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INFINITE STABLE GRAPHS WITH LARGE

CHROMATIC NUMBER

YATIR HALEVI, ITAY KAPLAN, AND SAHARON SHELAH

Abstract. We prove that if G = (V,E) is an ω-stable (respectively, super-
stable) graph with χ(G) > ℵ0 (respectively, 2ℵ0 ) then G contains all the finite
subgraphs of the shift graph Shn(ω) for some n. We prove a variant of this

theorem for graphs interpretable in stationary stable theories. Furthermore, if
G is ω-stable with U(G) ≤ 2 we prove that n ≤ 2 suffices.

1. Introduction

The chromatic number χ(G) of a graph G = (V,E) is the minimal cardinal κ for
which the exists a vertex coloring with κ colors. There is a long history of struc-
ture theorems deriving from large chromatic number assumptions. For example if
χ(G) ≥ ℵ1 then G must contain all finite bipartite graphs [EH66, Corollary 5.6]
and every sufficiently large odd circuit [EHS74, Theorem 3], [Tho83]. See [Kom11]
for more information.

In [Tay71, Problem 1.14], Taylor asked what is the least cardinal κ such that
every graph G with χ(G) ≥ κ is elementary equivalent to graphs of arbitrarily large
chromatic number. It is clear that such a minimal cardinal exists (see [Tay71, The-
orem 1.13]). Taylor noted that necessarily κ ≥ ℵ1. Nowadays, Taylor’s conjecture
is usually phrased in the following way (see [Kom11, Section 3]).

Conjecture (Taylor’s conjecture). For any graph G with χ(G) ≥ ℵ1 and cardinal
κ there exists a graph H with χ(H) ≥ κ such that G and H share the same finite
subgraphs.

For a cardinal κ the shift graph Shn(κ) is the graph whose vertices are increas-
ing n-tuples s of ordinals less than κ, where we put an edge between s and t if
for every 1 ≤ i ≤ n − 1, s(i) = t(i − 1) or vice-versa. The shift graphs Shn(κ)
have large chromatic numbers depending on κ; see Fact 2.6. Erdös-Hajnal-Shelah
[EHS74, Problem 2] and Taylor [Tay70, Problem 43, page 508] proposed the follow-
ing strengthening of the previous conjecture.

Conjecture (Strong Taylor’s conjecture). For any graph G with χ(G) ≥ ℵ1 there
exists an n ∈ N such that G contains all finite subgraphs of Shn(ω).
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Assuming the strong Taylor’s conjecture, if χ(G) ≥ ℵ1 there exists an elementary
extension G ≺ G that has Shn(�n−1(κ)

+) as a subgraph, and thus χ(G) ≥ κ+;
see Fact 2.6. So the strong Taylor’s conjecture implies Taylor’s conjecture. It is
known that Taylor’s conjecture is consistently false and that a relaxation of Taylor’s
conjecture is consistently true, namely assuming that χ(G) ≥ ℵ2 [KS05]. The strong
Taylor’s conjecture was refuted in [HK84, Theorem 4].

Since the (strong) Taylor’s conjecture fails in general, one may wonder if it holds
for a “tame” class of graphs. Classification theory provides “dividing lines” sepa-
rating “tame” and “wild” classes of structures (and theories). These dividing lines
are usually defined by requiring that a structure omits a certain class of (definable)
combinatorial patterns. It is thus not surprising that restricting to such graphs will
yield better combinatorial results.

An important instance of this phenomena is when tame=stable. Stable theories,
which originated in the work of the third author in the 60s and 70s, is the most
extensively studied class. Examples of stable theories include abelian groups, mod-
ules, algebraically closed fields, graph theoretic trees, or more generally superflat
graphs [PZ78]. Stablility also had an impact in combinatorics, e.g. [MS14] and
[CPT20] to name a few.

In this paper we prove variants of the strong Taylor’s conjecture for some classes
of stable graphs.

Theorem. Let G = (V,E) be a graph. If

(1) G is ω-stable and χ(G) > ℵ0 or
(2) G is superstable and χ(G) > 2ℵ0 or
(3) G is interpretable in a stable structure, in which every type (over any set)

is stationary, and χ(G) > �2(ℵ0)

then G contains all finite subgraphs of Shn(ω) for some n ∈ N.
Furthermore, if G is ω-stable with χ(G) > ℵ0 and U(G) ≤ 2 then n ≤ 2 suffices.

Items (1) and (2) are Corollary 4.5, (3) is Corollary 5.21 and the furthermore is
Theorem 6.9.

The following remains open.

Question.

(1) What is the situation with general stable graphs?
(2) Is it enough to assume χ(G) > ℵ0 in the above theorem?
(3) What about other tameness assumptions, e.g. NIP or simplicity?

2. Notation and preliminaries

We use fairly standard model theoretic terminology and notation, see for example
[TZ12]. We use small latin letters a, b, c for tuples and capital letters A,B,C for
sets. We also employ the standard model theoretic abuse of notation and write
a ∈ A even for tuples when the length of the tuple is immaterial or understood
from context. When we write a ≡A b we mean that tp(a/A) = tp(b/A).

For any two sets A and J , let AJ be the set of injective functions from J to A
(where the notation is taken from the falling factorial notation), and if (A,<) and
(J,<) are both linearly ordered sets, let (AJ)< be the subset of AJ consisting of
strictly increasing functions. If we want to emphasize the order on J we will write

(A(J,<))<. For an ordinal γ, we set A<γ :=
⋃

α<γ A
α. Throughout this paper,
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we interchangeably use sequence notation and function notation for elements of
AJ , e.g. for f ∈ AJ , f(i) = fi. For any sequence η we denote by Range(η) the
underlying set of the sequence (i.e. its image). If (A,<A) and (B,<B) are linearly
ordered sets, then the most significant coordinate of the lexicographic order on
A×B is the first one.

By a graph we mean a pair G = (V,E) where E ⊆ V 2 is symmetric and irreflex-
ive. A graph homomorphism between G1 = (V1, E1) and G2 = (V2, E2) is a map
f : V1 → V2 such that f(e) ∈ E2 for every e ∈ E1. If f is injective we will say that
f embeds G1 into G2 a subgraph. If in addition we require that f(e) ∈ E2 if and
only if e ∈ E1 we will say that f embeds G1 into G2 as an induced subgraph.

Definition 2.1. Let G = (V,E) be a graph.

(1) For a cardinal κ, a vertex coloring (or just coloring) of size κ is a function
c : V → κ such that x E y implies c(x) 
= c(y) for all x, y ∈ V .

(2) The chromatic number χ(G) is the minimal cardinality of a vertex coloring
of G.

Remark 2.2. Note that for a graph G = (V,E) with |V | ≥ 2, χ(G) = 1 if and only
if |E| = ∅.

Here are some useful easy and well known properties of the chromatic number
function of graphs (we provide proofs for the convenience of the reader).

Lemma 2.3. Let G = (V,E) be a graph.

(1) If V =
⋃

i∈I Vi then χ(G) ≤
∑

i∈I χ(Vi, E � Vi).
(2) If E =

⋃
i∈I Ei (with the Ei being symmetric) then χ(G) ≤

∏
i∈I χ(V,Ei).

(3) If ϕ : H → G is a graph homomorphism then χ(H) ≤ χ(G).
(4) If ϕ : (H,EH) → (G,EG) is a surjective graph homomorphism with e ∈

EH ⇐⇒ ϕ(e) ∈ EG then χ(H) = χ(G).

Proof. (1) Let ci : Vi → κi be a coloring of (Vi, E � Vi). Define a coloring c : V →⋃
{κi × {i} : i ∈ I} by choosing for any v ∈ V an iv ∈ I such that v ∈ Viv and

setting c(v) = (civ(v), iv).
(2) Let ci : Vi → κi be a coloring of (V,Ei). Define a coloring c : V →

∏
i∈I κi

by c(v)(i) = ci(v).
(3) Write G = (V G, EG) and H = (V H , EH) and let c : V G → κ be a coloring

of G. Define a coloring c′ : V H → κ of H by c′(v) = c(f(v)).
(4) Let c : V H → κ be a coloring. We define a coloring c′ : V G → κ by choosing

for any element v ∈ V G an element w ∈ ϕ−1(v) and setting c′(v) = c(w). It
is a legal coloring since if v1 EG v2 then w1 EH w2 for any w1 ∈ ϕ−1(v1) and
w2 ∈ ϕ−1(v2). �

We will mainly be interested with the following so called “Shift Graphs”, first
defined by Erdös-Hajnal in [EH68].

Example 2.4 (Shift Graph). For any finite number 1 ≤ r and any linearly ordered
set (A,<), let Shr(A), or Shr(A,<) if we want to emphasize the order, (the shift
graph on A) be the following graph: its set of vertices is the set (Ar)< of increasing
r-tuples, s0, . . . , sr−1, and we put an edge between s and t if for every 1 ≤ i ≤ r−1,
s(i) = t(i−1), or vice-versa. It is an easy exercise to show that Shr(A) is a connected
graph. If r = 1 this gives KA, the complete graph on A.
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Example 2.5 (Symmetric Shift Graph). Let 1 ≤ r be any natural number and
A any set. The symmetric shift graph Shsymr (A) is defined similarly as the shift
graph but with set of vertices Ar (set of distinct r-tuples). Note that Shr(A) is
an induced subgraph of Shsymr (A) (and that for r = 1 they are both the complete
graph on A). Recall that �0(κ) := κ and �k+1(κ) := 2�k(κ).

Fact 2.6 ([EH68, Proof of Theorem 2]). Let 2 ≤ r < ω be a natural number and
κ be an infinite cardinal,

χ (Shsymr (�r−1 (κ))) ≤ κ

and
χ
(
Shr(�r−1 (κ)

+)
)
≥ κ+.

Proof. We first show that χ (Shsymr (�r−1 (κ))) ≤ κ. The proof is by induction on

r ≥ 2. Suppose r = 2. Let< be the lexicographical order on 2κ. Let Y1 =
(
(2κ)2

)
<

be the set of increasing pairs, let Y2 be the complement. By Lemma 2.3(1) it is
enough to show that χ (Shsym2 (2κ) � Y1) ≤ κ, χ (Shsym2 (2κ) � Y2) ≤ κ. The proofs
for Y1 and Y2 are similar so we prove it just for Y1.

Given (x, y) ∈ Y1, let c (x, y) = min{i < κ : x (i) 
= y (i)}. Suppose that
x < y < z ∈ 2κ are such that c (x, y) = c (y, z). Then x ∧ y = y ∧ z (where
x ∧ y = x � c (x, y) ). As x < y it must be that x (c (x, y)) = 0 and y (c (x, y)) = 1,
but then there is no room for z (c (x, y)) — contradiction.

Now suppose that the claim is true for r and κ. By induction, there is a
coloring d : Shsymr (�r (κ)) → 2κ . Let ψ : Shsymr+1 (�r (κ)) → Shsym2 (2κ) be the
following homomorphism. Given u = (u0, . . . , ur) ∈ Shsymr+1 (�r (κ)), let ψ (u) =
(d (u0, . . . , ur−1) , d (u1, . . . , ur)). Note that by choice of d,

d (u0, . . . , ur−1) 
= d (u1, . . . , ur) .

In addition, if u and v are connected in Shsymr+1 (�r (κ)), then easily ψ (u) and ψ (v)
are distinct (because if not, then ψ (u)0 = ψ (v)0 = ψ (u)1 contradiction) and
connected in Shsym2 (2κ). Hence we are done by Lemma 2.3(3).

As for the second inequality, assume towards a contradiction that there exists a
coloring c : Shr(�r−1 (κ)

+) → κ be a coloring. The coloring c induces a coloring on

[�r−1 (κ)
+
]r. By Erdös-Rado, there is a subset U ⊆ �r−1 (κ)

+
of cardinality κ+

such that c � [U ]r is constant, i.e. after identifying [U ]r with (Ur)<, every r-tuple
of increasing elements from U is colored by the same color. Let u ∈ [U ]r be any
element and let v ∈ [U ]r be defined by v(i) = u(i+1) for 0 ≤ i < r−1 and v(r−1)
is any element in U larger than v(r− 2). They are obviously connected by an edge,
contradicting the fact that c is a coloring. �

3. Embedding a shift graph

The aim of this section is to present some general assumptions on a graph G
that will imply that G contains the finite subgraphs of some shift graph.

3.1. Reducing injective homomorphisms to homomorphisms. As a first re-
sult we prove the following, probably well known, proposition. By Lemma 2.3(3),
if there is a homomorphism ϕ : H → G then χ(H) ≤ χ(G). In particular, if
H is a shift graph then there are elementary extensions of G with arbitrary large
chromatic numbers. Indeed, one may take elementary extensions of the structure
(H,G,ϕ) and apply Fact 2.6.
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Fact 3.1 ([ER50, Theorem 1]). Let R be an equivalence relation on (ωn)<. Then
there exists an infinite subset N ⊆ ω and 0 ≤ i1 < · · · < im ≤ n− 1 such that for
ā, b̄ ∈ (Nn)<,

ā R b̄ ⇐⇒
m∧
j=1

aij = bij .

Proposition 3.2. Let G = (V,E) be a graph and assume there exists a homomor-
phism of graphs t : Shk(ω) → G. Then there exists n ≤ k, such that

(†) G contains all finite subgraphs of Shn(ω).

Consequently, if H is a graph that contains all finite subgraphs of Shk(ω), for
some k, and t : H → G is a homomorphism of graphs, then there exists some n ≤ k
such that G satisfies (†).

Proof. Assume that t = t(x0, . . . , xk−1). The relation t(ā) = t(b̄) for ā, b̄ ∈ (ωk)<,
is an equivalence relation on (ωk)<. By Fact 3.1, there exists an infinite subset
N ⊆ ω and 0 ≤ i1 < · · · < im ≤ k − 1 such that for ā, b̄ ∈ (Nk)<

(††) t(ā) = t(b̄) ⇐⇒
m∧
j=1

aij = bij .

Note that m ≥ 1 since otherwise t(ā) = t(b̄) for any ā and b̄, but this is impossible
since there are ā, b̄ ∈ (Nk)< that are connected by an edge.

Let S = {i1, . . . , im}. There exists a unique set I ⊆ {1, . . . ,m} and a unique
sequence of natural numbers n̄ = 〈nj : j ∈ I〉 such that S =

⋃
j∈I [ij , ij + nj ] and

each interval [ij , ij + nj ] is maximal with respect to containment.
Consider the first-order structure M = ((N,<), G = (V,E), t : (Nk)< → G).

Since (†) and (††) are elementary properties, replacing M by an elementary exten-
sion, we may assume that (I × Z, <lex) ⊆ (N,<).

We define an injective homomorphism Shn+1(ω) → G, where n = maxj∈I{nj}.
For any f ∈ (ωn+1)< we associate ψf ∈ V . For that we first define ηf ∈ ((I×Z)k)<
and then set ψf = t(ηf ). For any j ∈ I and 0 ≤ r ≤ nj we define

ηf (ij + r) = (j, f(r)).

For 0 ≤ i ≤ k − 1 with i /∈ S, set ηf (i) any way we want provided ηf is increasing,
which we can since we have copies of Z. Note that the choice of ηf (i) for i /∈ S
does not influence t(ηf ) by (††).

We check that f �→ ψf is an injective homomorphism. Injectivity: if t(ηf ) = t(ηg)
then by (††), ηf (i) = ηg(i) for all i ∈ S. In particular for j ∈ I with nj = n and for
any 0 ≤ r ≤ n, f(r) = g(r), as needed.

Homomorphism: let f, g ∈ Shn+1(ω) be two vertices connected by an edge and
assume without loss of generality that for every 1 ≤ r ≤ n, f(r) = g(r − 1) and in
case n = 0 assume that f(0) < g(0).

Define η′g ∈ ((I × Z)k)< as follows. For every j ∈ I and 0 ≤ r ≤ nj let
η′g(ij + r) = ηg(ij + r) and if ij > 0 then set

η′g(ij − 1) = (j, f(0)).

Note that if n 
= 0 then

η′g(ij − 1) = (j, f(0)) < (j, f(1)) = (j, g(0)) = η′g(ij)
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and if n = 0 then

η′g(ij − 1) = (j, f(0)) < (j, g(0)) = η′g(ij).

Hence η′g restricted to S ∪ {ij − 1 : j ∈ I, ij > 0} is increasing. For any other
i ∈ I set η′g(i) any way we want provided η′g is increasing. Note that η′g(i) = ηg(i)
for any i ∈ S.

Define η′f ∈ ((I × Z)k)< by

η′f (i) = η′g(i− 1)

for all 1 ≤ i ≤ k − 1.
If i1 = 0 define η′f (0) = (1, f(0)). Note that then if n 
= 0 then η′f (0) =

(1, f(0)) < (1, f(1)) = (1, g(0)) = η′g(0) = η′f (1) and if n = 0 then η′f (0) =

(1, f(0)) < (1, g(0)) = η′g(0) = η′f (1).

Otherwise, i.e. i1 
= 0, define η′f (0) to be any element smaller than η′g(0).

If we show that η′f (i) = ηf (i) for all i ∈ S then this would imply that t(η′f ) =

t(ηf ). Since η′f and η′g are connected by an edge and t is a homomorphism it

follows that ψf = t(ηf ) = t(η′f ) and ψg = t(ηg) = t(η′g) are connected by an edge,
as required.

So we show that η′f (i) = ηf (i) for all i ∈ S. Let j ∈ I and 0 ≤ r ≤ nj . If r ≥ 1

(and so n > 0) then

ηf (ij + r) = (j, f(r)) = (j, g(r − 1)) = η′g(ij + r − 1) = η′f (ij + r).

If r = 0 and ij > 0 then

ηf (ij) = (j, f(0)) = η′g(ij − 1) = η′f (ij).

Finally, if r = 0 and ij = 0 (so j = 1) then

ηf (0) = (1, f(0)) = η′f (0).

As for the “consequently” part, consider (H, t,G) as a first order structure. In
an elementary extension (H, t,G) ≺ (H, t,G), H contains Shn(ω) as a subgraph.
Restricting t to Shn(ω) and applying the above, G contains all finite subgraphs of
Shn(ω) for some n ≤ k. As a result, so does G. �

3.2. Variants of the shift graph. Let A and J be two (possibly linearly ordered)
sets.

Definition 3.3. For any ā, b̄ ∈ AJ (respectively, (AJ)<), let fā,b̄ = {(i, j) ∈ J×J :
ai = bj}.

Since the tuples ā and b̄ are without repetitions, fā,b̄ is a (possibly empty) in-

jective partial function. If ā, b̄ ∈ (AJ)< then fā,b̄ is order-preserving, i.e. for all
i < j ∈ Dom(f), f(i) < f(j).

Definition 3.4. Let Id 
= f ⊆ J × J be a partial function. We define a graph EA
f

and a directed graph DA
f on AJ :

• ā EA
f b̄ ⇐⇒ fā,b̄ = f ∨ fb̄,ā = f

• ā DA
f b̄ ⇐⇒ fā,b̄ = f.

Similarly for (AJ)<. We omit A from EA
f and DA

f when it is clear from the context.
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Remark 3.5. We required f 
= Id in order to ensure irreflexivity.
A homomomorphism between directed graphs is a map preserving the directed

graph relation.
Since the symmetric closure of the relation Df is exactly Ef , any homomorphism

of directed graphs (A
J1

1 , Df1) → (A
J2

2 , Df2) is also a homomorphism of graphs

(A
J1

1 , Ef1) → (A
J2

2 , Ef2), and similarly in the ordered case.

Example 3.6. When J = n and f = {(i, i − 1) : 1 ≤ i ≤ n − 1}, ((An)<, Ef ) is
exactly Shn(A).

Definition 3.7. Let LShn(A) = ((An)<, Df ), where f = {(i, i−1) : 1 ≤ i ≤ n−1},
and RShn(A) = ((An)<, Df ), where f = {(i− 1, i) : 1 ≤ i ≤ n− 1}.

Lemma 3.8. Let (J,<) be a finite linearly ordered set and Id 
= f ⊆ J × J a
non-empty partial function. Assume that

(1) f is order preserving, i.e. for all i < j ∈ Dom(f), f(i) < f(j),
(2) all orbits in f are increasing, i.e. for all i ∈ Dom(f), i < f(i).

Then for any countable dense linear order (Q,<) and large enough k ∈ N there
exists a homomorphism of directed graphs ϕ : RShk(ω) → ((QJ )<, Df ).

Proof. We may assume that (Q,<) = (Q, <).1 Let A be the ordinal ωω, seen as a
substructure of Q. As J is finite, we may assume that (J,<) is a substructure of
(Q, <).

Claim. There is no harm in replacing J by Dom(f) ∪ Range(f) and Q by A.

Proof. Inductively, for every u ∈ RShk(ω) choose a dense subset Qu ⊆ Q such that
for every u 
= v ∈ RShk(ω), Qu ∩Qv = ∅ and Qu ∩ ωω = ∅.

Now, let Ĵ = Dom(f) ∪ Range(f) and assume we have a homomorphism ϕ :

RShk(ω) → ((ωω)
̂J )<, Df ). For each u ∈ RShk(ω), extending ϕ(u) to an increas-

ing J-tuple of elements from Q by adding elements from Qu, defines a map ϕ′ :

RShk(ω) → ((QJ)<, Df ). Since Ĵ = Dom(f) ∪Range(f) and passing from ϕ(u) to
ϕ′(u) adds only new elements, ϕ′ is a homomorphism of directed graphs. � (claim)

Let I = Dom(f) \ Range(f). We prove by induction on |I| that for any large
enough k there exists a homomorphism g : RShk(ω) → ((AJ)<, Df ), where J =
Dom(f) ∪ Range(f) is non-empty.

For any β ∈ I let nβ be the maximal natural number n ≥ 1 such that fn−1(β) ∈
Dom(f). Note that

Dom(f) =
⋃
β∈I

{β, . . . , fnβ−1(β)}

and that
J = Dom(f) ∪ Range(f) =

⋃
β∈I

{β, . . . , fnβ (β)}.

Let β0 be the minimal element of I. Note that β0 is also the minimal element of J .

Claim. There exist J ⊆ J̃ ⊆ Q and f ⊆ f̃ ⊆ J̃ × J̃ such that

• (1), (2) of the lemma hold for J̃ and f̃ ,

• f̃ ∩ (J × J) = f ,

1Since then the isomorphism to Q induces an isomorphism between the digraphs.
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• Dom(f̃) \ Range(f̃) = I,

• min J̃ = β0 and

• (
) letting ñβ0
be the maximal natural number n ≥ 1 such that f̃n−1(β0) ∈

Dom(f̃), f ñβ0 (β0) = max J̃ .

Proof. If (
) holds for f and J , we are done. Otherwise, let i ∈ Range(f) be minimal
such that fnβ0 (β0) < i and let j be such that f(j) = i. Either j < fnβ0 (β0) or
fnβ0 (β0) < j. If the former happens let f ′ = f , so assume it is the latter, i.e. that
fnβ0 (β0) < j < i (so j ∈ Dom(f) \ Range(f)). Let f ′ = f ∪ {(fnβ0 (β0), y)} for
some j < y ∈ Q \ J which satisfies y < x for all j < x ∈ J and J ′ = J ∪ {y}. It
is still order preserving and still has increasing orbits. Let n′

β0
be as in (
) with

respect to f ′.

In either case, we have that j < (f ′)n
′
β0 (β0) < i. Since f ′ is order preserving

we may extend it to an automorphism σ of Q and thus i = σ(j) < σ((f ′)n
′
β0 (β0)).

By careful adjustments we may assume that σ((f ′)n
′
β0 (β0)) /∈ J ′. Let f ′′ = f ′ ∪

{((f ′)n
′
β0 (β0), σ((f

′)n
′
β0 (β0)))} and let J ′′ = J ∪ {σ((f ′)n

′
β0 (β0))}. It is still order

preserving and still has increasing orbits.
Note that,

|{i ∈ Range(f ′′) : i > (f ′′)n
′′
β0 (β0)}| < |{i ∈ Range(f) : i > fnβ0 (β0)}|,

where n′′
β0

is defined as in (
) with respect to f ′′.

Continue doing this until this set is empty. Let f̃ be the end function and let

J̃ = J ∪Dom(f̃) ∪ Range(f̃). � (claim)

As a consequence of the claim we may assume that (
) holds for f and J . Indeed,

assume we found a homomorphism ϕ : RShk(ω) → ((A
˜J)<, D ˜f ), for some k. Since

the projection map π : ((A
˜J)<, D ˜f ) → ((AJ)<, Df ) is a graph homomorphism (this

uses the second bullet in the claim above), π ◦ ϕ is the desired map.
Let J ′ = J \ {β0, . . . , f

nβ0 (β0)}. If J ′ = ∅ let gk be the empty function for all
k ∈ N. Otherwise, by induction there exists l ∈ N such that for all k ≥ l there is a
homomorphism gk : RShk(ω) → ((AJ′

)<, Df∩(J′×J′)). Let k > max{nβ + 1 : β ∈
I} ∪ {l} and set some order isomorphism φ : ω × (A ∪ {−1}) → A, where −1 is a
new element which is smaller than any element of A (recall that A = ωω).

We construct a homomorphism mapping μ ∈ RShk(ω) to ψμ ∈ ((AJ)<, Df ). Let
μ ∈ RShk(ω). For any 0 ≤ h ≤ nβ0

we define

ψμ(f
h(β0)) = φ(μ(h),−1).

For any β ∈ I, with β 
= β0, and 0 ≤ h ≤ nβ we define

ψμ(f
h(β)) = φ(μ(h̃), gk(μ)(f

h(β))),

for 0 ≤ h̃ ≤ nβ0
maximal satisfying fh(β) > f

˜h(β0), which exists by minimality
of β0.

We check that ψμ is increasing and that μ �→ ψμ is a homomorphism.
To show that ψμ is increasing, suppose fh1(β1) < fh2(β2) ∈ J and go over the

different possibilities. Note that we use −1 in the case when β1 = β0, β2 
= β0 and

h̃2 = h1.
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We show that μ �→ ψμ is a homomorphism. Suppose that μ, ν ∈ RShk(ω) are
such that μ(n) = ν(n+ 1) for all 0 ≤ n < k − 1. We need to check that f(i) = j if
and only if ψμ(i) = ψν(j).

Assume that f(i) = j (so i ∈ Dom(f)). Suppose that i = fh(β0) for some
0 ≤ h < nβ0

, so j = fh+1(β0). Then

ψμ(i) = φ(μ(h),−1) = φ(ν(h+ 1),−1) = ψν(f
h+1(β0)).

Now suppose that i = fh(β) for some β 
= β0 and 0 ≤ h < nβ, so j = fh+1(β).

Let h̃ be maximal such that f
˜h(β0) < fh(β). Note that by (
), h̃ < nβ0

. It follows

that f
˜h+1(β0) is defined and f

˜h+1(β0) < fh+1(β). On the other hand, it cannot

be that f
˜h+2(β0) < fh+1(β) (again, f

˜h+2(β0) is defined by the claim) for then we

would have f
˜h+1(β0) < fh(β), contradicting the maximality of h̃. It follows that

h̃+ 1 = h̃+ 1. Since gk is a homomorphism,

ψμ(i) = φ(μ(h̃), gk(μ)(f
h(β))) = φ(ν(h̃+ 1), gk(ν)(f

h+1(β)) = ψν(j).

Now assume that ψμ(i) = ψν(j). If i = fh(β0) for some 0 ≤ h ≤ nβ0
then

j = fh′
(β0) for some h′ (since ψμ(j) has the form φ(−,−1)) and so μ(h) = ν(h′).

By the choice of the k, h + 1 < k and consequently μ(h) = ν(h + 1) = ν(h′) so
h′ = h+ 1 and f(i) = j (note that it follows that h < nβ).

Suppose i = fh(β) for some β 
= β0 and 0 ≤ h ≤ nβ. As this is encoded by

φ, by the assumption necessarily j = fh′
(β′) for some β′ 
= β0 and 0 ≤ h′ ≤ nβ′ .

Let h̃ be maximal such that f
˜h(β0) < i and h̃′ maximal such that f

˜h′
(β0) < j. So

ψμ(i) = φ(μ(h̃), gk(μ)(i)) and ψν(j) = φ(ν(h̃′), gk(ν)(j)). It follows that gk(ν)(j) =
gk(μ)(i) and we are done by the choice of gk since i, j ∈ J ′. �

Before continuing to the main proposition, as auxiliary results, we calculate the
chromatic number of some (well known) graphs.

Example 3.9 (Symmetric cyclic graph). Let r > 1 be a natural number. Let
Cycsymr (A) be the graph on Ar with an edge between (a0, . . . , ar−1) and (b0, . . . ,
br−1) if a0 = b1, . . . , ar−2 = br−1, ar−1 = b0 (or vice-versa). We thus have an
injective graph homomorphism Cycsymr (A) → Shsymr (A) (but not an embedding).

Lemma 3.10. For every natural number r > 1 and any set A,

χ (Cycsymr (A)) =

{
2 r is even

3 r is odd.

Proof. The graph Cycsymr (A) partitions into connected components, each one of
them a cycle graph on r vertices. It is well known and easy to see that you need 2
colors to color even cycle graphs and 3 colors to color odd cycle graphs. �

The next two examples are somewhat similar and they both have very small
chromatic number. We define them and prove that their chromatic number is 2.

Example 3.11 (Denumerable tuples symmetric shift graph). Let A be an infinite
set. The denumerable tuples symmetric shift graph Shsymω (A) is defined similarly
as the symmetric shift graph but with vertices Aω. There is an edge between two
vertices f and g if f(n) = g(n+ 1) for all n < ω (or vice-versa).
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Example 3.12 (Glued increasing symmetric shift graphs). Let n̄ = 〈ni : i < ω〉 be
a strictly increasing sequence of natural numbers. We define the graph Shsymn̄,u (A),
for an infinite set A. The vertices are injective functions

∐
i<ω[0, ni] → A. Thus

every vertex can be written as f =
∐

i<ω fi. We will say that there is an edge
between two vertices f and g if

fi(m) = gi(m+ 1)

for every 0 ≤ m < ni, i < ω or

gi(m) = fi(m+ 1)

for every 0 ≤ m < ni, i < ω.

Lemma 3.13. Let X be a set. Suppose (n, x) �→ n + x is a free action of Z on
X. We define a graph relation E on X by setting that x E y if either 1 + x = y or
1 + y = x. Then χ(X,E) = 2.

Proof. Since (X,E) is a disjoint union of pairwise unconnected Z-paths, the result
follows. �
Lemma 3.14. For any infinite set A and a strictly increasing sequence of natural
numbers n̄, χ (Shsymω (A)) = χ

(
Shsym

n̄,u (A)
)
= 2.

Proof. The proofs for these two graphs are the same, albeit the definitions are
slightly different. We prove for Shsymω (A) and present the appropriate definitions
for Shsymn̄,u (A) at the end.

Let X ⊆ Aω be the set of all functions f which are eventually injective, i.e. there
exists an n such that f � [n,∞) is injective.

Fix some element e ∈ A. The integers Z acts on X by translation: if z ∈ Z and
f ∈ X then we define

(z + f)(m) =

{
f(m− z) 0 ≤ m− z

e otherwise.

We define an equivalence relation R on X:

f R g ⇐⇒ ∃n(f � [n,∞) = g � [n,∞)).

Note that if f R g and z ∈ Z then z + f R z + g, so the Z-action induces an action
on X/R. We note that if z + [f ] = [f ] for f ∈ X (and [f ] being the class of f in
X/R) then z = 0 by eventual injectivity of f . Or in other words, the Z-action on
X/R is free.

Since if f, g ∈ Shsymω (A) are connected by an edge then either [f ] = 1 + [g] or
[g] = 1 + [f ], by Lemma 3.13 and Lemma 2.3(3), χ (Shsymω (A)) = 2.

For Shsymn̄,u (A) we define:
Let X be the set of all functions f :

∐
i<ω → [0, ni] satisfying the property that

there exists an n such that for all i < ω, fi � [n, ni − n] is injective.
For every z ∈ Z and f ∈ X we define for i < ω

(z + f)i(m) =

{
fi(m− z) 0 ≤ m− z ≤ ni

e otherwise.

We define an equivalence relation R on X:

f R g ⇐⇒ ∃n∀i < ω(fi � [n, ni − n] = gi � [n, ni − n]).

�
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On the other hand if the glued shift graphs are bounded the picture is different.

Example 3.15 (A sequence of bounded shift graphs). Let n be a natural number,
I a set and n̄ = 〈ni : i ∈ I〉 a sequence of natural numbers satisfying 0 < ni ≤ n
for all i ∈ I. We define Shn̄,b(A) for an infinite linearly ordered set (A,<). The
vertices are sequences of functions f = (fi)i∈I , where each fi : [0, ni] → A is order
preserving. We will say that there is an edge between two vertices f and g if
fi(m) = gi(m+ 1) for every 0 ≤ m < ni, i ∈ I (or vice-versa).

Lemma 3.16. Let (A,<) be an infinite linearly ordered set, n̄ = 〈ni : i ∈ I〉 a
uniformly bounded sequence of natural numbers with ni ≥ 1 and let n = maxi∈I{ni}.
Then there exists an injective homomorphism Shn+1(A) → Shn̄,b(A).

Proof. For any tuple u ∈ (An+1)< we define a vertex fu ∈ Shn̄,b(A). For every 0 ≤
h ≤ ni, i ∈ I, we set (fu)i(h) = u(h). Set f = (fi)i∈I . Note that if 0 ≤ h < h′ ≤ ni

then u(h) < u(h′) so (fu)i(h) < (fu)i(h
′). By the choice of n, u �→ fu is injective

as well.
We show that u �→ fu is a homomorphism. Assume that, without loss of gen-

erality, u(h) = v(h + 1) for every 0 ≤ h < n. For every i ∈ I and for every
0 ≤ h < ni

(fu)i(h) = u(h) = v(h+ 1) = (fv)i(h+ 1).

As needed. �

The following propositions will be the backbone behind the main results.

Proposition 3.17. Let A be an infinite set, λ a cardinal with 2λ ≤ |A| and G =
(Aλ, E) a graph on Aλ. If χ(G) ≥ �2(λ)

+ + ℵ0 and

(
) for all ā, b̄, c̄, d̄ ∈ Aλ if ā E b̄ and fā,b̄ = fc̄,d̄ then c̄ E d̄

then there exists an n ∈ N and an injective homomorphism from Shn(ω) to G.

Proof. Let F = {fā,b̄ : ā E b̄} be the collection of all functions arising as fā,b̄ for

some ā and b̄ sharing an edge. If we set Ef = {(ā, b̄) : f = fā,b̄ ∨ f = fb̄,ā} (see also
Definition 3.4) then, since by (
), E =

⋃
f∈F Ef , then by Lemma 2.3(2)

�2(λ)
+ + ℵ0 ≤ χ(G) ≤

∏
f∈F

χ (V,Ef ) .

If λ is infinite then, since |F | ≤ 2λ, there exists f ∈ F with χ(V,Ef ) > 2λ ≥ ℵ0. If
λ is finite then the same conclusion holds since |F | is finite. Replace G by (V,Ef ).
Note that although now we only have that χ(V,E) ≥ ℵ0, we gained that ā and b̄
are connected by an edge if and only if fā,b̄ = f or fb̄,ā = f .

For any β ∈ Dom(f) ⊆ λ, we distinguish between four possibilities:

(1) “β is a fixed point”: f(β) = β;
(2) “β generates a finite cycle”: there exists a natural number 1 < n ∈ N such

that fn(β) = β and fn−1(β) 
= β;
(3) “β generates a finite shift”: there exists a natural number 0 < n ∈ N such

that fn(β) /∈ Dom(f);
(4) “β generates an infinite shift”: the set {fn(β) : n < ω} is infinite.
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We first note the following observations, which will allow us to cross out some
of the possibilities:

• No β ∈ Dom(f) generates a finite cycle. Assume there exists β ∈ Dom(f)

and 1 < n < ω such that fn(β) = β and fn−1(β) 
= β. Define a ho-
momorphism G → Cycsymn (A) which maps ā to (aβ, af(β), . . . afn−1(β)). It

is a homomorphism because if there is an edge between ā and b̄ then by
definition of f , aβ = bf(β), . . . , afn−1(β) = bβ . By Lemma 3.10 and Lemma
2.3(3), χ(G) ≤ χ(Cycsymn (A)) ≤ 3, contradiction.

• No β ∈ Dom(f) generates an infinite shift. Assume there exists β < λ with

{fn(β) : n < ω} infinite. Define a homomorphism G → Shsymω (A) which
maps ā to n �→ afn(β). By definition this is a homomorphism of graphs. By
Lemma 3.14 and Lemma 2.3(3), χ(G) ≤ χ(Shsymω (A)) = 2, contradiction.

Let I = Dom(f) \ Range(f). For any β ∈ I let nβ be the maximal natural
number n ≥ 1 such that fn−1(β) ∈ Dom(f). Note that

Dom(f) =
⋃
β∈I

{β, . . . , fnβ−1(β)} ∪ {β < λ : f(β) = β}

and that

Dom(f) ∪Range(f) =
⋃
β∈I

{β, . . . , fnβ (β)} ∪ {β < λ : f(β) = β}.

We are thus left with two cases:

Case 1. I = ∅. Thus f is the identity on Dom(f). If Dom(f) = λ then G is an
anticlique and can thus can be colored by only one color, contradiction. Hence
Dom(f) � λ. Since λ × ℵ0 ≤ |A|, we may find G0 = {āi ∈ G : i < ω}, such that
for any i, j < ω, (āi)k = (āj)l ⇐⇒ k = l ∈ Dom(f). By the definition of the
edge relation G0 is a complete graph of size |A|. In particular we may embed the
complete graph on ω as a subgraph.

Case 2. I 
= ∅.

Claim. There exists a uniform bound on {nβ : β ∈ I}.

Proof. Otherwise, assume there are 〈βi : i < ω〉 such that the sequence n̄ := 〈nβi
:

i < ω〉 is strictly increasing. We define a homomorphism from G to Shsymn̄,u (A)
similarly as before. Consequently, χ(G) ≤ 2 (by using Lemma 3.14, Lemma 2.3(3)
and the relevant homomorphisms), contradiction. � (claim)

Let n = maxβ∈I{nβ}, n̄ = 〈nβ : β ∈ I〉 and let φ : λ×ω×(Shn̄,b(ω)∪{0, 1}) → A
be an injective function, which exists since (ℵ0)

λ + ℵ0 + λ ≤ |A|.
We define an injective homomorphism from Shn̄,b(ω) into G. For every function

μ = (μβ)β∈I , where μβ : [0, nβ] → ω is order preserving, we associate an injective
function ψμ : λ → A as follows. For every β ∈ I and h ∈ [0, nβ] we define

ψμ(f
h(β)) = φ(β, μβ(h), 0),

note that this is well defined. For every α 
∈
⋃

β∈I{β, . . . , fnβ (β)} such that f(α) =
α we define

ψμ(α) = φ(α, 0, 1)
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and otherwise we define
ψμ(α) = φ(α, 0, μ).

We claim that the map μ �→ ψμ is an injective homomorphism.
Injectivity: Let μ, ν ∈ Shn̄,b(ω) with ψμ = ψν . Let β ∈ I and h ∈ [0, nβ]. Since

ψμ(f
h(β)) = ψν(f

h(β)) and φ is injective, μβ(h) = νβ(h).
Homomorphism: Assume that μ and ν are connected by an edge, i.e. without

loss of generality for every β ∈ I and h ∈ [0, nβ), μβ(h) = νβ(h + 1). We need to
show that for every i, j < λ, ψμ(i) = ψν(j) if and only f(i) = j.

Assume that f(i) = j. In particular, i ∈ Dom(f). If i = β = f(β) = j then
ψμ(β) = φ(β, 0, 1) = ψν(β). Otherwise, i = fh(β) for some β ∈ I and h ∈ [0, nβ).
Thus

ψμ(i) = ψμ(f
h(β)) = φ(β, μβ(h), 0) =

φ(β, νβ(h+ 1), 0) = ψν(f
h+1(β)) = ψν(j).

Assume that ψμ(i) = ψν(j) = e. Since μ 
= ν, by the injectivity of φ we have
only two possibilities: either e = φ(· · · , 1) or e = φ(· · · , 0). If the former happens,
necessarily f(i) = i, f(j) = j and i = j.

Otherwise, i = fh(β) and j = fh′
(β′) for some β, β′ ∈ I, h ∈ [0, nβ] and

h′ ∈ [0, nβ′ ]. Also, since

φ(β, μβ(h), 0) = φ(β′, νβ′(h′), 0),

β = β′ and μβ(h) = νβ(h
′). If h ∈ [0, nβ) then μβ(h) = νβ(h + 1) since μ and

ν are connected by an edge, so since νβ is injective h′ = h + 1. Hence f(i) = j.
Otherwise, h = nβ. If h′ > 0 then since μβ(h) = νβ(h

′) = μβ(h
′ − 1) we get a

contradiction to the injectivity of μβ . Consequently it must be that h′ = 0 and
thus

μβ(nβ) = νβ(0) < νβ(1) = μβ(0) < μβ(nβ),

contradiction.
Applying Lemma 3.16 we may conclude that there exists an injective homomor-

phism from Shn+1(ω) into Shn̄,b(ω), and thus into G as well. �
Proposition 3.18. Let (A,<) be an infinite linearly ordered set, m < ω and
G = ((Am)<, E) a graph on (Am)<. Assume χ(G) ≥ ℵ0 and that for all ā, b̄, c̄, d̄ ∈
(Am)< if ā E b̄ and fā,b̄ = fc̄,d̄ then c̄ E d̄. Then there exists n < ω such that G
contains all finite subgraphs of Shn(ω).

Proof. As was done in the proof of Proposition 3.17, letting F = {fā,b̄ : ā E b̄},
since |F | < ℵ0, we may assume that E = Ef for some f ∈ F (see Definition 3.4).

Since the tuples are increasing, f is necessarily an order preserving function
(i < j ∈ Dom(f) =⇒ f(i) < f(j)). Thus, as m is finite, for any β ∈ Dom(f) ⊆ m
with f(β) 
= β, “β generates a finite shift” (in the context of Proposition 3.17), i.e.
there exists a natural number 0 < n ∈ N such that fn(β) /∈ Dom(f).

Let I = Dom(f) \ Range(f). For any β ∈ I let nβ be the maximal natural
number n ≥ 1 such that fn−1(β) ∈ Dom(f). Note that

Dom(f) =
⋃
β∈I

{β, . . . , fnβ−1(β)} ∪ {β < m : f(β) = β}

and that

Dom(f) ∪ Range(f) =
⋃
β∈I

{β, . . . , fnβ (β)} ∪ {β < m : f(β) = β}.
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As in the proof of Proposition 3.17(Case 1) we can disregard the case I = ∅,
because then in this case G contains any finite complete graph. Say that β ∈ I
is increasing if β < f(β) and decreasing otherwise (equivalently, f(β) < β). Also,
as f is order preserving and the tuples are increasing, we may find a partition
m = J1 ∪ · · · ∪ JN satisfying that

• each of the Ji are convex and J1 < · · · < JN ;
• if β ∈ Ji ∩Dom(f) then f(β) ∈ Ji;
• if β ∈ I ∩ Ji is increasing then every β′ ∈ I ∩ Ji is increasing;
• if β ∈ I ∩ Ji is decreasing then every β′ ∈ I ∩ Ji is decreasing and
• if for β ∈ Ji, f(β) = β then for every β′ ∈ (Dom(f) ∪ Range(f)) ∩ Ji,
β = β′.

For every 1 ≤ i ≤ N , set fi = f ∩ (Ji × Ji).
For any 1 ≤ i ≤ N if Ji is of increasing type, by applying Lemma 3.8, with

(Q,<) = (Q, <), there is a homomorphism gi,k : RShk(ω) → ((QJi)<, Dfi) for any
large enough k.

For any 1 ≤ i ≤ N if Ji is of decreasing type, by applying Lemma 3.8 to (Ji, <
∗)

(the reverse order on Ji) with (Q,<) = (Q, <∗) (the reverse order on Q) there is a

homomorphism g∗i,k : RShk(ω) → ((Q(Ji,<
∗))<∗ , Dfi) for any large enough k. Since

the identity function is an isomorphism of directed graphs

((Q(Ji,<
∗))<∗ , Dfi)

∼= ((QJi)<, Dfi),

we may compose and get a homomorphism gi,k : RShk(ω) → ((QJi)<, Dfi).
Let k be large enough so that gi,k are defined for all i and set gi = gi,k.
For any 1 ≤ i ≤ N , if Ji is of constant type fix some embedding gi : (Ji, <) →

(Q, <).
Let (A,<) ≺ (A, <) be a sufficiently saturated extension with (A, <) containing

(Q,<) = ({1, . . . , N}×Q× (RShk(ω)∪{0}), <lex) as a substructure, where we may
choose any linear order on RShk(ω)∪{0}. Note that the inclusion (Q,<) ⊆ (A, <)
induces an injective homomorphism

((Qm)<, Df ) → ((Am)<, Df ).

We will now construct a homomorphism RShk(ω) → ((Qm)<, Df ).
Let μ ∈ RShk(ω). We define ψμ ∈ (Qm)< as follows. If α ∈ Ji, with Ji increasing

or decreasing then

ψμ(α) = (i, gi(μ)(α), 0).

If α ∈ Ji, with Ji of constant type, and f(α) = α then

ψμ(α) = (i, gi(α), 0).

If α ∈ Ji, with Ji of constant type, and f(α) 
= α then

ψμ(α) = (i, gi(α), μ).

Since J1 < · · · < JN then by definition, ψμ is increasing. We claim that μ �→ ψμ is
a homomorphism.

Assume that μ, ν ∈ RShk(ω) are such that μ(h) = ν(h + 1) for 0 ≤ h < k − 1.
We will show that for every α, β < m: f(α) = β if and only if ψμ(α) = ψν(β).

If f(α) = β then α, β ∈ Ji for some 1 ≤ i ≤ N . If Ji is not of constant type then
since gi is a homomorphism, gi(μ)(α) = gi(ν)(β), so

ψμ(α) = (i, gi(μ)(α), 0) = (i, gi(ν)(β), 0) = ψν(β).
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If Ji is of constant type then β = f(α) = α and

ψμ(α) = (i, gi(α), 0) = (i, gi(β), 0) = ψν(β).

Now assume that ψμ(α) = ψν(β). By definition, α, β ∈ Ji for some 1 ≤ i ≤ N .
If Ji is of constant type then since μ 
= ν (and both are not 0) by the definition of
ψ, f(α) = α, f(β) = β and gi(α) = gi(β). Consequently, α = β and as a result
α = β = f(α).

If Ji is not of constant type then gi(μ)(α) = gi(ν)(β). By the fact that gi is a
homomorphism, f(α) = β.

We have constructed a homomorphism RShk(ω) → ((Qm)<, Df ) ⊆ ((Am)<, Df ),
which also gives a graph homomorphism Shk(ω) → ((Am)<, Ef ). By Proposition
3.2, ((Am)<, Ef ) contains all finite subgraphs of Shn(ω) for some n ≤ k and since
((Am)<, Ef ) ≺ ((Am)<, Ef ) and Ef ⊆ E so does G. �

4. Superstable and ω-stable Graphs

We use the main result of the previous section in order to prove the strong form
of Taylor’s conjecture for ω-graphs and a suitable variant for superstable graphs.

The following result is somewhat reminiscent (in flavor) of [ER50, Theorem
III]. It is a local version of the the well known fact that, in stable theories, every
indiscernible sequence is an indiscernible set [TZ12, Lemma 9.1.1] (it is possibly
known, but we could not find a reference).

Generalizing the notation from Definition 3.3, for two tuples, possibly of different
length, ā and b̄, we denote fā,b̄ = {(i, j) : ai = bj}.

Recall that for a set of formulas Δ, a Δ-indiscernible sequence is a sequence of
elements that are indiscernible only with respect to formulas from Δ. For a formula
ϕ(x0, . . . , xn−1) let Δϕ := {ϕ(xπ(0), . . . , xπ(n−1)) : π is a function from n to n}.
Proposition 4.1. Let T be a complete theory and ϕ(x, y) a partitioned stable for-
mula, with x and y possibly of different lengths. Let I be a Δϕ-indiscernible

2 se-
quence indexed by an infinite linearly ordered set (Q,<).

If ā, c̄ ∈ (I |x|)< and b̄, d̄ ∈ (I |y|)< are increasing tuples then

(
) ϕ(ā, b̄) ∧ fā,b̄ = fc̄,d̄ =⇒ ϕ(c̄, d̄).

Remark 4.2. In particular, if there exist ā ∈ (I |x|)< and b̄ ∈ (I |y|)< disjoint increas-

ing tuples such that ϕ(ā, b̄) holds then for every disjoint increasing tuples c̄ ∈ (I |x|)<
and d̄ ∈ (I |y|)<, ϕ(c̄, d̄) holds.

Proof. Let I ′ be an indiscernible sequence with the same EM-type as I. Suppose
(
) is not true as witnessed by ā, b̄, c̄, d̄, then let ā′, b̄′, c̄′, d̄′ in I ′ be such that ā′b̄′ as
the same order type as āb̄, and c̄′d̄′ has the same order type as c̄d̄. It follows by the
choice of Δϕ that (
) is not true for ā′, b̄′, c̄′, d̄′. We may thus assume that I is an
indiscernible sequence. Similarly, we may assume that (Q,<) is (Q, <). Also, we
endow I with the order induced by Q, i.e. we write ai < aj but mean i < j ∈ Q.

We prove by induction on n < ω that for any set A, stable formula ϕ(x, y) over

A and an A-indiscernible sequence I indexed by (Q, <), (
) holds for ā, c̄ ∈ (I |x|)<
and b̄, d̄ ∈ (I |y|)< with |Dom(fā,b̄)| ≤ n.

Assume that n = 0. Let ϕ(x, y), ā, b̄, c̄, d̄ and I be as in the induction hypothesis.
For simplicity assume that A = ∅. Since n = 0, ā and b̄ are disjoint (it follows that c̄

2For partitioned formulas, we define Δϕ as above forgetting the partition.
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and d̄ are disjoint as well). By applying an automorphism we may assume that c̄ = ā

(which exists since the index set of I is Q). Let X = {c̄ ∈ (I \ ā)|y| : ϕ(ā, c̄) holds}.
Note that b̄ ∈ X.

By stability the ϕ-type tpϕ(ā/I \ā) is definable, i.e. there is some formula ψ(y, ē)
with ē ∈ I \ ā such that

c̄ ∈ X ⇐⇒ c̄ |= ψ(y, ē).

Let h̄ ∈ I \ āē have the same order type as ē over ā, which exists by density. Let
σ be an automorphism of (I,<) which fixes ā and maps ē to h̄. By indiscernibility
it follows that σ(X) = X.

We claim that X is definable over both ē and h̄ in the structure (I \ ā, <). Indeed
if c̄1, c̄2 have the same order type over ē then c̄1 ∈ X ⇐⇒ c̄2 ∈ X. Since there
only finitely many order types over ē, this shows the claim for ē. As σ(X) = X, we
have it also for h̄.

As DLO eliminates imaginaries [TZ12, Exercise 8.4.3], X has a code �X� ∈
dcl(ē) ∩ dcl(h̄). As dcl is trivial in DLO and ē and h̄ are disjoint, X is definable

over ∅ (in the structure (I \ ā, <)). Since b̄ ∈ X, it follows ((I \ ā)|y|)< ⊆ X. This
proves the first part.

Now assume that n > 0 and let ā, b̄, c̄, d̄ be as above with |Dom(fā,b̄)| = n > 0.

Assume that ϕ(ā, b̄) holds and fā,b̄ = fc̄,d̄. By applying an automorphism, we may
assume that c̄ = ā. Let i be the maximal element of Dom(f).

Note that I<ai
is indiscernible over I≥ai

. Consider the formula ψ(u, v) =
ϕ(ua≥i, vb≥f(i)) (recall bf(i) = ai). Applying the induction hypothesis to ψ(u, v)
we conclude that ϕ(ā, d<f(i)b≥f(i)) and so also ϕ(ā, d≤f(i)b>f(i)) (because df(i) =
ai = bf(i)). Now note that I>ai

is indiscernible over I≤ai
and we consider the for-

mula θ(u, v) = ϕ(a≤iu, d≤f(i)v) (recall that df(i) = ai). Applying the base of the

induction hypothesis to θ(u, v), we conclude that ϕ(ā, d̄), as required. �

Definition 4.3. Let L be a first order language and T a complete L-theory with
infinite models and let Δ be a set of formulas. An EMΔ-Model of T is a model
which is generated by a Δ-indiscernible sequence, i.e. a model M |= T with a Δ-
indiscernible sequence I such that for every b ∈ M there exist a term t(x0, . . . , xn−1)
and elements a0 < · · · < an−1 ∈ I with b = t(a0, . . . , an−1). If Δ is the set of all
formulas we omit Δ from the notation.

For a binary relation E, let Δ(E) be the collection of formulas of the form
E(t(x), t(y)), where t is a term.

Theorem 4.4. Let L = {E, . . . } be a first order language with E a binary relation.
Let T an L-theory specifying that E is a symmetric and irreflexive stable relation.
Let G = (V ;E, . . . ) |= T be an EMΔ(E)-model. If χ(V,E) ≥ (|T |+ ℵ0)

+ then there
exists a natural number n such that G contains all finite subgraphs of Shn(ω).

Proof. There is not harm in assuming that |T | is infinite, so (|T | + ℵ0)
+ = |T |+.

Let (A,<) be a linearly ordered set, I = 〈ri : i ∈ A〉 an indiscernible sequence and
{tα}α<|T | a set of terms satisfying that V =

⋃
α<|T | tα(I), where tα(I) is the image

of the map I �→ V given by substituting increasing tuples in tα.
By Lemma 2.3(1), |T |+ ≤ χ(G) ≤

∑
α<|T | χ(tα(I), E � tα(I)). Since ever suc-

cessor cardinal is regular, there exists an α such that χ(tα(I), E � tα(I)) ≥ |T |+.
We may thus assume that V = t(I) for some term t = t(x̄) = t(x0, . . . , xn−1).
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The map t : (In)< → t(I) induces a graph on (In)< by specifying that ā Ẽ b̄ if

and only if t(ā) E t(b̄). By Lemma 2.3(4), χ((In)<, Ẽ) ≥ |T |+ as well.
Since the edge relation E(v, u) is stable, so is E(t(x̄), t(ȳ)). As a result, Propo-

sition 4.1 allows us to apply Proposition 3.18. Hence (In)< contains all finite sub-
graphs of Shk(ω) for some k. We may now conclude by applying the consequently
part of Proposition 3.2. �

Corollary 4.5. Let G = (V,E) be a graph. If

• G is superstable and χ(G) > 2ℵ0 or
• G is ω-stable and χ(G) > ℵ0

then G contains all finite subgraphs of Shn(ω) for some n ∈ N.

Proof. Suppose G is superstable and χ(G) > 2ℵ0 . By [She, Claim 16.2(2B.c)] or
[Mar01, page 345], [Mar99, Theorem 3.B] there exists {E} ⊆ L of cardinality 2ℵ0

and an L-saturated EM-model G such that Th(G) � {E} = Th(G). Since G is
saturated, we may embed G as an elementary substructure of G. Since χ(G) > 2ℵ0 ,
by Theorem 4.4 all finite subgraphs of Shn(ω) are contained in G for some n ∈ N.
The result now follows since G ≺ G, as graphs.

For ω-stable graphs we may use [Mar01, Theorem C] to find an L-saturated
EM-model in a countable language. �

5. Stationary stable graphs

The crucial part of the proof of Theorem 4.4 was the existence of a saturated
EM-model. It is a natural question to ask whether the technique from the previous
section can be generalized to any stable graph, i.e. is the following true:

There exists a cardinal κ such that for every stable graph with
χ(G) ≥ κ there exists a saturated EM-model G, in an expansion
L ⊇ {E} with |L| < κ, such that G ≺ G � {E}.

However, Mariou has shown in [Mar99, Theorem 3.A] that if a stable theory T
has a κ+-saturated EM-model in an expansion L with |L| ≤ κ then T is superstable.
As a result, a positive result would imply superstability. For general stable graphs
a different approach is needed.

A connected notion to that of EM-models is the that of representations of struc-
tures from [CS16]. We will need a variation on the theme.

Definition 5.1 (The free algebra). Suppose A is a pure set. Let Mμ,κ(A) be the
(non first order) structure whose vocabulary is Lμ,κ = {Fα,β : α < μ, β < κ}, where
each Fα,β is a β-ary function symbol for all α < μ (note that we allow infinite arity).
The universe of Mμ,κ(A) is

⋃
γ∈Ord Mμ,κ,γ(A). Where

• Mμ,κ,0(A) = A,
• for limit γ, Mμ,κ,γ(A) =

⋃
γ′<γ Mμ,κ,γ′(A),

• and for successor

Mμ,κ,γ+1 = Mγ ∪ {Fα,β(b̄) : b̄ ∈ (Mμ,κ,γ)
β, α < μ, β < κ}.

We treat Fα,β(b̄) as a new formal object.

For a cardinal κ, let reg(κ) be κ+ if κ is singular and κ otherwise.
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Fact 5.2 ([CS16, Remark 2.3]). Let A and Mμ,κ(A) be as before. Mμ,κ(A) is a

set whose cardinality is at most (|A|+ μ)<reg(κ) (though defined as a class).

Remark 5.3. Fixing a set of variables X = {xi : i < reg(κ)}, the set of terms in
Lμ,κ in X can be identified with Mμ,κ(X). It follows from Fact 5.2 that their

number is bounded by (reg(κ) + μ)<reg(κ).

For any permutation π of A we denote by π̂ the induced automorphism of
Mμ,κ(A).

Definition 5.4. Let M be a structure. A homogeneous representation of M in
Mμ,κ(A) is a function Φ : M → Mμ,κ(A) satisfying

(1) For every term t(x̄), where x̄ is tuple of length β < κ containing the vari-

ables of t, if t(ā) ∈ Im(Φ) for some ā ∈ Aβ then t(b̄) ∈ Im(Φ) for all
b̄ ∈ Aβ;

(2) For any two finite sequences ā, b̄ ∈ Mn, if there exists a permutation π of
A such that π̂(Φ(ai)) = Φ(bi), for all i < n, then

tpM (ā) = tpM (b̄).

We say that Φ is a skeletal homogeneous representation if it is an injective partial
function satisfying (1) and (2) on its domain and that dcl(Dom(Φ)) = M .

Remark 5.5. Representations were originally defined in [CS16, Definition 2.1] and
the definition was that of a function Φ : M → Mμ,κ(A) satisfying that

qftp(Φ(ā)) = qftp(Φ(b̄)) =⇒ tpM (ā) = tpM (b̄).

Since every permutation of A lifts to an automorphism of the free algebra, the
antecedent in condition (2) implies that Φ(ā) and Φ(b̄) have the same quantifier-
free type. As a result, every representation satisfies condition (2) of a homogeneous
representation.

Proposition 5.6. Let M be a structure in a countable language and κ a regular
cardinal. Assume there exists a skeletal homogeneous representation Φ : Dom(Φ) →
Mμ,κ(A) of M , where A is a pure set, κ and μ are infinite, and that

(1) (reg(κ) + μ)<reg(κ) < κ,
(2) �2(λ) < κ for all λ < reg(κ),
(3) 2<reg(κ) ≤ |A|.

For every graph G = (V,E) that is ∅-interpretable in M with χ(G) ≥ κ there exists
an n ∈ N such that G contains all finite subgraphs of Shn(ω).

Proof. Since G is interpretable in M there exist r ∈ N, a definable subset V0 ⊆ Mr

and an interpretation g : V0 → V (see [Hod93, Section 5.3]). By definition, g
is surjective and G0 = (V0, g

−1(E)) is a definable graph. Thus g is a surjective
homomorphism and by Lemma 2.3(4) χ(G) = χ(G0). Note that if G0 contains
all finite subgraphs of Shn(ω) then by Proposition 3.2 so does G (maybe for a
different n). Consequently, we may assume that the graph G = (V,E) is ∅-definable
in Mr.

Let D = Dom(Φ) and let 〈fi(v̄i) : i < ω〉 be an enumeration of all ∅-definable
functions to M . Let

U = {Fi,|v̄i|(b0, . . . , b|v̄i|−1) : b0, . . . , b|v̄i|−1 ∈ Im(Φ), i < ω} ⊆ Mμ,κ(A).
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Define a surjective map Ψ0 : U → M by mapping Fi,|v̄i|(b0, . . . , b|v̄i|−1) to

fi(Φ
−1(b0), . . . ,Φ

−1(b|v̄i|−1)).

Note that Φ is injective so this is well defined.
Let Ψ1 = (Ψ0)

r : (U)r → Mr, V = {a ∈ (U)r : Ψ1(a) ∈ V } and Ψ = Ψ1 � V :
V → V . Let E = Ψ−1(E), hence G = (V , E) is a graph and note that χ(G) = χ(G)
by Lemma 2.3(4). Let ν = (reg(κ) + μ)<reg(κ).

Let X = {xi : i < reg(κ)} be a set of variables as in Remark 5.3. Let t0

be the set of pairs (t, x̄), where x̄ is a sequence of variables from X of length
< reg(κ) and t is a term in Lμ,κ with variables contained in x̄. Let t1 be the subset
of t0 consisting of pairs of the form (Fi,|v̄i|(t0, . . . , t|v̄i|−1), x̄), where i < ω, and
(t0, x̄), . . . , (t|v̄i|−1, x̄) ∈ t0. Let t = {((s0, x̄0), . . . , (sr−1, x̄r−1)) ∈ (t1)

r : x̄0 = . . . =
x̄r−1}. We may enumerate t = {s̄i(x̄i) : i < ν}, where for ease of notation we write
(s̄, x̄) as s̄(x̄).

Since V is covered by the union of {s̄i(ā) : ā ∈ A|x̄i|}i<ν , V =
⋃

i<ν Vi, where

Vi = {s̄i(ā) : ā ∈ A|x̄i|} ∩ V .
By Lemma 2.3(1), assumption (1) and since κ is regular, there exists some i < ν

with χ(Gi) ≥ κ, where Gi = (Vi, E � Vi × Vi).
Set s̄ = s̄i and x̄ = x̄i. Assume, for simplicity, that

s̄(x̄) = (F0,k0
(t0,0(x̄), . . . , t0,k0−1(x̄)), . . . , Fr−1,kr−1

(tr−1,0(x̄), . . . , tr−1,kr−1(x̄))).

Claim. s̄ defines a surjective function A|x̄| → Vi.

Proof. Since Gi is non-empty, there exists ā ∈ A|x̄| such that s̄(ā) ∈ V . Let b̄ ∈
A|x̄|. By Definition 5.4(1), Fi,ki

(ti,0(b̄), . . . , ti,ki−1(b̄)) ∈ U for all i < r. Note that
|x̄| < |A| by assumption (3) and so there exists a permutation π of A mapping ā
to b̄, and let π̂ be induced automorphism of Mμ,κ. Thus π̂(s̄(ā)) = s̄(b̄). Since
V is ∅-definable and Ψ1(s̄(ā)) ∈ V , Definition 5.4(2) gives that tpM (Ψ1(s̄(b̄)) =
tpM (Ψ1(s̄(ā)) and hence Ψ1(s̄(b̄) ∈ V as well. Consequently, s̄ defines a function.
Surjectivity is straightforward. � (claim)

Let R = s̄−1(E � Vi × Vi) be the edge relation s̄ induces on A|x̄|.
By assumptions (2, 3), in order to apply Proposition 3.17, we are left to verify

assumption (
) of Proposition 3.17.

Let ā, b̄, c̄, d̄ ∈ A|x̄| satisfying ā R b̄ and fā,b̄ = fc̄,d̄. The latter condition implies

that the coordinate-wise map sending āb̄ to c̄d̄ is well defined and injective. Since
|x̄| < |A|, we may find a permutation π of A which maps āb̄ to c̄d̄. This permutation
lifts to an automorphism π̂ of the free algebra, with π̂(s̄(ā)) = s̄(c̄) and π̂(s̄(b̄)) =
s̄(d̄).

Thus π̂(ti,j(ā)) = ti,j(c̄) and π̂(ti,j(b̄)) = ti,j(d̄), for i < r and j < ki. By
Definition 5.4(2),

tpM ((Φ−1(ti,j(ā)))i<r,j<ki
, (Φ−1(ti,j(b̄)))i<r,j<ki

) =

tpM ((Φ−1(ti,j(c̄)))i<r,j<ki
, (Φ−1(ti,j(d̄)))i<r,j<ki

),

and consequently

tpM (Ψ(s̄(ā)),Ψ(s̄(b̄))) = tpM (Ψ(s̄(c̄)),Ψ(s̄(d̄))).
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Since ā R b̄, s̄(ā) E s̄(b̄) and so Ψ(s̄(ā)) E Ψ(s̄(b̄)). As this is specified by the type
of the pair,

Ψ(s̄(c̄)) E Ψ(s̄(d̄))

as well. As a result, s̄(c̄) E s̄(d̄) and c̄ R d̄.
By Proposition 3.17, there exists m ∈ N and an injective homomorphism from

Shm(ω) to A|x̄|. By composing with s̄ and Ψ and applying Proposition 3.2, there
exists n ≤ m such that G contains all finite subgraphs of Shn(ω). �

If T is a countable ω-stable theory and M |= T , one may find an injective
representation, in the sense of Remark 5.5, of M in Mℵ0,ℵ0

(A), for some set A;
see [CS16, Theorem 4.4]. Similarly superstable theories may be represented in
M2|T |,ℵ0

(A), for some set A, see [She19, Theorem 2.1]. However, we may not apply
the previous proposition to these representations since they may not homogeneous.
We build such homogeneous representations for stable theories in which every type
is stationary.

Definition 5.7. We say that a theory T is stationary if all types (over any set)
are stationary.

Remark 5.8. Rothmaler studies stationarity of modules in [Rot83], e.g. he gives a
complete description of stationary abelian groups in [Rot83, Theorem 4(ii)].

Recall that a formula ϕ(x, d) is almost over A if there exists an equivalence
relation with finitely many classes E(x, x′) over A such that ∀x∀x′(E(x, x′) →
(ϕ(x, d) ↔ ϕ(x′, d))).

Fact 5.9 ([Rot83, Lemma 2, Theorem 1]). Let T be a stable theory. The following
are equivalent:

(1) T is stationary;
(2) for any A, every formula which is almost over A is over A;
(3) all 1-types over (over any set) are stationary.

Proposition 5.10. Let T be a complete stationary stable theory in a language L.
For every sublanguage L0 ⊆ L there is some L0 ⊆ L′ ⊆ L with |L′| = |L0| + ℵ0

such that T � L′ is stationary.

Proof. By Fact 5.9, T is stationary if and only if for every equivalence relation with
finitely many classes E(x, x′) over A, every class of E is definable over A.

Claim. For every ψ(x, x′, z) and n < ω there are finitely many formulas θi(x, z)
(i < k) such that

(†) for any z-tuple c such that ψ(x, x′, c) defines an equivalence relation with
≤ n classes, and for any x′-tuple d there is some i < k such that ψ(x, d, c)
is equivalent to θi(x, c).

Proof. Note that (†) is a first order sentence.
Suppose not and fix ψ(x, x′, z) and n < ω. This means that for every finite

collection of formulas θi(x, z) (i < k) there are some c and d witnessing the failure
of (†). Let Γ(x′, z) be

{ψ(−,−, z) defines an equivalence relation with ≤ n classes}∪
{∃x¬(ψ(x, x′, z) ↔ θ(x, z)) : θ(x, z) any formula}.

By assumption, Γ is consistent. Let (d, c) |= Γ(x′, z). Then ψ(x, d, c) is almost over
c but not over c, contradiction. � (claim)
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Now, let L0 ⊆ L be a sublanguage. We construct an increasing sequence of
languages Lm as follows. The language L0 is given. Assume we have constructed
Lm. For any ψ(x, x′, z) in the language Lm and n < ω let {θψ,n,i(x, z)}i<kψ,n

be a finite set of formulas satisfying (†) (such a set exists by the claim). Let
Lm+1 = Lm ∪ {the symbols in the formula θψ,n,i : ψ ∈ Lm, n < ω, i < kψ,n}. Now
set L′ =

⋃
m<ω Lm. It follows that T � L′ is stationary by Fact 5.9(2). �

We leave the proof of the following easy lemma to the reader.

Lemma 5.11. If T is a complete stationary stable theory then dcl(A) = acl(A) for
any set A.

Remark 5.12. If T is a stable theory, then, since for any A every type over acleq(A)
is stationary, if T is eliminates imaginaries and has no algebraicity (i.e. acl(A) =
dcl(A) for any A) then T is stationary. However, as the theory of the infinite set
shows, the other direction is not true (it does not eliminate imaginaries).

We will need the following lemma, which is a consequence of [She78, Lemma
III.3.10], but for the convenience of the reader we give a direct proof. Recall that
for a stable theory T , κ(T ) is the least cardinal κ such that for all B and type
p ∈ S(B) there exists A ⊆ B with |A| < κ such that p does not fork over A
([She78, Definition III.3.1]).

For any infinite indiscernible sequence I and a set A, let lim(I/A) be the limit
type of I in A (it is denoted by Av(I, A) in [She78]), i.e.

lim(I/A) = {ϕ(x, c) : c ∈ A, ϕ(a, c) holds for cofinitely many a ∈ I}.

It is a consistent complete type over A by stability.

Lemma 5.13. Let T be a stationary stable theory, M a model and λ > κ(T ) a
cardinal. If for every non-algebraic type q ∈ S(C) with |C| < κ(T ) and C ⊆ M
there is a C-independent set of realizations of q in M of cardinality λ, then M is
λ-saturated.

Proof. Let p ∈ S(A) be a complete type with |A| < λ. If p is algebraic then it is
realized, so we may assume that p is non-algebraic. Let C ⊆ A with |C| < κ(T ) be
such that p does not fork over C. By assumption, we may find a C-independent
set I of realizations of p|C in M (so indiscernible over C by stationarity). By
[She78, Lemma III.1.10(2)], lim(I/A) = p. By [She78, Corollary III.3.5(1)], there
is I0 ⊆ I with I \ I0 indiscernible over A and |I0| ≤ κ(T ) + |A| < λ. In particular,
|I \ I0| ≥ ℵ0 and thus for every c ∈ I \ I0, p = tp(c/A). �

We fix the following notation for the rest of the section. Let T be a complete
stable theory with infinite models, and let U be a monster model. Let κ = κr(T ),
i.e. κ = κ(T )+ if κ(T ) is singular or κ(T ) if not (for the sake of the following, one
can also take κ = |T |+) and let μ = μ<κ be a cardinal, with μ > κ, such that
T is μ-stable, e.g. if μ ≥ 2|T | (see [She78, Lemma III.3.6]), and thus there exists
a saturated model of cardinality μ [She78, Theorem III.3.12]. Fix some partition
μ = �i<κUi to sets each of cardinality μ. From now on we also assume that T is
stationary.
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Definition 5.14. Let I be any set. We define OB(I) to be the collection of triples

a :=
(
ia, {Ua

j }j<ia , B
a
)

satisfying:

(1) ia ≤ κ;
(2) Ua

j ⊆ Uj for all j < ia, and we set Ua
<j :=

⋃
k<j U

a
k ;

(3) Ba = 〈baα,η ∈ U : α ∈ Ua
j , η ∈ Ij , j < ia〉 are such that:

(a) Ba is with no repetitions;
(b) Ba

j := {baα,η : α ∈ Ua
j , η ∈ Ij} is independent over Ba

<j =
⋃

k<j B
a
k , for

every j < ia.
For ease, we denote for j < ia, W

a
j := {(α, η) : α ∈ Ua

j , η ∈ Ij}, and
likewise W a

<j .

As usual, when a is clear from the context we omit it.

Note that any permutation π of the set I induces a permutation π̂ of Iγ , for
any γ.

Definition 5.15. Let I be a set and OB(I) as above.

(1) We say that a ∈ OB(I) is homogeneous if for any permutation π of I, the
set of pairs

π[a] := {(baα,η, baα,π̂(η)) : (α, η) ∈ W a
<ia}

is an elementary embedding.
(2) We say that a ∈ OB(I) is full if for every j < ia and η ∈ Ij , any non-

algebraic type p over Ba
<j which does not fork over

{baα,ν ∈ Ba
<j : Range(ν) ⊆ Range(η)}

is realized by baα,η for some α ∈ Ua
j .

Lemma 5.16. Let I be any set and a ∈ OB(I) with ia = κ. For every C ⊆ Ba
<κ

with |C| < κ(T ) ≤ κ there exist some j < κ and η ∈ Ij satisfying

C ⊆ {bα,ν ∈ Ba
<j : Range(ν) ⊆ Range(η)}.

Proof. If C is empty then it is easy so assume that C 
= ∅. Since κ is regular, there
exist j̃ < κ with C ⊆ Ba

<j̃
. Let J =

⋃
bα,ν∈C Range(ν). Let j = max{j̃, |J |} < κ

and η ∈ Ij with Range(η) = J . �
Proposition 5.17. Let I be any set with |I| ≥ μ. If a ∈ OB(I) is full and ia = κ
then M := U � dcl(Ba

<κ) is a saturated elementary substructure of U of cardinality
|I|<κ.

Proof. To show that it is an elementary substructure we use Tarski-Vaught. Let
ϕ(x, b) be a consistent formula with b ∈ dcl(Ba

<κ). There is no harm in assuming
that b ∈ Ba

<κ. If ϕ(x, b) is algebraic then by Lemma 5.11, any realization is already
in dcl(Ba

<κ). Otherwise, let p be any non-algebraic complete type over b containing

ϕ(x, b). Let j < κ and η ∈ Ij be given by Lemma 5.16 for C = {b}. By stationarity,
there is a unique non-forking extension p of p to Ba

<j , which is necessarily non-
algebraic as well. By fullness, we may realize p by some element bα,η for α ∈ Ua

j .
In particular bα,η ∈ Ba

<κ realizes ϕ(x, b).
To show |I|<κ-saturation we apply Lemma 5.13 (recall μ > κ). Let q ∈ S(C) be

a non-algebraic type with C ⊆ dcl(Ba
<κ) and |C| < κ(T ). There is no harm to take
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C ⊆ Ba
<κ. Let j < κ and η ∈ Ij be as supplied by Lemma 5.16 with respect to C.

Let

Δ := {ν ∈
⋃

j≤k<κ

Ik : Range(η) ⊆ Range(ν)}.

By assumption of fullness, for every ν ∈ Δ there is some αν ∈ Ua
|ν|, such that

bαν ,ν |= q|Ba
<|ν|, and so satisfies q as well. The set of realizations of q, {baν ,ν :

ν ∈ Δ}, is independent over C by the definition of OB(I). Indeed, by Definition
5.14(3b), for any k ≥ j and ν ∈ Ik ∩Δ, bαν ,ν�Ba

<k
{bαρ,ρ : ρ ∈ Ik ∩Δ, ρ 
= ν} and

by the choice of αν , bαν ,ν�C Ba
<k. Thus by transitivity

bαν ,ν�
C
Ba

<k{bαρ,ρ : ρ ∈ Ik ∩Δ, ρ 
= ν}.

Consequently, after choosing a well ordering <∗ of {bαν ,ν : ν ∈ Δ} satisfying that
if k2 > k1 ≥ j, bαν1

,ν1
∈ Ik1 ∩Δ and bαν2

,ν2
∈ Ik2 ∩Δ then bαν1

,ν1
<∗ bαν2

,ν2
we

may conclude by induction.
We note that |Δ| = |I|<κ and thus by Lemma 5.13, dcl(Ba

<κ) is |I|<κ-saturated.
Furthermore, as |I| ≥ μ and the Ua

j ’s are non-empty for every j < κ (by fullness),

it follows that |I|<κ = |Ba
<κ| = | dcl(Ba

<κ)| and so dcl(Ba
<κ) is saturated. �

We define the following partial order on the elements of OB(I).

Definition 5.18. Let I be a set. For a,b ∈ OB(I) we say that a ≤ b if

(1) ia ≤ ib;
(2) for j < ia we have Ua

j = Ub
j and baα,η = bbα,η, for (α, η) ∈ W a

j .

Proposition 5.19. Let I be a set with |I| ≥ κ. Then there exists a full homogeneous
a ∈ OB(I) with ia = κ.

Proof. We choose full homogeneous aj ∈ OB(I) by induction on j ≤ κ such that
aj ∈ OB(I) with iaj

= j and such that k1 ≤ k2 < j implies ak1
≤ ak2

.
For j = 0 choose a0 = (0, ∅, ∅) and note that the conditions hold trivially.
Let j ≤ κ be a limit ordinal, set iaj

= j, U
aj

k := U
ak+1

k for k < j and Baj :=⋃
k<j B

ak , aj has the desired properties.
Let j < κ and assume that a := aj is full and homogeneous with iaj

= j. We
will construct a full homogeneous b ∈ OB(I) with ib = j + 1 such that a ≤ b.
Then we can set aj+1 := b.

Let

P := {(p, C, η) : p ∈ S(C) non-algebraic, η ∈ Ij ,

C ⊆ {bα,ν ∈ Ba
<j : Range(ν) ⊆ Range(η)} of cardinality < κ}.

We define the following equivalence relation on P:

(p1, C1, η1) E (p2, C2, η2)

if and only if for some permutation π of I

π〈a〉(p1, C1, η1) = (p2, C2, η2),

which means π̂(η1) = η2, π[a] (as an elementary mapping) maps C1 onto C2 and
p1 onto p2. Since |I| ≥ κ > j, for every η1, η2 ∈ Ij there is a permutation π
of I mapping η1 to η2. As π〈a〉 is a permutation of P and there are at most μ
inequivalent triples whose last coordinate is η1, E has at most μ equivalence classes
(because μ<κ = μ).

Sh:1196



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1790 YATIR HALEVI ET AL.

Since |Uj | = μ we may find some U ′
j ⊆ Uj that enumerates the different classes,

i.e let 〈Xα : α ∈ U ′
j ⊆ Uj〉 list P/ E. Since π〈a〉 is a permutation of P, π〈a〉 � Xα,

for α ∈ U ′
j , is also a permutation.

For any η ∈ Ij and α ∈ U ′
j we claim that there exists a unique (p, C) such that

(p, C, η) ∈ Xα. To show uniqueness, note that if π̂ fixes η then π[a] fixes C. For
existence, let ν ∈ Ij , p and C be such that (p, C, ν) ∈ Xα. Since |I| > j we may find
a permutation π of I mapping ν to η. Now note that (π[a](p), π[a](C), π̂(ν)) ∈ Xα.

For any η ∈ Ij and α ∈ U ′
j we name the unique pair by (pα,η, Cα,η). By fixing

some well order on {(α, η) : α ∈ U ′
j , η ∈ Ij}, we may inductively find 〈bα,η :

α ∈ U ′
j , η ∈ Ij〉 such that bα,η realizes the unique non-forking extension of pα,η to

Ba
<j ∪{bα′,η′ : (α′, η′) < (α, η)}. In particular tp(bα,η/B

a
<j) does not fork over Cα,η

and 〈bα,η : α ∈ U ′
j , η ∈ Ij〉 is independent over Ba

<j .

We may now define b ∈ OB(I) by ib = j + 1, a ≤ b, Ub
j = U ′

j and bbα,η = bα,η
for α ∈ U ′

j , η ∈ Ij . Note that since the types pα,η are not algebraic, it follows that

Bb is without repetitions. It remains to check that b is full and homogeneous.
b is full: by the induction hypothesis, it is enough to consider η ∈ Ij and a

non-algebraic type p over Bb
<j which does not fork over

{bα,ν ∈ Bb
<j : Range(ν) ⊆ Range(η)}.

Let C be a subset with |C| < κ such that p does not fork over C. Consider the
triple (p|C,C, η) and let α ∈ Ub

j be such that (p|C,C, η) ∈ Xα. By uniquness,

(p|C,C) = (pα,η, Cα,η) (in the above notation), and thus bbα,η satisfies the unique

non-forking extension of p|C to Bb
<j which is equal to p.

b is homogeneous: let π be a permutation of I. To show that π[b] is elementary,
we show by induction on k ≥ 0 that for (α1, η1), . . . , (αk, ηk) ∈ Wb

j

bα1,η1
. . . bαk,ηk

Bb
<j ≡ bα1,π̂(η1) . . . bαk,π̂(ηk)π[b](B

b
<j).

For k = 0, it follows since π[a] is elementary and since Bb
<j = Ba

<j .
For k = 1: since π[b] is an elementary map mapping pα,η onto pα,π̂(η), by station-

arity it also maps pα,η|Bb
<j onto pα,π̂(η)|Bb

<j and so bα,ηB
b
<j ≡ bα,π̂(η)π[b](B

b
<j).

The induction step: let (α1, η1), . . . , (αk, ηk) ∈ Wb
j with k ≥ 2. By the induction

hypothesis

bα1,η1
. . . bαk−1,ηk−1

Bb
<j ≡ bα1,π̂(η1) . . . bαk−1,π̂(ηk−1)π[b](B

b
<j)

and bαk,ηk
Bb

<j ≡ bαk,π̂(ηk)π[b](B
b
<j).

Moreover, since the elements are independent,

bαk,ηk
�
Bb

<j

bα1,η1
. . . bαk−1,ηk−2

and

bαk,π̂(ηk) �
π[b](Bb

<j)
bα1,π̂(η1) . . . bαk−1,π̂(ηk−2)

and consequently by stationarity (see also Lemma 6.8)

bα1,η1
. . . bαk,ηk

Bb
<j ≡ bα1,π̂(η1) . . . bαk,π̂(ηk)π[b](B

b
<j).

As required. �
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Theorem 5.20. Let T be a complete stationary stable theory. Let κ = κr(T ) and
M |= T be a saturated model of cardinality ≥ μ = μ<κ such that μ ≥ 2|T | and
κ < μ. Let I be any set such that |I|<κ = |M |.

Then there exists a skeletal homogeneous representation of M in Mμ,κ(I). In
fact, the representation will be in Mμ,κ,1(I).

Proof. Let I be any set such that |I|<κ = |M | ≥ μ and let a ∈ OB(I) be a full
homogeneous object with ia = κ as supplied by Proposition 5.19. By Proposition
5.17, dcl(Ba

<κ) |= T is saturated of cardinality |I|<κ = |M |. In particular M is
isomorphic to dcl(Ba

<κ). Without loss of generality we assume M = dcl(Ba
<κ). We

define a function

Φ : Ba
<κ → Mμ,κ,1(I)

by Φ(bα,η) = Fα,j(η) for the unique j < κ such that η ∈ Ij and α ∈ Ua
j .

The map Φ is injective. If Fα,j(η) = Fβ,k(ν) then, since it is a free algebra,
α = β, j = k and η = ν so bα,η = bβ,ν .

The map Φ is a homogeneous representation. Indeed, to show condition (1), let

t(x̄) be any term with |x̄| = β < κ and let ā ∈ Iβ with t(ā) ∈ Im(Φ). Thus there
exist j < κ and α ∈ Ua

j such that t(ā) = Fα,j(ηā) for some ηā ∈ Ij . Thus for any

b̄ ∈ Iβ there is some ηb̄ ∈ Ij with t(b̄) = Fα,j(ηb̄). In particular, t(b̄) ∈ Im(Φ), as
needed.

For condition (2), let bα1,η1
. . . bαk,ηk

∈ (Ba
<κ)

k and let π be a permutation
of I. Since a is homogeneous tp(bα1,η1

. . . bαk,ηk
) = tp(bα1,π̂(η1) . . . bαk,π̂(ηk)), as

needed. �

Corollary 5.21. Let G = (V,E) be a graph that is interpretable (possibly with
parameters) in a stationary stable structure. If χ(G) > �2(ℵ0) then there exists an
n ∈ N such that G contains all finite subgraphs of Shn(ω).

Proof. Assume G is interpretable in a stationary stable structure N over some
finite set of a parameters A ⊆ N and let T = Th(N). Since adding constants to the
language preserves stationarity, we may assume that G is interpretable in N over
∅. Since the interpretation only uses a finite fragment of the language, by applying
Proposition 5.10 we may assume that |T | = ℵ0.

Let μ = 2ℵ0 and κ = κ(T ). Note that κ(T ) ≤ ℵ1 ([She78, Corollary III.3.3])
which implies κ(T ) = κr(T ) and μ<κ = μ. Let I be any set satisfying |I| ≥
max{μ, |N |} (which implies |I|<κ ≥ max{μ, |N |}) and let M |= T be a saturated
elementary extension of N of cardinality |I|<κ (exists by [She78, Lemma III.3.6
and Theorem III.3.12]).

By Theorem 5.20 and Proposition 5.6, there exists n∈N such that (G(M), E(M)),
the realizations in M of the interpretation of G, contains all finite subgraphs of
Shn(ω) and since N ≺ M the result follows. �

A natural question is whether every stable structure is interpretable in a sta-
tionary stable structure. We thank Hrushovski for the following argument.

Proposition 5.22. Let T be a stationary stable theory. Then T does not interpret
an infinite p-root closed field, where p is a prime number different from char(F ).
In particular, ACF is not interpretable in any stationary stable theory.

Proof. Let M |= T and assume towards a contradiction that it interprets an infinite
field F , that is p-root closed for p 
= char(F ).
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For ease of writing, we assume that F is an ∅-definable field in Meq. So there
exists an ∅-definable set D ⊆ Mn, for some n < ω, and a definable (in Meq)
surjective map π : D → F .

Let 1 
= ζp ∈ F be a p-th root of unity (such exists since p 
= char(F )) and for

every a0, . . . , ap−1 ∈ D, let σa0,...,ap−1
= Σp−1

i=0 π(ai)ζ
i
p. Note that ζpσa0,...,ap−1

=
σap−1,a0,...,ap−2

.
For any a0, . . . , ap−1 ∈ D, (π(x) = π(y) ∧ π(x)p = σa0,...,ap−1

) ∨ (π(x)p 
=
σa0,...,ap−1

∧ π(y)p 
= σa0,...,ap−1
) defines a finite equivalence relation on D over

ζp, a0, . . . , ap−1 (definable in M). By Fact 5.9 each of the equivalence classes are
definable over ζp, a0, . . . , ap−1.

By compactness, there is a definable (over ζp) function f : Dp → F satisfying

f(a0, . . . , ap−1)
p = σa0,...,ap−1

.

Let p be a non-algebraic global type on F (exists since F is infinite), and since
π is surjective, we may find a global type q on D with π∗q = p. After naming
parameters, we may assume that both p and q are ∅-definable.

Let (a0, . . . , ap−1) |= q(p)|ζp (where q(p) = q⊗q(p−1)). Since ζpf(a0, . . . , ap−1)
p =

f(ap−1, a0, . . . , ap−2)
p, then letting ω =

f(ap−1,a0,...,ap−2)
f(a0,...,ap−1)

∈ F we have that ωp = ζp.

Since (aτ(0), . . . , aτ(p−1)) |= q(p)|ζp, for any permutation τ on {0, . . . , p− 1},

ωf(a0, . . . , ap−1) = f(ap−1, a0, . . . , ap−2)

ωf(ap−1, a0, . . . , ap−2) = f(ap−2, ap−1, a0, . . . , ap−3)

...

ωf(a1, . . . , ap−1, a0) = f(a0, . . . , ap−1).

Thus f(a0, . . . , ap−1) = ωpf(a0, . . . , ap−1) = ζpf(a0, . . . , ap−1). This implies that
σa0,...,ap−1

= 0, contradicting the non-algebraicity of p. �

Remark 5.23. Since every first order infinite structure (in a finite language) is bi-
interpretable with a graph [Hod93, Theorem 5.5.1], it follows that there is a stable
graph that is not interpretable in any stationary stable structure.

6. Quantitative bounds

The following section is joint work with Elad Levi.
The aim of this section is to prove that if G = (V,E) is an ω-stable graph with

uncountable chromatic number and the U-rank of G, U(G), is at most 2 then it
contains all finite subgraphs of Shn(ω) for some n ≤ 2. For the definition of U-rank
see [TZ12, Definition 8.6.1]. Throughout, we will use Lascar’s equality when the
U-rank is finite, see [TZ12, Exercise 8.6.5].

For certain parts of the argument we will need the following assumption.

Assumption ♦. G is a saturated ω-stable structure that eliminates imaginaries
in a countable language with acl(∅) = dcl(∅). Let p(x) ∈ S(∅) be a non-algebraic
type of finite U-rank and let E ⊆ p(G)2 be a type-definable subset such that
Gp = (p(G), E) is a graph with χ(Gp) ≥ ℵ1.
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Note that assumption ♦ implies that every type over ∅ is stationary.
Assume ♦ and let Ealg = {(a, b) ∈ E : a ∈ acl(b) ∧ b ∈ acl(a)} be the set of

interalgebraic pairs belonging to E. Note that if U(a) = U(b) then a ∈ acl(b) if and
only if b ∈ acl(a). Indeed, by Lascar’s equality

U(a/b) + U(b) = U(ab) = U(a) + U(b/a)

and for any type q, U(q) = 0 if and only if it is algebraic, see [TZ12, Exercise 8.6.1].
Let Enalg = E \ Ealg, it is definable by a countable type.

Lemma 6.1. Assume ♦.

(1) χ(p(G), Enalg) ≥ ℵ1.
(2) If there exist a, b ∈ Gp with a E b and a� b then any Morley sequence

based on p forms an infinite complete graph.
(3) If U(p) = 1 then every Morley sequence based on p forms an infinite com-

plete graph.

Proof. (1) By interalgebraicity, every connected component of (p(G), Ealg) is count-
able and consequently χ(p(G), Ealg) ≤ ℵ0. By Lemma 2.3(2), χ(p(G), Enalg) ≥ ℵ1.

(2) Assume there exist a, b ∈ Gp with a E b and a� b. Since every type over
∅ is stationary it follows that every Morley sequence based on p forms an infinite
complete graph.

(3) Assume U(p) = 1. Since χ(p(G), Enalg) ≥ ℵ1, there must exist some a, b ∈
p(G) with a Enalg b. If a 
 � b then U(a/b) < U(a) = 1, which implies that
a ∈ acl(b) (so b ∈ acl(a))), contradiction. Thus a� b and we may use (2). �

Definition 6.2. We say that a stationary type tp(a/A) is pseudo-one-based if
Cb(a/A) ⊆ acleq(a).

Remark 6.3. Compare with the last paragraph of page 105 in [Pil96].

We give some examples of pseudo-one-based types.

Lemma 6.4.

(1) In a one-based theory every stationary type (over any base) is pseudo-one-
based.

(2) Let M be a stable structure. If U(a) = U(b) = 1 and a 
 � b then
tp(a/ acleq(b)) is pseudo-one-based.

(3) Let M be a stable structure and a, b ∈ M non interalgebraic, with U(a) =
U(b) = 2. Let X and Y be infinite mutually indiscernible sets with a ∈ X
and b ∈ Y . If a 
� b then tp(a/ acleq(b)) is pseudo-one-based.

Proof. (1) A stable theory is one-based if for all a,B, Cb(a/ acleq(B)) ⊆ acleq(a).
Note that since tp(a/A) is stationary, Cb(a/ acleq(A)) = Cb(a/A). The result
follows.

(2) Since a 
� b, by U-rank considerations as before, a and b are interalgebraic.
So Cb(a/ acleq(b)) ⊆ acleq(b) ⊆ acleq(a).

(3) We note that for any b 
= b′ ∈ Y , a�b′ b. Indeed, otherwise U(a/bb′) <
U(a/b′) < U(a) and since U(a) = 2, a ∈ acl(bb′), contradicting the mutual indis-
cernibility of X,Y . Similarly, a�b b

′. Consequently, setting e := Cb(a/ acleq(bb′)),
e ⊆ acleq(b) ∩ acleq(b′) and a�e bb

′. Similarly we get that b�a b
′ and by the

properties of forking e�a e and hence e ∈ acleq(a). Finally, since a�e b (and
e ∈ acleq(b)), Cb(a/ acleq(b)) ⊆ acleq(e) ⊆ acleq(a), as needed. �
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Abundance of pseudo-one-based types will be a key tool in our proofs. The
above shows that this can be achieved in one-based theories and U-rank 1 types.
For U-rank 2 we observe the following:

Lemma 6.5. Assume ♦ and that U(p) = 2. Then either we can embed an infinite
complete graph into Gp or there exists a type-definable symmetric irreflexive relation
E0 ⊆ Enalg such that

(†) for every (a, b) ∈ E0, tp(a/ acl(b)) is pseudo-one-based. Moreover, if F ⊆ E
is a symmetric irreflexive type-definable relation with χ(Gp, F ) ≥ ℵ1 then
F ∩E0 
= ∅.

Proof. Assume that we cannot embed an infinite complete graph into Gp, in par-
ticular by Lemma 6.1, for every a, b |= p with a E b, a 
� b.

Let E0 be the set of pairs (a, b) ∈ E such that there exists a complete bipartite
subgraph KX,Y of Gp such that X and Y are infinite mutually indiscernible sets
with a ∈ X and b ∈ Y . Easily, E0 is type-definable by a countable type. Since,
by [EH66, Corollary 5.6], Gp contains Kn,n (the complete bipartite graph on n
vertices) for every n < ω, E0 non-empty. Clearly, E0 ⊆ Enalg. By Lemma 6.4(3),
for every (a, b) ∈ E0, tp(a/ acl(b)) is pseudo-one-based.

For the moreover part, if χ(Gp, F ) ≥ ℵ1 then by [EH66, Corollary 5.6] we may
embed Kn,n into it for any n < ω. Thus by saturation necessarily F ∩E0 
= ∅. �

The following is the key proposition of the proof and where pseudo-one-based
types show their usefulness.

Proposition 6.6. Assume ♦ and that E0 ⊆ Enalg is a type-definable symmetric
irreflexive relation satisfying (†) from Lemma 6.5.

(1) For any (a, b) ∈ E0 there is a finite tuple e such that a�e b and tp(a/e) is
stationary.

(2) Let Ψ be the collection of all pairs of formulas (ϕ(u, x), ψ(u, x)) satisfying
(a) ϕ(u, a) and ψ(u, a) are algebraic formulas each isolating a complete

type over some (any) a |= p;
(b) there exist a, b |= p and e such that (a, b) ∈ E0, a�e b, ϕ(e, a), ψ(e, b)

and tp(a/e) is stationary.
For any (ϕ, ψ) ∈ Ψ let

Eϕ,ψ = {(a, b) ∈ Enalg : ∃e (ϕ(e, a) ∧ ψ(e, b))}.
Then either (∗) we can embed an infinite complete graph into (p(G), Enalg)

or there exists (ϕ(u, x), ψ(u, x)) ∈ Ψ such that (∗∗)ϕ,ψ: p � ∀u(ϕ(u, x)
→ ¬ψ(u, x)) and χ(Gp,ϕ,ψ) ≥ ℵ1, where Gp,ϕ,ψ := (p(G), E{ϕ,ψ}) and
E{ϕ,ψ} = Eϕ,ψ ∨Eψ,ϕ.

(3) Assume ¬(∗) and let (ϕ, ψ) ∈ Ψ. There exists qϕ ∈ S(∅) such that for any
a |= p and e |= ϕ(u, a), e |= qϕ. Similarly, there exists qψ ∈ S(∅) such that
for any a |= p and e |= ψ(u, a), e |= qψ. Furthermore, q := qϕ = qψ and
0 < U(q) < U(p).

(4) Assume ¬(∗) and (∗∗)ϕ,ψ and let q = qϕ = qψ. The type-definable relation
e1 R e2 given by

(∃a |= p) ((ϕ(e1, a) ∧ ψ(e2, a)) ∨ (ϕ(e2, a) ∧ ψ(e1, a))) ,

defines a graph Hq on realizations of q with χ(Hq) ≥ ℵ1.
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Proof. (1, 2) We start by showing that

E0 ⊆
⋃

(ϕ,ψ)∈Ψ

E{ϕ,ψ}.

Let (a, b) ∈ E0. Since tp(a/ acl(b)) is pseudo-one-based, Cb(a/ acl(b)) ⊆ acl(a) ∩
acl(b). By [TZ12, Exercise 8.4.7], there is a finite tuple e such that dcl(e) =
Cb(a/ acl(b)). This proves (1). We choose ϕ(u, a) to be a formula isolating tp(e/a)
and ψ(u, b) to be a formula isolating tp(e/b). Hence (a, b) ∈ E{ϕ,ψ} and (ϕ, ψ) ∈ Ψ.

Since E0 is type-definable, by saturation there exists a finite subset Ψ0 ⊆ Ψ such
that

E0 ⊆
⋃

(ϕ,ψ)∈Ψ0

E{ϕ,ψ}.

Assume that we cannot embed an infinite complete graph into (p(G), Enalg).

Claim. For any (ϕ, ψ) ∈ Ψ, p � ∀u(ϕ(u, x) → ¬ψ(u, x)).

Proof. Choose any (ϕ, ψ) ∈ Ψ. By part (b) of the definition of Ψ there are (a, b) ∈
E0 and e be such that ϕ(e, a), ψ(e, b), a�e b and tp(a/e) stationary. Assume,
toward a contradiction that there is some e′ with ϕ(e′, b) and ψ(e′, b). Since by
part (a) of the definition of Ψ both ϕ(u, b) and ψ(u, b) isolate a complete type
over b and are mutually consistent, they must be equivalent (i.e. define the same
definable set). So ϕ(e, a) and ϕ(e, b) hold.

Let σ be an automorphism satisfying σ(a) = b. Applying to the formulas above
we get that ϕ(e, b) and ϕ(σ(e), b) hold. Since ϕ(u, b) isolates a complete type over
b there exists an automorphism τ fixing b and mapping σ(e) to e. Combining, τ ◦σ
fixes e and maps a to b, i.e. a ≡e b.

By assumption tp(a/e) is stationary and b |= tp(a/e)|ea so we may construct a
Morley sequence over e starting with a, b. Since a E0 b we get an infinite complete
graph, contradicting our assumption. � (claim)

Note that each E{ϕ,ψ} defines a graph relation. Let

θ(x, y) =
∨

(ϕ,ψ)∈Ψ0

∃e (ϕ(e, x) ∧ ψ(e, y)) ∨ ∃e (ϕ(e, y) ∧ ψ(e, x)) .

Set E1 = {(a, b) ∈ Enalg : θ(a, b)} and E2 = {(a, b) ∈ Enalg : ¬θ(a, b)}. Obviously,
Enalg = E1 ∪ E2 and both E1 and E2 are symmetric. If χ(p(G), E2) ≥ ℵ1 then by
(†) from Lemma 6.5 there exists (a, b) ∈ E0 ∩ E2, contradicting the choice of Ψ0.
Thus, by Lemma 2.3(2) and Lemma 6.1(1), χ(p(G), E1) ≥ ℵ1. Again by Lemma
2.3(2), there is some (ϕ, ψ) ∈ Ψ0 such that χ(Gp,ϕ,ψ) ≥ ℵ1. This proves (2).

(3) Let qϕ = tp(e1) for some e1 |= ϕ(u, a) and some a |= p and let qψ = tp(e2)
for some e2 |= ψ(u, b) and some b |= p. Since p is a complete type and ϕ and ψ
each isolate a complete type it follows that qϕ and qψ do not depend on a, b, e1 or
e2.

As (ϕ, ψ) ∈ Ψ, there exist (a, b) ∈ Enalg and e such that ϕ(e, a) ∧ ψ(e, b) and
a�e b. Consequently, e |= qϕ and e |= qψ and hence qϕ = qψ. Since e ∈ acl(a),

U(a/e) + U(e) = U(a).

If U(e) = 0 then a� e so by transitivity of forking a� b, but then we may
embed an infinite complete graph as in Lemma 6.1, which contradicts ¬(∗). If
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U(a/e) = 0 then a ∈ acl(e) ⊆ acl(b) so a and b are interalgebraic, contradiction
(see above Lemma 6.1).

(4) Note that R defines a graph, i.e. it is irreflexive by (2) and (∗∗)ϕ,ψ. Let
n be |ϕ(G, a)| and m be |ψ(G, a)| for some (any) a |= p. For any a |= p choose
enumerations ϕ(G, a) = {ei(a) : i < n} and ψ(G, a) = {e′i(a) : i < m}.

For i < n and j < m let Hi,j = {(ei(a), e′j(a)) : a |= p}.
We define an edge relation on Hi,j = {(ei(a), e′j(a)) : a |= p} (for i < n, j < m)

as follows: (ei(a), e
′
j(a)) is connected to (ei(b), e

′
j(b)) if and only if ei(b) = e′j(a)

or ei(a) = e′j(b). Note that ei(a) 
= e′j(a) for all a |= p and i < n, j < m by (2)
(∗∗)ϕ,ψ, hence this relation is irreflexive.

Claim. There exist i0 < n and j0 < m such that χ(Hi0,j0) ≥ ℵ1.

Proof. Assume that for all i < n, j < m, Hi,j is countably colorable, say by the col-
oring function ci,j : Hi,j → ℵ0. We claim that this entails that Gp,ϕ,ψ is countably
colorable, which would give a contradiction to choice of (ϕ, ψ).

We define a coloring c : Gp,ϕ,ψ → (ℵ0)
n×m by c(a)(i, j) = ci,j(ei(a), e

′
j(a)).

The contradiction will follow if we show that this is a legal coloring. Let (a, b) ∈
Eϕ,ψ ((a, b) ∈ Eψ,ϕ is similar). Thus there exists some e |= ϕ(u, a) ∧ ψ(u, b).
Consequently, e = ei(a) = e′j(b) for some i < n, j < m, so

ci,j(ei(a), e
′
j(a)) 
= ci,j(ei(b), e

′
j(b)),

and c(a) 
= c(b). � (claim)

Now, assume that χ(Hq) ≤ ℵ0 and let c : q(G) → ℵ0 be a coloring. We define
f : Hi0,j0 → ℵ0 × ℵ0 by f(ei0(a), e

′
j0
(a)) =

(
c(ei0(a)), c(e

′
j0
(a))

)
. This gives a

legal coloring of Hi0,j0 using countably many colors, and we reach a contradiction:
assume without loss of generality that (ei0(a), e

′
j0
(a)), (ei0(b), e

′
j0
(b)) ∈ Hi0,j0 with

e′j0(a) = ei0(b). Since ei0(a) R e′j0(a), c(ei0(a)) 
= c(e′j0(a)) = c(ei0(b)) and thus
f(ei0(a), e

′
j0
(a)) 
= f(ei0(b), e

′
j0
(b)), as needed. �

Remark 6.7. We remark that if tp(a/e) is stationary and e′ |= tp(e/a) then tp(a/e′)
is also stationary.

The procedure outlined in the items of Proposition 6.6 supplies, under some
assumptions, a graph, with uncountable chromatic number, concentrated on a type
of lower U-rank than the one we started with. This hints that some induction
procedure may be possible (at least for one-based theories). We will not pursue
this further now. For now we concentrate on graphs of at most U-rank 2.

The following is an easy exercise in stability theory.

Lemma 6.8. Let T be a stable theory. Assume that A�C B, A′�C B′, B ≡C B′,
A ≡C A′ and tp(A/C) stationary. Then AB ≡C A′B′.

Theorem 6.9. Let G = (V,E) be an ω-stable graph with χ(G) ≥ ℵ1. If U(G) ≤ 2
then G contains all finite subgraphs of Shn(ω) for some n ≤ 2.

Proof. We may assume that G is saturated (in particular ℵ1-saturated) and we may
also work in Geq. Fix some countable G0 ≺ G and add constants for it (so every
type over ∅ is stationary). By ω-stability and Lemma 2.3(1) there is some type
p ∈ S1(∅) such that χ(Gp) ≥ ℵ1 with Gp = (p(G), E � p(G)). We are now in the
situation of Assumption ♦ (with E there being E � p(G)).
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If U(p) = 0 then p is algebraic (even realized), contradicting χ(Gp) ≥ ℵ1. If
U(p) = 1 then we may embed an infinite complete graph by Lemma 6.1(3).

We may thus assume that U(p) = 2 and that G does not contain an infinite
complete graph.

Let E0 ⊆ E be the type-definable set from Lemma 6.5 and ϕ, ψ,Gp,ϕ,ψ , q, R
and Hq be as supplied by Proposition 6.6 with respect to E0 and p (so necessarily
U(q) = 1). Noting that Assumption ♦ is true for (Hq, R), we may apply Lemma
6.1(3) and thus there exists a Morley sequence 〈ei : i < ω〉 such that ei R ej for all
i 
= j.

Since e0 R e1 there is some a0,1 |= p such that, without loss of generality,
ϕ(e0, a0,1) ∧ ψ(e1, a0,1). For any i < j < ω let ai,j be such that ai,jeiej ≡ a0,1e0e1.

Note that for every i < j < ω, ai,j ∈ acl(ei, ej). Indeed, by Lascar’s equality
U(ai,j/eiej) + U(ei/ej) = U(ai,jei/ej) and since ei ∈ acl(ai,j) the right hand side
is also equal to U(ai,j/ej). Now we note that U(ai,j/ej) + U(ej) = U(ai,jej), but
as before ej ∈ acl(ai,j) so the right hand side is equal to 2 and since U(ej) = 1 we
conclude that U(ai,j/ej) = 1. As ei� ej we have that U(ei/ej) = 1 as well so we
combine everything and get that U(ai,j/eiej) = 0.

Define a map f : Sh2(ω) → Gp,ϕ,ψ by (i, j) �→ ai,j . We claim that this is an
injective graph homomorphism.

For (i, j) 
= (i′, j′) ∈ Sh2(ω), we claim that ai,j and ai′,j′ are not interalgebraic
and in particular f is injective. Indeed, assume acl(ai,j) = acl(ai′,j′). Since (i, j) 
=
(i′, j′), |{i, j, i′, j′}| ≥ 3, and we assume that i 
= j, i′, j′ (the other cases are similar).
Then we get

ei ∈ acl(ai,j) = acl(ai′,j′) ⊆ acl(ei′ , ej′),

contradicting indiscernibility.
f is a graph homomorphism: Let (i, j), (j, k) ∈ Sh2(ω), so that i < j < k < ω.

As ai,j and aj,k are not interalgebraic, necessarily ai,j�ej aj,k for otherwise

U(ai,j/ejaj,k) < U(ai,j/ej) = 1

and then ai,j ∈ acl(ejaj,k) ⊆ acl(aj,k).
By the choice of (ϕ, ψ) in Proposition 6.6, we may find a, b |= p and e |= q with

a E b, a�e b, tp(a/e) stationary, ϕ(e, a) and ψ(e, b). By applying an automorphsim
mapping ej to e we may assume ej = e. Let σ be an automorphism mapping a
to aj,k, thus ae ≡ aj,kσ(e) and σ(e) |= ϕ(u, aj,k). As ϕ(u, aj,k) isolates a complete
type, there is an automorphism mapping σ(e) to e but fixing aj,k, and after applying
this automorphism we conclude that a ≡e aj,k and similarly b ≡e ai,j . Since tp(a/e)
is stationary and aj,k�e ai,j , by Lemma 6.8, ab ≡ aj,kai,j so ai,j E aj,k as well. �
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