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Abstract. We prove that every abstract elementary class (a.e.c.) with
Löwenheim–Skolem–Tarski (LST) number κ and vocabulary τ of cardinality
≤ κ can be axiomatized in the logic L�2(κ)+++,κ+ (τ). An a.e.c. K in vocabu-

lary τ is therefore an EC class in this logic, rather than merely a PC class. This
constitutes a major improvement on the level of definability previously given
by the Presentation Theorem. As part of our proof, we define the canonical
tree S = SK of an a.e.c. K. This turns out to be an interesting combinatorial
object of the class, beyond the aim of our theorem. Furthermore, we study
a connection between the sentences defining an a.e.c. and the relatively new
infinitary logic L1

λ.

Introduction

Given an abstract elementary class (a.e.c.) K, in vocabulary τ of size ≤ κ =
LST (K), we prove the two following results:

• We provide an infinitary sentence in the same vocabulary τ of the a.e.c.
that axiomatizes K.

• We also provide a version of the “Tarski-Vaught-criterion,” adapted to
a.e.c.’s: when M1 ⊆ M2, for M1,M2 ∈ K, we will provide necessary and
sufficient syntactic conditions for M1 ≺K M2. These will depend on a
certain sentence holding only in M2.

The two proofs hinge on a new combinatorial object: a canonical tree SK for
an a.e.c. K. SK is a well-founded tree of models in K, all of them of cardinality
equal to LST (K). The tree SK encodes all possible embeddings between models
of size LST (K) in K. Although it is a purely combinatorial object, it encapsulates
enough information on the a.e.c. K as to enable us to axiomatize it.

The Presentation Theorem [5, p. 424] is central to the development of stability
for abstract elementary classes: notably, it enables Ehrenfeucht-Mostowski tech-
niques for classes that have large enough models. This has an almost immediate
consequence stability below a categoricity cardinal and opens the possibility of a
relatively advanced classification/stability theory in that wider setting.

The Presentation Theorem had provided a way to capture an a.e.c. as a PC-
class: by expanding its vocabulary with infinitely many function symbols, an a.e.c.
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may be axiomatized by an infinitary formula. Although for the stability-theoretical
applications mentioned this expansion is quite useful, the question as to whether it
is possible to axiomatize an a.e.c. with an infinitary sentence in the same vocabulary
of the a.e.c. is natural. Here we provide a positive solution: given an a.e.c K we
provide an infinitary sentence in the same original vocabulary ϕK whose models are
exactly those in K. Therefore, unlike the situation in the Presentation Theorem,
here the class turns out to be an EC Class, not a PC class.

The main idea is that a “canonical tree of models”, each of size the LST-number
of the class, the tree of height ω ends up providing enough tools; the sentence
essentially describes all possible maps from elements of this tree into arbitrary
potential models in the class. A combinatorial device (a partition theorem on well-
founded trees due to Komjáth and Shelah [3]) is necessary for our proof.

The two main theorems:

Theorem (Theorem 2.1). (Axiomatization of an a.e.c. in τ by an infinitary
sentence in τ .) Let κ = LST (K) + |τ | for an abstract elementary class K in
vocabulary τ , and let λ = �2(κ)

++. Then there is a sentence ψK in the logic
Lλ+,κ+(τ ) such that K = Mod(ψK).

Our second theorem provides a syntactic characterization of being a ≺K-
elementary submodel, a kind of syntactic“Tarski-Vaught” criterion for a.e.c.’s. The
precise statement is lengthy and requires notation built later here. But here is a
version.

Theorem (Description of the main point of Theorem 3.1). (A syntactic “Tarski-
Vaught” criterion for ≺K-elementarity.) If M1 ⊆ M2 are τ = τK-structures,
then the following are equivalent:

• M1 ≺K M2,
• given any tuple ā ∈ M1 of length κ, we may find a τ -structure Nā of size
κ and an isomorphism fā from Nā onto some N∗

ā ⊆τ M2 such that ā ⊆ N∗
ā

and M2 satisfies a formula (called ϕNā,λ+1,1; it will be part of a hierarchy
of formulas we’ll define), on the elements of N∗

ā . The formula ϕ... is in the
same logic where we can axiomatize K; namely, Lλ+,κ+(τ ).

The second part of the previous theorem, the characterization of being ≺K-
elementary, thus amounts to the following: for every tuple in M1, the model M2

satisfies a formula describing the fact that the tuple may be covered by another
tuple that has the “eventual tree extendibility” property described by the formula
ϕ... that we define in the next section.

We finish the paper by connecting our axiomatization with logics close to She-
lah’s logic L1

κ and other logics similar to it, recently studied by Džamonja and
Väänänen [1] and by Väänänen and Villaveces [7].

1. Canonical trees and sentences for a.e.c.’s

We fix an a.e.c. K for the remainder of this paper, with vocabulary τ . We also
fix κ = LST (K) ≥ |τ | and we let λ = �2(κ)

++. Without loss of generality we
assume that all models in K are of cardinality ≥ κ. Furthermore, we will use for
the sake of convenience an “empty model” called Mempt with the property that
Mempt ≺K M for all M ∈ K.
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1.1. The canonical tree of an a.e.c. We now build a canonical object for our
abstract elementary class K, S = SK. This will be a tree with ω-many levels,
consisting of models in K of size κ, organized in a way we now describe. To prove
our results, we will use the tree SK to “test” membership in K and “depths” of
possible extensions.

Notation 1. We fix the following notation for the rest of this paper.

• We first fix a sequence of (different) elements (a∗α | α < κ ·ω) in some model
in K.

• x̄n := 〈xα | α < κ · n〉,
• x̄=n := 〈xα | α ∈ {κ · n+ ζ | ζ < κ}〉.
• z̄[κ] := 〈zα | α < κ〉.

We now define the canonical tree of K:

• Sn :=
{
M ∈ K | M has universe (a∗α)α<κ·n and m < n implies M �

(a∗α)α<κ·m ≺K M
}
,

• S = SK :=
⋃

n<ω Sn; this is a tree with ω levels under ≺K (equivalenty
under ⊆, by our definition of each level).

We use this tree in our proof to test properties of the class K. The key point
about SK is that it contains information not just on models in the class of cardinality
κ = LST (K) but more importantly on the way they embed into one another.

1.2. Formulas and sentences attached to K. We now define by induction on
γ < λ+ formulas

ϕM,γ,n(x̄n),

for every n and M ∈ Sn (when n = 0 we may omit M). We build all these
formulas within the logic Lλ+,κ+(τ ).

Case 1 (γ = 0). If n = 0 then the formula ϕ0,0 is 	 (the sentence denoting “truth”).
Assume n > 0. Then

ϕM,0,n(x̄n) :=
∧

Diagnκ(M),

where Diagnκ(M) is the set
{
ϕ(xα0

, . . . , xαk−1
) | α0, . . . , αk−1 < κ·n, ϕ(y0, . . . , yk−1)

is an atomic or a negation of an atomic formula and M |= ϕ(a∗α0
, . . . , a∗αk−1

)
}
.

Case 2 (γ a limit ordinal). Then

ϕM,γ,n(x̄n) :=
∧
β<γ

ϕM,β,n(x̄n).

Case 3 (γ = β + 1). Let ϕM,γ,n(x̄n) be the formula

∀z̄[κ]
∨

N�KM

N∈Sn+1

∃x̄=n

⎡
⎣ϕN,β,n+1(x̄n+1) ∧

∧
α<κ

∨
δ<κ·(n+1)

zα = xδ

⎤
⎦

By construction, all the formulas ϕM,γ,n(x̄n) belong to Lλ+,κ+(τ ). When n = 0,
for all γ < λ+, these formulas are really sentences ϕMempty,γ,0 (as x̄0 is the empty
sequence). As said above, in this case we just denote them by ϕγ,0. These sentences
may be understood as “approximations” to a sentence fully characterizing the a.e.c.
K.
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Our first aim is to prove that the sentences ϕγ,0 indeed end up axiomatizing the
a.e.c. K, when γ is large enough.

2. Characterizing K by its canonical sentence

In this section we prove the first main theorem:

Theorem 2.1. There is a sentence ψK in the logic Lλ+,κ+(τ ) such that K =
Mod(ψK).

Our first aim in this section is to prove that every model M ∈ K satisfies ϕγ,0,
for all γ < λ+. (Recall ϕγ,0 is the sentence ϕMempty,γ,0, for each γ < λ+.)

In order to achieve this, we prove the following (more elaborate) statement, by
induction on γ.

Claim 1. Given γ < λ+, M ∈ K, n < ω, N ∈ Sn, f : N → M a ≺K-embedding (if
n = 0, f is empty) then M |= ϕN,γ,n[〈f(a∗α | α < κ · n)〉].

Before starting the proof, notice that in the statement of the Claim, when n = 0,
we have that f is empty and ϕγ,0 is a sentence. Notice also as γ grows, the sentences
ϕγ,0 capture ever more involved properties of the model M . Thus, when γ = 0,
ϕ0,0 holds trivially; for γ = 1, M |= ϕ1,0 means M satisfies

∀z̄[κ]
∨

N�KMempt

N∈S1

∃x̄=1

[
ϕN,0,1(x̄1) ∧

∧
α<κ

∨
δ<κ·1

zα = xδ

]
.

This means that given any subset Z ⊆ M of size at most κ, there is some N ∈ S1,
the first level of the canonical tree, such that the image of N under some embedding
f : N → M , f(X), covers Z. In short, this amounts to saying that M is densely
covered by images of models in K of size κ.

When γ = 2, we know a bit more: parsing the sentence, M |= ϕ2,0 means that
in M ,

∀z̄[κ]
∨

N�KMempt

N∈S1

∃x̄=1

[
ϕN,1,1(x̄1) ∧

∧
α<κ

∨
δ<κ·1

zα = xδ

]
.

Parsing again, this means that

∀z̄[κ]
∨

N�KMempt

N∈S1

∃x̄=1

⎡
⎢⎢⎣∀z̄′[κ] ∨

N′�KN

N ′∈S2

∃x̄=2ϕN ′,0,2(x̄2) ∧
∧
α<κ

∨
δ<κ·2

z′α = xδ

∧
∧
α<κ

∨
δ<κ·1

zα = xδ

]
.

What this long formula says is that given any subset Z ⊆ M there is some N
in level 1 of the tree SK and a map from N into M with image X1 covering Z
such that. . . for every subset Z ′ ⊆ M some ≺K-extension of N in level 2 of the tree
embeds into M , extending the original map, and covering also Z ′.

Proof. Let first γ = 0. Then we have either n = 0 in which case trivially M |=
ϕ0,0(= 	), or n > 0. In the latter case ϕN,0,n :=

∧
Diagnκ(N); if f : N → M
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is a ≺K-embedding, M satisfies this sentence as it satisfies each of the formulas
ϕ(y0, . . . yk−1) satisfied in N by the images of the ≺K-map f .

The case γ limit ordinal is an immediate consequence of the induction hypothesis.
Let now γ = β + 1 and assume that for every M ∈ K, n < ω, N ∈ Sn, if

f : N → M is a ≺K-embedding then M |= ϕN,β,n[〈f(a∗α | α < κ · n)〉].
Now, fix M ∈ K, n < ω, N ∈ Sn and f : N → M a K-embedding. We want to

check that M |= ϕN,γ,n[〈f(a∗α) | α < κ · n〉], i.e. we need to verify that

M |= ∀z̄[κ]
∨

N′�KN

N ′∈Sn+1

∃x̄=n

[
ϕN ′,β,n+1(x̄n


x̄=n) ∧
∧
α<κ

∨
δ<κ·(n+1)

zα = xδ

]

when x̄n is replaced in M by 〈f(a∗α) | α < κ · n〉.
So let c̄[κ] ∈ M . By the LST axiom, there is some M ′ ≺K M containing both

c̄[κ] and 〈f(a∗α) | α < κ · n〉, with |M ′| = κ. By the isomorphism axioms there is
N ′ �K N , N ′ ∈ Sn+1, isomorphic to M ′ through an isomorphism f ′ extending f .
We may now apply the induction hypothesis to N ′, f ′: since f ′ : N ′ → M is a ≺K-
embedding, we have that M |= ϕN ′,β,n+1[〈a∗α | α < κ · (n + 1)〉]. But this enables
us to conclude: N ′ is a witness for the disjunction on models ≺K-extending N , and
the existential ∃x̄=n is witnessed by 〈a∗α | α ∈ [κ ·n, κ · (n+1))〉. As the original M ′

had been chosen to include the sequence c̄[κ], the last part of the formula holds. �

In particular, when n = 0, Claim 1 shows that if M ∈ K, then M |= ϕγ,0, for all
γ < λ+.

Now we come to the main point:

Claim 2. If M is a τ -model and M |= ϕλ+1,0 then M ∈ K.

Proof. The plan of this proof is as follows: we build G a set of substructures of M
of cardinality κ, each of them isomorphic to a model in S1 and such that M |=
ϕN,λ,1(. . . ) of the elements of the substructure; we prove that G is cofinal in M
(using the fact that M |= ϕλ+1,0) and a directed set. We also prove that for
elements of G being a submodel implies being a ≺K-submodel (this is the longest
part of the proof, and requires a delicate combinatorial argument). We conclude
that M ∈ K, as it then ends up being the direct limit of the ≺K-directed system G.

Let G := {N∗ ⊆ M | N∗ has cardinality κ and for some N ∈ S1 there is a
bijective f : N → N∗ such that M |= ϕN,λ,1[〈f(a∗α) | α < κ〉]}. In particular, such
f ’s are isomorphisms from N to N∗.

We prove first

(2.1) N∗
1 ⊆ N∗

2 (N∗
� ∈ G) then N∗

1 ≺K N∗
2 .

Fix N∗
1 ⊆ N∗

2 , both in G. Choose (N �
η, f

�
η) for � = 1, 2 and η ∈ ds(λ) := {ν | ν a

decreasing sequence of ordinals < λ} by induction on �g(η) such that

(1) N �
η ∈ S�g(η)+1

(2) f �
η embeds N �

η into M : f �
η(N

�
η) ⊆ M

(3) M |= ϕN�
η,last(η),�g(η)+1[〈f �

η(a
∗
α | α < κ · (�g(η) + 1))〉] where last(〈〉) = λ,

last(ν
〈α〉) = α
(4) if ν � η then N �

ν ≺K N �
η and f �

ν ⊆ f �
η

(5) f �
〈〉(N

�
〈〉) = N∗

�

(6) f1
η (N

1
η ) ⊆ f2

η (N
2
η ) and ν � η ⇒ f2

ν (N
2
ν ) ⊆ f1

η (N
1
η ).
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The induction: if �g(η) = 0 let f �
η = f �

〈〉 be a one-to-one function from 〈a∗α | α <

κ〉 onto N∗
� ; as ‖N∗

� ‖ = κ there is a model N �
η with universe 〈a∗α | α < κ〉 such that

f �
η is an isomorphism from N �

η onto N∗
� . Since last(〈〉) = λ and by definition of G

we have M |= ϕN�
〈〉,λ,1

[f �
〈〉(a

∗
α) | α < κ], this choice satisfies the relevant clauses (1,

2, 3, 5 and the first part of 6).
If �g(η) = n = m+ 1 we first choose (f1

η , N
1
η ). From the inductive definition of

ϕN1
η�m,last(η�m),m

with z̄[κ] an enumeration of 〈f2
η�m(a∗α) | α < κ · m〉, the sequence

x̄=n gives us the map f1
η , with domain N1

η (a witness of the disjunction in the

formula), and N1
η ⊇ N2

η�m. (While doing this, we make sure the new function

f1
η ⊇ f1

η�m.)

Now to choose (f2
η , N

2
η ) we use a symmetric argument and the inductive definition

of ϕN2
η�m,last(η�m),m

with z̄[κ] enumerating 〈f1
η�n(a

∗
α) | α < κ · n〉; as before, the

sequence x̄=n gives us the map f2
η , with domainN2

η . Again we make sure f2
η ⊇ f2

η�m.
In both construction steps the model obtained is a ≺K-extension, since it is given

by the disjunction inside the formula ϕN�
η�m,last(η�m),m

.

This finishes the inductive construction of the well-founded tree of models and
functions (N �

η, f
�
η)η∈ds(λ).

Let us now check why having carried the induction suffices.
We apply a partition theorem on well founded trees due to Komjáth and She-

lah [3]. In [2], Gruenhut and Shelah provide the following useful form. �

Theorem 2.2 (Komjáth-Shelah, [3]). Let α be an ordinal and μ a cardinal. Set ν =(
|α|μℵ0

)+

and let F (ds(ν+)) → μ be a colouring of the tree of strictly decreasing

sequences of ordinals < λ. Then there is an embedding ϕ : ds(α) → ds(ν+) and a
function c : ω → μ such that for every η ∈ ds(α) of length n+ 1

F (ϕ(η)) = c(n).

In our case, the number of colors μ is κ|τ |+κ = 2κ. So, the corresponding ν is(
|α|μℵ0

)+

=
(
|α|(2κ)ℵ0

)+

=
(
|α|2κ

)+
= �2(κ)

+ hence ν+ = �2(κ)
++ = λ. Our

coloring (given by the choice of the models N �
η and maps f �

η for η ∈ ds(λ)) is
therefore a mapping

F : ds(λ) → μ

and the partition theorem provides a sequence (ηn)n<ω, ηn ∈ ds(α) such that:

k ≤ m ≤ n, � ∈ {1, 2} ⇒ N �
ηm�k = N �

ηn�k.

We therefore obtain (N �
k, g

�
k,n)k≤n such that

• N1
k ⊆ N2

k ⊆ N1
k+1 and

• g�k,n is an isomorphism from N �
k onto N �

ηn�k.

Hence N �
n ≺K N �

n+1 and so 〈N �
n | n < ω〉 is ≺K-increasing. Let N� :=

⋃
n N

�
n.

Then clearly N1 = N2; call this model N . Since we then have N1
n ≺K N , N2

n ≺K N
and N1

n ⊆ N2
n by the coherence axiom for a.e.c.’s we have that N1

n ≺K N2
n. In

particular, when n = 0 we get that N∗
1 ≺K N∗

2 .
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Finally, we also have that

(2.2) G is cofinal in [M ]≤κ,

as M |= ϕλ+1,0 and the definition of the sentence ϕλ,0 says that every Z ⊆ M
can be covered by some N∗ of cardinality κ isomorphic to some N ∈ S1 such that
M |= ϕN,λ,1(〈f(a∗α) | α < κ〉). . . but this means N∗ ∈ G. Also, G is a directed
system.

Finally, putting together (2.1) and (2.2), we conclude that every τ -model M such
that M |= ϕλ+1,0 must be in the class: M =

⋃
G, and G is a ≺K-directed system.

Since K is an a.e.c, the limit of this ≺K-directed system must be an element of K,
therefore M ∈ K.

Lastly, we complete the proof of Theorem 2.1: Claims 1 and 2 provide the
definability in the class, as clearly ϕγ,0 ∈ Lλ+,κ+(τK).

3. Strong embeddings and definability

We now focus on the relation ≺K of our a.e.c. K: we characterize it in Lλ+,κ+(τ ).
We prove a syntactic criterion for being a ≺K-substructure (given that we already
have that M1 ⊆ M2) in terms of satisfiability in M2 of certain formulas on tuples
from M1. This may be regarded as a very strong analog of a “Tarski-Vaught”
criterion for a.e.c.’s.

It is worth mentioning we will continue using in a crucial way both the canonical
tree SK of our a.e.c., and the partition theorem on well-founded trees.

Theorem 3.1. Let K be an a.e.c., τ = τ (K) ≤ κ = LST (K), λ = �2(κ)
++. Then,

given τ -models M1 ⊆ M2, the following are equivalent:

(A) M1 ≺K M2

(B) if ā� ∈ κ≥(M�) for � = 1, 2 and γ < λ then there are b̄�, N� and f� for
� = 1, 2 such that: for � = 1, 2,
(a) b̄� ∈ κ≥(M�) and N� ∈ S�

(b) Rang(ā�) ⊆ Rang(b̄�)
(c) f� is an isomorphism from N� onto M� � Rang(b̄�)
(d) Rang(b̄1) ⊆ Rang(b̄2)
(e) N1 ⊆ N2

(f) M� |= ϕN�,γ,�[〈f�(a∗α) | α < κ · �〉].
(C) if ā ∈ κ≥(M1) then there are b̄, N and f such that

(a) b̄ ∈ κ≥(M1) and N ∈ S1

(b) Rang(ā) ⊆ Rang(b̄)
(c) f is an isomorphism from N onto M1 � Rang(b̄)
(d) M2 |= ϕN,λ+1,1[〈f(a∗α) | α < κ)〉].

Proof. (A)⇒ (B): Let ā� ∈ κ≥(M�) for � = 1, 2 and let γ < λ. Choose first

N∗
1 ≺K M1 of cardinality ≤ κ including Rang(ā1) and next, choose N∗

2 ≺K M2

including N∗
1 ∪ ā2, of cardinality κ. Let b̄� enumerate N∗

� and let (N1, f1, N2, f2)
be such that

(1) N1 ∈ S1, N2 ∈ S2, N1 ⊆ N2 and
(2) f� is an isomorphism from N� onto N∗

� for � = 1, 2.

This is possible: since M1 ≺K M2 and N∗
� ≺K M� for � = 1, 2, we also have that

N∗
1 ≺K N∗

2 . Therefore there are corresponding models N1 ⊆ N2 in the canonical
tree, at levels 1 and 2 (as these must satisfy N1 ≺K N2).
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We then have that f� : N� → M� is a K-embedding from elements N1 and N2 in
the canonical tree S. By Claim 1, we may conclude that

M1 |= ϕN1,γ,1[〈f(a∗α) | α < κ〉]
and

M2 |= ϕN2,γ,2[〈f(a∗α) | α < κ · 2〉],
for each γ < λ.

(B)⇒ (C): let ā ∈ κ≥(M1). We need b̄, N ∈ S1 and f : N → M1 � Rang(b̄) such
that

(3.1) M2 |= ϕN,λ+1,1[〈f(a∗α | α < κ)〉].
(B) provides a model N = N1 ∈ S1 and elements b̄ = b̄1, as well as an isomorphism
f : N → Rang(b̄). We now check that (B) also implies 3.1.

Recall the definition of ϕN,λ+1,1 (as applied to [〈f(a∗α | α < κ)〉]). This formula
holds in M2 if for every c̄[κ] (of size κ) in M2, for some ≺K-extension N ′ of N in
S2 we have that

(3.2) M2 |= ∃x̄=2ϕN ′,λ,2[〈f(a∗α | α < κ)〉
x̄=2]

and the elements c̄[κ] are “covered” by the list of elements (of length κ · 2) 〈f(a∗α |
α < κ)〉
x̄=2. But the remaining part of clause (B) provides just this: there is some
N ′ = N2 ∈ S2, extending N = N1 such that for each γ < λ, and an isomorphism
f ′ from N ′ into some ≺K-submodel N∗ of M2 containing Rang(c̄[κ]) such that
M2 |= ϕN ′,γ,2[〈f ′(a∗α | α < κ · 2)〉]. The submodel N ′ witnesses the disjunction on
models and 〈f ′(a∗α) | α ∈ [κ, κ · 2)〉 witnesses the existential x̄=2.

(C )⇒ (A): assuming (C) means that for every κ-tuple ā from M1 there are a

model N ∈ S1, a κ-tuple b̄ from M1 containing ā and an isomorphism from N onto
M1 � Rang(b̄) such that

M2 |= ϕN,λ+1,1[〈f(a∗α) | α < κ〉].
This means that for each c̄ included in M2 (of length κ) there are some extension
N ′ of N with N ′ ∈ S2 and some d̄ included in M2, of length κ, such that

M2 |= ϕN ′,λ,2[〈f(a∗α) | α < κ〉
d̄]
and such that Rang(c̄) ⊆ Rang([〈f(a∗α)〉]
d̄]).

Consider first the family

G1 :=
{
N∗

1 ⊆ M1 | ∃N1 ∈ S1∃f : N1
≈→ N∗

1

[
M2 |= ϕN1,λ+1,1(f(a

∗
α)α<κ)

]}
;

by part (d) of the hypothesis G1 is a directed family, cofinal in M1.
Now fix N∗

1 ∈ G1 and let

GN∗
1 ,2

:=
{
N∗

2 ⊆ M2 | N∗
1 ≺K N∗

2 and

∃N2 ∈ S2∃f2 : N2
≈→ N∗

2

[
M2 |= ϕN2,λ,2(f2(a

∗
α)α<κ·2)

]}
.

Now build a tree of models as in the proof of Claim 2 inside SK, indexed by ds(λ),
and use the partition theorem on well-founded trees to conclude that

(3.3) N∗
2,1 ⊆ N∗

2,2, N
∗
2,� ∈ GN∗

1 ,2
(� = 1, 2) ⇒ N∗

2,1 ≺K N∗
2,2.

Now, one of the consequences of M2 |= ϕN1,λ+1,1(f(a
∗
α)α<κ) (for the model N1 in

S1 corresponding to N∗
1 and for the map f) is precisely that GN∗

1 ,2
is cofinal in M2

and a directed family, ≺K-directed also, by (3.3). Therefore, by the union axiom of
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a.e.c.’s we may conclude that N∗
2 ≺K M2; since we also had N∗

1 ≺K N∗
2 , we have

that N∗
1 ≺K M2.

Since N∗
1 was an arbitrary member of G1, we may conclude that all members of

G1 are ≺K-elementary in M2. By another application of the partition relation, the
family G1 also has the property that M∗

1,1 ⊆ M∗
1,2 in the family implies M∗

1,1 ≺K
M∗

1,2. So, applying again the union axiom, we may conclude that M1 =
⋃
G1 ≺K

M2. �

The previous criterion for M1 ≺K M2, given M1 ⊆ M2, is admittedly quite
sophisticated compared with the classical Tarski-Vaught criterion for elementarity
in first order logic. There are, however, some interesting parallels.

• In part (C) of our criterion, we only evaluate the formula at the “large
model”M2. This is one of the crucial aspects of the Tarski-Vaught criterion,
as it allows construction “from below” of elementary submodels.

• The aspect of our criterion that is definitely less within reach is a version
of “capturing existential formulas.” We are in a sense exactly doing that
but in the more complex world of a.e.c.’s. Satisfying a formula of the
form ϕN,λ+1,1(. . . ) at a subset of elements of the small model M1, when
parsing the formula, in a way reflects the possibility of being able to realize,
according to M2, all “possible extensions” of small models, reflecting them
correctly to M1. The partition relation on well-founded trees of course ends
up being the key in our case.

4. Around the logic of an a.e.c.

The logic usually called L1
κ from Shelah’s paper [6] satisfies interpolation and

a weak form of compactness: strong undefinability of well-order. Furthermore,
it satisfies a Lindström-like maximality theorem for these properties (as well as
union of ω-chains of models). The logic L1

κ, however, has a non-algorithmic syntax
(sentences are unions of equivalence classes of structures under a relation defined
based on a “delayed Ehrenfeucht-Fräıssé game”). Väänänen and Villaveces [7] have
produced a logic with a clearly defined (and relatively symple) syntax, whose Δ-
closure (a notion appearing first in [4]) is L1

κ, and which satisfies several of the
good properties of that logic (of course, strong undefinability of well-order but
also closure under unions of chains). Also, Džamonja and Väänänen have proved
in [1] that chain logic shares many properties with Shelah’s logic L1

κ, with an
important semantic difference (the notion of a model); they have also provided
careful comparisons between the two logics.

All of these logics are close to our constructions in this paper: the sentence
ϕλ+1,0 belongs to Lλ+,κ+ and L1

μ lies in between two logics of the form Lμ,ℵ0
and

Lμ,μ. Our sentence ϕλ+1,0 belongs to L1
μ. However, it is not clear if this is the

minimal logic for which this is the case.
The question of which is the minimal logic capturing an a.e.c. remains still

partially open. Our theorems in this article provide a substantial advance in this
direction.
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