APPLYING SET THEORY

 E88
SAHARON SHELAH

Abstract

We prove some results in set theory as applied to general topology and model theory. In particular, we study \aleph_{1}-collectionwise Hausdorff, Chang Conjecture for logics with Malitz-Magidor quantifiers and monadic logic of the real line by odd/even Cantor sets.

[^0]
§ 0. Introduction

In $\S 1$ we prove a result in general topology saying: if $\diamond_{\aleph_{1}}^{*}$ then any normal space is $\aleph_{1}-\mathrm{CWH}$ (= collectionwise Hausdorff); done independently of and in parallel to Fleisner and Alan D. Taylor.

In $\S 2$ we prove the Chang Conjecture for Magidor-Malitz Quantifiers. A recent related work is [HU17].

In $\S 3$ we prove the Monadic Theory of the tree ${ }^{\omega>} 2$ is complicated under a quite weak set theoretic assumption. Earlier [She75] proved this (i.e. the result on the monadic logic) assuming CH or at least a consequence of it.

The present note was circulated in the Spring of 1979 in a collection; it include each of the sections (as well as other preprints) but those three were not published. However, [She85]. have results related to section three; in particular it was conjectured there (in Remark 2.15) that there are two non-principal ultrafilters of ω with no common lower bound in the Rudin Keisler order; a conjecure which had been refuted in [BS87].

Later, Gurevich-Shelah [GS82] proved undecidability in ZFC, with further developments then more in Shelah [She88], still the older proof gives information not covered by them. For more see [BS87], [GKKS02], [GGK04].

The results are old, still in particular, $\S 1$ gives a direct proof of the result compared to others and $\S 3$ gives a considerably more transparent easier proof of the result of [GS82].

The author would like to thank Shai Ben David for stimulating discussions on part $\S 2$.

We thank the referee for his help, well beyond than the call of duty.

§ 1. A NOTE IN GENERAL TOPOLOGY IF $\diamond_{\kappa_{1}}^{*}$ THEN ANY NORMAL SPACE IS \aleph_{1} - CWH (= Collectionwise Hausdorff)

The normal Moore space problem has been a major theme in general topology, see the recent survey Dow-Tall [DT18]. In this connection, Fleissner [Fle84, p.6] proved: $(\mathbf{V}=\mathbf{L})$ every normal first countable (topological) space is CWH (CWH means collectionwise Hausdorff). He used a strengthening of diamond. The author proved Fleissner strengthening (for \aleph_{1}) does not follow from ZFC $+\diamond_{\aleph_{1}}^{+}$(see [She81, Th.5,pg.31]). Here we prove nevertheless $\diamond_{\aleph_{1}}^{*}$ implies every normal first countable space is $\aleph_{1}-\mathrm{CWH}$.

The central idea of the proof in $\S 1$ is inspired by one key idea in Fleissner [Fle84]. Fleissner implicitly used a stronger combinatorial principle $\diamond_{\text {SS }}$. In 1979, the author and independently both Fleissner and Alan D. Taylor all saw (as mentioned in [Tay81], [SS00] that a weaker principle, $\diamond_{\omega_{1}}^{*}$, would suffice. Later Smith and Szeptycki [SS00] derive better results. On more recent results on diamond and strong negation see [She10] and references there.

Convention 1.1. Below δ always denotes a limit ordinal $\left(<\omega_{1}\right)$.
For transparency, below we refer to the following equivalent form of $\diamond_{\omega_{1}}^{*}$.
Definition 1.2. Let $\diamond_{\aleph_{1}}^{*}$ mean that there exist a sequence $\left\langle\mathbf{g}_{\delta}: \delta<\omega_{1}\right\rangle$ where $\mathbf{g}_{\delta}=\left\langle\bar{g}^{\delta, k}: k<\omega\right\rangle$ is of the form $\bar{g}^{\delta, k}=\left\langle g_{n}^{\delta, k}: n<\omega\right\rangle$, where $g_{n}^{\delta, k}: \delta \rightarrow \omega$ has the property that, for any sequence $\bar{g}=\left\langle g_{n}: n<\omega\right\rangle$ with $g_{n}:\left\{\delta: \delta<\omega_{1}\right\} \rightarrow \omega$, there is a club (closed unbounded) set $C \subseteq \omega_{1}$ such that, for each $\gamma \in C$, there is $k=k(\gamma) \in \omega$ with

$$
\bar{g} \upharpoonright \gamma:=\left\langle g_{n} \upharpoonright \gamma: n<\omega\right\rangle=\bar{g}^{\gamma, k}=\left\langle g_{n}^{\gamma, k}: n<\omega\right\rangle .
$$

Claim 1.3. Assume $\diamond_{\aleph_{1}}^{*}$. If X is Hausdorff first countable normal and $|X|=\aleph_{1}$ then X is CWH.

Proof. Let $\left\langle\mathbf{g}_{\delta}: \delta<\omega_{1}\right\rangle$ be as in 1.2.
Without loss of generality $X_{*}=\left\{\delta: \delta<\omega_{1}\right\} \subseteq X$ and X_{*} is closed discrete in the space X. Let $U_{n}^{\delta}(n<\omega)$ be a basis of open neighborhoods of $\delta\left(\right.$ for $\left.\delta<\omega_{1}\right)$. We shall define by induction on $\alpha<\omega_{1}$ a limit ordinal $\gamma_{\alpha}<\omega_{1}$ and $\left\langle f_{n}(\gamma): n<\omega, \gamma<\gamma_{\alpha}\right\rangle$ such that γ_{α} is increasing continuous with α and $\gamma_{0}=0$. For $\alpha=0$ choose $\gamma_{\alpha}=\omega ; f_{n}(\gamma)=0$. For limit α let γ_{α} be $\cup\left\{\gamma_{\beta}: \beta<\alpha\right\}$. For $\alpha=\beta+1$ if $\gamma_{\alpha}>\alpha$ then we let $\gamma_{\alpha}=\gamma_{\beta}+\omega$ and let $f_{n}(\gamma)=0$ for $\gamma \in\left[\gamma_{\beta}, \gamma_{\alpha}\right)$. Finally assume that $\alpha=\delta^{*}, \gamma_{\delta^{*}}=\delta^{*}$ so $\delta^{*} \in X_{*}$.

We have chosen above the functions $\left\langle g_{n}^{\delta^{*}, k}: n<\omega, k<\omega\right\rangle$ with $g_{n}^{\delta^{*}, k}: \delta^{*} \rightarrow \omega$; now for each $n, k<\omega$ let $A_{\ell}^{\delta^{*}, n, k}=\cup\left\{U_{g_{n}^{\delta^{*}, k}(\delta)}^{\delta^{\prime}}: \delta<\delta^{*}, f_{n}(\delta)=\ell\right\}$ (for $n<\omega, \ell<$ $2)$. Call $k<\omega$ good for δ^{*} when for infinitely many (pairs) n, ℓ we have

$$
B_{\ell}^{\delta^{*}, n, k}:=\operatorname{cl}\left(A_{\ell}^{\delta^{*}, n, k}\right) \cap\left(X_{*} \backslash \delta^{*}\right) \neq \emptyset .
$$

We let $\gamma_{\alpha}=\gamma_{\delta^{*}+1}=\min \left\{\delta: \delta>\delta^{*}\right.$ and if $\ell<2$ and $n, k<\omega$ and $B_{\ell}^{\delta^{*}, n, k} \neq \emptyset$ then $\left.\left(\delta^{*}, \delta\right) \cap B_{\ell}^{\delta^{*}, n, k} \neq \emptyset\right\}$.

Now we choose $f_{n} \upharpoonright\left[\delta^{*}, \gamma_{\alpha}\right.$) for $n<\omega$ such that such that for any k good for δ^{*}, for some $n, \ell, \delta \geq \delta^{*}$ we have

$$
f_{n}(\delta)=1-\ell\left(\text { so } \delta \in \operatorname{cl}\left(A_{\ell}^{\delta^{*}, n, k}\right)\right)
$$

Then we complete arbitrarily the f_{n} so that its domain is γ_{α}.
Thus we have defined $f_{n}(n<\omega)$ with $f_{n}: \omega_{1} \rightarrow 2$. For each n the sets $f_{n}^{-1}\{1\} \cap$ $X_{*}, f_{n}^{-1}\{0\} \cap X_{*}$ form a partition of X_{*}, both are closed and discrete subsets of X. But X is normal. So there are functions $g_{n}: X_{*} \rightarrow \omega$ for $n<\omega$ so that letting for $\ell=0,1$

$$
A_{\ell}^{n}=\cup\left\{U_{g_{n}(\delta)}^{\delta}: \delta \in X_{*}, f_{n}(\delta)=\ell\right\}
$$

we have

$$
A_{0}^{n} \cap A_{1}^{n}=\emptyset
$$

Let g_{n}^{+}be any function from ω_{1} to ω extending g_{n}. For some closed unbounded set $C \subseteq X_{*}$ we have: $\delta^{*} \in C \Rightarrow(\exists k)\left(\left\langle g_{n}^{+} \upharpoonright \delta^{*}: n<\omega\right\rangle=\left\langle g_{n}^{\delta^{*}, k}: n<\omega\right\rangle\right)$. Let the first such k be denoted $k\left(\delta^{*}\right)$. Without loss of generality every $\delta^{*} \in C$ satisfy $\gamma_{\delta^{*}}=\gamma$ hence if $\delta^{*} \in C \wedge n<\omega \wedge k<\omega \wedge \ell<2$ and $B_{\ell}^{\delta^{*}, n, k}=\operatorname{cl}\left(A_{\ell}^{\delta^{*}, n, k}\right) \cap\left(X_{*} \backslash \delta^{*}\right) \neq \emptyset$ then $\min \left(B_{\ell}^{\delta^{*}, n, k}\right)<\min \left(C \backslash\left(\delta^{*}+1\right)\right)$.

For $\delta^{*} \in C$ now $k\left(\delta^{*}\right)$ cannot be good for δ^{*}, (by the definition).
Now for at least one n (in fact, for infinitely many n-s) we have $\operatorname{cl}\left(A_{\ell}^{n} \mid \delta^{*}\right) \cap\left(X_{*} \backslash\right.$ $\left.\delta^{*}\right)=\emptyset$ for $\ell \in\{0,1\}$, let $n\left(\delta^{*}\right)$ be the first such n.

Define
$B_{n}=\left\{\delta:\right.$ for some $\delta^{*} \in C \cup\{0\}$ we have $\delta^{*} \leq \delta<\min (C \backslash \delta)$ and $n=\max \left\{n\left(\delta^{*}\right), n(\delta)\right\}$
Now $\bigcup_{n}\left(g_{n} \mid B_{n}\right)$ almost exhibits X_{*} has the right sequence of neighborhoods. So we can deal with each B_{n} separately (just choose \mathscr{U}_{n} by induction on n such that \mathscr{U}_{n} is open, $\mathscr{U}_{n} \cap X_{*}=B_{n}$ and $\mathscr{U}_{n} \subseteq X \backslash c \ell\left(\bigcup_{\ell<n} \mathscr{U}_{\ell}\right)$, possible by normality).

By dealing as follows with each interval $\left[\delta^{*}, \min \left(C \backslash\left(\delta^{*}+1\right)\right)\right.$ for $\delta^{*} \in C \cup\{0\}$ we have $U_{g_{n}(\delta)}^{\delta}\left(\delta \in B_{n}\right)$ as required.

That is, for $\gamma \in C \cup\{0\}$ with γ^{+}its successor in C, choose a (countable) family of pairwise disjoint open sets $\mathscr{U}_{\gamma}(\beta)$ for $\beta \in X_{*} \wedge \gamma \leq \beta<\gamma^{+}$, with $\beta \in \mathscr{U}_{\gamma}(\beta)$, this is possible as in the choice of the \mathscr{U}_{n} 's.

Now for $\beta \in X_{*}$ we let $W_{\beta}=\mathscr{U}_{n(\beta)} \cap \mathscr{U}_{\gamma(\beta)}(\beta) \cap \mathscr{U}_{g_{n(\beta)}(\beta)}^{\beta}$ where:

- $\gamma(\gamma)=\max (C \cap(\beta+1))$
- $m(\beta)=\max \left\{n\left(\delta^{*}\right), n\left(\left(\delta^{*}\right)^{+}\right): \delta^{*}=\max (C \cap \beta) \leq \beta<\left(\delta^{*}\right)^{+}\right\}$

Finally $\left\langle W_{\beta}: \beta \in X_{*}\right\rangle$ is a sequence of pairwise disjoint open sets of X with $\beta \in X_{*} \Rightarrow \beta \in W_{\beta}$, so we are done.
Remark 1.4. As in [Fle84] it suffices to assume every point in the space has a neighborhood basis of cardinality \aleph_{1}.

§ 2. Chang Conjecture for Magidor-Malitz Quantifiers

Silver (see [Sil71]) had proved the consistency of Chang conjecture, i.e.
\oplus any model M with universe \aleph_{2} and countable signature (=vocabulary) τ, has an elementary submodel $N,\|N\|=\aleph_{1}$ and $|N| \cap \omega_{1} \mid$ is countable.

Silver did this by starting with a model \mathbf{V} with κ Ramsey (in fact, something weaker suffices), forcing MA and then collapsing κ to \aleph_{2} by $\mathbb{P}_{\text {Set }}^{\kappa}=\{f: \operatorname{Dom}(f) \subseteq$ $\left\{\mu: \aleph_{1}<\mu<\kappa, \mu\right.$ a cardinal $\}$ has cardinality $\leq \aleph_{1}$, and for some $\alpha<\omega_{1}$, $(\forall \mu \in \operatorname{Dom} f)(f(\mu)$ is a function from α to $\mu)\}$. See also Koszmider [Kos05] for a topological application.

We can ask whether this submodel N can inherit more properties from M.
Definition 2.1. Let us define a (technical variant of) Magidor-Malitz quantifiers. $M \models\left(Q^{n} \bar{x}\right) \varphi\left(x_{1}, \ldots, x_{n}\right)$ means that there is a set $A \subseteq M, A$ is of cardinality $\|M\|$ such that $\left(\forall a_{1} \ldots a_{n} \in A\right) \varphi\left(a_{1} \ldots a_{n}\right)$.

The result is that:
Claim 2.2. In \oplus above, we can have N an elementary submodel of M even for the logic $\mathbb{L}\left(Q^{0}, Q^{1}, \ldots\right)_{n<\omega}$. So e.g. Suslinity of trees is preserved.

For this we need the following.
Definition 2.3. Call a forcing \mathbb{P} suitable when for any sequence $\left\langle p_{i}: i<\omega_{1}\right\rangle$ of members of \mathbb{P} there is a set $\mathscr{U} \subseteq \omega_{1}$ of cardinality \aleph_{1} such that: for any finite $u \subseteq \mathscr{U}$ there is $q \in \mathbb{P}$ such that $\bigwedge_{i \in u} q \geq p_{i}$.
Claim 2.4. Forcing by suitable forcing preserves satisfaction of sentences of MagidorMalitz quantifiers for models of power \aleph_{1}.

Proof. See [BJ95, 1.5-13,pg.34].
Claim 2.5. There is a suitable forcing $\mathbb{P},|\mathbb{P}|=2^{\aleph_{1}}$, such that in $\mathbf{V}^{\mathbb{P}}$: if \mathbb{Q} is a suitable forcing of power $\aleph_{1}, \underset{\sim}{M}$ a \mathbb{Q}-name of a model of power \aleph_{1}, in a language $L \in \mathbf{V}$, universe \aleph_{1}, then there is a directed $\mathbf{G} \subseteq \mathbb{P}$, which determines M as M and such that for any sentence ψ from the $\mathbb{L}\left(Q^{0}, Q^{1}, \ldots\right)$ (the variant of Magidor-Malitz logic from Definition 2.1)

$$
\Vdash_{\mathbb{Q}} " \underset{\sim}{M} \models \psi " \text { implies } M \models \psi \text {. }
$$

Proof. Just iterate the required forcing notions with direct limit (i.e. finite support) and remembering it is known that suitability is preserved under iteration.
Proof of Main result 2.2:
Do as Silver, start with $\mathbf{V} \models$ " κ Ramsey", force by \mathbb{P} from Claim 2.5, and then use $\mathbb{P}_{\text {Set }}^{\kappa}$. The rest is as in his proof.

But we have to choose G as in Claim 2.5, and notice that more is reflected to the submodel he uses, (just check the definition carefully) and work a little, and remember that \aleph_{1}-complete forcing preserves satisfaction of sentences in $\mathbb{L}\left(Q^{0}, \ldots\right)$ (and $\mathbb{P}_{\text {Set }}^{\kappa}$ is \aleph_{1}-complete).

§ 3. A Remark on the Monadic Theory of Order

In [She75] we prove the undecidability of the monadic theory of (the order) R, assuming CH , or the weaker Baire-like hypothesis that \mathbb{R} is not the union of fewer than continuum sets of first category sets. This condition is weaken below to " $\neg(\mathrm{St})$ at least for T where a closely related theory is the monadic theory T of $M=\left({ }^{\omega} \geq 2, \triangleleft\right)$ where ${ }^{\omega} \geq 2$ is the set of sequences of zeros and ones of length $\leq \omega, \triangleleft$ is the (partial) order of being initial segment. T is closely related to Rabin's monadic theory of $\left({ }^{\omega>} 2, \triangleleft\right)$ which he proved decidable [Rab69]. We prove here that the statement " $\neg(\mathrm{St})$ " implies the undecidability of T (and all results on its complexity, see [She75] and the paper of Gurevich on the subject) but it was not clear (at that time) whether (St) is consistent with ZFC.

Definition 3.1. A Cantor [set] C is a non-empty subset of $\omega \geq 2$ with the properties
(a) C is closed under initial segments,
(b) if η has length ω then $\eta \in C \equiv(\forall n)(\eta \upharpoonright n \in C)$,
(c) $\eta \in C \cap^{\omega>} 2$ implies $\eta \frown\langle 0\rangle \in C$ or $\eta \frown\langle 1\rangle \in C$,
(d) for every $\eta \in C \cap^{\omega>} 2$, there is $\nu \in C \cap^{\omega>} 2$ such that $\eta \triangleleft \nu$ and $\nu \frown\langle 0\rangle \in$ $C, \nu \frown\langle 1\rangle \in C$.

Definition 3.2. 1) For a Cantor C, the set of its splitting points is $\operatorname{Sp}(C)=\{\eta \in$ ${ }^{\omega>} 2: \eta \frown\langle 0\rangle \in C$ and $\left.\eta \frown\langle 1\rangle \in C\right\}$.
2) For a set $A \subseteq{ }^{\omega>} 2, C$ is an A-Cantor, if $\operatorname{Sp}(C) \subseteq A$.
3) For a set $S \subseteq \omega, C$ is called an S-Cantor, if

$$
\mathrm{Sp}(C) \subseteq \bigcup_{n \in S}{ }^{n} 2
$$

4) An odd Cantor is one that is an $\{2 n+1: n<\omega\}$-Cantor. An even Cantor is one that is an $\{2 n: n<\omega\}$-Cantor.

Now the statement we speak about is
Definition 3.3. Let (St) mean: the set ${ }^{\omega} 2$ is the union of less than $2^{\aleph_{0}}$ Cantors each of them odd or even.

Problem 3.4. Is $\neg(\mathrm{St})$ consistent with ZFC? (solved in [BS87])
Claim 3.5. Let $\left\{C_{i}: i<\alpha\right\}$ be a family of odd and even Cantors, ${ }^{\omega \geq 2}=\bigcup_{i<\alpha} C_{i}$. Then $2^{\aleph_{0}} \leq|\alpha|^{+}$.

Proof. Let for $\eta, \nu \in{ }^{\omega} 2, \rho=p(\eta, \nu)$ be defined by $\rho(2 n)=\eta(n), \rho(2 n+1)=\nu(n)$, and then let $\eta=\operatorname{pr}_{1}(\rho), \nu=\operatorname{pr}_{2}(\rho)$.

Now for any even C, and η there is at most one ν such that $p(\eta, \nu) \in C$; why? if ν_{0}, ν_{1} are such ν^{\prime} 's, $\rho_{\ell}=p\left(\eta, \nu_{\ell}\right)$, then, by the definition of $p(-,-)$, for some $m<\omega, \rho_{0}\left\lceil m=\rho_{1} \upharpoonright m, \rho_{0}(m) \neq \rho_{1}(m)\right.$. If $m=2 n$ then $\rho_{\ell}(m)=\rho_{\ell}(2 n)=\eta(n)$ so they are equal, contradiction. If $m=2 n+1$, then $\left(\rho_{0}(m) \neq \rho_{1}(m)\right.$ and $)$ $\rho_{0} \upharpoonright m=\rho_{1} \upharpoonright m$ is a splitting point of C, however m is odd and C is an even Cantor, a contradiction. So really there is at most one ν, and let $\varrho(\eta, C)$ be the unique ν such that $p(\eta, \nu) \in C$ if there is one and η otherwise.

Similarly if C is odd and $\eta \in{ }^{\omega} 2$, then for at most one $\nu, p(\nu, \eta) \in C$ and let $\varrho(\eta, C)$ be ν for this η, and let $\varrho(\eta, C)=\eta$ otherwise. Our definition of the function ϱ does not contradict, because no Cantor is both odd and even.

Let for $\eta \in^{\omega} 2, \operatorname{Dp}(\eta)=\left\{\varrho\left(\eta, C_{i}\right): i<\alpha\right\}$. So clearly $\operatorname{Dp}(\eta)$ is a subset of ${ }^{\omega} 2$ of cardinality $\leq|\alpha|$.

Now if $\eta, \nu \in{ }^{\omega} 2$, by hypothesis $\rho=p(\eta, \nu)$ belongs to some C_{i}. If C_{i} is odd this implies $\nu=\varrho\left(\eta, C_{i}\right) \in \operatorname{Dp}(\eta)$ and if C_{i} is even this implies $\eta=\varrho\left(C_{i}, \nu\right) \in \operatorname{Dp}(\nu)$.

If $|\alpha|^{+}<2^{\aleph_{0}}$ we can easily find a counterexample.
Claim 3.6. Assume $\neg(\mathrm{St})$.

1) If $S_{n} \subseteq \omega$ are infinite pairwise almost disjoint (for $n \in\{0,1,2\}$), $C_{i}(i<\alpha<$ $2^{\aleph_{0}}$) are Cantors, each an S_{n}-Cantor for some n (or just an $S_{n} \cup S_{2}$-Contor for some n), C is a Cantor such that for every $\eta \in C \cap^{\omega>} 2, \ell \in\{0,1\}$, there is ν, such that $\eta \triangleleft \nu \in \mathrm{Sp}(C), \nu \in \bigcup_{k \in S_{\ell}}{ }^{k} 2$.

Then there is $\eta \in C \backslash \bigcup_{i<\alpha} C_{i} \backslash{ }^{\omega>} 2$.
2) Similarly for $S_{n} \subseteq{ }^{\omega>} 2$

Proof. 1) We can find a Cantor $C^{\prime} \subseteq C$, and $0=k(0)<k(1)<\ldots<k(n)<\ldots<$ ω such that:
(*) if $\eta \in{ }^{k(n)} 2$, then there are exactly two $\nu \in{ }^{k(n+1)} 2 \cap C^{\prime}, \eta \triangleleft \nu$, and if they are ν_{1}, ν_{2} and $m:=\min \left\{m: \nu_{1}(m) \neq \nu_{2}(m)\right\}$ then $m \in S_{0} \cup S_{1}$ but $\notin S_{2} \cup\left(S_{0}, \cap S_{1}\right)$. Moreover $m \in S_{0}$ iff n is even.

Let $A=\left\{\eta \upharpoonright k(n): n<\omega, \eta \in C^{\prime}\right\}$, so $A \subseteq C^{\prime}$. Clearly there is an isomorphism f, of the models $(\omega \geq 2, \triangleleft),\left(C^{\prime}, \triangleleft\right)$.

Let $C_{i}^{\prime}=\left\{f(\eta): \eta \in C^{\prime}, \eta \in C_{i}\right\}$, it is easy to check that each C_{i}^{\prime} is countable, or the union of a countable set and a Cantor which is odd or is even.

We can find odd Cantor $C_{i}^{\prime}(\alpha \leq i<\alpha \omega)$ such that all countable sets we mentioned are covered by them. Now by - " $\neg(\mathrm{St}) "$ there is $\eta \in{ }^{\omega \geq} 2$ such that $\eta \notin \bigcup_{i<\alpha \omega} C_{i}^{\prime}$ (as $\alpha \omega<2^{\aleph_{0}}$) and $f^{-1}(\eta)$ is the required elements.
2) Similarly.

Now ${ }^{1}$
Claim 3.7. Assume $\neg(\mathrm{St})$.
The monadic theory T is undecidable.
Proof. Below let P vary on Cantors and note that we can repeat the proof of [She75] with small adaptation (and prove T is undecidable). That is, the change needed is in [She75, 7.4] which has a set-theoretic hypothesis (CH or the Baire-like hypothesis mentioned above), so we repeat it with the needed changes below.

Lemma 3.8. Assume $\neg(\mathrm{St})$ and let J be an index-set of cardinality at most $2^{\aleph_{0}}$, 1) Assume the $D_{i}(i \in J)$ countable dense subsets of ${ }^{\omega>} 2$ and $D=\bigcup_{i \in J} D_{i}$ and $\bar{D}=\left\langle D_{i}: i \in J\right\rangle^{2}$. Then there is $Q \subseteq{ }^{\omega} 2 \backslash D, Q=Q[\bar{D}]$ such that for every Cantor P :

[^1](A) if $P \cap D \subseteq D_{i}(i \in J)$ and D_{i} is dense in P then $|P \cap Q|<2^{\aleph_{0}}$
(B) if for some $i \in J$ the sets $P \cap D_{i}, P \backslash D_{i}$ are dense in P then $P \cap Q \neq \emptyset$.
2) For some such \bar{D} we can strengthen clause (B) above to
(B) if P is a Cantor and for every $i \in J$ the set $D_{i} \cap P$ is nowhere-dense in P then for every, dense subsets D_{1}^{*}, D_{2}^{*} of $P \cap D$ we can find $D_{1}^{\bullet} \subseteq D_{1}^{*}, D_{2}^{\bullet} \subseteq$ D_{2}^{*} satisfying for any P we have: is $P \cap D_{1}^{\bullet}, P \cap D_{2}^{\bullet}$ are dense in P then $P \cap Q \neq \emptyset$.

Proof. 1) Let $\left\{P_{\alpha}: 0<\alpha<2^{\aleph_{0}}\right\}$ be any enumeration of the Cantor sets. We define $x_{\alpha}, \alpha<2^{\aleph_{0}}$ by induction on α.

For $\alpha=0, x_{\alpha} \in \mathbb{R}$ is arbitrary.
For any $\alpha>0$, if P_{α} does not satisfy the assumptions of (B) then let $x_{\alpha}=x_{0}$ and if P satisfies the assumptions of (B) (hence in particular D is dense in P) let $x_{\alpha} \in P_{\alpha}-\bigcup\left\{P_{\beta}: \beta<\alpha,(\exists i \in J)\left(P_{\beta} \cap D \subseteq D_{i}\right.\right.$ and D is dense in $\left.\left.P_{\beta}\right)\right\}=D$.

This is possible; to prove this let $\mathscr{U}=\{\beta<\alpha$: there is $i \in J$ such that $\left.P_{\beta} \cap D \subseteq D_{i}\right\}$ and for $\beta \in \mathscr{U}$ let $i_{\beta} \in J$ be such that $P_{\beta} \subseteq D_{i_{\beta}}$ Let $i(*) \in J$ be such that $P \cap D_{i(*)}, P \backslash D_{i(*)}$ are dense in P. Now we apply 3.6(2), (or 3.6(1) if we restrict the $D_{i-\mathrm{s}}$, does not matter).

So by (St) and the hypothesis $\left|P_{\alpha} \cap D\right|<2^{\aleph_{0}}$ there exists such x_{α}.
Now let $Q=\left\{x_{\alpha}: \alpha<2^{\aleph_{0}}\right\}$. If P satisfies the assumptions of (A), then $P \in\left\{P_{\alpha}: 0<\alpha<2^{\aleph_{0}}\right\}$. So for some $\alpha, P=P_{\alpha}$, hence $P \cap D \subseteq\left\{x_{\beta}: \beta<\alpha\right\}$, so $|P \cap D|<2^{\aleph_{0}}$. If $P=P_{\alpha}$ satisfies the assumption of (B) then $x_{\alpha} \in P_{\alpha}, x_{\alpha} \in Q$, hence $P_{\alpha} \cap Q \neq \emptyset$.
2) Similarly.

So we have proved the lemma.
Remark 3.9. We can interpret the monadic theory of $(R,<)$ in T, but the converse was not clear at the time, but looking at it again probably we can carry the proof for \mathbb{R}.

References

[BJ95] Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995, On the structure of the real line. MR 1350295
[BS87] Andreas R. Blass and Saharon Shelah, There may be simple $P_{\aleph_{1}}$ - and $P_{\aleph_{2}}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), no. 3, 213-243. MR 879489
[DT18] Alan Dow and Franklin D. Tall, Normality versus paracompactness in locally compact spaces, Canad. J. Math. 70 (2018), no. 1, 74-96. MR 3744886
[Fle84] William G. Fleissner, The normal Moore space conjecture and large cardinals, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 733-760. MR 776635
[GGK04] Stefan Geschke, Martin Goldstern, and Menachem Kojman, Continuous Ramsey theory on Polish spaces and covering the plane by functions, J. Math. Log. 4 (2004), no. 2, 109-145.
[GKKS02] S. Geschke, M. Kojman, W. Kubiś, and R. Schipperus, Convex decompositions in the plane and continuous pair colorings of the irrationals, Israel J. Math. 131 (2002), 285-317. MR 1942314
[GS82] Yuri Gurevich and Saharon Shelah, Monadic theory of order and topology in ZFC, Ann. Math. Logic 23 (1982), no. 2-3, 179-198 (1983). MR 701125
[HU17] Yair Hayut and Spencer Unger, The strong tree property and weak square, MLQ Math. Log. Q. 63 (2017), no. 1-2, 150-154.
[Kos05] P. Koszmider, Projections in weakly compactly generated Banach spaces and Chang's conjecture, J. Appl. Anal. 11 (2005), no. 2, 187-205. MR 2195512
[Rab69] Michael O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1-35. MR 246760
[Shea] Saharon Shelah, Applying set theory.
[Sheb] _ , Dependent dreams: recounting types, arXiv: 1202.5795.
[She75] _, The monadic theory of order, Ann. of Math. (2) 102 (1975), no. 3, 379-419. MR 0491120
[She81] _ On Fleissner's diamond, Notre Dame J. Formal Logic 22 (1981), no. 1, 29-35. MR 603754
[She85] , Monadic logic and Löwenheim numbers, Ann. Pure Appl. Logic 28 (1985), no. 2, 203-216. MR 779162
[She88] , Notes on monadic logic. Part A. Monadic theory of the real line, Israel J. Math. 63 (1988), no. 3, 335-352. MR 969946
[She10] , Diamonds, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2151-2161, arXiv: 0711.3030. MR 2596054
[Sil71] Jack Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 383-390. MR 0277379
[SS00] Kerry D. Smith and Paul J. Szeptycki, Paranormal spaces under \diamond^{*}, Proc. Amer. Math. Soc. 128 (2000), no. 3, 903-908. MR 1622981
[Tay81] Alan D. Taylor, Diamond principles, ideals and the normal Moore space problem, Canadian J. Math. 33 (1981), no. 2, 282-296. MR 617619

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: 2021-11-29.
 2010 Mathematics Subject Classification. Primary: 03C55,03C85; Secondary: 03E75,03E35.
 Key words and phrases. set theory, model theory, general topology, monadic logic.
 The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research. This is [Shea] in the author's publication list. It was part of a collection of preprints circulated in: spring 1979; retyped $5 / 2005$; Publication F26 parts G-J. The author thanks Alice Leonhardt for the beautiful typing. References like [Sheb, Th $0.2=\mathrm{Ly} 5$] means the label of Th. 0.2 is y5. The reader should note that the version in my website is usually more updated than the one in the mathematical archive.

[^1]: ${ }^{1}$ We have added 3.7 and 3.8 in 2019
 2 The main case is that the D_{i}-s are pairwise almost disjoint

