yn−1; a′l) : l < k〉 is a sequence of formulas with a′l ∈ A.
(4) For every δ < λ divisible by 2n, we have

ϕ(x; a) 	
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1, a

′
l) ↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1), a

′
l)
]
.

We will often say that the tuple (b, n, η, ψ) witnesses that ϕ(x; a) explicitly λ-shreds over A. We say ϕ(x; a)
explicitly shreds over A if it explicitly λ-shreds over A for some λ. As before, we will say that a type p over 
B ⊇ A explicitly shreds over A if it implies some formula that does, and it explicitly shreds over A with a 
built-in witness if the witnessing A-indiscernible sequence b may be chosen to be contained in B.

The point of introducing this definition is that explicit shredding is a notion that lends itself to compact-
ness arguments, as in the following easy lemma:

Lemma 2.7. The following are equivalent:

(1) The formula ϕ(x; a) shreds over A.
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(2) The formula ϕ(x; a) explicitly shreds over A.
(3) The formula ϕ(x; a) explicitly ℵ0-shreds over A.
(4) The formula ϕ(x; a) explicitly λ-shreds over A for all infinite cardinals λ.

Proof. (1) =⇒ (2) is Lemma 2.3, and (2) =⇒ (3) is immediate, by restricting the witnessing indiscernible 
sequence to an initial segment of length ω. (4) =⇒ (1) is also immediate, taking any λ ≥ (|A| + |T |)+, since 
explicit shredding implies shredding.

(3) =⇒ (4) Let λ be any uncountable cardinal and suppose ϕ(x; a) explicitly ℵ0-shreds, witnessed by 
(b, n, η, ψ), where b = 〈bi : i < ω〉. Define b′i = (b2n·i, . . . , b2n·i+2n−1) for all i < ω. The sequence 〈b′i : i < ω〉
is also A-indiscernible and, without loss of generality, by (the proof of) Corollary 2.5, we may assume 
further that it is Aa-indiscernible. Then applying compactness, we can stretch it to b

′ = 〈b′i : i < λ〉 with 
b′i = (b2n·i, . . . , b2n·i+2n−1) for all i < λ. Then the sequence 〈bi : i < λ〉 is A-indiscernible and, together with 
n, η, and ψ witnesses that ϕ(x; a) explicitly λ-shreds. This shows (4). �
Lemma 2.8. Suppose A is a set of parameters and B ⊆ A. The following are equivalent:

(1) ϕ(x; a) shreds over A.
(2) There is an A-indiscernible sequence b = 〈bi : i < λ〉 for λ = (|A| + |T |)+ such that for no c ∈ ϕ(M; a)

and for no α < λ is b≥α indiscernible over Bc.
(3) ϕ(x; a) explicitly shreds over A witnessed by a tuple (b, n, η, ψ), where the formulas ψ have no parameters 

(i.e. are over the empty set).

Proof. (2) =⇒ (1) is clear by the definition of shredding, since in particular (2) entails that for no c ∈ ϕ(M; a)
and α < λ is b≥α indiscernible over Ac.

(3) =⇒ (2) since, if b = 〈bα : α < λ〉, then, for all δ < λ divisible by 2n, we have the implication

ϕ(x; a) 	
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1) ↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))

]
,

which implies that no end segment of b can be indiscernible over a realization of ϕ(x; a) (with no additional 
parameters). A fortiori, no end segment of b can be indiscernible over a set consisting of B and a realization 
of ϕ(x; a).

To prove (1) =⇒ (3), we know, by Lemma 2.7, ϕ(x; a) explicitly shreds over A, witnessed by the tuple 
(b, n, η, ψ). Let c be a tuple enumerating the parameters occurring in the ψ and let d be the sequence 
d = 〈dα : α < λ〉 = 〈(bα, c) : α < λ〉, which is A-indiscernible since b was assumed to be A-indiscernible and 
c comes from A. Then it is easily seen that by merely adding dummy variables to the formulas ψ, we get 
ψ
′ = 〈ψ′

l : l < k〉 such that for every δ < λ divisible by 2n, we have

ϕ(x; a) 	
∨
l<k

[
ψ′
l(x; dδ, . . . , dδ+n−1) ↔ ¬ψ′

l(x; dδ+ηl(0), . . . , dδ+ηl(n−1))
]
.

Then ϕ(x; a) explicitly shreds, witnessed by the tuple (d, n, η, ψ′), where the formulas ψ′ have no parame-
ters. �

The direction (1) =⇒ (2) of Lemma 2.8 gives base monotonicity for shredding:

Corollary 2.9. Suppose B ⊆ A and ϕ(x; a) shreds over A, then ϕ(x; a) shreds over B.

Proposition 2.10. Suppose κ is a regular cardinal and m < ω. The following are equivalent:
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(1) There is an increasing sequence A = 〈Ai : i ≤ κ〉 with Aκ =
⋃

i<κ Ai and p ∈ Sm(Aκ) such that p
(explicitly) shreds over Ai for all i < κ.

(2) There is an increasing continuous sequence of models M = 〈Mi : i ≤ κ〉 with Mκ =
⋃

i<κ Mi and some 
p ∈ Sm(Mκ) such that p � Mi+1 shreds over Mi with a built-in witness.

Proof. The direction (2) =⇒ (1) is immediate by Lemma 2.7, taking Ai = Mi for all i ≤ κ.
(1) =⇒ (2): for each i < κ, fix a formula ϕi(x; ai) ∈ p that explicitly shreds over Ai, witnessed by 

(bi, ni, ηi, ψi). By Lemma 2.8, we may assume that bi and ψi have been chosen so that the formulas in ψi

have no parameters. By the regularity of κ, after replacing the sequence with a subsequence, we may assume 
ϕi(x; ai) ∈ p � Ai+1. Moreover, without loss of generality, we may assume bi = 〈bi,j : j < ω〉 for all i < κ.

Our assumption that ψi contains no parameters entails that ϕi(x; ai) explicitly shreds over any subset of 
Ai and, in particular, that ϕi(x; ai) shreds over a<i. Therefore we may replace Ai by a<i and p by p � a<κ

and, hence, without loss of generality, the sequence 〈Ai : i < κ〉 is increasing and continuous.
Let λ = 〈λi : i < κ〉 be an increasing and continuous sequence of cardinals ≥ |T | with λi ≥ |Ai| and λi+1

regular for all i < κ. Denote limi<κ λi by μ. Let y = 〈yj : j < μ〉 be a sequence of variables of length μ and 
denote by yi the restriction 〈yj : j < λi〉 to the first λi variables.

Let Γ(y, zi : i < κ) be a partial type over Aκ such that the variables zi = 〈zi,j : j < λi+1〉 have length 
λi+1, and which naturally expresses the following, for all i < κ:

(1) The sequence yi enumerates a model containing Ai.
(2) The sequence zi is indiscernible over yi, realizes the same EM-type over Ai as bi, and is contained in 

yi+1.
(3) The formula ϕi(x; ai) explicitly shreds over yi, witnessed by (zi, ni, ηi, ψi).

It suffices to show that this partial type is consistent, as to conclude we may take any complete type over 
the union of models realizing the yi containing {ϕ(x; ai) : i < κ}. By compactness, it suffices to show this 
for κ finite. By induction on κ < ω, we will show that we can find models and sequences satisfying the 
conditions in the partial type above. Suppose this has been shown for κ = l. By induction, we know there 
are models 〈Mj : j < l〉 and sequences 〈cj : j < l〉 satisfying the requirements. Choose an arbitrary model 
M of size λl containing AlMl−1cl−1. Extract an M -indiscernible sequence b

′
l from bl. Then b

′
l ≡Al

bl so there 
is an automorphism σ ∈ Aut(M/Al) with σ(b′l) = bl. For each j < l, define M ′

j = σ(Mj) and c′j = σ(cj), 
and then put M ′

l = σ(M).
Finally, let m = nl and consider the sequence 〈(bl,2m·i, . . . , bl,2m·i+2m−1) : i < ω〉. Let b′′l =

〈(b′′2m·i, . . . , b
′′
2m·i+2m−1) : i < λl+1〉 be an M ′

lal-indiscernible sequence realizing the same EM-type over 
Ml−1Alal as 〈(bl,2m·i, . . . , bl,2m·i+2m−1) : i < ω〉. Then defining c′l = 〈b′′i : i < λl+1〉, we have that c′l is an 
M ′

l -indiscernible sequence and ϕl(x; al) explicitly shreds over M ′
l , witnessed by (c′l, nl, ηl, ψl). It follows that 

〈M ′
j : j < l + 1〉 and 〈c′j : j < l + 1〉 satisfy the requirements, completing the induction and the proof. �

Remark 2.11. Note that, in the course of the proof Proposition 2.10, we were able to replace each Ai with 
a<i, in which case we clearly have |Ai| + ℵ0 = |i| + ℵ0 (in fact, for finite i we have |Ai| = l(a0)i and for 
infinite i we have |Ai| = |i|).

It follows, then, that if κ is a regular cardinal and κm
shred(T ) ≥ κ+, then we can find a witness of the form 

〈Mi : i ≤ κ〉 and p ∈ Sm(Mκ) with |M0| an arbitrary regular cardinal ≥ |T |, 〈|Mi| : i < κ〉 an increasing 
and continuous sequence of cardinals, and with |Mi+1| a regular cardinal for all i < κ.
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2.2. Shredding and classification theory

Here we establish some preliminary connections between the concepts of shredding and unshreddable 
theories with NIP and simplicity.

Definition 2.12. Recall that the formula ϕ(x; y) has the independence property if for every n, there are 
a0, . . . , an−1 and tuples bw for every w ⊆ {0, . . . , n − 1} so that

|= ϕ(ai, bw) ⇐⇒ i ∈ w.

A theory is said to have the independence property if some formula does modulo T , otherwise T is NIP.

Equivalently, the formula ϕ(x; y) has the independence property if there is an indiscernible sequence 
〈ai : i < ω〉 and b so that |= ϕ(ai, b) if and only if i is even (see, e.g., [13, Lemma 2.7]).

Proposition 2.13. If λ = cf(λ) > |T | + |A| and some consistent formula ϕ(x; a) λ-shreds over A, then T has 
the independence property.

Proof. Suppose ϕ(x; a) λ-shreds over A. Then by Lemma 2.7, it explicitly λ-shreds so we may fix k, n, ψ, 
η, and b = 〈bα : α < λ〉 as in the definition of explicit shredding. Let c be an arbitrary element of ϕ(M; a). 
By the pigeonhole principle, there is a subset X ⊆ λ of size λ, l < k, and t ∈ {0, 1} so that

|= ψl(c; bω·α, . . . , bω·α+n−1, a
′
l)t ∧ ψl(c; bω·α+ηl(0), . . . , bω·α+ηl(n−1), a

′
l)1−t

for all α ∈ X. Let 〈αi : i < λ〉 be an increasing enumeration of X. For i < λ even, we define di =
(bω·αi

, . . . , bω·αi+n−1) and for i < λ odd, we define di = (bω·αi+ηl(0), . . . , bω·αi+ηl(n−1)). Then 〈di : i < λ〉 is 
an A-indiscernible sequence, by the A-indiscernibility of b, and we have

c |= {ψl(x, di, a′l)t : i < λ even} ∪ {ψl(x; di, a′l)1−t : i < λ odd},

which shows χ(x, z; y) = ψl(x, y, z) has the independence property. �
Recall that a formula ϕ(x; a0) divides over a set A if there is an A-indiscernible sequence 〈ai : i < ω〉

such that {ϕ(x; ai) : i < ω} is inconsistent. A formula ϕ(x; b) forks over A if ϕ(x; b) 	
∨

i<κ ψ(x; ai) where 
each ψi(x; ai) divides over A. A type divides or forks over A if it implies a formula that respectively divides 
or forks over A. A theory is called simple if there is a cardinal κ such that, whenever p is a type (in finitely 
many variables) over A, there is B ⊆ A over which p does not fork with |B| < κ. The least such cardinal κ
is called κ(T ) and the least such regular cardinal is called κr(T ).

Proposition 2.14. If ϕ(x; a) shreds over A then ϕ(x; a) forks over A.

Proof. Suppose λ = (|T | + |A|)+ and, by Lemma 2.7, we know ϕ(x; a) explicitly λ-shreds over A. Hence, 
there is an A-indiscernible sequence b = 〈bi : i < λ〉 such that there is a sequence of L(A)-formulas 
〈ψl(x; y0, . . . , yn−1) : l < k〉 and a sequence 〈ηl : l < k〉 with the property that

(∗) ϕ(x; a) 	
∨

l<k ψl(x; bδ, . . . , bδ+n−1) ↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))

for all δ < λ divisible by 2n. Given α < λ, let bα = 〈bω·α+i : i < ω〉. By the proof of Corollary 2.5, we can 
moreover assume that 〈bα : α < λ〉 is an Aa-indiscernible sequence. We will choose (aα)α<λ so that
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(1) For all α < λ, aα |= tp(a/Ab<α).
(2) For all α < λ, bα is an aαA-indiscernible sequence.

Given (aβ)β<α, to choose aα, first apply Ramsey and compactness to extract from bα a sequence 
b
∗
α = 〈b∗ω·α+i : i < ω〉 which is Aab<α-indiscernible. Then as bα ≡Ab<α

b
∗
α, we can choose aα so that 

aαbα ≡Ab<α
ab

∗
α. The sequence (aα)α<λ satisfies both (1) and (2) by construction. By Ramsey, compact-

ness, and automorphism, we may moreover assume the sequence 〈(aα, bα) : α < λ〉 is an A-indiscernible 
sequence.

By the finite Ramsey theorem, there is n∗ so that n∗ → (2n)n2k . Let Λ = {ν ∈ 2n(n∗) : ν increasing} and 
for ν ∈ Λ, let bα,ν = (bω·α+ν(i))i<2n. Let ϕ′(x; bα,ν) (suppressing parameters from A) denote the formula

∧
l<k

ψl(x; bω·α+ν(0), . . . , bω·α+ν(n−1)) ↔ ψl(x; bω·α+ν(ηl(0)), . . . , bω·α+ν(ηl(n−1))).

Let ϕ∗(x; aα, bα,ν) denote the formula ϕ(x; aα) ∧ ϕ′(x; bα,ν).

Claim 1: ϕ(x; a0) 	
∨

ν∈Λ ϕ∗(x; a0, b0,ν).

Proof of claim. This proof is purely combinatorial and will not make use of (1), (2), or (*). Let c be any tuple 
with M |= ϕ(c; a0). Given any increasing ξ ∈ n(n∗), define χ(ξ) = {l < k : M |= ψl(c; bξ(0), . . . , bξ(n−1), a′l)}. 
This defines a coloring with 2k possible colors. As n∗ → (2n)n2k , there is ν ∈ Λ so that ν is an increasing 
enumeration of a homogeneous subset of n∗ of size 2n. For each l < k, by homogeneity, both (ν(0), . . . , ν(n −
1)) and (ν(ηl(0)), . . . , ν(ηl(n − 1))) take on the same value with respect to the coloring χ, hence

M |=
∧
l<k

ψl(c; bν(0), . . . , bν(n−1)) ↔ ψl(c; bν(ηl(0)), . . . , bν(ηl(n−1))).

This shows M |= ϕ∗(x; a0, b0,ν), proving the claim. �
Claim 2: For each ν ∈ Λ, ϕ∗(x; a0, b0,ν) divides over A.

Proof of claim. Let ν∗ = (0, . . . , 2n − 1). We will first show that ϕ∗(x; a0, b0,ν∗) divides over A. By (∗),

ϕ(x; a) 	 ¬
∧
l<k

ψl(x; bω·α, . . . , bω·α+n−1) ↔ ψl(x; bω·α+ηl(0), . . . , bω·α+ηl(n−1)),

and therefore ϕ(x; a) 	 ¬ϕ′(x; bα,ν∗) for all α < λ. For all α, we have aα ≡Ab<α
a, so if β < α, then 

ϕ(x; aα) 	 ¬ϕ′(x; bβ,ν∗). Therefore, when β < α, we have

ϕ∗(x; aα, bα,ν∗) 	 ¬ϕ∗(x; aβ , bβ,ν∗),

from which it follows that {ϕ∗(x; aα, bα,ν∗) : α < λ} is 2-inconsistent. Since 〈(aα, bα,ν∗) : α < λ〉 is an 
A-indiscernible sequence, we have shown ϕ∗(x; a0, b0,ν∗) divides over A.

Finally, as b0 is an Aa0-indiscernible sequence, we have b0,ν ≡Aa0 b0,ν∗ for all ν ∈ Λ. It follows that 
ϕ∗(x; a0, b0,ν) divides over A for all ν ∈ Λ. This proves the claim and therefore proves the proposition, by 
Claim 1. �

As a corollary, we obtain the following:

Proposition 2.15. If T is simple, then κshred(T ) ≤ κr(T ).
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Proof. Suppose not, so κr(T ) < κshred(T ). Let κ = cf(κ) ≥ κr(T ) with κ < κshred(T ). Then we have the 
following:

• 〈Mi : i ≤ κ〉 is an increasing sequence of models of T .
• p(x) = {ϕ(x; ai) : i < κ} is a consistent partial type.
• ϕ(x; ai) shreds over Mi.
• ai ∈ Mi+1.

Then by Proposition 2.14, p forks over Mi for all i < κ. Let Mκ =
⋃

i<κ Mi. As T is simple, there is subset 
A ⊆ Mκ with |A| < κr(T ) such that p does not fork over A. As κ is regular, there is some i < κ so that 
A ⊆ Mi, from which it follows that p does not fork over Mi as well, a contradiction to the definition of 
κr(T ). �
Corollary 2.16. The class of unshreddable theories contains the NIP and simple theories.

Proof. This follows immediately from Proposition 2.13 and Proposition 2.15. �
3. Respect and exact saturation

3.1. Respect

For the entirety of this subsection, we fix a singular cardinal μ. Writing cf(μ) = κ, we will assume there 
is an increasing and continuous sequence of cardinals λ = 〈λi : i ≤ κ〉 such that λ0 > κ, λi+1 is regular for 
all i < κ, and λκ = μ. We will assume we have fixed for each i < κ a sequence ai = 〈ai,j : j < λi+1〉, which 
is a<i-indiscernible. Additionally, we will assume that T is a theory with κ1

shred(T ) ≤ κ.

Definition 3.1. Suppose i < κ and A is a set of parameters.

(1) We say that A respects ai when for any finite subset C ⊆ A, there is α < λi+1 such that ai,≥α is 
C-indiscernible.

(2) We say p ∈ S<ω(A) respects ai when, for every c |= p, the set Ac respects ai.

Remark 3.2. In Definition 3.1(1), by the regularity of λi+1, we could have equivalently asked for the existence 
of such an α < λi+1 for any C ⊆ A with |C| < λi+1, since there are fewer than λi+1 finite subsets of any 
such C.

Definition 3.3. We define K to be the class of A such that:

(1) A = 〈Ai : i ≤ κ〉 is increasing continuous.
(2) |Ai| = λi for all i < κ.
(3) ai ⊆ Ai+1 for all i < κ.
(4) Ai respects ai for all i < κ, i.e. there is some α < λi+1 such that ai,≥α is Ai-indiscernible, using 

Remark 3.2.

Given A, B ∈ K, we say A ≤K B if Aj ⊆ Bj for all j < κ. We say A ≤K,i B if Aj ⊆ Bj for all j satisfying 
i ≤ j < κ and A ≤K,∗ B if A ≤K,i B for some i < κ. We may omit the K subscript when it is clear from 
context.
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Lemma 3.4. Suppose p is a partial 1-type over Aκ with |dom(p)| ≤ λi for some i < κ. Then there are i′ with 
i ≤ i′ < κ and p′ ⊇ p with |dom(p′)| ≤ λi′ such that, if q is a type over Aκ extending p′, then q does not 
shred over Ai′ .

Proof. Suppose not. Then we will construct an increasing sequence of types 〈pj : j < κ〉 extending p and 
an increasing sequence of ordinals 〈ij : j < κ〉 such that |dom(pj)| = λij and pj shreds over Aij for all 
j < κ. To begin, we set i0 = i and use our assumption to find some p0 ⊇ p such that p0 shreds over Ai0 . 
We may assume dom(p0) contains Ai0 and has cardinality λi0 . Given any 〈pj : j < α〉 and 〈ij : j < α〉
for α ≥ 1, we put p′ =

⋃
j<α pj and i′ = supj<α ij (here we make use of the fact that κ is regular). Then 

|dom(p′)| = λi′ and p′ extends p. Let iα = i′ + 1. As iα ≥ i, by hypothesis, there is some type pα ⊇ p′ such 
that pα shreds over Ai′+1. As this will be witnessed by a single formula, we may assume dom(pα) contains 
Aiα and |dom(pα)| = λiα , completing the induction.

Let p∗ =
⋃

j<κ pj . Then, by construction, we have p∗ shreds over Aij for all j < κ. By Proposition 2.10, 
this contradicts κ1

shred(T ) ≤ κ. �
Lemma 3.5. If A ∈ K and p is a 1-type over Aκ with |dom(p)| < μ, then there is A′ ∈ K such that A ≤K A

′

and some c ∈ A′
κ realizes p(x).

Proof. By Lemma 3.4 and the choice of μ, we may extend p to a type p′ such that, for some i < κ, 
|dom(p′)| ≤ λi and no type extending p′ over Aκ shreds over Ai, and hence does not shred over Ai′ for any 
i′ ≥ i by base monotonicity. Without loss of generality, we may assume p = p′.

By induction on j ∈ [i, κ], we will define types pj ∈ S1(Aj) so that

(1) The types pj are increasing with j.
(2) For all j ∈ [i, κ), pj ∪ p is consistent.
(3) For all j ∈ [i, κ), if c |= pj+1, then for some α < λj+1, aj,≥α is Ajc-indiscernible.

Let pi ∈ S1(Ai) be any type consistent with p. Given pj , we note that p ∪ pj extends p and therefore does 
not explicitly shred over Aj . Because |p ∪pj | < λj+1, by compactness and the fact that Aj respects aj , there 
is a realization c |= p ∪ pj and α < λj+1 such that aj,≥α is Ajc-indiscernible. We put pj+1 = tp(c/Aj+1). 
Finally, given 〈pj : j ∈ [i, δ)〉 for δ limit > i, we set pδ =

⋃
j∈[i,δ) pj .

Define pκ =
⋃

j∈[i,κ) pj . Let c realize pκ and define A∗ by A∗
j = Aj for all j < i + 1 and A∗

j = Ajc for all 
j ≥ i +1. For all j ∈ [i, κ), as c realizes pj+1, we know there is α < λj+1 such that aj,≥α is cAj-indiscernible. 
It follows that A∗ ∈ K, completing the proof. �
3.2. A one variable theorem

Theorem 3.6. For all m, we have κm
shred(T ) = κ1

shred(T ).

Proof. The inequality κm
shred(T ) ≥ κ1

shred(T ) is clear, so it suffices to show κ1
shred(T ) ≥ κm

shred(T ). Suppose 
κ ≥ κ1

shred(T ) is a regular cardinal, 〈λi : i < κ〉 is an increasing continuous sequence of cardinals with 
λ0 > κ + |T | and λi+1 regular for all i < κ. Let μ = supi<κ λi. Note μ > κ.

We will prove by induction on m that, if κ < κm
shred(T ), there is an increasing and continuous sequence of 

sets 〈Bi : i ≤ κ〉 and q(y) ∈ S1(Bκ) such that q � Bi+1 shreds over Bi. This contradictions our assumption 
that κ ≥ κ1

shred(T ), by Proposition 2.10.
When m = 1, we immediately have a contradiction since κ1

shred(T ) ≤ κ < κ1
shred(T ).

Suppose it has been proven for m and suppose 〈Ai : i ≤ κ〉 is an increasing continuous sequence of models 
with |Ai| = λi and p(x0, . . . , xm) ∈ Sm+1(Aκ) is a type such that p � Ai+1 shreds over Ai with a built-in 
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witness bi, witnessed by the formula ϕi(x0, . . . , xm; ai) ∈ p � Ai+1. Then because bi is Ai-indiscernible, we 
have 〈Ai : i ≤ κ〉 ∈ K in the notation of Subsection 3.1 with the bi playing the role of ai.

Let p′(x0, . . . , xm) = {ϕ(x0, . . . , xm; ai) : i < κ} and let p′′(xm) be defined by

p′′(xm) = (∃x0, . . . , xm−1)
∧

p′(x0, . . . , xm)

= {(∃x0, . . . , xm−1)
∧
ϕ∈w

ϕ(x0, . . . , xm−1) : w ⊆ p′ finite}.

Note that |p′′| = κ < μ. By Lemma 3.5, there is B = 〈Bi : i ≤ κ〉 ∈ K such A ≤K B and such that p′′ is 
realized by some c ∈ Bκ. By the definition of K, for each i < κ, there is some αi < λi+1 such that bi,≥αi

is Bi-indiscernible. Let i∗ be minimal such that c ∈ Bi∗ and let q(x0, . . . , xm−1) = p′(x0, . . . , xm−1, c). Let 
q′ ∈ S(Bκ) be any completion of q. Then for all i ≥ i∗, we have that q′ � Bi+1 shreds over Bi with the 
built-in witness bi,≥αi

. Reindexing by setting B′
i = Bi∗+i and ai,j = bi,αi+j for all i < κ and j < λi+1, we 

may apply the induction hypothesis to complete the proof. �
3.3. Exact saturation

As in Subsection 3.1, we fix a singular cardinal μ. Writing cf(μ) = κ, we will assume there is an increasing 
and continuous sequence of cardinals λ = 〈λi : i ≤ κ〉 such that λ0 > κ, λi+1 is regular for all i < κ, and 
λκ = μ.

We write I to denote {(i, α) : i < κ, α < λi+1} ordered lexicographically. We write Ii,≥β = {(j, α) :
j = i and α ≥ β} and we write Ii for Ii,≥0. We also fix an indiscernible sequence a = 〈at : t ∈ I〉. We 
similarly write ai,≥β for 〈at : t ∈ Ii,≥β〉 and ai for 〈at : t ∈ Ii〉. If i < κ, and α < β < λi+1, we write ai,α,β
for the sequence 〈aj,γ : j = i, γ ∈ [α, β)〉. Note that, in particular, we have ai is a<i-indiscernible. In this 
subsection, we will write K to refer to the class of A as in Definition 3.3 with respect to the sequences ai
described above.

Additionally, we will assume that T is a theory with κ1
shred(T ) ≤ κ = cf(μ) and with the independence 

property witnessed by the formula ϕ(x; y) along the sequence 〈ai : i ∈ I〉—that is, for all X ⊆ I, we have 
that {ϕ(x; ai)(ifi∈X) : i ∈ I} is consistent.

We will construct a model containing 〈ai : i ∈ I〉 that is μ-saturated but every finite tuple from this 
model has the property that there are intervals from our fixed indiscernible sequence 〈ai : i ∈ I〉 which are 
indiscernible over it. Because we assume T has the independence property, witnessed along this indiscernible 
sequence, it will follow that {ϕ(x; ai) : i even} ∪ {¬ϕ(x; ai) : i odd} is an omitted type, which means that 
the model produced by our construction is not μ+-saturated. Our proof pursues the same strategy as the 
construction of an exactly satured model of a simple theory from [7, Theorem 3.3], but with κshred(T ) < ∞
replacing the assumption of simplicity.

In order to organize the construction, we will use the following combinatorial principle:

Definition 3.7. Suppose κ is an uncountable cardinal. For a club C, we write Lim(C) for the set {α ∈ C :
sup(C ∩α) = α}. We write �κ for the following assertion: there is a sequence 〈Cα : α ∈ Lim(κ+)〉 such that

(1) Cα ⊆ α is club.
(2) If β ∈ Lim(Cα) then Cβ = Cα ∩ β.
(3) If cf(α) < κ, then |Cα| < κ.

We call such a sequence a square sequence (for κ).
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The following remark was noted in [7, Remark 3.2] —it will play a similar role in our deduction of the 
main theorem.

Remark 3.8. Suppose 〈Cα : α ∈ Lim(κ+)〉 is a square sequence and C ′
α = Lim(Cα). Then we have the 

following:

(1) If C ′
α �= ∅ and sup(C ′

α) �= α then C ′
α has a last element and cf(α) = ω. If C ′

α = ∅ then cf(α) = ω.
(2) For all β ∈ C ′

α, C ′
β = C ′

α ∩ β.
(3) If cf(α) < κ, then |C ′

α| < κ.

The following is the main theorem of the section. The proof follows [7, Theorem 3.3].

Theorem 3.9. If T has the independence property and κshred(T ) < ∞, then T has an exactly μ-saturated 
model for any singular μ > |T | of cofinality κ ≥ κshred(T ) such that �μ and 2μ = μ+.

Proof. Let 〈Cα : α ∈ Lim(μ+)〉 be a sequence as in Remark 3.8. Note that, for all α ∈ Lim(μ+), we have 
that |Cα| < μ by condition (3) of Remark 3.8, as α < μ+ and hence cf(α) < μ, as μ is singular. Partition 
μ+ into {Sα : α < μ+} so that each Sα has size μ+. By induction, we will construct a sequence of pairs 
〈(Aα, pα) : α < μ+〉 such that

(1) Aα = 〈Aα,i : i < κ〉 ∈ K.
(2) pα = 〈pα,β : β ∈ Sα \ α〉 is an enumeration of all complete 1-types over subsets of 

⋃
i Aα,i of size < μ

(using |T | < μ and 2μ = μ+).
(3) If β < α, then Aβ ≤∗ Aα.
(4) If α ∈ Sγ and γ < α, then Aα+1 contains a realization of pγ,α.
(5) If α is a limit, then for any i < κ such that |Cα| < λi and β ∈ Cα, then we have that Aβ ≤i Aα.

At stage 0, we define A0 to be the minimal sequence in K—that is, A0,i =
⋃

a<i for all i < κ. For the 
successor case, use Lemma 3.5.

Now we handle the limit cases.

Case 1: sup(Cα) = α. Let i0 = min{i < κ : |Cα| < λi} which is necessarily a successor ordinal. For i < i0, 
we define Aα,i = a<i and for i ≥ i0 successor, we let Aα,i =

⋃
β∈Cα

Aβ,i. Note that |Aβ,i| ≤ λi for all i < κ, 
and for i limit we define Aα,i by continuity, setting

Aα,i =
⋃
j<i

j successor

Aα,j .

Note that it follows, then, that for i limit, we also have Aα,i =
⋃

β∈Cα
Aβ,i.

We have to check (1), (3), and (5). First we show that Aα ∈ K. The only thing to check is that i ≥ i0
implies Aα,i respects ai. Now if w ⊆ Aα,i is a finite set, for each e ∈ w, there is some βe ∈ Cα so that 
e ∈ Aβe,i. Let β = max{βe : e ∈ w}. Then Cα ∩ β = Cβ . By (5), the fact that |Cβ | < λi0 , and induction, we 
have βe < β implies βe ∈ Cβ and Aβe

≤i0 Aβ so Aβe,i ⊆ Aβ,i. It follows that w ⊆ Aβ,i. As Aβ ∈ K, we know 
Aβ,i respects ai, so there is some δ < λi+1 such that ai,≥δ is w-indiscernible. As w ⊆ Aα,i is arbitrary, this 
shows Aα,i respects ai and, therefore, Aα ∈ K. Next, if β < α, then, because sup(Cα) = α, there is β′ ∈ Cα

such that β < β′. By induction, Aβ ≤∗ Aβ′ and, by construction, Aβ′ ≤i0 Aα, from which it follows that 
Aβ ≤∗ Aα, which shows (3). Finally (5) is by construction.

Case 2: sup(Cα) < α. We know in this case Cα has a maximum element γ and cf(α) = ω. Choose an 
increasing cofinal sequence 〈βn : n < ω〉 in α with β0 = γ. Then, by induction, we may choose an increasing 
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sequence of successor ordinals 〈in : n < ω〉 so that Aβn
≤in Aβn+1 . Setting i−1 = 0 and i = sup{in : n < ω}, 

we define Aα as follows: for successor j ∈ [in−1, in), we put Aα,j = Aβn,j and for successor j ≥ i, we put 
Aα,j =

⋃
n<ω Aβn,j . For limit ordinals j, Aα,j is defined by continuity. It is easy to see that this satisfies (1) 

and (3), so we check (5).
First, observe that Aγ ≤ Aα. To see this, it suffices to show by induction on n, that if j ≥ in−1, then 

Aγ,j ⊆ Aβn,j . For n = 0 this is by definition. Assuming it is true for n, we can consider an arbitrary j > in. 
Then by choice of in, Aβn

≤in Aβn+1 so Aβn,j ⊆ Aβn+1,j . As the sequence 〈in : n < ω〉 is increasing, we have 
also j > in−1 so, by the inductive hypothesis, Aγ,j ⊆ Aβn,j so, by transitivity, Aγ,j ⊆ Aβn+1,j as desired.

Now suppose i < κ, |Cα| < λi, and β ∈ Cα. Then β ≤ γ and as Aγ ≤ Aα we have in particular that 
Aγ ≤i Aα, so we may assume β < γ. Then β ∈ Cα ∩ γ = Cγ and |Cγ | = |Cα ∩ γ| < λi so it follows by 
induction that Aβ ≤i Aγ ≤ Aα so Aβ ≤i Aα.

To conclude, we define a model M by

M =
⋃

α<μ+

i<κ

Aα,i.

By (4), the model M is μ-saturated. Moreover M is not μ+-saturated, as the partial type

{ϕ(x; ai,α) : i < κ, α even} ∪ {¬ϕ(x; ai,α) : i < κ, α odd}

is omitted by (1). �
Question 3.10. Suppose T is NTP2 and has the independence property, and assume μ is a singular cardinal 
such that cf(μ) > |T |, 2μ = μ+, and �μ. Does T have an exactly μ-saturated model?

4. Examples

4.1. Standard examples for the SOPn hierarchy

Recall the definition of the SOPn hierarchy:

Definition 4.1. Suppose n ≥ 3. The theory T has the nth strong order property (SOPn) if there is a formula 
ϕ(x; y) and a sequence of tuples 〈ai : i < ω〉 so that

(1) |= ϕ(ai; aj) if and only if i < j.
(2) {ϕ(xi, xi+1) : i < n − 1} ∪ {ϕ(xn−1, x0)} is inconsistent.

If T does not have SOPn, we say T is NSOPn.

Note that SOPn+1 =⇒ SOPn for all n ≥ 3 [12, Claim 2.6].
By a directed graph we mean a set with a binary relation that is asymmetric and irreflexive. Given a 

natural number n ≥ 3, we let Ln = {R1(x, y)} ∪ {Sl(x, y) : 1 ≤ l < n} be a language with n binary 
relations. The theory T 0

n is the Ln-theory of directed graphs with no cycle of length ≤ n, where R1(x, y) is 
the (asymmetric) edge relation and Sl(x, y) means that there is no directed path in the graph R1 of length 
≤ l from x to y. More precisely, T 0

n consists of the following axioms:

• R1(x, y) is an irreflexive asymmetric relation:

(∀x, y)[R1(x, y) → ¬R1(y, x)].
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• There are no directed loops of length ≤ n. That is, for all k with 1 ≤ k ≤ n, we have

¬(∃z0, . . . , zk−1)
[ ∧
i<k−1

R1(zi, zi+1) ∧R1(zk−1, z0)
]
.

• The relation Sl(x, y) implies that there is no directed path of positive length ≤ l from x to y:

(∀x, y)
[
Sl(x, y) → ¬(∃z0, . . . , zl)

[
z0 = x ∧ zl = y ∧

∧
i<l

R1(zi, zi+1) ∨ zi = zi+1

]]
.

• Paths satisfy the triangle inequality: if l + l′ < n, then

(∀x, y, z) [¬Sl(x, y) ∧ ¬Sl′(y, z) → ¬Sl+l′(x, z)] ,

and, because there are no loops of size ≤ n, for all 1 ≤ l < n′ ≤ n

(∀x, y, z) [¬Sl(x, y) → Sn′−l(y, x)] .

This is a universal theory and the model completion of T 0
n is denoted Tn—it eliminates quantifiers. Note that 

R1(x, y) is equivalent to ¬S1(x, y). We will write Rl(x, y) for ¬Sl(x, y), which indicates there is a directed 
path of length ≤ l from x to y. We will write Mn |= Tn for the monster model of Tn. The existence of the 
model completion is proved in [12, Claim 2.8(3)], where it is also shown that Tn is SOPn and NSOPn+1.

Proposition 4.2. If n ≥ 4, then κshred(Tn) = ∞.

Proof. Let κ be an arbitrary infinite regular cardinal. Define a directed graph G with domain {bi,α : i <
κ, α < ω} ∪ {ai,j : i < κ, j < 2} and interpret the edge relation R1 in G by

RG
1 = {(ai,0, bi,α) : i < κ, α < ω even} ∪ {(bi,α, αi,1) : i < κ, α < ω odd},

and then interpret SG
l and hence RG

l for 1 ≤ l < n according to the axioms. This clearly defines a model of 
T 0
n so there is an Ln-embedding of G into the monster model Mn |= Tn. Therefore, we may identify G with 

an Ln-substructure of M. Define Ai = a≤ib≤i, for all i < κ.
Let ϕ(x; y, z) = R1(x, y) ∧R1(z, x) and define a partial type p by p = {ϕ(x; ai,0, ai,1) : i < κ}. It is clear 

from the construction of G that any vertex satisfying this collection of formulas would not create a cycle, 
hence in particular, it will not create a cycle of length ≤ n and, therefore, p is a consistent set of formulas.

Fix i < κ. By quantifier-elimination, we have bi+1 = (bi+1,α)α<ω is Ai-indiscernible. Let c realize 
ϕ(x; ai+1,0, ai+1,1). Then we have

(1) R2(c, bi+1,α) for α < ω even.
(2) R2(bi+1,α, c) for α < ω odd.
(3) {R2(x, bi+1,α), R2(bi+1,α, x)} is inconsistent for all α, because n ≥ 4.

It follows that no end-segment of bi+1 can be c-indiscernible, and therefore cannot be Aic-indiscernible. 
In fact, ϕ(x; ai+1,0, ai+1,1) 	 R2(x; bi+1,α) ↔ ¬R2(x; bi+1,α+1) for all even α < ω, which shows that 
ϕ(x; ai+1,0, ai+1,1) explicitly shreds over Ai. It follows that κshred(T ) > κ and, as κ was arbitrary, we 
have κshred(T ) = ∞. �

Now we analyze T3:
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Lemma 4.3. In T3, if b = 〈bi : i < λ〉 is indiscernible over A, then for any tuple a, if c is a tuple disjoint 
from Aa, then there is c′ ≡Aa c so that b is Ac′-indiscernible.

Proof. Note that T3 eliminates quantifiers in the language containing only R1, since R2(x, y) is definable 
by the formula x �= y ∧ ¬R1(y, x). For simplicity, we will write R for R1. Because algebraic closure in T3
is trivial, by replacing c by something with the same type over Aa, we may assume c is disjoint from Aab. 
Define a model M |= T 0

3 as follows with underlying set Aabc by defining

RM = RM3 � Aab ∪RM3 � Aac.

We claim that M |= T 0
3 . To see this, suppose not and there are distinct d0, d1, d2 ∈ M so that RM (d0, d1), 

RM (d1, d2), and RM (d2, d0). Since M3 has no directed cycles of length 3, it is impossible for d0, d1, d2 to 
be all contained in Aab or all contained in Aac. Therefore, without loss of generality, d0 ∈ Aab \ Aac. But 
then since RM (d2, d0) and RM (d0, d1), we have d1, d2 ∈ Aab, by the definition of RM , a contradiction. This 
shows M has no directed cycle of length 3 so M |= T 0

3 .
Embed M into M3 over Aab and let c′ be the image of c. By quantifier elimination, we have c′ ≡Aa c

and, because c′ is disjoint from Aab, we have b is Ac′-indiscernible. �
Proposition 4.4. κshred(T3) = ℵ0.

Proof. By Theorem 3.6, it suffices to show κ1
shred(T3) ≤ ℵ0, and, in fact, we will show there is no shredding 

chain in a single free variable of length 2. Towards contradiction, suppose A is a set of parameters, ϕ0(x; a0)
shreds over A witnessed by b0, ϕ1(x; a1) shreds over Aa0 witnessed by b1, and {ϕ0(x; a0), ϕ1(x; a1)} is 
consistent, with x a single free variable. Because ϕ0(x; a0) has no realization c such that b0 is indiscernible 
over Ac, it follows by Lemma 4.3 that any realization of ϕ0(x; a0) is contained in Aa0. Then let c |=
{ϕ0(x; a0), ϕ1(x; a1)}. Because c is an element of Aa0, it follows that b1 is Aa0c-indiscernible, contradicting 
the fact that b1 witnesses that ϕ1(x; a1) shreds over Aa0. This completes the proof. �
4.2. NSOP1 and unshreddability

There is a theory of independence for NSOP1 theories that indicates this class of theories may be consid-
ered quite close to the class of simple theories (see, e.g., [6]). In the next two examples, however, we show 
that unshreddability is independent of NSOP1 and, in particular, that within the class of NSOP1 theories, 
it is still possible that κshred(T ) = ∞. Recall the definition of SOP1:

Definition 4.5. A formula ϕ(x; y) is said to have SOP1 if there is a tree of tuples (aη)η∈2<ω satisfying the 
following:

(1) For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
(2) For all η ⊥ ν in 2<ω, if (η ∧ ν) � 0 � η and (η ∧ ν) � 1 = ν, then {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

A theory T is said to have SOP1 if some ϕ(x; y) has SOP1 modulo T , otherwise T is NSOP1.

First, we describe an NSOP1 example of a theory T ∗
1 with κshred(T ∗

1 ) = ℵ0. This theory was studied in 
detail in [6, Subsection 9.2]. The language L1 consists of unary predicates F and O, a binary relation E, 
and a binary function eval. The theory T1 consists of the following axioms:

(1) F and O partition the universe.
(2) E ⊆ O2 is an equivalence relation.
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(3) eval : F ×O → O is a selector function:

(a) (∀x ∈ F )(∀y ∈ O) [E(y, eval(x, y))].
(b) (∀x ∈ F )(∀y, z ∈ O) [E(y, z) → eval(x, y) = eval(x, z)].

It was shown in [6, Subsection 9.2] that T1 has a model-completion T ∗
1 , which is the theory of the Fraïssé 

limit of finite models of T1, which is ℵ0-categorical with elimination of quantifiers. It is additionally shown 
that algebraic closure and definable closure of a set coincide with the structure generated by the set, and 
that the theory is non-simple NSOP1.

Example 4.6. Suppose c ∈ O and 〈bi : i < λ〉 is an indiscernible sequence such that bi ∈ F for all i < λ

and eval(bi, c) = c if i is even and the eval(bi, c) pairwise distinct and different from c for i odd. Then the 
formula E(x; c) implies eval(bi, x) = eval(bi, c) for all i, thus E(x, c) shreds over ∅, since for any even α < λ

and d with |= E(d, c), eval(bα, d) = eval(bα+2, d) and eval(bα, d) �= eval(bα+1, d).

We show that, in a sense made precise by the following lemma, all instances of shredding in the theory 
T ∗

1 resemble the previous example.

Lemma 4.7. Suppose ϕ(x; a) is a non-algebraic formula with l(x) = 1 that shreds over A. Then there is some 
c ∈ Aa, E-equivalent to no element of A, such that ϕ(x; a) 	 E(x, c). In particular ϕ(x; a) 	 x ∈ O.

Proof. Suppose ϕ(x; a) is a non-algebraic formula with l(x) = 1 and |= ϕ(f ; a) with ¬E(f, c) for every 
c ∈ Aa in an E-equivalence class disjoint from A. We must show ϕ(x; a) does not shred over A. As a 
formula shreds over A only if it shreds over some finite subset of A (i.e. the parameters appearing in the 
formulas witnessing that it explicitly shreds over A), by Lemma 2.8, we may assume A is finite and that a
enumerates the structure generated by A and a.

Fix an A-indiscernible sequence b = (bi)i<λ for λ = (|T | + |A|)+ where bi = (bi,0, . . . , bi,n−1) for all i < λ. 
Additionally, as a is a finite tuple, we can find some ordinal α such that, for each j < n, either there is an 
equivalence class represented by an element of a such that bi,j is in this equivalence class for all i ≥ α, or 
bi,j is not equivalent to any element of a for all i ≥ α; and additionally, either there is an element of a such 
that bi,j is equal to this element of a i ≥ α, or bi,j is not equivalent to any element of a for all j ≥ α (in 
other words, we may find some α such that b≥α is Aa-indiscernible in the stable reduct (F, O, E), where we 
forget the function eval).

Let B = 〈ab≥α〉 and C = 〈af〉 be the structures generated by ab≥α and af in M, respectively. By the 
assumption that ϕ(x; a) is not algebraic, we may assume f /∈ B. By our assumption that ¬E(f, c) for every 
c ∈ Aa in an E-equivalence class disjoint from A, we have the following three cases:

Case 1: f ∈ O and f is not E-equivalent in M to any element of 〈a〉.
In this case, we define a structure D whose underlying set is B ∪ C = B ∪ [f ]CE , where [f ]CE denotes the 

E-class of f in C. We interpret FD = FB and OD = OB ∪ [f ]CE , then we interpret ED to extend EB with 
[f ]CE forming a new equivalence class (thus also extending EC). Then we define evalD to extend evalB and 
evalC (which agree on their common domain) and set eval(g, f) = f for all g ∈ FB \ FC .

Case 2: f ∈ O and f is E-equivalent to some c ∈ O〈A〉.
In this case, we define a structure D whose underlying set is B ∪ C = B ∪ {f}. We interpret FD = FB

and OD = OB ∪ {f}, then we interpret ED to extend EB and EC with [c]DE = [c]BE ∪ {f}. Then we define 
evalD to extend evalB by setting evalD(g, f) = evalB(g, c) for all g ∈ FB . Note that this extends evalC as 
well.

Case 3: f ∈ F .
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In this case, as before, we define a structure D whose underlying set is B∪C∪{∗x : x ∈ (OB/E) \(OC/E)}
where each ∗x is a new formal element indexed by an equivalence class of B which is not represented by any 
element of 〈a〉. We interpret FD = FB∪FC = FB∪{f} and OD = OB∪OC ∪{∗x : x ∈ (OB/E) \(OC/E)}, 
then we interpret ED to be the equivalence relation generated by EB ∪ EC (which extends both EB and 
EC) and the condition that ∗x is in the equivalence class x for each x ∈ (OB/E) \ (OC/E). Then to define 
evalD, extending evalB and evalC , we must define evalD(f, c) for all c ∈ FB which are not ED-equivalent 
an element of C. For any such c, we define evalD(f, c) = ∗[c]E .

In each case, D extends B and C and one can check and A-indiscernibility of b that, in D, b≥α is 
quantifier-free indiscernible over C. We may embed D into M over B, and then the image f ′ of f along this 
embedding satisfies |= ϕ(f ′; a) and b≥α is Af ′ indiscernible. This shows that ϕ(x; a) does not shred over 
A. �
Proposition 4.8. The theory T ∗

1 is a non-simple NSOP1 theory with κshred(T ∗
1 ) = ℵ0.

Proof. By Theorem 3.6, it suffices to show κ1
shred(T ∗

1 ) = ℵ0. Note that if ϕ0(x; a0) shreds over A and 
ϕ1(x; a1) shreds over Aa0 with l(x) = 1 and both ϕ0 and ϕ1 are non-algebraic, then by Lemma 4.7, we 
must have both that ϕ0(x; a0) implies that x is in an equivalence class represented by an element of a0 and 
ϕ1(x; a1) implies x is in an equivalence class of an element of a1 not represented by an element of Aa0. This 
implies {ϕ0(x; a0), ϕ1(x; a1)} is inconsistent.

Now suppose ϕi(x; ai) are formulas with l(x) = 1 for i = 0, 1, 2, such that ϕi(x; ai) shreds over Aa<i for i =
0, 1, 2 and {ϕi(x; ai) : i < 2} is consistent. Then, by the first paragraph, one of ϕ0(x; a0) and ϕ1(x; a1) must 
be algebraic. Hence if f |= {ϕi(x; ai) : i < 2}, then f ∈ acl(Aa0a1). But any Aa0a1-indiscernible sequence is 
automatically acl(Aa0a1)-indiscernible and therefore Aa0a1f -indiscernible. It follows that ϕ2(x; a2) cannot 
shred over Aa0a1, a contradiction. Therefore κ1

shred(T ) = ℵ0. �
The following theory is a variation on the generic theory of selector functions T ∗

1 considered above. The 
language L for our example consists of unary predicates F, O0, O1, and O, binary relations E, R0, and R1, 
and a binary function eval. The theory T consists of the following axioms:

(1) F , O0, and O1 partition the universe and O = O0 ∪O1.
(2) E ⊆ O2 is an equivalence relation.
(3) eval : F ×O → O0 is a selector function:

(a) (∀x ∈ F )(∀y ∈ O) [E(y, eval(x, y))].
(b) (∀x ∈ F )(∀y, z ∈ O) [E(y, z) → eval(x, y) = eval(x, z)].

(4) The relations R0, R1 satisfy:

(a) R0 ⊆ O0 ×O1.
(b) R1 ⊆ F ×O1.
(c) (∀x ∈ F )(∀z ∈ O1) [R0(eval(x, z), z) ↔ R1(x, z)].

Define K to be the class of finite models of T .

Lemma 4.9. The class K is a Fraïssé class. Moreover, it is uniformly locally finite.

Proof. HP is clear as the axioms of T are universal. The argument for JEP is identical to that for SAP, so 
we show SAP. Suppose A, B, C ∈ K where A ⊆ B, C and B ∩ C = A. It suffices to define a L-structure 
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with domain D = B ∪ C, extending both B and C. First, note that if FB is non-empty, then every EB-
class intersects OB

0 , but if FB = ∅, it is possible that there are EB-equivalence classes disjoint from OB
0 . 

In this latter case, we can extend B to B′ so that each equivalence class contains an element of O0: Let 
(Ki)i<l list the EB-classes K of B such that OB

0 ∩K = ∅. Let B′ be the L-structure with underlying set 
B ∪ {∗i : i < l} where the ∗i are new formal elements. Consider B′ as an L-structure via the following 
interpretations: for the unary predicates, interpret FB′ = FB = ∅, OB′

0 = OB
0 ∪ {∗i : i < l}, OB′

1 = OB
1 , 

and OB′ = OB′
0 ∪ OB′

1 . Let RB′
0 = RB

0 , RB′
1 = RB

1 , and let EB′ be the equivalence relation generated by 
EB ∪ {(b, ∗i) : i < l, b ∈ Ki}. As FB = FB′ = ∅, we can only define evalB

′
: FB′ × OB′ → OB′

0 to be the 
empty function. It is clear that B′ is in K, extends B, and every equivalence class not represented by an 
element of A contains an element of O0. By a symmetric argument, we may also extend C to C ′ so that 
every EC-class not represented by an element of A contains an element of OC′

0 . Replacing B and C by B′

and C ′ respectively, we may assume that all classes of B and C are either represented by an element of A
or by an element of OB

0 or OC
0 respectively.

Now we describe the construction of D. Interpret OD
0 , OD

1 , and FD by OD
i = OB

i ∪ OC
i for i = 0, 1, 

OD = OD
0 ∪OD

1 , and FD = FB ∪FC . Let ED be the equivalence relation generated by EB ∪EC . It follows 
that if b ∈ B, c ∈ C and (b, c) ∈ ED, then there is some a ∈ A so that (a, b) ∈ EB and (a, c) ∈ EC and, 
moreover, (OD, ED) extends both (OB , EB) and (OC , EC) as equivalence relations. Put RD

0 = RB
0 ∪RC

0 .
Next we define the interpretation evalD. Let {ai : i < k0} enumerate a collection of representatives for 

the EA-classes in A. Then let {bi : i < k1} and {ci : i < k2} enumerate representatives for the EB- and 
EC-classes of elements not represented by an element of A, respectively. By the remarks above, we may 
assume each bi and ci are in OD

0 . Then every element of OD is equivalent to a unique element of

X = {ai : i < k0} ∪ {bi : i < k1} ∪ {ci : i < k2}.

Suppose d ∈ X. If f ∈ FA, define evalD(f, d) = evalB(f, d) if d ∈ B and evalD(f, d) = evalC(f, d) if d ∈ C, 
which is well-defined as A is a substructure of both B and C. If f ∈ FB \FA, define evalD(f, d) = evalB(f, d)
if d ∈ B and evalD(f, d) = d otherwise. Likewise, if f ∈ FC \ FA, put evalD(f, d) = evalC(f, d) if d ∈ C

and evalC(f, c) = c otherwise. This defines eval on FD ×X. More generally, if f ∈ FD and e ∈ OD, define 
evalD(f, e) = evalD(f, d) for the unique d ∈ X equivalent to e.

To complete the construction, we must describe the interpretation of RD
1 . Put

RD
1 = RB

1 ∪RC
1 ∪ {(f, d) ∈ FD ×OD

1 : (evalD(f, d), d) ∈ RD
0 }.

We check that this defines an extension of B and C. If b ∈ FB , b′ ∈ OB
1 , and (evalD(b, b′), b′) ∈ RD

0 , then 
(evalD(b, b′), b′) ∈ RB

0 and evalD(b, b′) = evalB(b, b′) so (evalB(b, b′), b′) ∈ RB
0 and therefore RB

1 (b, b′). This 
shows RD

1 � B = RB
1 . Likewise RD

1 � C = RC
1 . Therefore D extends B and C.

Now to conclude we must show D ∈ K. It is clear that D satisfies axioms (1)-(3), so we are left with 
checking (4). Suppose (f, d) ∈ FD ×OD

1 \ (FB ×OB
1 ∪FC ×OC

1 ) and d′ = evalD(f, d). Then, by definition, 
if (d, d′) ∈ RD

0 , then (f, d) ∈ RD
1 . On the other hand, if (f, d) ∈ RD

1 then, because (f, d) /∈ RB
1 ∪ RC

1 , we 
must have (d, d′) ∈ RD

0 , again by the definition of RD
1 . It is clear that if (f, d) ∈ FB ×OB

1 ∪ FC ×OC
1 then 

(f, d) ∈ RD
0 if and only if (f, d) ∈ RD

1 because D extends B and C which are in K. Therefore D satisfies 
axiom (4) which shows D ∈ K. This shows K has the amalgamation property.

Finally, note that a structure in K generated by k elements is obtained by applying ≤ k functions of 
the form eval(f, −) to ≤ k elements in O, so has cardinality ≤ k2 + k. This shows K is uniformly locally 
finite. �
Corollary 4.10. T has a model completion T ∗ which is the theory of the Fraïssé limit of K. The theory T ∗

eliminates quantifiers and is ℵ0-categorical.
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We will write M |= T ∗ for a monster model of T ∗. We will now show that T ∗ is NSOP1 by appealing to 
the following criterion:

Fact 4.11. [3, Proposition 5.8] Assume there is an Aut(M)-invariant ternary relation |� on small subsets of 
M satisfying the following properties, for an arbitrary M ≺ M and arbitrary tuples from M:

(1) Strong finite character: if a � |�M
b, then there is a formula ϕ(x, b, m) ∈ tp(a/Mb) such that for any 

a′ |= ϕ(x, b, m), a′ � |�M
b.

(2) Existence over models: a |�M
M .

(3) Monotonicity: if aa′ |�M
bb′, then a |�M

b.
(4) Symmetry: if a |�M

b, then b |�M
a.

(5) The independence theorem: if a |�M
b, a′ |�M

c, b |�M
c and a ≡M a′, then there exists a′′ with a′′ ≡Mb

a, a′′ ≡Mc a
′, and a′′ |�M

bc.

Then T is NSOP1.

Definition 4.12. Define a ternary relation |�
∗ on small subsets of M by: a |�

∗
C
b if and only if

(1) dcl(aC)/E ∩ dcl(bC)/E ⊆ dcl(C)/E,
(2) dcl(aC) ∩ dcl(bC) ⊆ dcl(C),

where X/E = {[x]E : x ∈ X} denotes the collection of E-classes represented by an element of X.

Lemma 4.13. The relation |�
∗ satisfies the independence theorem over models: if M |= T ∗, a ≡M a′, and, 

additionally, a |�
∗
M

B, a′ |�
∗
M

C and B |�
∗
M

C then there is a′′ with a′′ ≡MB a, a′′ ≡MC a′, and a′′ |�
∗
M

BC.

Proof. Without loss of generality, we may assume that M ⊆ B, C, and that B and C are definably closed. 
Write a = (d0, . . . , dk−1, e0, . . . , el−1, f0, . . . , fm−1) with di ∈ F , ej ∈ O0, fk ∈ O1, and likewise a′ =
(d′0, . . . , d′k−1, e

′
0, . . . , e

′
l−1, f

′
0, . . . , f

′
m−1). Fix an automorphism σ ∈ Aut(M/M) with σ(a) = a′. Let U =

{ug : g ∈ dcl(aB) \ B} and V = {vg : g ∈ dcl(a′C) \ C} denote collection of new formal elements with 
ug = vσ(g) for all g ∈ 〈aM〉 \B. Let, then, a∗ be defined as follows:

a∗ = (ud0 , . . . , udk−1 , ue0 , . . . , uel−1 , uf0 , . . . , ufm−1)

= (vd′
0
, . . . , vd′

k−1
, ve′0 , . . . , ve′l−1

, vf ′
0
, . . . , vf ′

m−1
).

We will construct by hand an L-structure D extending 〈BC〉 with domain UV 〈BC〉 in which a∗ ≡B a, 
a∗ ≡C a′ and a∗ |�

∗
M

BC.
There is a bijection ι0 : dcl(aB) → BU given by ι0(b) = b for all b ∈ B and ι0(g) = ug for all 

g ∈ dcl(aB) \ B. Likewise, we have a bijection ι1 : dcl(a′C) → CV given by ι1(c) = c for all c ∈ C

and ι1(g) = vg for all g ∈ dcl(a′C) \ C. The union of the images of these functions is the domain of the 
structure D to be constructed and their intersection is ι0(〈aM〉) = ι1(〈a′M〉). Consider BU and CV as 
L-structures by pushing forward the structure on dcl(aB) and dcl(a′C) along ι0 and ι1, respectively. Note 
that ι0|〈aM〉 = (ι1 ◦ σ)|〈aM〉.

We are left to show that we can define an L-structure on UV 〈BC〉 extending that of BU , CV , and 〈BC〉
in such a way as to obtain a model of T . To begin, interpret the predicates by OD

i = OBU
i ∪OCV

i ∪O
〈BC〉
i

for i = 0, 1, OD = OD
0 ∪OD

1 , FD = FBU ∪FCV ∪F 〈BC〉, and RD
0 = RBU

0 ∪RCV
0 ∪R

〈BC〉
0 . Let ED be defined 

to be the equivalence relation generated by EBU , ECV , and E〈BC〉. The interpretation of the predicates 
defines extensions of the given structures since if g is an element of ι0(〈aM〉) = ι1(〈a′M〉) then ι−1

0 (g) is in 
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the predicate O if and only if ι−1
1 (g) is as well, and, moreover, it is easy to check that our assumptions on 

a, a′, B, C entail that no pair of inequivalent elements in BU , CV , or 〈BC〉 become equivalent in D.
Next we define the function evalD extending evalBU ∪ evalCV ∪ eval〈BC〉. We first claim that evalBU ∪

evalCV ∪ eval〈BC〉 is a function. The intersection of the domains of the first two functions is ι0(〈aM〉) =
ι1(〈aM〉). If b, b′ are in this intersection, we must show

evalBU (b, b′) = c ⇐⇒ evalCV (b, b′) = c.

Choose b0, b′0, c0 ∈ 〈aM〉 and b1, b′1, c1 ∈ 〈a′M〉 with ιi(bi, b′i, ci) = (b, b′, c) for i = 0, 1. Then since ι0 = ι1 ◦σ
on 〈aM〉, we have

M |= eval(b0, b′0) = c0 ⇐⇒ M |= eval(σ(b0), σ(b′0)) = σ(c0)

⇐⇒ M |= eval(b1, b′1) = c1.

Since evalBU and evalCV are defined by pushing forward the structure on 〈aB〉 and 〈a′C〉 along ι0 and ι1, 
respectively, this shows that evalBU ∪evalCV defines a function. Now the intersection of 〈BC〉 with BU∪CV

is BC and, by construction, all 3 functions agree on this set. So the union defines a function.
Note that because BU , CV , and 〈BC〉 all contain a model M and therefore have non-empty F -sort, every 

ED class is represented by an element of OD
0 . Choose a complete set of ED-class representatives {di : i < α}

so that if di represents an ED-class that meets M then di ∈ M and di ∈ O0. If e ∈ OD is ED-equivalent to 
some e′ and (f, e′) is in the domain of evalBU ∪evalCV ∪eval〈BC〉, define evalD(f, e) to be the value that this 
function takes on (f, e′). On the other hand, if f ∈ FD \ (FBU ∪ FCV ∪ F 〈BC〉) or e is not ED-equivalent 
to any element on which evalD(f, −) has already been defined, put evalD(f, e) = di for the unique di which 
is ED-equivalent to e. This now defines evalD on all of FD × OD and, by construction, evalD(f, −) is a 
selector function for ED for all f ∈ FD.

To conclude, we must interpret R1 on D. In order to build a structure that satisfies axiom (4), we are 
forced to interpret

RD
1 = {(f, b) ∈ F ×O1 : (evalD(f, b), b) ∈ RD

0 }.

In order to ensure that D is an extension of BU , CV , and 〈BC〉, we have show that for all X ∈
{BU, CV, 〈BC〉}, RD

1 � X = RX
1 . Suppose we have f, a, b ∈ X with evalX(f, b) = a. Then because X

is a model of T , we have RX
0 (a, b) ⇐⇒ RX

1 (f, b) and, by construction, RX
0 (a, b) ⇐⇒ RD

0 (a, b). By 
definition, RD

1 (f, b) ⇐⇒ RD
0 (a, b). This shows RD

1 (f, b) ⇐⇒ RX
1 (f, b), hence RD

1 � X = RX
1 .

We have already argued that BU and CV are substructures of D - it follows that every ED-class 
represented by an element of a∗ can only be equivalent to an element of B or C if it is equivalent to an 
element of M . Moreover, our construction has guaranteed that 〈a∗M〉D∩〈BC〉 ⊆ BU ∩〈BC〉D ⊆ B and, by 
similar reasoning, 〈a∗M〉 ∩〈BC〉 ⊆ C. This implies 〈a∗M〉D ∩〈BC〉B ∩C ⊆ M , so a∗ |�

∗
M

BC. Embedding 
D into M over 〈BC〉, we conclude. �
Corollary 4.14. The theory T ∗ is NSOP1.

Proof. The relation |�
∗ is easily seen to satisfy properties (1) through (4) from Fact 4.11 and the indepen-

dence theorem is established in Lemma 4.13. This implies T ∗ is NSOP1. �
Remark 4.15. One may additionally show that |�

∗ = |�
K over models. As we won’t need Kim-independence 

in what follows, we omit the proof.

Proposition 4.16. κshred(T ∗) = ∞.
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Proof. Let κ be an arbitrary regular cardinal. Inductively, we may choose a sequence of elements 〈ai : i < κ〉
and a sequence of sequences 〈bi : i < κ〉 so that

(1) For all i < κ, ai ∈ O0.
(2) For all i < κ, bi = 〈bi,j : j < ω〉 is an a<ib<i-indiscernible sequence of elements of O1 in the same 

E-class as ai, with R0(ai, bi,j) if and only if j is even.

Let p(x) = {eval(x; ai) = ai : i < κ} and fix some i < κ. Because each bi,j is E-equivalent to ai and 
eval(x, −) is a selector function, eval(x, ai) = ai implies eval(x; bi,j) = ai. It follows from axiom 4(c) of T
that eval(x, ai) = ai implies R0(ai, bi,j) ↔ R1(x, bi,j) for all j. Therefore, eval(x, ai) = ai 	 R1(x; bi,j) if j is 
even and eval(x, ai) = ai 	 ¬R1(x; bi,j) if j is odd. This shows eval(x; ai) = ai ∈ p � a<i+1 explicitly shreds 
over a<i. Since κ is arbitrary, we conclude κshred(T ∗) = ∞. �
4.3. An NTP2 example

In this subsection, we describe an NTP2 example with κshred(T ) = ∞. Recall the definition of NTP2
theories:

Definition 4.17. A formula ϕ(x; y) has the tree property of the second kind (TP2) if there is an array of 
tuples (ai,j)i,j<ω and k < ω satisfying the following:

(1) For all f : ω → ω, {ϕ(x; ai,f(i)) : i < ω} is consistent.
(2) For all i < ω, {ϕ(x; ai,j) : j < ω} is k-inconsistent.

A theory is said to have TP2 if some formula has TP2 modulo T and is otherwise called NTP2.

The class of NTP2 contains both the NIP and simple theories, so it is natural to ask if NTP2 implies 
κshred(T ) < ∞ but we show this is not the case.

The following fact will be useful in checking that the theory we construct is NTP2:

Fact 4.18.

1 If T has TP2, there is a formula ϕ(x; y) witnessing this with l(x) = 1 [2, Corollary 2.9].
2 If ϕ(x; y) has TP2, then this will be witnessed with respect to an array of parameters (ai,j)i,j<ω that is 

mutually indiscernible—that is, ai is a 	=i-indiscernible for all i < ω [2, Lemma 2.2].

Let L a language consisting of two binary relations R, �, and a binary function ∧ and the sublanguage 
consisting of just � and ∧ is Ltr. The class K will consist of finite L-structures (A, �A, ∧A, RA) so that 
(A, �A, ∧A) is a meet-tree where ∧A is the meet function, and RA is a graph on A. Denote the class of finite 
∧-trees (A, �A, ∧A) by K0. This is a Fraïssé class with the strong amalgamation property (SAP) and the 
theory Ttr of its Fraïssé limit is dp-minimal [13, Exercise 2.50, Example 4.28], which means given a mutually 
indiscernible array (ai,j)i<2,j<ω and element c, there is some i < 2 such that ai is c-indiscernible.

Lemma 4.19. The class K is a Fraïssé class. Moreover, the reduct of the Fraïssé limit of K to Ltr is the 
Fraïssé limit of K0.

Proof. HP is clear and JEP will follow from a similar argument to SAP, so we will prove SAP. Fix Ã, B̃0, B̃1 ∈
K such that Ã is an L-substructure of both B̃0 and B̃1 and B̃0∩ B̃1 = Ã. Let A = Ã � Ltr and Bi = B̃i � Ltr
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for i = 0, 1. By SAP in K0, there is D ∈ F extending both B0 and B1. We may expand D to an L-structure 
D̃ by setting RD̃ = RB̃0 ∪RB̃1 . This establishes SAP for K.

Next, suppose A, B ∈ K0 and π : A → B is an Ltr-embedding. If Ã ∈ K is an expansion of A, then we 
can expand B to the L-structure B̃ in which RB̃ = {(π(a), π(a′)) : (a, a′) ∈ RÃ}. Clearly we have B̃ ∈ K

and π is also an L-embedding so by [9, Lemma 2.8], the reduct of the Fraïssé limit of K is the Fraïssé limit 
of K0. �

By Lemma 4.19, we know that K has a Fraïssé limit which is an ω-categorical expansion of Ttr by a 
(random) graph. Let T denote its theory and let M and Mtr denote the monster models of T and Ttr
respectively.

Lemma 4.20. Suppose we are given an L-indiscernible sequence I = 〈ai : i ∈ Z〉 and an element b so that I
is Ltr-indiscernible over b. Then there is b′ ≡L

a0
b so that I is L-indiscernible over b′.

Proof. Let σ ∈ AutLtr(M/b) be an automorphism so that σ(ai) = ai+1. Let B denote the L-structure 
generated by 〈ai : i ∈ Z〉 and let A0 be the L-structure generated by a0b. Now expand the Ltr-structure 
〈b(ai)i∈Z〉Ltr to an L-structure M by setting

RM = RB ∪
⋃
i∈Z

σi(RA0).

Claim 1: If i ∈ Z and c, d ∈ B ∩ σi(A0), then (c, d) ∈ RB if and only if (c, d) ∈ σi(RA0).

Proof of claim. This is clear if i = 0, since RB = RM � B and RA0 = RM � A0. In general, if c, d ∈
B ∩ σi(A0), there are Ltr-terms t, t′, s, s′ so that

c = t(a<i, ai, a>i) = t′(b, ai)

d = s(a<i, ai, a>i) = s′(b, ai).

By indiscernibility, it follows that if σi(c′, d′) = (c, d), then we have

c′ = t(a<0, a0, a>0) = t′(b, a0)

d′ = s(a<0, a0, a>0) = s′(b, a0),

and we know that (c′, d′) ∈ RB if and only if (c′, d′) ∈ RA0 , by the i = 0 case. By indiscernibility, (c′, d′) ∈ RB

if and only if (c, d) ∈ RB and hence (c, d) ∈ RB if and only if (c, d) ∈ σi(RA0). �
Claim 2: If i > 0 and c, d ∈ A0 ∩ σi(A0) then (c, d) ∈ RA0 if and only if (c, d) ∈ σi(RA0).

Proof of claim. As in the proof of the previous claim, there are Ltr-terms t, t′, s, and s′ so that we have the 
following equalities:

c = t(a0, b) = t′(ai, b)

d = s(a0, b) = s′(ai, b).

Then by Ltr-indiscernibility over b, we have also t(a0, b) = t′(ai+1, b) and t(a1, b) = t′(ai+1, b), hence 
t(a0, b) = t(a1, b). Likewise, we have s(a0, b) = s(a1, b). In particular, this shows σ(c, d) = (c, d) so the claim 
follows. �
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Fig. 1. Illustration of the choice of ai and bi.

Now, by Claim 1, it follows that for all c, d ∈ B, we have (c, d) ∈ RM if and only if (c, d) ∈ RB , so M
extends B. Likewise, by Claim 2, M extends A0 and σi induces an L-isomorphism of A0 and the structure 
generated by bai in M , for all i ∈ Z. Embed M into M over B and let b′ be the image of b under this 
embedding. Then by quantifier-elimination, a0b ≡ aib

′ for all i ∈ Z. After applying Ramsey, compactness, 
and an automorphism, we can find b′′ ≡a0 b′ so that I is L-indiscernible over b′′, completing the proof. �
Corollary 4.21. The theory T is NTP2 (and is, in fact, inp-minimal).

Proof. If T has TP2, then, by Fact 4.18 and compactness, there is an L-formula ϕ(x; y) with l(x) = 1 that 
witnesses TP2 with respect to the mutually indiscernible array (ai,j)i<ω,j∈Z. Let b |= {ϕ(x; ai,0) : i < ω}. 
As Ttr is dp-minimal, there is a row i = 0 or i = 1 so that 〈ai,j : j ∈ Z〉 is b-indiscernible in the language 
Ltr. By Lemma 4.20, there is b′ ≡L

ai,0
b such that 〈ai,j : j ∈ Z〉 is b′-indiscernible in the language L. Then 

b′ |= {ϕ(x; ai,j) : j ∈ Z}, contradicting the row-wise inconsistency required for TP2. �
Proposition 4.22. κshred(T ) = ∞.

Proof. Let κ be an arbitrary regular cardinal. Inductively, we may choose a sequence of elements 〈ai : i < κ〉
and a sequence of sequences 〈bi : i < κ〉 so that

(1) For all i < κ, bi = 〈bi,j : j < ω〉 is an a<ib<i-indiscernible sequence of pairwise incomparable elements, 
incomparable with ai, with bi,j ∧ bi,j′ = ai ∧ bi,j for all j �= j′ and R(ai ∧ bi,j , bi,j) if and only if j is 
even.

(2) If i < i′ < κ, then ai � ai′ ∧ bi′,j for all j.

There is no problem continuing the induction, since T is the generic ∧-tree with a random graph (Fig. 1).
Let p(x) = {x �ai : i < κ}. Notice that if x �ai, then x ∧bi,j = ai∧bi,j and hence x �ai 	 R(x ∧bi,j , bi,j)

if and only if j is even. It follows that the formula x � ai explicitly shreds over a<i. As κ is arbitrary, 
κshred(T ) = ∞. �
5. A criterion for singular compactness

In this section, we give a sufficient condition for having singular compactness, which is the negation of 
exact saturation (Definition 5.1 below). If Δ (x, y) is a set of formulas over ∅, then a (partial) Δ-type is a 
consistent set of instances of formulas from Δ. We may refer to a {ϕ}-type as a ϕ-type. It is important to 
note that by a ϕ-type we mean a consistent set of positive instances of ϕ, and do not include instances of 
¬ϕ.
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Definition 5.1. Suppose that T is a complete first order theory and Δ is a set of formulas over ∅. Say that 
T hassingular compactness for Δ if whenever M |= T is μ-saturated for a singular cardinal μ > |T | then M
is μ+, Δ-saturated: for every Δ-type p over a set A ⊆ M with |A| ≤ μ, p is realized in M .

Condition 5.2. For every formula ϕ (x, y) (perhaps in a fixed set of formulas Δ) there is some formula 
θϕ (x, z) such that for any finite ϕ-type r (x) over M |= T and every finite set A ⊆ Mx of realizations of r
there is some b ∈ Mz such that θϕ (A, b) holds (i.e., M |= θϕ (a, b) for all a ∈ A) and θϕ (x, b) 	 r (x).

Lemma 5.3. Suppose that T is a complete first order theory and that Condition 5.2 holds for Δ (x, y). Then 
T has singular compactness for Δ.

Proof. Let p be a Δ-type over a set A with |A| = μ and suppose A ⊆ M , a μ-saturated model of T . Write 
A =

⋃
i<κ Ai with |Ai| < μ, κ < μ. For each i < κ find bi ∈ M such that bi |= p|Ai

(exists by μ-saturation).
By compactness and Condition 5.2, for each ϕ ∈ Δ find eϕi ∈ Mz such that θϕ (bj , eϕi ) holds for all j ≥ i

and θϕ (x, eϕi ) 	 tp+
ϕ (bi/Ai), the (positive) ϕ-type of bi over Ai. By μ-saturation, find dϕi ∈ M such that 

dϕi ≡Ai∪{bi:i<κ} eϕi . Then {θϕ (x, dϕi ) : i < κ, ϕ ∈ Δ} is a type and hence realized in M . �
When does Condition 5.2 hold? If T is complicated enough, e.g., T = PA or T = ZFC, then it holds 

since given ϕ (x, y), we can choose θϕ (x, z) = x ∈ z. Indeed, this condition implies that the theory cannot 
be too tame.

Proposition 5.4. Assume T has infinite models. If Condition 5.2 holds for every formula with one variable 
x then T has TP2, and has SOPn for all n.

Proof. We start by showing that T has TP2. Let ϕ (x, z) be θx	=y (x, z). Let ψ (x,w) = θ¬ϕ (x,w). We will 
show that ξ (x, zw) = ϕ (x, z)∧ ψ (x,w) witnesses TP2. Let {ai : i < ω} be some infinite set in M. Suppose 
that F is an arbitrary family of pairwise disjoint subsets of ω. It is enough to find some bs ∈ Mzw for every 
s ∈ F such that ξ (ai, bs) holds whenever i ∈ s, and {ξ (x, bs) , ξ (x, bt)} is inconsistent for all s �= t from 
F (see [5, Lemma 2.19]). By compactness we may assume that F is finite and consists of finite sets and 
replace ω by some n < ω.

By choice of ϕ (x, z) there are cs for s ∈ F such that ϕ (ai, cs) holds iff i ∈ s: take the finite type 
rs = {x �= ai : i /∈ s} and As = {ai : i ∈ s} and apply Condition 5.2. This already shows that T has the 
independence property so is not NIP.

We can similarly choose ds by applying Condition 5.2 for ϕ and taking rs = {¬ϕ (x, ct) : t �= s, t ∈ F}
and As = {ai : i ∈ s}. Then obviously ξ (ai, csds) holds if i ∈ s. Also, as ψ (x, ds) 	 ¬ϕ (x, ct) for t �= s, we 
are done.

Next we show that T has SOPn for all n < ω.
Let ϕ0 (x, y0) = θ 	= (x, y0), ϕ1 (x, y1) = θϕ0 (x, y1) and in general ϕn+1 (x, yn+1) = θϕn

(x, yn+1). Fix some 
n with 3 ≤ n < ω. Let χn (y0, . . . , yn−1, x0; z0, . . . , zn−1;x′

0) with |zi| = |yi| say that

(∀x)[ϕi+1 (x, yi+1) → ϕi (x, zi)]

for all i < n − 1 and ϕn−1 (x0, yn−1)∧¬ϕ0 (x′
0, y0). We will show that χ = χn witnesses SOPn for all n ≥ 3.

Let 〈at : t < ω〉 be some infinite sequence in M. For t < ω, i < n, let bit ∈ Myi be such that ϕi

(
as, b

i
t

)
holds 

iff s ≤ t (i.e., witnessing that ϕi has the order property) and (∀x)[ϕi+1
(
x, bi+1

t

)
→ ϕi

(
x, bit′

)
] for all t′ ≥ t. 

We may find such bit’s by induction on i < n using Condition 5.2 and compactness as above. For k < ω, let 
b̄k = b0k . . . b

n−1
k ak. We have that for k, l < ω, M |= χ 

(
b̄k, b̄l

)
if and only if k < l. However, it is impossible 

that {χ (x̄k, x̄k+1) : k < n − 1} ∪ {χ (x̄n−1, x̄0)} is consistent, since if it were realized by c̄k = c0k . . . c
n−1dk
k
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for k < n, then ϕn−1
(
d0, c

n−1
0

)
⇒ ϕn−2

(
d0, c

n−2
1

)
⇒ · · · ⇒ ϕ0

(
d0, c

0
n−1

)
but as χ (c̄n−1, c̄0) holds, we have 

that ¬ϕ0
(
d0, c

0
n−1

)
holds as well which is a contradiction. �

We give an example where this criterion holds.

Example 5.5. Let L = {Pi : i < 3} ∪ {R0,1, R0,2, R1,2} where the Pis are unary predicates and the Ri,js are 
binary relation symbols. Let T ∀ say that 〈Pi : i < 3〉 are disjoint and their union covers the universe, that 
Ri,j ⊆ Pi × Pj and that:

� If R1,2 (b, c) then (∀x) [R0,1 (x, b) → R0,2 (x, c)].

Claim 5.6. T ∀ is universal, it has the amalgamation property (AP) and the joint embedding property (JEP).

Proof. The fact that T ∀ is universal is clear.
JEP: suppose that M1, M2 |= T ∀ are disjoint. Let M be the following structure. As a set it is M1 ∪M2. 

For every relation symbol Q ∈ L, let QM = QM1 ∪QM2 .
AP: suppose that M0, M1, M2 |= T ∀ and M0 ⊆ M1, M2 and M0 = M1 ∩ M2. Let M be the following 

structure. Its universe is just the union of the universes of M1, M2. For i < 3, PM
i = PM1

i ∪ PM2
i . RM

0,1 =
RM1

0,1 ∪RM2
0,1 and similarly define RM

1,2 = RM1
1,2 ∪RM2

1,2 . Let

RM
0,2 = RM1

0,2 ∪RM2
0,2

∪ {(a, b) : a ∈ PM1
0 \M0, b ∈ PM2

2 \M0}

∪ {(a, b) : a ∈ PM2
0 \M0, b ∈ PM1

2 \M0}.

Let us check that � holds. Suppose that M |= R1,2 (b, c). Then we may assume that b, c ∈ M1 (for M2 it 
is the same argument). Suppose that M |= R0,1 (a, b). Then if a ∈ M1 then M1 |= R0,2 (a, c). Otherwise 
a ∈ M2 and b ∈ M0. If c ∈ M0 as well, then M2 |= R1,2 (b, c) ∧ R0,1 (a, b) so M2 |= R0,2 (a, c) and we are 
done. Otherwise c ∈ M1\M0, in which case RM

0,2 (a, c) holds by choice of RM
0,2. �

Corollary 5.7. T ∀ has a model completion T which has quantifier elimination.

Proposition 5.8. T is NSOP4 and has SOP3.

Proof. We start by showing that T is NSOP4. Suppose that 〈ai : i < ω〉 is an indiscernible sequence in 
some model M |= T which witnesses SOP4. Let Ai be ai as a set. Let M0 = A2, M ′

0 = A3, M1 = A1A2, 
M2 = A2A3 and M3 = A3A4 with the induced structure from M . So all are models of T ∀. Let M ′ be the 
amalgam of M1, M2 over M0 as defined in the proof of Claim 5.6, and similarly let M ′′ be the amalgam of 
M2, M3 over M ′

0. Note that both M ′ and M ′′ contain M2 as a substructure and that the universe of M ′ is 
A1A2A3 and of M ′′ is A2A3A4, but neither are necessarily substructures of M .

Now we can amalgamate M ′ and M ′′ over M2. Moreover,

• Any structure N whose universe is A1A2A3A4 which contains both M ′, M ′′ as substructures and satisfies 
T ∀ except perhaps �, and such that N � A1A4 |= T ∀ will be a model of T ∀ (i.e., � just follows).

To see this, suppose that N |= R1,2 (b, c) ∧R0,1 (a, b). We have to show that N |= R0,2 (a, c). Note that for 
every x ∈ N , if x ∈ Ai ∩Aj for distinct i, j ∈ {1, . . . , 4}, x ∈

⋂4
i=1 Ai by indiscernibility.

If a, b, c all belong to either A1A2A3, A2A3A4 or A1A4 then this is clear, so assume this is not the case.
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Suppose that b, c ∈ A1A2A3, a ∈ A4 (so a /∈ A1A2A3) and b /∈ A1. Then if b ∈ A2\A3 then M ′′ |=
¬R0,1 (a, b) — contradiction, so b ∈ A3. Then it must be that c ∈ A1\A2 and b ∈ A3\A2 so M ′ |= ¬R1,2 (b, c)
— contradiction.

If b, c ∈ A1A2A3, a ∈ A4 and b ∈ A1 then c /∈ A1. If c ∈ A2\A3 then M ′′ |= R0,2 (a, c) so we are done. 
Else, c ∈ A3 \A2, so since b /∈ A2, M ′ |= ¬R1,2 (b, c) — contradiction.

Suppose that b ∈ A1 and c ∈ A4. Then a ∈ A2A3. If a ∈ A2\A3 then M ′′ |= R0,2 (a, c) so we are done. 
Otherwise, a ∈ A3\A2, so M ′ |= ¬R0,1 (a, b) — contradiction.

The case where b ∈ A4 and c ∈ A1 is done similarly.
By symmetry, this covers all the cases so the bullet is proved.
Let σ : A1A4 → A1A4 be a bijection such that σ(a1) = a4 and σ(a4) = a1 as tuples (hence σ2 = id). Let 

N0 be an amalgam of M ′ and M ′′ over M2 with domain A1A2A3A4. Now define N to be a structure with 
the same underlying set and the same interpretation of the unary predicates, but with each Ri,j interpreted 
as follows:

RN
i,j =

(
RN0

i,j \ (A1A4)2
)
∪ {(a, b) ∈ A1A4 : M |= Ri,j(σ(a), σ(b))}.

By indiscernibility, if a, b are either both in A1 or both in A4, then (a, b) ∈ RN
i,j if and only if (a, b) ∈ RM

i,j . 
Then it is clear that N has underlying set A1A2A3A4 and extends both M ′ and M ′′, hence it satisfies the 
conditions in the bullet point above. This shows N |= T ∀, and hence there is some N ′ |= T containing N .

But then, if ϕ (x, y) is any quantifier-free formula with M |= ϕ (a1, a2), then N ′ |= ϕ (a1, a2)∧ϕ (a2, a3)∧
ϕ (a3, a4) ∧ ϕ (a4, a1). By quantifier elimination, T is NSOP4.

Next we show that T has SOP3. For this we will use the following criterion.

Fact 5.9. [12, Claim 2.19] For a theory T , having SOP3 is equivalent to finding two formulas ϕ (x, y) , ψ (x, y)
and a sequence 〈ai, bi : i < ω〉 in some M |= T such that

• For all i < j, M |= ¬∃x (ϕ (x, aj) ∧ ψ (x, ai)).
• If i ≤ j then M |= ϕ (bj , ai) and if j < i then M |= ψ (bj , ai).

(The definition in [12] additionally requires that {ϕ(x; y), ψ(x; y)} is inconsistent, but this added condition 
is unnecessary: given ϕ and ψ as above, one can replace ϕ by ϕ′ = ϕ(x; y) ∧ ¬ψ(x; y) and then ϕ′ and ψ
will witness the above conditions).

Let ϕ (x, y′) = R0,1 (x, y′) and ψ (x, y′′) = ¬R0,2 (x, y′′). Let 〈a′i, a′′i , bi : i < ω〉 be a sequence such that 
R1,2

(
a′i, a

′′
j

)
iff i > j, R0,1 (bj , a′i) whenever i ≤ j and ¬R0,2 (bj , a′′i ) whenever i > j. This sequence exists 

in some model M |= T as we can define a model of T ∀ which contains exactly those elements. Now letting 
ai = (a′i, a′′i ), the first bullet follows from � and the second bullet by the choice of a′i, a′′i and bi. �
Corollary 5.10. There is a theory T with NSOP4 having SOP3 such that Condition 5.2 holds with Δ =
{R0,2 (x, y)} and θϕ from there being R0,1. Thus T has Δ-singular compactness by Lemma 5.3.

Proof. We only need to show that Condition 5.2 holds. Suppose that M |= T and r is some finite Δ-type. 
Let A ⊆ M be a finite set of realizations. Now the definition of T , we may find some b ∈ M with R1,2 (b, c)
whenever R0,2 (x, c) ∈ r and R0,1 (a, b) for all a ∈ A. This suffices. �
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