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Abstract

Theorem: There is a complete sentence φ of Lω1,ω such that φ has maximal
models in a set of cardinals λ that is cofinal in the first measurable µ while φ has
no maximal models in any χ ≥ µ.

In this paper we prove in ZFC the existence of a complete sentence φ of Lω1,ω such
that φ has maximal models (i.e. no Lω1,ω-elementary extension satisfies φ) in a set of
cardinals λ that is cofinal in the first measurable µ while φ has no maximal models in
any χ ≥ µ. In [BS21], we proved a theorem with a similar result; the earlier proof
required that λ = λ<λ, and extended ZFC by requiring an S ⊆ Sλℵ0 , that is stationary
non-reflecting, and �S holds. Here, we show in ZFC that the sentence φ defined in
[BS21] has maximal models cofinally in µ. The additional hypotheses in [BS21] allow
one to demand that if N is a submodel with cardinality < λ of the P0-maximal model,
N is K1-free (See Remark 4.1); that property fails for the example here. The existence
of such a φ which is not complete is well-known (e.g. [Mag16]).

This paper contributes to the study of Hanf numbers for infinitary logics. Works
such as [BKS09, BKS16, BS19, KLH16] study the spectrum of maximal models in the
context where the class has a bounded number of models. We list now some properties
that are true in every cardinality for first order logic but are true only eventually for
complete sentences of Lω1,ω or, more generally, for abstract elementary classes, and
compare the cardinalities (the Hanf number) at which the cofinal behavior must begin.
Every infinite model of a first order theory has a proper elementary extension and so
each theory has arbitrarily large models. Morley [Mor65] showed that every sentence
of Lω1,ω that has models up to iω1

has arbitrarily large models and provided coun-
terexamples showing that cardinal was minimal. Thus he showed the Hanf number for
existence of Lω1,ω-sentences in a countable vocabulary is iω1

. Hjorth [Hjo02], by a
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much more complicated argument, showed there are complete sentences φα for α < ω1

such that φα has a model in ℵα and no larger so the Hanf number for complete sen-
tences is ℵω1

. The amalgamation property holds for every complete first order theory.
However, [BB17] show that an upper bound on the Hanf number for amalgamation is
the first strongly compact; the actual value remains open. Boney and Unger [BU17],
building on [She13] show that the Hanf number ‘for all AEC’s are tame’ is the first
strongly compact cardinal. They also show the analogous property for various variants
on tameness is equivalent to the existence of almost (weakly) compact, measurable,
strongly compact). The result here shows in ZFC that the Hanf number for extendabil-
ity (every model of a complete sentence has a proper Lω1,ω-elementary extension) is
the first measurable cardinal.

Section 1 provides some background information on Boolean algebras. Section 2
is a set theoretic argument for the existence of a Boolean algebra with certain specified
properties in any cardinal λ of the form λ = 2µ that is less than the first measurable;
this construction is completely independent of the model theoretic results. Then we
make the connection with model theory. In particular, we link the construction here
with the complete sentence φ from [BS21]. Section 3 builds several approximations
to the counterexample. Subsection 3.1 introduces the most basic class of models K−1
and explains the connections with [BS21]. Subsection 3.2 builds on this result to find
a P0-maximal model in K−1 with cardinality λ satisfying certain further restrictions.
We recall in Subsection 3.3 the class K2 of models of the complete sentence from
[BS21]. In Section 4, the P0-maximal model from Section 3.2 is converted to a P0-
maximal model in K2. From this, it is easy to find a maximal model in K2 of roughly
the same cardinality.

The first author acknowledges helpful conversations with Joel Berman, Will Boney,
Ioannis Souldatos, and especially Sherwood Hachtman. We are particulary grateful for
an extremely helpful referee report.

1 Preliminaries
{prelim}

This paper depends heavily on [BS21] which contains a fuller background and essen-
tial material on Boolean algebras. In particular, the incomplete sentence with maximal
models cofinal in the first measurable and the construction of the desired complete sen-
tence are described there; in this paper we show in ZFC that that sentence has maximal
models below the first measurable. We repeat in this section the main slightly non-
standard definitions from Boolean algebra that appear in [BS21] and some immediate
consequences.

{bn}
Definition 1.1 1. A Boolean polynomial p(v0, . . . , vk) is a term formed by the com-

positions of the ∧,∨,−1 , 0, 1 on the variables vi; a polynomial over X arises
when elements of X are substituted for some of the vi.

2. For X ⊆ B and B a Boolean algebra, X = XB = 〈X〉B denotes the subalge-
bra of B generated by X .
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3. A set Y is independent (or free) over X modulo an ideal I (with domain I) in a
Boolean algebraB if and only if for any Boolean polynomial p(v0, . . . , vk) (that
is not identically 0, i.e. non-trivial), and any a ∈ 〈X〉B−I, and distinct yi ∈ Y ,
p(y0, . . . , yk) ∧ a 6∈ I.

4. A Y which is independent over X modulo I is called a basis for 〈X ∪ Y ∪ I〉
over 〈X ∪ I〉.

In this context, ‘independent from’ may sometimes be written ‘independent over’.
This notion of independence is distinct from each of i) a familyX of sets is independent
if every finite boolean combination of members X is non-empty and ii) from forking
independence.

{obs1a}
Observation 1.2 If I is the 0 ideal, (i.e., Y is independent over X),

1. the condition becomes: for any b ∈ 〈X〉B − {0}, B |= p(y0, . . . , yk) ∧ b > 0.
That is, every finite Boolean combination of elements of Y has non-empty meet
with each non-zero a ∈ 〈X〉B .

2. or, there is no non-trivial polynomial q(y,x) and b ⊆ X such that q(y,b) = 0.

That 2) implies 1) is obvious. For the converse, put a counterexample q(y,b) = 0
in disjunctive normal form. Then for each disjunct (i.e. each constituent conjunction)
q′(y,b) = 0 (some variables of q may not appear in q′.) We can replace those b’s
that appear in q′ by a single element b of 〈X〉 to get a q′′(y, b) = 0; q′′ contradicts
condition 1).

With Observation 1.2 we obtain an analog for Boolean algebras of the notion of
dependence in vector spaces in rings or fields: {y0, . . . , yk} are dependent over X if
some non-trivial polynomial p(v0, . . . , vk, w0, . . . wm) and some b fromX , p(y,b) =
0. This yields that if B2 is freely generated over B1, all atoms in B1 remain atoms
in B2. If not, there would be an atom a of B1 and a term σ(b2,b1) with 0B1 <
σ(b2,b1) < a and σ(b2,b1) ∈ B1. But thenB2 |= σ(b2,b1)∧a = 0; this contradicts
the freeness assumption. This notion of dependence (a depends on X if and only if
a ∈ 〈X〉) does not satisfy the exchange axiom. See [Grä79, Chapter 5] for the strong
consequences if this dependence relation satisfies exchange.

There is no requirement that I be contained in X . Observe the following:
{obs1}

Observation 1.3 Let I be an ideal in a Boolean algebra B.

1. Let π map B to B/I. If ‘Y is independent from X over I’ then the image of Y
is free from the image of X (over ∅) in B/I. Conversely, if π(Y ) is independent
over π(X) in B/I, for any Y ′ mapping by π to π(Y ), Y ′ is independent from
X over I.

So, if X is empty, the condition ‘Y is independent over I’ implies the image of Y
is an independent subset of B/I.

2. If a set Y is independent (or free) from X over I in B and Y0 is a subset of Y ,
then Y − Y0 is independent (or free) from X ∪ Y0 (〈X ∪ Y0〉B) over the ideal I
in the Boolean algebra B.
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2 Set theoretic construction of a Boolean algebra
{stba}

We define a property�(λ), which asserts the existence in λ of a Boolean algebra that is
‘uniformly ℵ1-incomplete’. We then show certain conditions on λ imply�(λ). So this
section has no elaborate model theory. The arguments here are similar to those around
page 7 of [GS05]. We connect this construction with our model theoretic approach in
Section 3.

Definition 2.1 (�(λ)) denotes: There are a Boolean algebra B ⊂ P(λ) with |B| = λ {boxplus}
and a set A ⊆ ωB such that:

i) A has cardinality λ and if A = {An : n ∈ ω} ∈ A then for α < λ for all but
finitely many n, α 6∈ An.

ii) B includes the finite subsets of λ; but is such that for every non-principal ultra-
filter D of λ (equivalently an ultrafilter of B that is disjoint from λ<ω) for some
sequence 〈An : n ∈ ω〉 ∈ A, there are infinitely many n with An ∈ D.

We may say that (B,A) witness uniform ℵ1-incompleteness.
{boxthm}

Theorem 2.2 (ZFC) Assume for some µ, λ = 2µ and λ is less than the first measur-
able, then �(λ) from 2.1 holds.

We need the following structure, which depends on µ and λ.
{f12.5}

Definition 2.3 1. Fix the vocabulary τ with unary predicates P,U , a binary pred-
icate C, and a binary function F .

2. Let 〈Cα : α < λ〉 list without repetitions P(µ) such that C0 = ∅ and also let
〈fα :µ ≤ α < λ〉 list µω.

3. Define the τ -structure M by:

(a) The universe of M is λ;

(b) PM = ω; UM = µ;

(c) C(x, y) is a binary relation on U × M defined by C(x, α) if and only
x ∈ Cα. Note that C is extensional. I.e., elements of M uniquely code
subsets of UM ;

(d) Let FM2 (α, β) map M × UM → PM by FM2 (α, β) = fα(β) for α < λ,
β < µ;

(e) FM2 (α, β) = 0 for α < λ and β ∈ [µ, λ).

We use the following, likely well-known, fact pointed out to us by Sherwood Hacht-
man.

{hacht}
Fact 2.4 Let D ⊆ P(X) and suppose that for each partition Y ⊆ P(X) of X into at
most countably many sets, |D ∩ Y | = 1. Then, D is a countably complete ultrafilter.
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We use the following lemma about M to find a Boolean algebra B in M that sat-
isfies �. We lay the basis for the notion of P -maximality, a counterexample to maxi-
mality must occur in a given predicate P (Definition 3.2.1).

{f12.7}
Lemma 2.5 If λ is less than the first measurable cardinal and λ = 2µ for some µ
there is a model M , with |M | = λ, and a countable vocabulary with PM denoting
the natural numbers such that every first order proper elementary extension N of M
properly extends PM .

Proof. Fix M as in Definition 2.3. We first show that any proper elementary ex-
tension N of M extends UM . Suppose for contradiction there exists α′ ∈ N −M but
UN = UM . By the full listing of the Cα, there is a β ∈M with {x : N |= C(x, β)} =
{x : N |= C(x, α′)}. This contradicts extensionality of the relation C in N ; but C is
extensional in the elementary submodel M .

Now we show that if UM ( UN and PM = PN , then there is a countably com-
plete non-principal ultrafilter on µ, contradicting that µ is not measurable. Note that
the sequence 〈fα : µ ≤ α < λ〉 can be viewed as a list of all non-trivial partitions
of µ into at most countably many pieces. Let ν∗ ∈ UN − UM . For α ∈ N , denote
FN2 (α, ν∗) by nα. Since PM = PN , nα ∈M . By elementarity, for α ∈M,η ∈ UM ,
FN2 (α, η) = FM2 (α, η) = fα(η). Now, let

D = {x ⊆ UM : x 6= ∅ ∧ (∃α ∈M) x ⊇ f−1α (nα)}.

We show D satisfies the conditions from Fact 2.4. Let W be a partition, indexed
by fα. Then f−1α (nα) 6= ∅ and is in D. Suppose for contradiction there are x0 6= x1
in W that are both in D. Then, there are αi ∈ M such that xi ∈ W ∩ D contains
f−1αi (nαi) for i = 0, 1. So, N |= F (αi, ν

∗) = nαi for i = 1, 2. Since αi ∈ M and
M ≺ N , M |= ∃x(F (α0, x) = nα0 ∧ F (α1, x) = nα1 . So, by Definition 2.3 (d),
for any witness a in M for this formula, a ∈ x0 ∩ x1; but x0 ∩ x1 = ∅ since W is a
partition.

Finally, D is non-principal on UM since if it were generated by an a ∈ UM ,

D = {x ⊆ U : (∃α) x ⊇ f−1α (nα)} = {x ⊆ U : a ∈ x}.

Since {a} ∈ D, for some α0 ∈ M , {a} = f−1α0
(nα0

). Note that α0 ∈ M , because
the definition of D is about the model M . That is, M |= ∃!yF (α0, y) = nα0

. But
N |= F (α0, a) = nα0

∧ F (α0, ν
∗) = nα0

. This contradicts the assumption M ≺ N
and completes the proof. �2.5

The following claim completes the proof of Theorem 2.2
{f12.8}

Claim 2.6 If B is the Boolean algebra of definable formulas in the M defined in Defi-
nition 2.3, there is an A such that (B,A) is uniformly ℵ1-incomplete so �(λ) holds.

Proof. We may assume τ has Skolem functions for M and then define B and A as
follows to satisfy �.(ii). Let B be the Boolean algebra of definable subsets of M . I.e.,

B = {X ⊆M : for some τ -formula φ(x,y) and b ∈ lg(y)M, φ(M,b) = X.}
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Note B is a Boolean algebra of cardinality λ with the normal operations. We define
the Skolem functions a little differently than usual: as maps σφ = σφ(x,w,y) from
Mn+1 to M for formulas φ(x,w,y) such that φ(σφ(b,a), b,a). Here lg(y) = n.
Then, we specialize the Skolem functions by considering the unary function arising
from fixing the y entry of σφ(w,y) to obtain σφ(w,a).

A
σφ(w,a)
n = {α < λ :: φ(σMφ (α,a), α,a) ∧ P (σMφ (α,a)) ∧ σMφ (α,a) 
 n}

∪ {α < λ :: n = 0 ∧ ¬P (σMφ (α,a)}.

Then let Aσφ(w,a) = 〈A
σφ(w,a)
n :n < ω〉 and

(∗) A = {Aσφ(w,a) : for some τM -term σφ(w,y) and a ∈ lg(y)M.}

Note |A| = λ = λω as for each a ∈ M and each of the countably many terms
σφ(w,a), Aσφ(x,w,a) is a map from ω into B. For each α, for each 0 < m < ω and
A = Aσφ(α,b), the set {m : α ∈ Am} is finite, bounded by σφ(α,a). Thus, clause i)
of � is satisfied.

We now show Clause ii) of �. Let D be an arbitrary non-principal ultrafilter on λ
and where φ(v,y) varies over first order τ -formulas such that y and a have the same
length, define the type p(x) = pD(x) as:

p(x) = {φ(x,a) : {α ∈M : M |= φ(α,a)} ∈ D}.

Since D is an ultrafilter, p is a complete type over M . So there is an elementary
extensionN ofM where an element d realizes p. LetN be the Skolem hull ofM∪{d}.
Since D is non-principal, so is p; thus, N 6= M . By Lemma 2.5, we can choose a
witness c ∈ PN − PM . Since, N is the Skolem hull of M ∪ {d} there is a Skolem
term σ(w,y) = σφ(w,y) and a ∈ M such that c = σN (d,a). Since c 6∈ M , for each
n ∈ PM , N |=

∧
k<n c 6= k so N |=

∧
k<n σ(d,a) 6= k so

∧
k<n σ(x,a) 6= k is in p.

That is, for each σφ and each n, Aσφ(w,a)
n is in D. �2.6

3 Three Classes of Models and an Approximate Coun-
terexample

{1approx}
In this section we define the model theoretic classes that produce first an amalgamation
class K−1 of finitely generated structures (Section 3.1), then the class K2 (Defini-
tion 3.3.2) of models of a complete Lω1,ω-sentence. Using Theorem 2.2, we build in
Subsection 3.2 a model M∗ in K−1 with cardinality λ, which is P0-maximal. Sub-
section 3.3 defines the classes K1 and K2 which give us the complete sentence. In
Section 4 we modifyM∗ to a P0-maximal model in K2 and then construct the required
maximal model in K2.
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3.1 Finitely generated models
{fgmodels}

The class K−1<ℵ0 and the class of its direct limits, K−1 were introduced in [BS21].
{deftau}

Definition 3.1.1 τ is a vocabulary with unary predicates P0, P1, P2, P4, binary R,
∧,∨, ≤ unary functions −, G1, constants 0,1 and unary functions Fn, for n < ω. ≤ is
a partial order on PM1 and the Boolean algebra can be defined from it.

We occasionally use the notations (∀∞n) and (∃∞n) to mean ‘for all but finitely
many’ and ‘for infinitely many’ respectively. It is easy to see that K−1 is Lω1,ω-
axiomatizable but far from complete.

{f1}
Definition 3.1.2 (K−1) K−1<ℵ0 is the class of finitely generated structures M satisfy-
ing the following conditions.

1. PM0 , PM1 , PM2 partition M .

2. (PM1 , 0, 1,∧,∨,≤,− ) is a Boolean algebra (− is complement). We also consider
ideals and restrictions to them of the relations/operations except for complement.

3. R ⊂ PM0 × PM1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈
PM1 } is a Boolean algebra. fM : PM1 7→ P(PM0 ) by fM (b) = R(M, b) is a
Boolean algebra homomorphism into P(PM0 ).

Note that f is not1 in τ ; it is simply a convenient abbreviation for the relation
between the Boolean algebra PM1 and the set algebra on P0 by the map b 7→
R(M, b).

4. PM4,n is the set containing each join of n distinct atoms from PM1 ; PM4 is the
union of the PM4,n and so is an ideal. That is, PM4 is the set of all finite joins of
atoms.

There is an element b∗ ∈ PM1 such that PM4 = {c : c ≤M b∗}. Note that b∗ is
not a function symbol in τ .

5. GM1 is a bijection from PM0 onto PM4,1 such that R(M,GM1 (a)) = {a}. (Note
that PM0 = ∅ is allowed.

6. PM2 is finite (and may be empty). Further, for each c ∈ PM2 the FMn (c) are
functions from PM2 into PM1 . Note that it is allowed that for all but finitely many
n, FMn (c) = 0PM1 .

7. (countable incompleteness) If a ∈ PM4,1 and c ∈ PM2 then (∀∞n) a 
M FMn (c).
Since a ∧ FMn (c) = 0 and a is an atom, this implies

∧
n∈ω{x : (G1(x) ∈

FMn (c)} = 0.

8. PM1 is generated as a Boolean algebra by PM4 ∪{FMn (c) :c ∈ PM2 , n ∈ ω}∪X
where X is a finite subset of PM1 .

1The subsets of PM0 are not elements of M .
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{f2}
Definition 3.1.3 1. K−1 is the class of τ structures M such that every finitely gen-

erated substructure of M is in K−1<ℵ0 . K−1µ is the members of K−1 with cardi-
nality µ.

2. We say M ∈ K−1 is atomic if PM1 is atomic as a Boolean algebra. That is, PM4
is dense in BM .

3.2 A P0-maximal model in K−1
{mtconst}

In this section we invoke Theorem 2.2 to show (Theorem 3.2.6) that we can construct
P0-maximal structures in the class K−1 of appropriate cardinality below the first mea-
surable.

{f2*}
Definition 3.2.1 We say M ∈ K−1 is P0-maximal (in K−1) if M ⊆ N and N ∈ K−1
implies PM0 = PN0 .

The notion uf(M) is the crucial link between Section 2 and P0-maximality.
Lemma 3.2.4 is central for Theorem 3.2.6 and is applied in Theorem 4.9.

{f5}
Definition 3.2.2 (uf(M)) For M ∈ K−1, let uf(M) be the set of ultrafilters D of the
Boolean Algebra PM1 such that D ∩ PM4,1 = ∅ and for each c ∈ PM2 only finitely many
of the FMn (c) are in D.

For applications we rephrase this notion with the following terminology. For any
M ∈K−1 and d ∈ PM2 , let SMd (D) = {n : FMn (d) ∈ D}. So uf(M) = ∅ if and only
if for every ultrafilter D on PM1 , there exists a d ∈ PM2 such that SMd (D) is infinite.

We use the following standard properties of a Boolean algebra B and ideal I in
proving Lemma 3.2.4 and deducing Claim 3.2.9 from Definition 3.2.8.

{quotprop}
Fact 3.2.3 1. b ∧ c ∈ I implies b/I and c/I are disjoint.

2. b M c ∈ I implies b/I = c/I .

3. b− c ∈ I implies b/I ≤ c/I .

For our collection of structures K−1, we can characterize P0-maximality in terms
of ultrafilters.

{f8}
Lemma 3.2.4 An M ∈K−1 is P0-maximal if and only if uf(M) = ∅.

Proof. Suppose M is not P0-maximal and M ⊂ N with N ∈ K−1 and d∗ ∈
PN0 −PM0 . Then {b ∈M : RN (d∗, b)} is a non-principal ultrafilter D0 of the Boolean
algebra PM1 [BS21, 3.3.11]. To see D0 is non-principal suppose there is a b0 ∈ PM1
such that D0 = {b ∈ M : b0 ≤ b}. Note b0 = GM1 (a) for some a ∈ PM0 . But
N |= GN1 (d∗) � b0, contradicting {d∗} ∈ D0.
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For each c ∈ PM2 , since N ∈ K−1, by countable incompleteness (clause 7 of
Definition 3.1.2), for all a ∈ PN0 and all but finitely many n, GN1 (a) 6≤ FNn (c). Since
FNn (c) = FMn (c), only finitely many of the FMn (c) can be in D0, which implies D0 ∈
uf(M). By contraposition we have the right to left.

Conversely, if D ∈ uf(M), we can construct an extension by adding an element
d ∈ PN0 satisfying RN (d, b) iff b ∈ D. Let PN1 be the Boolean algebra generated by
PM1 ∪{G1(d)}modulo the ideal generated by {GN1 (d)−b : b ∈ D}; this implies that in
the quotient G1(d) ≤ b. (Compare Fact 3.2.3). Let PN2 = PM2 and FNn (c) = FMn (c).
Since D ∈ uf(M), it is easy to check that N ∈K−1. �3.2.4

We now introduce the requirement that the Boolean algebras constructed will, when
the atoms are factored out, be free. Moreover, there is a set Y ⊆ PN2 with |Y | = λ such
that different c ∈ Y generate coinitially disjoint collections of FNn (c) as c varies. This
strong requirement is used inductively in this section to construct an approximation
to the counterexample. The correction in Section 4 loses this disjointness (and thus
freeness).

{b9}
Definition 3.2.5 (Nicely Free) We say M ∈ K−1 is nicely free when |PM1 | = λ and
there is a sequence b = 〈bα :α < λ〉 such that:

(a) bα ∈ PM1 − PM4 ;

(b) 〈bα/PM4 :α < λ〉 generate PM1 /PM4 freely;

(c) there is a set Y ⊂ PM2 of cardinality λ such that {Fn(c) : n < ω; c ∈ Y }
without repetition is a subset of the basis {bα : α < λ} mod atoms. For c ∈ Y ,
we write uc = {FMn (c) : n < ω}.

Nicely free is quite distinct from the notion K1-free introduced in [BS21]. There
are maximal nicely free models but there are no maximal K1-free models. Note that
condition Definition 3.2.5.c asserts that a subset of PM2 partitions a subset of the basis.

Here is the main theorem of Section 3. The hypotheses λ = 2µ and λ is less than
the first measurable cardinal were used essentially as the hypotheses for proving�(λ),
the existence of a uniformly ℵ1-incomplete Boolean algebra. But here we use�(λ) and
don’t rely again on λ being less than the first measurable cardinal. The argument here
does depends on λ = λℵ0 , which follows from λ = 2µ. By constructing a nicely free
model, we introduce at this stage the independence requirements, needed in Section 4
to satisfy Definition 3.3.1.6, on the Fn(c).

{f11a}
Theorem 3.2.6 If for some µ, λ = 2µ and λ is less than the first measurable cardinal
then there is a P0-maximal model M∗ in K−1 such that |PM∗i | = λ (for i = 0, 1, 2),
PM∗1 is an atomic Boolean algebra, uf(M∗) = ∅, and M∗ is nicely free.

Proof. We first construct by induction a P0-maximal model in K−1. The property
�(λ) (Definition 2.1) appears in the construction to satisfy Specification (f) and is used
in the proof that the construction works in considering possibility 2. We chooseMε, Dε

and other auxiliaries by induction for ε ≤ ω + 1 to satisfy the following specifications
of the construction.
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{oplus}
Construction 3.2.7 (Specifications) (a) For ε ≤ ω+1,Mε is a continuous increas-

ing chain of members of K−1λ with each PMε
1 atomic and PMω+1

1 = PMω
1 .

{clb}
(b) For all ε ≤ ω, |PMε

i | = λ and PMω
i = P

Mω+1

i for i = 0, 1.
{clc}

(c) For all ε ≤ ω + 1, PMε
1 /PMε

4 is a free Boolean algebra.
{cld}

(d) (i) If ε < ω, Dε ∈ uf(Mε).

(ii) If ε = 0, then b−1 = 〈b−1,α : α < λ〉 is a free basis of PM0
1 /PM0

4 , listed
without repetition as 〈FM0

n (c) : n < ω, c ∈ PM0
2 〉.

(iii) if ε = ζ + 1 < ω then there is a free basis bζ = 〈bζ,α/P
Mζ

4 : α < λ〉 of
PMε
1 /PMε

4 . Note bζ,α ∈ PMε
1 − PMζ

1 .
{cle}

(e) if ε = ω + 1, for each d ∈ ω(P
Mω+1

1 − PMω+1

4 ) such that for each a ∈ PMω
0

satisfying that all but finitely many n, a 6∈ R(Mω, dn), there is a c ∈ PMω+1

2 ,
F
Mω+1
n (c) = dn; (We will in fact have that PMω+1

1 = PMω
1 and PMω+1

4 =
PMω
4 .)

{clf}
(f) ε = ζ + 1 < ω:

Let B and A be as in Definition 2.1. There is a 1-1 function fε from λ onto PMε
4,1

such that:

i) for every X ∈ B (from �) there is a b = bX ∈ PMε
1 such that

{α < λ :fε(α) ≤Mε
bX} = X.

ii) for each A = 〈An : n < ω〉 ∈ A there is a c ∈ PMε
2 such that for each n:

An = {α < λ :fε(α) ≤Mε F
Mε
n (c)}.

Carrying out the construction.

case 1: When ε = 0, take PM0
1 as the Boolean algebra generated by a set PM0

4,1 of
cardinality λ along with a set {b−1,α : α < λ} of independent subsets of P(λ). Let
G1 be a bijection between a set PM0

0 and PM0
4,1 . Set PM0

4 as the ideal generated by the
image of G1. For a ∈ PM0

0 and b ∈ PM1 , define RM0(a, b) to hold if G1(a) ≤ b. Set
PM0
2 as a set of cardinality of λ and let 〈FM0

n (c) : n < ω, c ∈ PM0
2 〉 list 〈b−1,α : α <

λ〉 without repetition. Thus, any non-principal ultrafilter on PM0
1 is in uf(M0).

case 2: For ε = ω, Mω =
⋃
n<ωMn. Since the set of free generators is extended

at each finite step, the union is also free mod PM4 .
case 3: If ε = ζ + 1 < ω, the main effort is to verify clauses (c), (d), and (f) of

Specification 3.2.7. The element bζ,aα is the bAα from Specification 3.2.7.f.(i).
Now, to construct Mε:

(i) Recall that Dζ ∈ uf(Mζ).
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(ii) choose as the new atoms introduced at this stage a set Bε ⊆ P(λ) with Bε ∩
Mζ = ∅ and |Bε| = λ.

(iii) Let fε be a one-to-one function from λ onto Bε ∪ P
Mζ

4,1 .

(iv) Let 〈Xγ :γ < λ〉 list the elements of B (definable subsets of M 2.6) from �.(ii)
with X0 = ∅.

(v) Fix a sequence {bζ,α :α < λ}, which are distinct and not in Mζ ∪Bε, and let B′ζ
be the Boolean Algebra generated freely by

P
Mζ

1 ∪ {bζ,α :α < λ} ∪ {fε(α) : α < λ}.

Using Lemma 3.2.3, we apply the following definition at the successor stage. Here
we take an abstract Boolean algebra B′ζ and impose relations to embed PMζ

1 in a quo-
tient B′′ζ of B′ζ .

{defI}
Definition 3.2.8 (Ideal) Let Iζ be the ideal of B′ζ generated by:

(i) σ(a0, . . . am) when σ(x0, . . . xm) is a Boolean term, a0, . . . am ∈ P
Mζ

1 and
P
Mζ

1 |= σ(a0, . . . am) = 0.

The next two clauses aim to show that in Mζ/Iζ , the element bζ,γ is the bXγ
from Specification 3.2.7 f.i). That is, {α < λ : fε(α) ≤Mε

bγ,ζ} = Xγ . Recall
(Definition 2.1) that the Xγ enumerate B and are subsets of λ.

(ii) fε(α)− bζ,γ when α ∈ Xγ and α, γ < λ.

(iii) bζ,γ ∧ fε(α) when α ∈ λ−Xγ and α, γ < λ.

To show the fε(γ) are disjoint atoms we add:

(iv) For any fε(γ) and any b ∈ B′ζ either (fε(γ) ∧ b) ∈ Iζ or (fε(γ)− b) ∈ Iζ .

(v) fε(γ1) ∧ fε(γ2) when γ1 < γ2 < λ;

(vi) fε(α)− b when α < λ, fε(α) 6∈ P
Mζ

4,1 and b ∈ Dζ .

This asserts: Every new atom is below each b ∈ Dζ and is used at the end of
case 3 of the construction.

Let B′′ζ = B′ζ/Iζ . Applying Fact 3.2.3, we see from Definition 3.2.8:
{succ}

Claim 3.2.9 The structure PMζ

1 is embedded as a Boolean algebra into B′′ζ by the map
b 7→ b/Iζ and

1. For γ < λ, fζ(γ)/Iζ is an atom of B′′ζ ;

2. If b ∈ P
Mζ

1 is non-zero, then b/Iζ ≥B′′ζ fε(γ) for some γ < λ. (Since f−1ε
induces an isomorphism of B′′ζ into P(λ).)
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We take a further quotient of B′ζ . Let

Jζ = {b ∈ B′ζ :b/Iζ ∧B′′ζ fε(γ) = 0 for every γ < λ}.

Then Jζ is an ideal of B′ζ extending Iζ so b 7→ b/Jζ is a homomorphism. Further,
fε(γ) is an atom of B′ζ/Jζ for γ < λ. These atoms are distinct and dense in B′ζ/Jζ .
That is, Bε is an atomic Boolean algebra.

{Beps}
Notation 3.2.10 Let Bε be B′ζ/Jζ with quotient map, jε(b) = b/Jζ .

Now we defineMε by setting PMε
1 = Bε which contains PMζ

1 ; PMε
4,1 is the injective

image in PMε
1 of PMζ

4,1 ∪ Bε. For a ∈ PMε
4,1 and b ∈ PMε

1 , set RMε(a, b) if for some
γ, a = fε(γ)/Jζ and fε(γ)/Jζ ≤Bε b/Jζ . Finally, let Dε be the ultrafilter on PMε

1

generated by

Dζ ∪ {jε(−bζ,γ) :γ < λ} ∪ {jε(−fε(γ)) :γ < λ}.

We verify Mε ∈ K−1 below. By Claim 3.2.9, we have the cardinality and atom-
icity conditions of Specification 3.2.7.(a) and (b); the definition of Iζ guarantees, (c)
and (d).(ii), (d).(iii). The elements bζ,γ along with (our later) definition of FMε

n (c)
show d.i), Dε ∈ uf(Mε), (as no new Fn(c) is in Dε); the elements of Bε show Dε is
non-principal as each complement of an atom is in the ultrafilter. Note that Specifica-
tion 3.2.7.(e) does not apply except in the ω + 1st stage of the construction.

For Specification 3.2.7 (f) (i), let X ∈ B be a set of atoms of Mε and note that we
can choose bX by conditions ii) and iii) in Definition 3.2.8 of Iζ .

We can choose PMε
2 and FMε

n to satisfy Specification 3.2.7 (f) (ii). Fix an A ∈ A
(as given by �). Fix a c = cA and define, using the last paragraph, the FMε

n (c) as bAn ,
so that for each n, An = {α < λ : fε(α) ≤PMε1

FMε
n (c)}. These are the only new

c ∈ PMε
2 .

Thus, it remains only to show that Mε ∈K−1. Most of the cases are obvious. E.g.
for Definition 3.1.2.(8), just look at where the generators can be and recall countable
free algebras are atomless. Showing Mε satisfies countable incompleteness, Defini-
tion 3.1.2.(7), is a bit more complex but we do so now.

(�) If a ∈ PMε
4,1 and c ∈ PMε

2 then (∀∞n) a 
Mε
FMε
n (c).

If c ∈ PMζ

2 , FMε
n (c) = F

Mζ
n (c) ∈ PMζ

1 and we know by induction that � holds for
a ∈ PMζ

4,1 . For a ∈ PMε
4,1 − P

Mζ

4,1 , Definition 3.1.2.5, and condition (vi ) on Iζ (from

Definition 3.2.8) imply a ≤Mε
b for every b ∈ Dζ . As c ∈ PMζ

2 and Dζ ∈ uf(Mζ),
all but finitely many n, en = F ζn(c), are not in Dζ . So for all but finitely many n, the
complement e−n ∈ Dζ . That is, a ≤Mε e

−
n ; so a ∧Mε en = ∅ as required.

If c ∈ PMε
2 − PMζ

2 then by our choice of PMε
2 and the FMε

n , there is an Ac that
is enumerated by the FMε

n (c) and satisfies � by (i) of � (Definition 2.1.(i)). This
completes the verification of � at stage ε and so Mε satisfies all the specifications of
the induction.

case 4: ε = ω + 1:
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Only clauses (c) and (e) of Specification 3.2.7 are relevant. Define PMε
2 and FMε

n

to satisfy clause (e). Since PMε
i = PMω

i for i = 0, 1, specification c) is immediate.
This completes the construction.

The construction suffices.
Having completed the induction, let M =Mω+1. Using specifications d) and a) of

3.2.7, it is straightforward to verify that M ∈K−1 and the Boolean algebra is atomic.
By (b), PMω

i for i = 0, 1 have cardinality λ. And by (f), the same holds for PMω+1

2 .
We now show M is nicely free. Let b = 〈b′β : β < λ〉 enumerate 〈bn,α : n <

ω, α < λ〉 without repetition and such that {b−1,α : α < λ} = {b′2α : α < λ}. So
this picks out a first level of generators for PM1 which is enumerated by the FM0

n (c)
for c ∈ PM0

2 and n < ω by case 1 of the construction.
Now, b satisfies the requirements in Definition 3.2.5 of nicely free. As, by Specifi-

cations 3.2.7. (c), (d) and since PM1 is constructed as the union of the PMn
1 , PM1 /PM4

is generated freely by b/PM4 . Finally, clause c) of Definition 3.2.5 holds by clause
(d).ii) of Specification 3.2.7.

The crux is to show M = Mω+1 is P0-maximal. For this, assume for a contradic-
tion:

(*) PM0 is not maximal; by Lemma 3.2.4, there is a D ∈ uf(Mω+1) = uf(Mω).
For every n < ω, is there a d ∈ D such that R(Mω, d) ∩Mn = ∅?

Ask: Possibility 1 : For every n < ω, the answer is yes, exemplified by dn ∈ D.
Now for each a ∈ PMn

0 , a 6∈ R(Mω, dm) for all m ≥ n. So the sequence d = 〈dn :
n < ω〉 satisfies the hypothesis of Specification 3.2.7.(e) and so there is a c ∈ PM2 such
that for each n < ω, FMn (c) = dn. Thus, recalling Definition 3.2.2, D 6∈ uf(M).

Possibility 2 : For some n < ω, there is no such dn; without loss of generality,
assume n > 0. We apply specification f) with ε = n. Recall that fn is a 1-1 map
from λ onto PMn

4,1 . Let g1 be the following homomorphism from the Boolean algebra

P
Mω+1

1 = PMω
1 into P(λ): g1(b) = {α < λ : fn(α) ≤BMω b}. By Specification f.i)

of 3.2.7, the Boolean algebra B provided by � is contained in the range of g1.
Let In denote the ideal of PM1 generated by PM4,1−P

Mn
4,1 . SinceD is non-principal,

In ∩D = ∅. Now, g1 maps any b ∈ PMω
1 − PMω

4 (and, thus, any b ∈ PMω
1 − In) to

a nonempty subset of λ. Recalling In ∩ D = ∅, D1 = g1(D) is an ultrafilter of the
Boolean Algebra rg(g1) and so D2 = D1 ∩ B is an ultrafilter of the Boolean algebra
B. We show, D2 is non-principal, i.e., for any α < λ, {α} 6∈ D2. As, fn(α) ∈ PMω

4,1

and so fn(α) is not in D. So {α} 6∈ D1. Thus, λ− {α} ∈ D1 and so λ− {α} ∈ D2.
So {α} 6∈ D2 as promised.

Now we apply the second clause of � to the ultrafilter D2. Since we satisfied
specification f.ii) in the construction, we can conclude there is A = 〈An :n < ω〉 ∈ A
such that for infinitely many k, Ak is in D2. Thus, u = {k : Ak ∈ D} is infinite. We
will finish the proof by showing there is a c such that u = uc (Definition 3.2.5) is the
set of images of the FMn (c).

Since we are in possibility 2), if Ak ∈ B then Ak ∈ rg(g1). So we can choose
dk ∈ PMω

1 with g1(dk) = Ak. As Ak ∈ D2, by the choice of D1, D2 we have dk is in
the ultrafilter D from the hypothesis for contradiction: (*).
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We show the sequence d = 〈dk : k < ω〉 satisfies the hypothesis of clause e of
Specification 3.2.7. First, dk ∈ PMω

1 − PMω
4 as D is a non-principal ultrafilter on

PMω
1 so the first hypothesis is satisfied. Further, for every a ∈ PMω

0 all but finitely
many k, GMω

1 (a) �Mω
dk because A ∈ A, which implies by � ii) that for every

α < λ, for some kα, we have k ≥ kα implies α 6∈ Ak. Now by the definition of
g1, recalling g1(dk) = Ak, we have k ≥ kα implies fk(α) 
 dk (in PMω

1 ). So by
Specification 3.2.7. f.ii), there is a c ∈ PMn

2 such that if for all k < ω, FMn

k (c) = dk.
So, for each finite k, dk ∈ D and FMω+1

k (c) = dk. This contradicts D ∈ uf(Mω+1)
and we finish. �3.2.6

3.3 K1 and K2
{K1def}

We now introduce further terminology from [BS21]. We first describe three subclasses
of K−1: K1

<ℵ0 , the finitely generated models, their direct limits K1 and then the
subclass K2, the models of the complete sentence.

{k0}
Definition 3.3.1 (K1

<ℵ0 Defined) M is in the class of structures K1
<ℵ0 ifM ∈K−1<ℵ0

and there is a witness 〈n∗,B, b∗〉 such that:

1. b∗ ∈ PM1 is the supremum of the finite joins of atoms in PM1 . Further, for some
k,

⋃
j≤k P

M
4,j = {c : c ≤ b∗} and for all n > k, PM4,n = ∅.

2. B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of
PM1 .

3. Bn∗ ) {a ∈ PM1 : a ≤ b∗} = PM4 ; the subset

PM4 ∪ {FMn (c) : n < n∗, c ∈ PM2 }

generates Bn∗ .

Moreover, the Boolean algebra Bn∗ is free over the ideal PM4 (equivalently,
Bn∗/P

M
4 is a free Boolean algebra2).

4.
⋃
n≥n∗ Bn = PM1 .

5. PM2 is finite and not empty. Further, for each c ∈ PM2 the FMn (c) for n < ω are
independent over PM4 .

6. The set {FMm (c) : m ≥ n∗, c ∈ PM2 } (the enumeration is without repetition) is
free from Bn∗ over PM4 , Bn∗ ) PM4 and FMm (c) ∧ b∗ = 0 for m ≥ n∗. (In this
definition, 0 = 0P

M
1 .)

In detail, let σ(. . . xci . . .) be a Boolean algebra term in the variables xci (where
the ci are in PM2 which is not identically 0. Then, for finitely many ni ≥ n∗ and
a finite sequence of ci ∈ PM2 :

σ(. . . FMni (ci) . . .) > 0.

2A further equivalence: |Atom(Bn∗ )|/|PM4,1| is a power of two.
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Further, for any non-zero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e. d ∈ Bn − P 4
M ),

σ(. . . FMni (ci) . . .) ∧ d > 0.

7. For every n ≥ n∗, Bn is generated by Bn∗ ∪{FMm (c) : n > m ≥ n∗, c ∈ PM2 }.
Thus PM1 and so M is generated by Bn∗ ∪ PM2 .

Recall some terminology from [BS21].
{richname}

Definition 3.3.2 (K1,K2 Defined) 1. K1 denotes the collection of all direct lim-
its of models in K1

<ℵ0 .

2. We say a model M in K1 is rich if for any N1, N2 ∈ K1
<ℵ0 with N1 ⊆ N2 and

N1 ⊆M , there is an embedding of N2 into M over N1.

3. K2 ⊆K1 is the class of rich models.

Note that the free generation in item 6 of Definition 3.3.1 is not preserved by ar-
bitrary direct limits and so is not a property of each model in K1. In particular, as
M∗ is corrected to a model of K1, we check the freeness only for finitely generated
submodels as it will be false in general.

Since K1
<ℵ0 has joint embedding, amalgamation and only countably many finitely

generated models, we construct in the usual way a generic model; thus K2 is not empty.
{getgen}

Fact 3.3.3 There is a countable generic modelM for K1 (Corollary 3.2.18 of [BS21]).
We denote its Scott sentence by φ. K2 is the class of models of this φ.

4 Correcting M∗ to a model of K2
{corr}

We now ‘correct’ the P0-maximal model of K−1, M∗, constructed in Section 3, to
obtain a P0-maximal model M (Definition 3.2.1) of the complete sentence constructed
in [BS21], i.e. M ∈ K2. In Theorem 4.18 we modify M∗, to construct a model
M ∈ K2 with PM2 ⊆ PM∗ by redefining the Fn, but retaining M�(PM0 ∪ PM1 ) =
M∗�(P

M∗
0 ∪PM∗1 ). The old values of FM∗n will be used to divide the work of ensuring

each ultrafilter D is not in uf(M) by for each D, attending one by one to only those c
with infinitely many FM∗n (c) in D.

We now describe some of the salient properties of the model M obtained by ‘cor-
recting’ the M∗ of Section 3.

{correnum2}
Remark 4.1 (The Corrections) 1. The domains of the structures constructed in

this section are subsets of M∗; the Fn are redefined so the new structures are
substructures only of the reduct of M∗ to τ − {Fn : n < ω}.

2. In particular, for all the M considered in Section 4, PM1 = PM∗1 and these
Boolean algebras have the same set of ultrafilters. However, uf(M) 6= uf(M∗)
as the definition of uf depends on properties of the Fn.
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3. The set {FMn (c) : c ∈ PM2 } is not required to be an independent subset to put
M ∈K−1.

4. Lemma 4.13 demands a sequence of finite Boolean algebras Bn to witness
finitely generated substructures belong to K1 (not required for K−1). The
stronger class of K1-free structures [BS21, Definition 3.2.11], which is closed
under extension by members of K1 and so has no maximal models plays no ac-
tive role in this paper. In particular, the final counterexample, Theorem 4.18, is
in K1 but is not K1-free.

5. The proof is in ZFC. The proof in [BS21] that a non-maximal model in λ makes
λ measurable depends on �.

The main task of this section is to prove:
{realthm}

Theorem 4.2 If λ is less than the first measurable cardinal, 2ℵ0 < λ, and for some µ,
2µ = λ (whence λω = λ), then there is a P0-maximal model in K2 of cardinality λ.

Conclusion 4.3, summarises the results of the construction in Theorem 3.2.6,
specifically to fix our assumptions for this section.

{hyp}
Conclusion 4.3 If λ is as in Theorem 4.2 then there is a model M∗ with |M∗| = λ
satisfying:

1. PM∗1 is an atomic Boolean algebra and M∗ is P0-maximal. Further, |PM∗i | = λ
for i = 0, 1.

2. PM∗4,1 is the set of atoms of PM∗1 .

3. M∗ is nicely free (Definition 3.2.5); in particular, PM∗1 /PM∗4 is a free Boolean
algebra of cardinality λ.

In order to ‘correct’ M∗ to a model in K2, we lay out some notation for the index-
ing of the tasks performed in the construction, the generating set of PM∗1 , and the free
basis of the Boolean algebra PM∗1 /PM∗4 .

{f33}
Notation 4.4 We define a family of trees of sequences:

1. For α < λ, let Tα = {〈〉} ∪ {α̂ η; η ∈ <ω3} and T =
⋃
α<λ Tα.

2. lim(Tα) is the collection of paths through Tα.

Combining the requirements for constructingM∗ (Specification 3.2.7) and the Def-
inition 3.2.5 of nicely free, we have

{f34}
Claim 4.5 (Fixing Notation) Since M∗ is nicely free, without loss of generality, we
may assume:

1. The universe of M∗ is λ and the 0 of PM∗1 is the ordinal 0.
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2. We can choose sequences of elements of PM∗1 , b = 〈bη : η ∈ T 〉 so that their im-
ages in the natural projection of PM∗1 on PM∗1 /PM∗4 freely generate PM∗1 /PM∗4 .

3. For every a ∈ PM∗4,1 and the even ordinals α < λ, there is an n such that for any
ν ∈ Tα, lg(ν) ≥ n implies a ∧ bν = 0.

Proof. The only difficulty is deducing from c) of Definition 3.2.5 (nicely free) that
3) holds. For that, we can insist that for each even α, for some c ∈ PM∗2 , {b′ωα+n : n <
ω} enumerates uc = {FM∗n (c) : n < ω} (from Definition 3.2.5.c). Now for α > 0,
let 〈bη : η ∈ Tα \ {〈〉}〉 list {b′ωα+n : n < ω} without repetition and 〈bη : η ∈ T0〉 list
{b′n : n < ω}. By Definition 3.1.2.7 (K−1) we have: for every a ∈ PM∗4,1 for all but
finitely many n, a ∧ b′ωα+n = 0PM∗1

; whence for even α all but finitely many of the
ν ∈ Tα satisfy a ∧ bν = 0PM∗1

. �4.5

Note that Claim 4.5 provides a 1-1 map from PM∗2 to ordinals less than λ. We in-
troduce the collection of models that is the starting point for the following construction.

{f37}
Definition 4.6 (M1 Defined) LetM1 =M1(λ) be the set of M ∈K−1 such that the
universe of M is contained in λ, which is the universe of M∗, and for i < 2, (or i = 4
or (4, 1)) PMi = PM∗i ,M�(PM0 ∪PM1 ) =M∗�(P

M∗
0 ∪PM∗1 ) while PM2 will not equal

PM∗2 .

The posited M∗ differs from any M ∈ M1 only in that PM2 is a proper subset of
PM∗2 and the newly defined FMn (c) (usually) do not equal the FM∗n (c). We now spell
out the tasks which must be completed to correct M∗ to the required member of K2.
The FM∗n (c) are used as oracles.

{f39}
Definition 4.7 (Tasks) 1. Let T 1, the set of 1-tasks, be the set of pairs (N1, N2)

such that:

(a) N1 ⊆ N2 ⊆ λ
(b) N1, N2 ∈K1

<ℵ0

(c) N1 ⊂M for some M ∈M1. More explicitly, PM2 ⊆ P
M∗
2 and

N1�(PM0 ∪ PM1 ) ⊆M∗ and (FMn �P
N1
2 ) = FN1

n for each n.

2. Let T 2, the set of 2-tasks, be the set of c ∈ PM∗2 .

3. T = T 1 ∪ T 2.

4. Let 〈tα : α < λ〉 enumerate T .

Note |T 1| = |T 2| = |T |.
{f41}

Definition 4.8 (Task Satisfaction) The task t is relevant to the structure M if M ∈
M1 and i) if t is a 1-task (N1, N2) and N1 ⊆M or ii) if t is a 2-task c and c ∈ PM2 .

We say M ∈M1 satisfies the task t if either:

A) t = (N1, N2) ∈ T 1 (so N1 ⊂ M ) and there exists an embedding of N2 into M
over N1.
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B) t = c, where c ∈ PM∗2 , is in T 2 and for every ultrafilter D on PM1 , such that for
infinitely many n, FM∗n (c) ∈ D, there is a d ∈ PM2 such that for infinitely many
n, FMn (d) ∈ D.

Recall Definition 3.2.2 of uf(M) and Lemma 3.2.4 connecting uf(M) with P0-
maximality of M .

{f44}
Claim 4.9 If M ∈M1 satisfies all tasks in T and is in K1 then from satisfying the T 2

tasks, M is P0-maximal and satisfying the tasks in T 1 guarantees it is in K2.

Proof. For P0-maximality of M , it suffices, by Lemma 3.2.4 (sinceM1 ⊆ K−1),
to show uf(M) = ∅. But, since uf(M∗) = ∅, for every ultrafilter D on PM∗1 there
is c ∈ PM∗2 with SM∗c (D) infinite (Definition 3.2.2); satisfying task c means there is
d ∈ PM2 such that SMd (D) is infinite and so D is not in uf(M). Since M and M∗ have
the same ultrafilters, this implies uf(M) = ∅, as required. Since we have assumed
M ∈ K1, the second assertion follows by realizing that satisfying all the tasks in T 1

establishes the model is rich, which suffices by Fact 3.3.3. �4.9.

Definition 4.11 lays out the use of the generating elements bη in correcting the FM∗n

to require independence while maintaining that infinite intersections of members of the
ultrafilter under consideration are empty. The infinite sequence ηd will guide the choice
of FMn (d).

The following facts about the relation of symmetric difference and ultrafilters are
central for calculations below.

{backgrbauf}
Remark 4.10 Recall that the operation of symmetric difference is associative.

1. Suppose B1 ⊆ B2 are Boolean algebras with a ∈ B1, and b1 6= c1 are in B2,
and {b1, c1} is independent over B1 in B2.

The element (b1 M c1) M a ∈ B2 is independent over B1. More generally, if
{bi, ci : i < ω} are independent over B1, {ai : i < ω} ⊆ B1 , ei = bi M
ci M ai,e and fi = bi M ci then each of {ei : i < ω} and {fi : i < ω} are
independent over B1.

2. Let D be an ultrafilter on a Boolean algebra B.

(a) For a0, a1 ∈ D,
(a0 ∈ D iff a1 ∈ D) if and only if a0 M a1 6∈ D.

(b) If a0, a1, a2 ∈ B are distinct then at least one of ai M aj 6∈ D.

(c) More importantly for our use later, it is easy to check:
(a0 ∈ D iff a1 ∈ D)
iff

(a0 M a1 M a2) ∈ D ↔ a2 ∈ D.

3. If a is an atom, a ∧ b0 = 0 and a ∧ b1 = 0, then a ∧ (b0 M b1) = 0.
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Proof. 1) If the element (b M c) M a ∈ B2 is not independent over B1 there is
a polynomial p over B1 with p((b M c) M a) ∈ B1. But then, by Observation 1.2,
p(x, y) = p((x M y) M a) is also a polynomial over B1 witnessing {b, c} is dependent
over B1. In the more general case any polynomial witnessing dependence in n of the
ei (fi) give a polynomial in 2n of the ai, bi, ci witnessing dependence of the original
set.

2) For a), if, say a0 ∈ D and a1 6∈ D, then a0 − a1 and hence a0 M a1 ∈ D so we
have ‘left to right’ by contraposition. If both are in D, so is their meet which is disjoint
from a0 M a1 so a0 M a1 6∈ D. Since a−0 M a−1 = a0 M a1, we have the result if
neither is in D.

b) holds since the intersection over all pairs i, j < 3 of the ai M aj is empty. And
c) is propositional logic from a) and b).

3) a ≤ (b−0 ∧ b
−
1 ) ≤ (b−0 M b

−
1 ) ≤ (b0 M b1)−. As a is an atom, a∧ (b0 M b1) = 0.

�4.10

We define a classM2 ⊆M1 such that for each d ∈ PM2 ∈M2 there is an ordinal
αd, a tree of elements of PM1 , indexed by sequences in (Tαd) ⊆ <ω3, a target path ηd
through that tree and a sequence ad,n, whose indices are not in Tαd , but which satisfy
that each a ∈ PM∗4,1 = PM4,1 is in at most finitely many ad,n. In the construction (Theo-
rem 4.18) of a model inM2, ηd guides definition of the sequence FMk (bηd). The ad,n
are introduced to make Definition 4.11.B uniform. In cases 2 and 3 of Theorem 4.18
ad,n is always 0. In case 4, where the FMn (d) are defined as M is corrected from M∗,
ad,n = FM∗n (d). The result is the values of the FMn (d) are both independent over a
finite initial segment and satisfy

∧
n<ω F

M
n (d) = ∅. The next definition abstracts from

this construction to identify the key ideas of the proof that if M ∈ M2 then M ∈ K1

(Lemma 4.13) and further that there are M ∈ M2 that are in K2. The notation 〈Z〉
denotes the Boolean subalgebra of PM1 generated by Z.

{f50}
Definition 4.11 (M2 Defined) Let M2 be the set of M ∈ M1 such that there is a
sequence w = 〈(αd, ηd, ad,n) : d ∈ PM2 , n < ω〉 witnessing the membership, which
means:

A (a) For each d ∈ PM2 , αd < λ is even and d1 6= d2 implies ηd1 6= ηd2 . (In
case 4 of Lemma 4.18, many distinct dη have the same αdη .)

(b) 〈αd〉C ηd ∈ lim(Tαd).

B For each n < ω, there are3 ad,n in PM∗1 = PM1 such that for each d ∈ PM2 ,
there are distinct4 ν1[d, n] and ν2[d, n] that extend ηd�n, νi(0) = αd, and have
length n+ 1 such that:

(a) For every n,
FMn (d) = (bν1[d,n] M bν2[d,n]) M ad,n.

(b) for each a ∈ PM∗4,1 and each d ∈ PM2 , there are only finitely many n with
a ≤PM∗1

ad,n.
3In applications, the ad,n are either 0 or FM∗n (c) (for an appropriate c ∈ PM∗2 ).
4I.e., ν1[d, n] depends on d and n.
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C (k1Y ) For each finite Y ⊆ PM2 there is a list 〈d` : ` < |Y |〉 of Y such that:

(a) The d` list Y without repetition and α` = αd` .

(b) If i1 < i2 < i3 < |Y | = n and αi1 = αi3 then αi2 = αi1 .

(c) Let ηi abbreviate ηdi . There is5 a k1 = kY1 such that

i. For i 6= j, both less than |Y |, ηi�kY1 6= ηj�kY1 .

ii. Set W ⊆ PM∗1 as:

W = {adk,n : k < |Y | ∧ n < ω} (1)
∪ {FMi (dk) : k < |Y |, i < kY1 }.

Then W is included in the subalgebra B0
Y of PM1 generated by

{bν :
∧
i<|Y |

(ηi�k
Y
1 ) 5 ν} ∪ {b〈〉} ∪ PM4,1.

Note that the B0
Y is a cocountable subset of PM1 (the countable complement is

generated by bν where ν ∈
⋃
i<|Y |{ν : ν ≥ ηi�kY1 }.

We will apply the following lemma three times to show that for M ∈M2, for each
the set {FMn (c) : n < ω} is countably incomplete (witnessing Definition 3.1.2.7). It is
a straightforward application of Remark 4.10 to Definition 4.11.2.

{countinc}
Lemma 4.12 LetM ∈M1. For any 〈αd, ηd, ad,n〉 as in Definition 4.11, (in particular
αd is even) and any atom a ∈ PM∗4,1 , for all but finitely many n

a ∧ (bν M bρ M ad,n) = 0.

Proof. Recall from 4.5.3, that for every a ∈ PM∗4,1 and the even ordinals α < λ, there
is an n, such that for any ν, ρ ∈ Tα with lg(ν) ≥ n and lg(ρ) ≥ n, a ∧ bν = 0 and
a∧bρ = 0. Definition 4.11.B.b asserts each d and for sufficiently large n, a∧ad,n = 0.
Apply Remark 4.10.3 twice. �4.12

We will show in Lemma 4.13 that all members ofM2 are in K1 and then in Theo-
rem 4.18 that there are structures inM2 that are in K2. Two main features distinguish
K1 from K−1. The Fn(d) retain the ‘countable incompleteness’ property from K−1
but also must be independent;M ∈K1 whenM is a direct limit of members of K1

<ℵ0 .
{f53}

Lemma 4.13 If M ∈M2, then M ∈K1.

Proof. Suppose M ∈ M2. Let Y ⊂ PM2 and X ⊂ PM1 be finite; we shall find
N = NXY ∈ K1

<ℵ0 such that Y ∪X ⊆ N ⊆ M ; this suffices. As, K1 is defined to
be the collection of direct limits of finitely generated structures6 in K1

<ℵ0 .
Our two main jobs in proving Lemma 4.13 are to find an N,n∗, b∗ in which

5See proof of goal in Lemma 4.18.
6The proof of Lemma 4.13 shows there is a common substructure of M containing any finite collection

of finitely generated (as in this argument) substructures of M .
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job 1 the FMk �N satisfy property 6 (independence) of Definition 3.3.1 over a Bn∗ and
property 7 of Definition 3.1.2 and then

job 2 constructN =
⋃
n<ω Bn for finite Boolean algebras 〈Bn : n ≥ n∗〉 that witness

2 and 3 of Definition 3.3.1.

The finite k1 = kY1 specified in Definition 4.11 depends only on Y ; in the next def-
inition we increase k1 to a kX1 = kXY1 and using the definition ofM2 show the FMk (d)
are independent over X for k ≥ kXY1 . We need kXY1 only to prove Lemma 4.13.

We build two increasing chains of length |Y | of subboolean algebras satisfying the
conditions described in Definition 4.14. The B`XY will be cocountable, while the F`
will be countable. The existence of kXY1 satisfying the conditions of Definition 4.14 is
proved in Fact 4.15.

{k1req}
Definition 4.14 (k1XY ) Let the sequence 〈(αd, ηd, ad,k) : d ∈ PM2 , k < ω〉 witness
M ∈ M2 as in Definition 4.11. Let X ⊂ PM1 (as in proof of Lemma 4.13) and
〈di : i < n〉 enumerate Y ⊂ PM2 without repetition and denote, for i < n, ηdi by ηi
and αdi by αi. Without loss, the 〈ηi(0) : i < n〉 are non-decreasing;

A Fix k1 = kXY1 such that

(a) kXY1 ≥ kY1 (see Definition 4.11.B);

(b) 〈ηi�kXY1 : i < n〉 are distinct for i < n;

(c) kXY1 ≥ max{lg(ν) : bν ∈ 〈X ∪ {FMk (di) : i < |Y |}〉, k < kY1 }.

B We consider the following sets determined by X ∪ Y and the ηi.

(a) F≤0 = F 0 = X ∪ {FMk (di) : i < |Y |, k ≤ kXY1 };
(b) For 1 ≤ ` < |Y |, F ` = {FMk (d`) : k ≥ kXY1 };
(c) F≤`+1 = F≤` ∪ F ` ;

(d) F` = 〈F≤`〉M .

C
B`XY = {bν :

∧
`<i<n

(ηi�k
XY
1 ) 5 ν for i < `+ 1} ∪ {b〈〉} ∪ PM4,1.

For each `, B`XY ⊇ B
`
Y since kXY1 ≥ kY1 and B`+1

XY ⊇ B
`
XY . In the proof of

Lemma 4.16 Bn∗ will be F0 and N will be Fn.
Since X and Y are finite we first choose kXY1 to satisfy conditions 1-3 of Defini-

tion 4.14; we now show the other conditions are satisfied.
{basecontain}

Fact 4.15 There is a k1 = kXY1 such that for each `, F ` is contained in B`XY .

Proof. Recall (Claim 4.5) thatM∗ is free on the {bη : η ∈ T }modulo the PM∗4 . Choose
kXY1 larger than the length of any ν such that for some x ∈ X , bν is a generator in a
minimal representation of x or ν(0) ∈ α = {α0, . . . αn−1}. Then,
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F 0 ⊆ 〈{bν : ν ∈ T , lg(ν) < kXY1 }〉 ∪ {b〈〉} ∪ PM4 ⊆ B
0
XY .

Recall from Definition 4.11.D, that as ` increases FMk (di) for i < ` and all k are
admitted to B`XY and so F ` ⊆ B`XY . �4.15

To establish job 1) of Lemma 4.13 we need the following claim.
{f53.5}

Lemma 4.16 For each 1 ≤ ` < n, F ` is independent over B0
XY mod PM4 .

Proof. We prove this claim by showing by induction on ` ≤ |Y | = n:

(⊕`) F<` = {FMk (di) : k ≥ kXY1 and i < `}

is independent in PM1 over B`−1XY mod PM4 .
For 1 ≤ ` < |Y |, the induction on ` shows incrementally, at stage ` + 1, the

independence of the bη`�r with r ≥ kXY1 over B`XY . By Claim 4.5.2 and the choice
of r ≥ kXY1 , the {bν1[d`,r] : r ≥ kXY1 } are independent mod PM4 . Thus (using the
fi from Remark 4.10) the infinite set {bν1[d`,n] M bν2[d`,n]) : i ∈ {0, 1}, n ≥ kXY1 } is
independent overB`−1Y . By Definition 4.11.C) the {ad`,k : k ≥ kY1 } are inB0

Y ⊆ B
`
XY .

Further, by Definition 4.11.B) for all n:

FMn (d`) = (bν1[d`,n] M bν2[d`,n]) M ad`,n.

So, Lemma 4.10.2 (now using the ei) implies F ` is independent over B`Y . Since inde-
pendence is transitive (Lemma 1.3.3) F ` is independent over B0

Y . �4.16

We continue the proof of Lemma 4.13. By Lemma 4.12, for sufficiently large n,
a 
 FMn (d`). So the countable incompleteness condition in the definition of K−1
is satisfied. This completes job 1). To accomplish job 2) and finish the proof of
Lemma 4.13 by satisfying conditions 2-4 of Definition 3.3.1, we must define appropri-
ate PNi and find a sequence of finite Boolean algebras Bn witnessing that N ∈K1

<ℵ0 .
Let PN1 = Fn−1. We have PN1 is freely generated (modulo the ideal generated by the
atoms of Bn∗ ) by the countable set F |Y | over Bn∗ = F0. Let b∗ be the supremum of
the atoms in Bn∗ , and PN4 the predecessors of b∗.

Form ≥ n∗, letBm be generated byBn∗ and the firstm elements of this generating
set. Now, PN1 = Fn−1 is equal to

⋃
n∗≤m<ω Bm and PN1 /P

N
4 is atomless. Set7

PN2 = Y and PN0 = {(GM1 )−1(a) : a ∈ PM4,1 ∩ PN1 }; thus PN4,1 ⊆ Bn∗ . Boolean
algebras are locally finite and we can recognize whether 〈X〉 is free if by whether it
has 2|X| atoms. Thus, we can refine the sequence Bm to finite free algebras to witness
that N ∈K1

<ℵ0 . Since X and Y were arbitrary, M ∈K1. �4.13

This completes the proof of Lemma 4.13. Now we show M2 is non-empty and
at least one member satisfies all the tasks. In case 4) of this argument we address the
requirement that uf(Mα) = ∅ for each α < λ and so uf(M) = ∅ as well. We need
the following observation because as the construction proceeds, an N1 may become a
substructure of Mβ because some value of an Fn is newly defined on a point of PMβ

2 .

7GM1 is from Definition 3.1.2.5.
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{priority}
Notation 4.17 We can enumerate T as 〈tα : α < λ〉 such that each task appears λ
times, as we assumed in Hypothesis 4.3 that λ = λℵ0 .

For Theorem 4.18, to realize all the tasks, λ > 2ℵ0 would suffice; the requirement
in Lemma 2.5 that λ = 2µ is used to get maximal models. The object of case 3) is
to ensure that the final model is rich (existentially complete); case 4) shows uf(M) =
uf(M∗) = ∅. After satisfying each task a final section labeled goal verifies that each
Mα ∈M2 and so M ∈M2.

{f56}
Theorem 4.18 There is an M ∈ M2 and in K1 that satisfies all the tasks, Thus, by
Claim 4.9 M ∈K2, and is P0-maximal.

Proof. As we construct M , we show at appropriate stages that tasks from T 1 and
T 2 are satisfied. Further, we show at each stage α the goal: Mα ∈ M2. We choose
Mα by induction on α ≤ λ such that:

1. wα witnesses Mα ∈ M2 (Definition 4.11). And for β < α, wα extends wβ .
That is, for d ∈ PMβ

2 , αd[wα] = αd[wβ ], ηd[wα] = ηd[wβ ], and ad,n[wα] =
ad,n[wβ ] .

2. PMα
2 ⊆ PM∗2 has cardinality at most |α|+ 2ℵ0 .

3. if α = β + 1 and tβ is relevant to Mβ , Mα satisfies task tβ .

case 1 If α = 0, set M0 =M∗�(P
M∗
0 ∪ PM∗1 ).

This condition will be preserved by the induction for all α.

case 2 Take unions at limits.

At the successor stage, we now verify task tβ for each of two different types
of task. Then, we will consider the two cases together to show the goal that
M =

⋃
α<λMα ∈M2.

case 3 α = β + 1 and say, tβ ∈ T 1, and tβ = (N1, N2). (Definition 4.7)

Choose Mα:
If N1 is not a subset of Mβ then the task is irrelevant and let Mα = Mβ and
wα = wβ . If it is, let 〈a` : ` < m〉 enumerate PN2

2 − PN1
2 and 〈a′` : ` < m〉

enumerate the first m elements of PM∗2 − P
Mβ

2 . Let Mα extend the PMβ

2 by
adding 〈a′` : ` < m〉 from PM∗2 to form PMα

2 . It remains to define the wα and
FMα

k (a′`).

Let Uα = {δ : (∃bν ∈Mβ)[ν(0) = δ]}. Clearly, |PMα
2 | ≤ |α|+2ℵ0 as required

for the induction. Similarly, |Uα| ≤ |α|+ 2ℵ0 and {Ualph}

(∗) {ad,k : k < ω, d ∈ P
Mβ

2 } ∪ {bν : (∃d ∈ P
Mβ

2 ) ν ∈ Tαd} ∪ P
M∗
4,1
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is included in the subalgebra of M∗ generated by the

{bρ : ∃β ∈ Uα, ρ(0) = β} ∪ {b〈〉} ∪ PM∗4,1

so there is room to choose values for the FMα

k (a`).

By induction, sinceMβ ∈M2 there are witnesseswβ = 〈αd, ηd, ad,k〉 (formally
〈αβd , η

β
d , a

β
d,k〉) for each d ∈ PMβ

2 . For the new a′`, let wα(`) = 〈γ`, η`, 0M∗〉 be
chosen with the γ` as the first m even elements of λ − Uα and with η`(wα) =
η` chosen8 so that η`(0) = γ`. We complete the definition of Mα below by
choosing the new values of FMα

k to satisfy the task.

Task: We now verify task tβ+1 by showing in two stages that N2 can be
embedded over N1 into Mα. First we show there is an embedding of the
Boolean algebras; then we define the Fk on the image to put Mα in K1

ℵ0 . Since
N2 ∈K1

<ℵ0 , PN2
1 is decomposed as a union of the finite free Boolean algebras9

〈BN2
i : i ≥ n∗N2〉 where10, writing n∗ for nN2

∗ , N2 is freely generated overBN2
n∗

mod PN2
4 by {FN2

k (f) : k ≥ nN2
∗ , f ∈ PN2

2 }. Similarly, we decompose PN1
1 by

〈BN1
i : i ≥ n∗N1〉.

Since N1 ⊆M∗ and N1 ⊆ N2, for each element e ∈ PN1
1 and any s,

PM∗4,s (a)↔ PN1
4,s (a)↔ PN2

4,s (a).

So no atom in N2 −N1 is below any element of N1.

Let c = 〈c0, . . . cp−1〉 enumerate the atoms of N2 with the ci for i < r enumer-
ating those in N2 − N1; they are all in BN2

n∗ . We set c′i = ci if r ≤ i < p; for
the ci ∈ N2 −N1 choose any r atoms c′i from M∗ −N1. By Claim 4.5, we can
find a t (depending on all of the c′i) such that for all i if ν(0) = γ` and k > t,
bν�k ∧ c′i = 0.

Each e ∈ BN2

n∗ − (PN1
1 ∪ c) is a finite join of ci. (Note PN2

4 is an alias of BN2

n∗ .)
Recall {FN2

k (f) : k ≥ nN2
∗ , f ∈ PN2

2 } is the pre-image of a basis of PN2
1 /PN2

4 .
For f ∈ PN2

2 , each FN2

k (f) ∧ bN2
∗ = e ≤ bN2

∗ . Now define hβ mapping N2 into
Mα by

1. hβ�PN1
1 is the identity

2. hβ(ci) is c′i.

3. For e ∈ BN2

∗ − P
N2
4,1 , hβ(e) = e′ =

∨
ci≤e c

′
i.

4. The bηi�(t+k) for k ≥ n∗ are independent mod PM∗4 ; for a` in PN2
2 −P

N2
1

set
hβ(F

N2

k (a`)) = bηi�(t+k)̂ 0 M bηi�(t+k̂ 1) ∨ e′ = FMα(a′`)

where e′ = hβ(e) and e = FN2

k (a`) ∧ bN2
∗ .

8In case 3, we need choose only a single η` for each ` < m. In case 4, we choose 2ℵ0 distinct dη .
9While the domain of N2 ⊆ λ, the N2-interpretation any relation symbols in τ on ordinals not in the

domain of N1 has nothing to with the interpretations in M∗ or Mβ .
10Technically, we are defining nMα∗ . But the value is set once and for all at stage α so we just call it by

the final name.
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5. Since the FN2

k (a`) freely generate N2/N1 modulo the atoms, hβ extends
to an embedding of N2 into Mα.

Check using Claim 4.10.3 that step 4) is a homomorphism.

We now show Mα ∈M2. To clarify notation, by setting11 ad`,k = 0 for i < m,
we declared:

FMα

k (d`) = (bηi�k̂ 0 M bηi�k̂ 1) M ad`,k.

By Lemma 4.12, for some n, for all k ≥ n, a �PM∗1
FMα

k (di) so condition
4.11.B.2, countable incompleteness, holds.

Applying Remark 4.10.1 to fi = bηi�k̂ 0 M bηi�k̂ 1 the {FMα

k (di) : k
Y
1 ≤ k < ω}

are independent for each i and form a basis for a subalgebraN ′2 of PM∗1 overN1.
Thus, N ′2 ∈K1

<ℵ0 and we have verified that task tβ+1 is satisfied.

case 4 α = β + 1 and tβ ∈ T 2; say, tβ = c.

We define Mα. Define Uα as in Case 3, but extending Uα to U ′α by adding the
ordinal c if c 6∈Mβ . Now for any even ordinal γ in λ− U ′α

〈{bη : η(0) = γ}〉 ∩ {bη : η(0) ∈ U ′α} = ∅

since bη are determined by the choice of η and γ 6∈ U ′α. Extend PMβ

2 by adding
a dη ∈ PM∗2 − PMβ

2 for each η with η(0) = γ to form PMα
2 .

To define FMα

k (dη), for each η ∈ lim Tγ and k < ω, choose i0 < i1 ≤ 2 that are
different from η(k). Recalling c = tβ , let

FMα

k (dη) = (bη�k̂ i0 M bη�k̂ i1) M (FM∗k (c)).

Since M∗ ∈ K−1 for each a ∈ PM∗1 for all but finitely many n, a ∧ FM∗k (c) =

0. Thus, for the d ∈ PMα
2 − P

Mβ

2 , chosen towards satisfying tβ = c, we
have set 〈αd, ηαd , ad,k〉 = 〈γ, dη, F

M∗
k (c)〉. That is, ad,k = FM∗k (c). Thus, by

Lemma 4.12 for any atom a and all but finitely many n, a∧FMα

k (c) = 0 and the
countable incompleteness requirement is satisfied.

Task: We must show Mα satisfies task tβ . Since uf(M∗) = ∅, for any non-
principal ultrafilter D, there is an e ∈ PM∗2 such that the set SM∗e (D) =
{n : FMα

n (e) ∈ D} is infinite (Definition 3.2.2). By the definition of the task
tβ = c, there is a D where the given c witnesses for D in uf(M∗). We show task
tβ is satisfied for D by one of the dη , which thus is a witness to D 6∈ uf(Mα).

Define ηD ∈ lim(Tγ) by induction12: ηD(0) = γ. By Remark 4.10.2b one of the
three elements b〈γ,i〉4b〈γ,j〉, for i 6= j and i, j < 3, must not be inD. Let ηD(1)
such an element. For k ≥ 1, suppose ν = ηD�k has been defined. Again, by
Remark 4.10.2 one of the three elements bν î4bν ĵ , for i 6= j and i, j < 3, must

11The ad,n are dummies in this case to provide uniformity with case 4 in proving Lemma 4.13.
12This argument is patterned on the simple black box in Lemma 1.5 of [She], but even simpler.
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not be in D. Again, let ηD(k + 1) be such a triple. Now for each k if ν = ηD�k
we know there are i0, i1 < 3 with bν î04bν î1 6∈ D. Now apply Lemma 4.10.2.a
and 2.c to conclude that with a0 = bν î0 , a1 = bν î1 and a2 as FM∗k (c)

FMα(dηD�k+1) = bν î04bν î14F
Mα

k (c) ∈ D

for the infinitely many k with FMα
n (c) ∈ D.

Now we establish the goal for both cases.

Goal: Mα ∈ M2: To show M ∈ K−1 (and so in M1, Definition 4.6) For
Mα ∈ M2, we show Mα satisfies Definition 4.11. The descriptive portions of
Conditions A and B.i) of Definition 4.11 are clearly satisfied by the construction;
Condition B.ii) was shown in the proof of each case.

For Condition 4.11.C choose any finite Y ⊂ PMα
2 and partition Y into Y1 =

Y ∩ PMβ

2 and Y2 = Y − Y1. We show every element of W = {adk,n : k <
|Y | ∧ n < ω} ∪ {FMi (dk) : k < |Y |, i < kY1 } is in the 〈{bν ; ν(0) ∈ Uα}〉
and so in B0

Y . Set k1 = k1Y as the least integer13 such that for all ηd 6= ηe with
d, e ∈ Y , ηd�k1 6= ηe�k1. For those d ∈ Y1, we set wα = wβ and the result
follows since PM

β

1 ⊆ B0
Y . For d ∈ Y2, the two cases14 differ slightly.

For d ∈ Y2 the FMn (d) for i < n and n < ω are all Boolean combinations of
the adi,n with elements bν with ν E ηi � k1. In case 3, we (implicitly) defined
wd(α) = 〈αd, ηd, 0〉, so the adi,n are all 0. In case 4 the elements of Y2 are
among the 2ℵ0 dη with η(0) = γ. For them, wd(α) = 〈γ, ηd, FM∗n (c)〉. If
FM∗n (c) = bζ then ζ(0) = c ∈ U ′α by the definition of U ′α. Thus, ζ(0) 6= γ and
bζ = ad,n ∈ B0

Y .

Now, let M =
⋃
α<λMα. Then, M ∈ M2, |PM2 | = λ. By Lemma 4.13,

M ∈K1 and each task has been satisfied, so by Claim 4.9, M ∈K2. �4.18

This yields.

Conclusion 4.19 The M ∈ K2 constructed in Theorem 4.18 is P0-maximal and all
|PMi | = λ. As in [BS21, Corollary 3.3.14], for all λ less than the first measurable,
since M ∈ K2 implies |M | ≤ 2P

M
0 , there is a maximal model M ∈ K2 with 2λ ≤

|M | < 22
λ

.

Question 4.20 1. Is there a κ < µ, where µ is the first measurable, such that if a
complete sentence has a maximal model in cardinality κ, it has maximal models
in cardinalities cofinal in µ?

2. Is there a complete sentence that has maximal models cofinally in some κ with
iω1

< κ < µ where µ is the first measurable, but no larger models are maximal.
Could the first inaccessible be such a κ?

13Naturally this is only relevant when αd = αe but than can happen in case 3 and must happen in case 4.
14Note that in case 3, ad,n is constant. In case 4 it depends on n. We do not define the value of FMαn ) at

c; the FM∗n (c) are oracles and c 6∈ PMα2 . We define FMαn ) on the dηd .
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