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We consider forcing axioms for suitable families of μ-complete μ+-c.c. forcing notions. We show that some
form of the condition “p1, p2 have a ≤Q -lub in Q” is necessary. We also show some versions are really stronger
than others.
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1 Introduction

1.1 Is “well met” necessary in some forcing axiom?

We investigate the relationships between some forcing axioms related to pressing down functions for μ+-c.c.,
mainly from [14]. This in particular is to answer Kolesnikov’s question of having P satisfying one condition but
with no P′ equivalent to P satisfying another. A side issue is clarifying a point in [1] (a rephrasing is (2)εc,D from
Definition 1.3). We intend to continue this considering related axioms in [6].

We justify the “well met, having lub” in some forcing axioms, e.g., condition (c) in (∗1
μ,Q).

In [9] such a forcing axiom was proved consistent, for a forcing notion satisfying (for μ<μ = μ; we may write
“Q satisfies ∗1

μ” instead of (∗1
μ,Q), similarly below):

(∗1
μ,Q) Q is a forcing notion such that:

(a) (< μ)-complete, i.e., any increasing sequence of length < μ has an upper bound;

(b) μ+-regressive-c.c.: if pα ∈ Q for α < μ+ then for some club E ofμ+ and pressing down function f
on E we have [δ1 ∈ E ∧ δ2 ∈ E ∧ ( f (δ1) = f (δ2)) ∧ (cf(δ1) = μ = cf(δ2)) =⇒ pδ1 , pδ2 are com-
patible];

(c) if p1, p2 ∈ Q are compatible then p1, p2 have a lub.

An easily stated version which is still enough is:

(∗2
μ,Q) Q is a forcing notion satisfying clause (a) and

(b)′ if pα ∈ Q for α < μ+ then for some (E, q̄, f ) we have
i. E a club of μ+;
ii. q̄ = 〈qα : α < μ+〉;
iii. pα ≤Q qα;
iv. f is a pressing down function on E;
v. if δ1 ∈ E ∧ δ2 ∈ E ∧ cf(δ1) = μ = cf(δ2) ∧ f (δ1) = f (δ2) then qδ1 , qδ2 has a lub.

An obvious fact used is
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� Assume Q is a forcing notion, ε < μ a limit ordinal, p̄� = 〈p�,α : α < ε〉 is ≤Q-increasing for � = 1, 2 and

for every α < ε the condition pα ∈ Q is a ≤Q-lub of p1,α, p2,α (i.e.,
2∧

�=1
p�,α ≤Q pα and (∀q)(p1,α ≤Q q ∧

p2,α ≤Q q =⇒ pα ≤Q q)). Then 〈pα : α < ε〉 is ≤Q-increasing, hence if {pα : α < ε} has an upper bound
then so does {p1,α, p2,α : α < ε}.

Now [2] mainly deals with consistency results for singular μ, but on the way has (with a complete proof of the
iteration theorem) suggested a condition weaker than the one in [9] and even the one in [10] and is stronger than
the one in [14, 1.7(1)], using a trivial strategy and ε = ω. Using Definition 1.2, the condition from [14] is (2)εc,D,
where ε is a limit ordinal < μ, and the condition from [2] is

(∗3
μ,Q) Q a forcing notion such that

(a) as above,

(b) as above,

(c) if, for every n < ω we have pn ≤ pn+1, qn ≤ qn+1 and pn, qn are compatible then the set {pn, qn :
n < ω} has a common upper bound (here this is clause (3)b,ω of Definition 1.2).

Our main results are Conclusions 2.9 & 2.10, Theorem 3.1 & Conclusion 4.10.
The immediate reason for this paper is that the statement in Baldwin, Kolesnikov and Shelah [1, 3.6] is mis-

quoting [10, 4.12]. We shall show below that the statement is inconsistent because as stated it totally waives the
condition “every two compatible members of P have a lub”. Also, it is stated that in [10, 4.12] this was claimed,
but quoting only [9]. In Shelah and Spinas [16] we consider another strengthening of the axioms.

More fully, [10, 4.12] omits the condition above, but demands the existence of lub’s of some pairs of conditions
so that it holds in the cases it is actually used. So, in that case the proof of [9] works, and see more in [14, Definition
1.1] which gives an even weaker condition called (∗ε

μ).
Concerning (∗1

μ,Q), the preservation of a related condition was proved independently by Baumgartner, who
instead of (b) used a somewhat stronger condition (b)+, which says that Q is the union of μ sets of pairwise
compatible elements with lub; this is represented in Kunen and Tall [4]; see the history in the end of [9] and
see more in [14]. We thank Mirna Džamonja for drawing our attention to the problem and Ashutosh Kumar and
Shimoni Garti for various corrections and the referee for helpful suggestions.

1.2 Are some versions of axioms equivalent?

To phrase our problem see the Definition below.
Kolesnikov asked:

Question 1.1 Is there a forcing notion P satisfying (1)a, (2)b, (3)b,ω but not equivalent to a forcing notion P′

satisfying (1)a, (2)b, (3)a?

Definition 1.2 Consider the following conditions on a forcing notion P for a fixed μ = μ<μ:
Completeness:

(1)a increasing chains of length < μ have a lub.

(1)a,<ϑ = (1)a,ϑ increasing chains of length < ϑ have a lub.

(1)a,≤ϑ increasing chains of length ≤ ϑ have a lub.

(1)a,=ϑ increasing chains of length ϑ have a lub.

(1)b increasing chains of length < μ have a ub.

(1)b,<ϑ = (1)b,ϑ increasing chains of length < ϑ have an ub.

(1)b,≤ϑ increasing chains of length ≤ ϑ have an ub.

(1)b,=ϑ increasing chains of length ϑ have an ub.

(1)c P is strategically α-complete for every α < μ; cf. Definition 1.11.

(1)c,α P is strategically α-complete; where here α ≤ μ.
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(1)+c There is a “stronger” order <st on P which means:

i. p1 <st p2 =⇒ p1 <P p2;

ii. p1 ≤P p2 <st p3 ≤P p4 =⇒ p1 <st p4;

iii. any <st-increasing chain of length < μ has a ≤P-ub (hence a <st-ub);

iv. for every p there is q satisfying p <st q.

(1)d,<ϑ = (1)d,ϑ any increasing continuous chain of length < ϑ has a lub.
(1)d,=ϑ any increasing continuous chain of length ϑ has a lub.

Strong μ+-c.c.: For a stationary S ⊆ Sμ+
μ , the default value being Sμ+

μ (cf. Notation 1.10); we may write (2)x[S]
when S is neither the default value nor clear from the context.

(2)a Given a sequence 〈pi : i < μ+〉 of members of P there are a clubC of μ+ and a regressive function h
on C ∩ S such that α, β ∈ C ∩ S ∧ h(α) = h(β ) =⇒ pα, pβ have a lub.

(2)b Like (2)a but demanding just that pα, pβ have an ub.

(2)+a,ϑ If pα ∈ P for α < μ+ then we can find a club E of μ+ and a regressive h : S ∩ E → μ+ such that: if
i(∗) < 1 + ϑ, δi ∈ S ∩ E for i < i(∗) and h�{δi : i < i(∗)} is constant then {pδi : i < i(∗)} has a lub.

(2)+b,ϑ Like (2)+a,ϑ but in the end the set has a ub.

(2)∗a,ϑ If pα ∈ P for α < μ+ then we can find q̄,E,h such that

i. q̄ = 〈qα : α < μ+〉;
ii. pα ≤P qα;

iii. E a club of μ+;
iv. h is a regressive function on S ∩ E;

v. if U ⊆ S ∩ E has cardinality < 1 + ϑ and h�U is constant, then {qδ : δ ∈ U } has a lub.
(2)∗b,ϑ Like (2)∗a,ϑ but in the end the set has a ub (note that this is equivalent to (2)+b,ϑ .

For ε < μ a limit ordinal, e.g., ω:

(3)a Any two compatible p1, p2 ∈ P have a lub.

(3)b,ε If 〈p�,ζ : ζ < ε〉 is increasing for � = 1, 2 and p1,ζ , p2,ζ are compatible for every ζ < ε then {p�,ζ :
� ∈ {1, 2}, ζ < ε} has an upper bound; recall � of § 1.1.

(3)b,ϑ,ε If (a) then (b) where:

(a) i. pζ ,i ∈ P for ζ < ε and i < i∗ < ϑ ;
ii. if i < i∗ then the sequence 〈pζ ,i : ζ < ε〉 is <st-increasing ; (usually <st is from (1)+c );
iii. for each ζ < ε the set {pζ ,i : i < i∗} has a common upper bound;

(b) the set {pζ ,i : ζ < ε, i < i∗} has a common upper bound.

(3)a,ϑ,ε Like (3)b,ϑ,ε but in iii. we have lub.

Definition 1.3 Assume first that D is a normal filter on μ+ to which Sμ+
μ belongs (we may omit D when it is

(the club filter on μ+) + Sμ+
μ —cf. Definition 1.12; also we may omit D if clear from the context). We may write

S instead of D when D is (the club filter on μ+) + S. Second, 2 ≤ ϑ ≤ μ, and we may omit ϑ when ϑ = 2; we
may write = ϑ or ≤ ϑ instead of ϑ+ or (essentially equivalent) ϑ + 1. Third, assume P is a forcing notion and
ε < μ is an ordinal; a limit ordinal if not said otherwise. Writing < ξ instead of ε means “for every limit ordinal
< ξ”. Note that (2)εc,D is equal to ∗ε

μ,D of [14].
Then we define the following conditions on P:

(2)εc,ϑ,D = (2)c,ϑ,D,ε In the following game the COM player has a winning strategy:

(a) a play lasts ε-moves;

(b) in the ζ -th move a triple ( p̄ζ ,hζ , Sζ ) is chosen such that:

(α) p̄ζ = 〈pζ ,α : α ∈ Sζ 〉;
(β ) pζ ,α ∈ P;

(γ ) Sζ ∈ D;
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(δ) Sζ ⊆ ∩{Sξ : ξ < ζ };
(ε) if α ∈ Sζ then 〈pξ,α : ξ ≤ ζ 〉 is a ≤P-increasing sequence

(ζ ) hζ is a pressing down function on Sζ .

(c) COM chooses1 ( p̄ζ ,hζ ) when 1 + ζ is even, INC chooses it when 1 + ζ is odd.

(d) COMwins a play when it always could havemade a legal move, and in the end there is Sε ∈ D included
in

⋂

ζ<ε

Sζ such that:

if i∗ < ϑ and αi ∈ Sε for i < i∗ and for each i < i∗ we have
∧

ζ<ε

hζ (αi) = hζ (α0) then the set {pαi,ζ : ζ <

ε, i < i∗} has an ub.

(2)εd,ϑ,D is defined as above replacing clause (b)(ε) by:

(ε)′ if α ∈ Sζ then 〈pξ,α : ξ ≤ ζ 〉 is ≤P-increasing continuous.

Remark 1.4

1. So for a forcing notion Q, (2)εc,D for ε the limit is ∗ε
D[Q] is the same as in [14, Th.0.7]. Also “Q satisfies

(1)b + (2)2b,2,D + (3)a” means (∗1
μ,Q) from § 1.1. Also “Q satisfies (1)c + (2)1a,2” means (∗2

μ,Q) from § 1.1.

2. Note that “P satisfies (2)εc,D” implies a weak version of strategic completeness (see (1)b,ϑ for ϑ = |ε|+).
Definition 1.5

1. For suitable x, y, z, (but wemay omit, e.g., (3)z) let Axλ,μ((1)x, (2)y, (3)z) mean: if (μ is as in Definition 1.2),
P is a forcing notion satisfying those conditions and Ii ⊆ P is dense open for i < i(∗) < λ then some
directed G ⊆ P meets every Ii.

2. We may omit λ if λ = 2μ ≥ μ+; we may more generally write Axλ,μ(K) for K being a property of the
forcing notion.

3. For an ordinal2 ε < μ being a limit ordinal if not said otherwise, let Axε
λ,μ mean: Axλ,μ((1)c + (2)εc ); we

may omit λ if λ = 2μ ≥ μ+.

See for more on axioms Roslanowski and Shelah [5], parallel to forcing and [13] and references therein. In § 2
if we replaceCδ by a stationary, co-stationary subset of δ; we can iterate the appropriate μ+-c.c. (< μ)-complete
forcing notion. Earlier we have wondered (for answers on this question cf. Discussion 1.7(2)):

Question 1.6 Assume μ = μ<μ.

1. In [9], can the demand “well met” be omitted?

2. Is there an examplePwhere (1)c + (2)ϑc holds but (1)c + (2)∂c fails for any ∂ ∈ Reg\{ϑ}whereϑ = cf(ϑ ) <

μ, cf(∂ ) = ∂ < μ? The case ∂ = ℵ0 < ϑ is natural.

3. Do we have an example for Ax((1)b + (2)b + (3)a) but not Axε
μ with, e.g., ε = ω?

Discussion 1.7

1. Note: if we have (3)a = called well met then we have (2)a ≡ (2)b. If in addition to (3)a + (2)b we have (1)b
then we have (2)εc for every ε. Hence 1.6(2) may be the true question.

2. In § 2 (cf. Conclusion 2.9) we shall show that the demand “well met” cannot be omitted in [9]; in other
words, the statement Axμ((1)a, (2)b) is inconsistent.
In § 3 for ϑ, ∂ < μ regular not equal we get the consistency of Axμ((1)c + (2)+a,=ϑ ) but not Axμ((1)c +
(2)+a,∂ ) (cf. Conclusion 3.14), but this does not answer Question 1.6(2). In § 4 we answer Question 1.6(2).

3. Suppose we consider a forcing notion as in § 2, i.e., for § 3 use ϑ = 1, but as in Definition 4.3, for α ∈
Cδ ∩ Sμ+

ϑ no uniformization is demanded. This makes Axϑ
μ holds for this forcing notion, but ∗∂

μ fail, so all
seems fine.

1 Why 1 + ζ not, e.g., ζ + 1? First, we like the INC to have the first move so that if P satisfies the condition and p ∈ P then P�{q : p ≤P q}
satisfies the condition. Second, we like the player COM to move in limit stages, as this is a weaker demand.

2 Really omitting (1)b does not make a real difference but is natural.
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4. Below, in fact for 〈Cδ, fδ : δ ∈ S〉, we may force also the Cδ (in Q in § 2); we may not ask that Cδ is closed
in δ and let ᾱ∗

δ = 〈α∗
δ,ξ : ξ < μ〉 list Cδ in increasing order so with limit δ, but generically we can have

α∗
δ1,ζ

= α∗
δ2,ζ

, fδ1 (α
∗
δ1,ζ

) �= fδ2 (α
∗
δ2,ζ

) for ∗1
μ, i.e., anyhow seems reasonable.

Observation 1.8 Assume μ = μ<μ and ε < μ limit.

1. If the forcing notionQ satisfies the conditions (1)b,|ε|+ , (3)a and (2)b, here equivalently (2)a thenQ satisfies
(2)εc from Definition 1.3.

2. If P satisfies (3)a then P satisfies (3)a,ε.

3. If P satisfies (1)b,|ε|+ + (2)+a,2 then P satisfies (2)εc.

4. For any P we have: (1)a =⇒ (1)b =⇒ (1)+c =⇒ (1)c and (1)a =⇒ (1)d,μ =⇒ (1)c. Similarly (1)a,ϑ =⇒
(1)b,ϑ =⇒ (1)c,ϑ and (1)a,=ϑ =⇒ (1)b,=ϑ and (1)a,ϑ =⇒ (1)d,ϑ and (1)a,=ϑ =⇒ (1)d,=ϑ .

5. For any P we have (2)+a,ϑ =⇒ (2)∗a,ϑ =⇒ (2)+b,ϑ .
6. If P satisfies (2)εc,D then forcing with Q adds no new sequence of ordinals of length ≤ ε.

P r o o f . Just read the definitions carefully. E.g., for (3) recall � of § 1.1. �
Claim 1.9

1. Axε
μ, i.e., Axμ((1)c + (2)εc ) is equivalent to the axiom in [14].

2. Axμ((1)b, (2)a, (3)a) is the axiom from [9]. If ϑ, σ are regular cardinals< μ and Axϑ
μ does not imply Ax

σ
μ

then Axμ((1)b, (2)a, (3)a) so the axiom from [9], does not imply Axσ
μ.

P r o o f . Easy, too. �
For works on forcing for uniformizing cf. [8], [15], [12, Ch.VIII], and on ZFC results cf. [3], [12, AP, § 2].

1.3 Preliminaries

Notation 1.10 1. For regular ϑ < λ let Sλ
ϑ = {δ < λ : δ has cofinality ϑ}.

2. We may write ϑ (+) instead of ϑ+ in subscripts.

Definition 1.11

1. We say that a forcing notion P is strategically α-complete when for each p ∈ P in the following game
�α (p, P) between the players COM and INC, the player COM has a winning strategy.
A play lasts α moves; in the β-th move, first the player COM chooses pβ ∈ P such that p ≤P pβ and γ <

β =⇒ qγ ≤P pβ and second the player INC chooses qβ ∈ P such that pβ ≤P qβ .
The player COM wins a play if it has a legal move for every β < α.

2. We say that a forcing notion P is (< λ)-strategically complete when it is α-strategically complete for every
α < λ.

Definition 1.12 For a filter D on a set I:

(a) D+ = {A ⊆ I : I\A /∈ D};
(b) for S ∈ D+ let D+ S = {A ⊆ I : A ∪ (I\S) ∈ D}.
Theorem 1.13 Assume μ = μ<μ and D is a normal filter on μ+ to which Sμ+

μ belongs; note that in VP we
interpret D as the normal filter on μ+ it generates. Assume further that 2 ≤ ϑ ≤ μ. Then each of the following
properties listed in (B) of forcing notions is preserved by (< μ)-support iteration, which means clause (A) is
satisfied:

(A) If q = 〈Pα, Q
˜

β : α ≤ lg(q), β < lg(q)〉 is a (< μ)-support iteration and for each β < lg(q) we have �Pβ

“(Q
˜

β satisfies the property Pr”then the forcing notion Pq = Plg(q) satisfies the property Pr.

(B) The property Pr of forcing notion Q is one of the following (where ε < μ is a limit ordinal):

(a) the property (1)c + (2)εc,D,
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Sh:1036
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(b) the property (1)c,ϑ ,

(c) the property (1)+c,ϑ ,
(d) the property (1)c + (2)εc,ϑ,D ,

(e) the property (1)c + (2)εd,ϑ,D.

P r o o f . Cases (b) & (c) are well known. Case (a) holds by [14]. Case (d): cf. Shelah and Spinas [16]. Case
(e): Similarly. �

2 On μ+-regressive-c.c.; an example

We shall show that in [9], we have to use some form of the well met condition. First, we shall concentrate on the
case μ is not strongly inaccessible.

Hypothesis 2.1

1. μ = μ<μ > ℵ0.

2. S ⊆ Sμ+
μ = {δ < μ+ : cf(δ) = μ} is stationary, the main case is S = Sμ+

μ .

Definition 2.2 C̄ is an S-club system when C̄ = 〈Cδ : δ ∈ S〉,Cδ a club of δ of order type μ.

Definition 2.3

1. We say (W , f̄) is an (S, C̄, κ )-parameter or just a (C̄, κ )-parameter when:

(a) S ⊆ Sμ+
μ is stationary; cf. Hypothesis 2.1(2),

(b) C̄ is an S-club-system so we may omit S,

(c) κ ≤ μ is ≥ 2, if κ = 2 we may omit κ and write C̄,

(d) W ⊆ μ; if W = μ we may omit W ,

(e) f̄ = 〈fδ : δ ∈ S〉,
(f) fδ : Cδ → κ .

2. For (W , f̄) an (S, C̄, κ )-parameter we define a forcing notion Q = Q(W ,f̄,C̄) as follows:

(A) p ∈ Q iff p consists of
(a) v ∈ [S]<μ;
(b) h is a function with domain v;
(c) if δ ∈ v then h(δ) is a non-empty bounded subset of μ closed in its supremum;
(d) if δ1, δ2 ∈ v and α ∈ Cδ1 ∩Cδ2 and otp(α ∩Cδ�

) ∈ h(δ�) and otp(Cδ�
∩ α) ∈ W for � = 1, 2 then

fδ1 (α) = fδ2 (α);
(e) if δ1 �= δ2 ∈ v and β ∈ Cδ1 ∩Cδ2 then for � = 1, 2 there is β� ∈ hp(δ�) satisfying otp(Cδ�

∩ β ) ≤ β�.

(B) p ≤Q q iff
(a) vp ⊆ vq;
(b) δ ∈ vp =⇒ hp(δ) � hq(δ).

3. If W = μ we may omit it.

Definition 2.4 Let (W , f̄) be a (C̄, κ )-parameter and let Q = QW ,f̄,C̄.

1. For p ∈ Q let gp be the function

(a) with domain

{α : some δ witnesses α ∈ Dom(hp) which means δ ∈ vp, α ∈ Cδ,

otp(Cδ ∩ α) ∈ hp(δ) and otp(Cδ ∩ α) ∈ W };
(b) for α ∈ Dom(gp) we have:

gp(α) = fδ (α) for every witness δ for α ∈ dom(gp).

© 2022 Wiley-VCH GmbH www.mlq-journal.org
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2. Let g
˜
be the Q-name for ∪{gp : p ∈ G

˜
}.

3. Let E
˜
δ = E

˜
δ[Q] be the Q-name for ∪{hp(δ) : p ∈ G

˜
, δ ∈ vp} and let W

˜
δ = {α ∈ E

˜
δ : otp(Cδ ∩ α) ∈ W }.

Claim 2.5 Assume (W , f̄) is an (S, C̄, κ )-parameter and Q = Q(W ,f̄,C̄) lub.

1. Q is (< μ)-complete, moreover any ≤Q-increasing sequence of length < μ has a ≤Q-lub that is (1)a.

2. If δ ∈ S and α < μ then the following subsets of Q are dense and for i., ii. also open:

i. Iδ = {p ∈ Q : δ ∈ vp};
ii. Iδ,α = {p ∈ Iδ : α < sup(hp(δ))};
iii. I ∗

α = {p ∈ Q: if δ ∈ vp then α < sup(hp(δ)) and hp(δ) has a last member}.
3. For every δ ∈ S, the function g

˜
almost extends fδ , i.e., �Q g

˜
⊇ fδ�{α ∈ Cδ : otp(α ∩Cδ ) ∈ W

˜
δ}, recalling

Wδ = W ∩ E
˜
δ . Also E

˜
δ is a club of μ and if W = μ then W

˜
δ is a club of μ”.

P r o o f . (1): Straightforward, see clause (A)(e) of Definition 2.3(2) in particular.
(2), (3): Also easy. �

Claim 2.6 Let (W , f̄), (S, C̄, κ ), Q be as above. Then Q satisfies clause (2)b of Definition 1.2, i.e.:

(∗0
μ) If p̄ = 〈pα : α ∈ S〉 and α ∈ S =⇒ pα ∈ Q then there is a club E of μ+ and pressing down function f :

S ∩ E → μ+, i.e. f (δ) < δ, such that: (δ1 �= δ2 ∈ S ∩ E ) ∧ f (δ1) = f (δ2) =⇒ pδ1 , pδ2 are compatible.

P r o o f . First, by Claim 2.5(1)(2), we choose 〈qα : α ∈ S〉 such that, for every α ∈ S:

�1 (a) pα ≤ qα;

(b) if δ ∈ vqα
but δ > α then otp(Cδ ∩ α) < sup(hqα

(δ));

(c) α ∈ vqα
;

(d) hqα
(α) has a last element.

Second, choose a club E of μ+ such that α ∈ S ∩ E =⇒ sup(vqα
) < min((E\(α + 1)).

Third, choose a regressive function h with domain E ∩ S such that:

�2 If δ(1) = δ1 < δ2 = δ(2) are from E ∩ S and h(δ1) = h(δ2) and 〈α�,i : i < otp(vqδ(�) )〉 lists vqδ(�) in increas-
ing order for � = 1, 2 then for some j∗:
(a) otp(vqδ(1) ) = otp(vqδ(2) ) call it i(∗);
(b) j∗ < i(∗) and α1, j∗ = δ1, α2, j∗ = δ2;

(c) if j < j∗ then α1, j = α2, j;

(d) if j > j∗ but j < i(∗) then Cα1, j ∩ δ1 = Cα2, j ∩ δ2;

(e) hqδ(1) (α1,i) = hqδ(2) (α2,i) for i < i(∗);
(f) if ε ∈ hqδ(1) (δ1) then the ε-th member of Cδ1 is equal to the ε-th member of Cδ2 .

Now it suffices to prove:

�3 If δ1 �= δ2 ∈ S ∩ E and h(δ1) = h(δ2) then qδ1 , qδ2 are compatible in Q,

Why? Define q as follows:

i. vq = vqδ(1) ∪ vqδ(2) ;

ii. hq(δ) = hqδ(�) (δ) if � ∈ {1, 2} and δ ∈ vq\{δ�};
iii. hq(δ�) = hqδ(�) (δ�) ∪ {β�} where β� < μ, β� > max{hqδ(1) (δ1) ∪ hqδ(2) (δ2)} and β� > sup{otp(α ∩Cδ�

) : α ∈
Cδ1 ∩Cδ2}.

First, q is well defined because in ii., if hq(α) is defined in two ways, then α < δ1 and they are equal because
of �2.

Second, why q ∈ Q? We have to check clauses (a)-(e) of Definition 2.3(2)(A). Now clauses (a), (b), and (c)
are obvious. For clause (d), assume γ1, γ2 ∈ vq, and α ∈ Cγ1 ∩Cγ2 and otp(Cγ�

∩ α) ∈ hq(γ�) ∩ W for � = 1, 2.
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8 S. Shelah: Forcing for λ-complete μ+-c.c.

If γ1, γ2 ∈ vqδ(1) then use qδ(1) ∈ Q, and similarly if γ1, γ2 ∈ vqδ(2) then use qδ(2) ∈ Q. So without loss of generality
γ1 ∈ vqδ(1) \ vqδ(2) and γ2 ∈ vqδ(2) \ vqδ(1) , so necessarily γ1 ≥ δ(1), γ2 ≥ δ2 and α ∈ Cγ1 ∩Cγ2 ⊆ δ1 ∩ δ2 (using the
choice of C̄ and E); using the notation of �2 let i(�) be such that γ� = α�,i(�) so i(�) ∈ [ j(∗), i(∗)) for i(�) = 1, 2.
Now we get the result by applying clause (d) for qδ(2) ∈ Q for γ1, γ2, α2,i(1)α2,i(1), α2,i(2) = γ2 recalling �(d), (e),
noting that in the case (γ1, γ2) = (δ1, δ2) necessarily i1 �= β1 ∧ i2 �= β2 (as β1, β2 < μ were chosen large enough)
so otp(Cδ(1) ∩ α) = otp(Cδ(2) ∩ α) ∈ hpδ(1) (α) = hpδ(2) (α) and if i(1) = i(2) then by the choice of h.

We are left with clause (e) which is proved similarly, recalling iii. above.
It is easy to check that q ∈ Q and qδ1 ≤ q, qδ2 ≤ q, so �3 holds indeed. �

Theorem 2.7 If (A) then (B) where

(A) μ, S, C̄, κ, ϑ satisfy

(a) μ = μ<μ > ℵ0;

(b) S = Sμ+
μ ;

(c) C̄ = 〈Cδ : δ ∈ S〉 is an S-club system and for δ ∈ S we let ηδ ∈ μδ list Cδ in increasing order;

(d) F is a function fromFμ to κ whereFμ = { f : f is a function from some u ∈ [μ+]<μ to μ}; the default
case is F ( f ) = f (max(dom( f )) when well defined and zero otherwise;

(e) ā = 〈aδ,α : δ ∈ S, α < μ〉 where aδ,α ⊆ ηδ (α) + 1; the default value of aδ,α is {ηδ (α)};
(f) either μ is a (strongly) inaccessible cardinal, and ϑ < κ = μ or κ = 2, ϑ < μ = 2ϑ ;

(B) we can find c̄ satisfying
(a) c̄ = 〈cδ : δ ∈ S〉;
(b) cδ is a function from Cδ to κ;

(c) if f is a function from μ+ to κ , then for stationarily many δ ∈ S, for stationarily many ε ∈ Cδ we have:
κ = 2 =⇒ cδ (α) = F ( f �aδ,α ) and κ = μ =⇒ cδ (α) �= F ( f �aδ,α ).

Discussion 2.8 Cf. [12, AP.3.9, p. 990]. But there, only the case μ = ℵ1, κ = 2 is really proved, the case μ

an accessible cardinal and κ = 2 is stated to be similar. In the case where μ is inaccessibe, κ = 2, the statement
consistently fails as said in [12, 3.8(1)]; cf. [8, 11 15]. So by a request we give here a full proof.

P r o o f . Why? Let λ be big enough (e.g., (2μ+
)
+
), andM∗ be an expansion of (H (λ),∈) by Skolem functions

(so countably many; essentially, if we expand just by a definable well ordering it suffices).
Suppose toward contradiction that clause (A) holds but clause (B) fails. It is known that there is a function

G from {A : A ⊆ μ+, |A| < μ} to μ such that G(A) = G(B) implies that A,B have the same order type and their
intersection is an initial segment of both (e.g., if hα : α → μ is one-to-one for α < μ, we let G0(A) =df {(otp(A ∩
α), otp(A ∩ β ), hβ (α)) : α ∈ A and β ∈ A}. NowG0 is as required except that Rang(G0) �⊆ μ but |Rang(G0)| ≤ μ

so we can correct this by renaming).
We shall now define for any p ∈ H (λ) a sequence 〈cpδ : δ ∈ S〉 where cpδ : μ → H (μ), which we shall

use later.
For every δ ∈ S, i < μ, letNp

δ,i be theminimal submodel ofM∗ (so closed under the Skolem functions) including
{δ, i,p} such that its intersection with μ is an ordinal so Np

δ,i has cardinality < μ and

(∗)1 let

(a) π
p
δ,α be the Mostowski collapse mapping from Np

δ,α;

(b) cpδ is a function from μ into H (μ);

(c) for α < μ we let cpδ (α) =df 〈(πp
δ,α"((N

p
δ,α,p, δ, α),G(Np

δ,α ∩ μ+)〉 which belongs to H (μ).

Note that (Np
δ,i,p, i, δ) is Np

δ,i expanded by three individual constants. Now recall that toward contradiction we
are assuming that clause (B) of the theorem fails. This means that

(∗)2 for every sequence c̄ = 〈cδ : δ ∈ S〉 where cδ is a function fromCδ to κ there is an hc : μ+ → κ such that:
For a closed unbounded subset E of μ+ for every δ ∈ S ∩ E, for a closed unbounded set of α ∈ Cδ we
have cδ (α) = F (hc̄�aδ,α ); note that in the case κ = 2, replacing non-equal by equal makes no difference!
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Now

(∗)3 in (∗)2 we can replace κ by the set H (μ), by changing F .

[Why? If κ = μ this is obvious as μ and H (μ) have the same cardinality. So we can assume κ = 2, and
we can replace H (μ) by ϑ2 because the latter has cardinality μ. For ε < ϑ and h any function into ϑ2, let
h[ε] be defined by h[ε](α) = (h(α))(ε) for α ∈ Dom(h). Define the function F∗ by: F∗(h) = 〈F (h[ε] ) : ε < ϑ〉 so
F∗(h) ∈ ϑ2. We shall prove that replacing F by F∗, the statement (∗)3 holds. So assume we are given 〈cδ : δ ∈ S〉
where cδ ∈ (Cδ )(ϑ2), i.e., cδ : Cδ → ϑ2; then for ε < ϑ the function c[ε]δ ∈ μ2 is well defined for each δ ∈ S. Now
for each ε < ϑ , we can apply (∗)2 so we can choose h(ε) : μ+ → 2 such that for some club E of μ+ for every
δ ∈ S ∩ E for a club of α < Cδ we have

c[ε](α) = F (h(ε)�aδ,α ).

Define h : μ+ → ϑ2 by h(α) = 〈h(ε)(α) : ε < ϑ〉, it is as required. So (∗)3 holds indeed.]
Now we shall define by induction on ε < ϑ , p(ε) ∈ H (λ), and hε : μ+ → H (μ).
Arriving to ε, let p(ε) = (〈(hζ ,p(ζ ), N̄ζ ) : ζ < ε〉, C̄,F, ā,G) where N̄ζ = 〈Np(ζ )δ,i : δ ∈ S, i < μ〉; see before

(∗)1. Also let cp(ε)δ : μ → H (μ) be as we have defined above (in (∗)1), so by (∗)3
(∗)4 there are hε,W ε,W̄ε such that:

(a) hε : μ+ → H (μ);

(b) W ε ⊆ μ+ is a closed unbounded subset of μ+;
(c) W̄ε = 〈W ε

δ : δ ∈W ∩ S〉;
(d) for every δ ∈W ε ∩ S,W ε

δ is a closed unbounded subset of μ;

(e) for α ∈W ε
δ , δ ∈Wn ∩ S we have: cp(ε)δ (α) = F∗(hε�aδ,α ).

Now

(∗)5 let

(a) letW = ⋂
ε<ϑ W

ε,

(b) for δ ∈W ∩ S letWδ = ⋂
ε<ϑ W

ε
δ .

ClearlyW is a closed unbounded subset of μ+, andWδ is a closed unbounded subset of μ for δ ∈W ∩ S. So
for every δ ∈W ∩ S, we can choose α(δ) ∈Wδ; hence by the Fodor lemma, for some α(∗) < μ+ and ν, b̄ the set
S∗ = {δ ∈W ∩ S : α(δ) = α(∗), ηδ�(ξ + 1) = ν, 〈aδ,i : i ≤ α(∗)〉 = b̄} is stationary. As μ = μ<μ holds there are
δ1, δ2 and ξ < μ such that:

(∗)6 (A) δ1 < δ2 are from S∗;
(B) ξ ∈Wδ�

for � = 1, 2;

(C) ηδ1 (ξ ) = ηδ2 (ξ );

(D) ηδ1�(ξ + 1) = ηδ2�(ξ + 1);

(E) 〈aδ1,α : α ≤ α(∗)〉 = 〈aδ2,α : α ≤ α(∗)〉.
So clearly we can assume

(∗)7 there are no δ
†
1, δ

†
2 satisfying (A)-(E) such that δ†1 ≤ δ1, δ

†
2 ≤ δ2 and (δ†1, δ

†
2 ) �= (δ1, δ2).

Now as δ1 < δ2, for some α > ξ, ηδ1 (α) �= ηδ2 (α), and there is a minimal such α; but as ηδ1 , ηδ2 are increasing
and continuous, clearly α is a successor ordinal.

Let v = {ζ < μ : ηδ1�ζ = ηδ2�ζ , ηδ1 (ζ ) = ηδ2 (ζ ) and ζ ∈Wδ1 ∩Wδ2}. This set is non-empty (as ξ belongs to
it), is closed (asWδ1 ,Wδ2 are closed and ηδ�

are increasing continuous) and is bounded in μ (by the beginning of
this paragraph). Together we know that there is a maximal ζ ∈ v.

So

(∗)8 cp(ε)δ1
(ζ ) = cp(ε)δ2

(ζ ) for every ε < ϑ .

[Why? As both are equal to F∗(hε�aδ�,ζ ).]
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10 S. Shelah: Forcing for λ-complete μ+-c.c.

Fix a non-zero ε < ϑ for a while. Looking at the definition of cp(ε)δ (ζ ) (cf. (∗)1) we see that Np(ε)
δ1,ζ

is isomorphic

to Np(ε)
δ2,ζ

, and let the isomorphism be called gε. Note that the isomorphism is unique (as ∈ in those models is
transitive and well founded) and maps C̄,F, ā to themselves.

By the definition of cp(ε)δ (ζ ), clearly

(∗)9 (a) gε(p(ε)) = p(ε) hence gε((C̄,F, ā,G)) = (C̄,F, ā,G);

(b) gε(δ1) = δ2, gε(ζ ) = ζ , gε(ε) = ε;

(c) gε(ηδ1 ) = ηδ2 ;

(c) gε(W ξ ) =W ξ and gε(W
ξ
δ1
) =W ξ

δ2
for every ξ < ε;

(e) gε(N
p(ξ )
δ1,ζ

) = gε(N
p(ξ )
δ2,ζ

) ∈ Np(ε)
δ2,ζ

for every ξ < ε.

[Why? Look at the definition of p(ε)]
For ξ < ε, as Np(ξ )

δ�,ζ
is of cardinality < μ, its intersection with μ is an ordinal and it belongs to Np(ε)

δ�,ζ
, it is

also included in it, hence gε�Np(ξ )
δ1,ζ

is an isomorphism from Np(ξ )
δ1,ζ

onto Np(ξ )
δ2,ζ

; hence (by the uniqueness of gε and
(∗)9(b)):

(∗)10 gε ⊇ gξ for ξ < ε.

We now stop fixing ε. For � = 1, 2 (recalling ϑ < μ in both cases), let N� = ⋃
ε<ϑ N

p(ε)
δ�,ζ

and g= ⋃
ε<ϑ gε; so

g is an isomorphism from N1 to N2. By the definition of c
p(ε)
δ�

(ζ ), clearly the second coordinates are the same, thus:

(∗)11 G(Np(ε)
δ1,ζ

∩ μ+) = G(Np(ε)
δ2,ζ

∩ μ+),

Hence those sets have their intersection an initial segment of both; as this holds for every ε < ϑ , clearly N1 ∩
μ+,N2 ∩ μ+ have their intersection an initial segment of both (as usual, we are not strictly distinguishing between
a model and its universe), hence (recalling the choice of the Np

δ,i-s), g is the identity on N1 ∩ N2 ∩ μ+.
Note that clearly δ1 /∈ N2 as g(δ1) = δ2 �= δ1, hence δ2 /∈ N1. Now

(∗)12 (a) Letting δ∗
� =df Min(μ+ ∩ N� \ (N1 ∩ N2)), we have: δ∗

� ≤ δ�, is a limit ordinal

(b) g(δ∗
1 ) = δ∗

2 and so

(c) cf(δ∗
1 ) = cf(δ∗

2 ).

(d) cf(δ∗
� ) = μ.

Why? Clauses (a), (b) are obvious and clause (c) follows. Clause (d) (that is cf(δ∗
� ) = μ) holds as otherwise

for some regular cardinal σ < μ we have cf(δ∗
1 ) = σ , and as δ∗

1 ∈ N1 for some ζ < ϑ , δ1 ∈ Np(ε)
δ1,ζ

, hence there is

{βι : ι < σ } ∈ δ∗
1 ∩ Np(ε)

δ1,ζ
cofinal in δ∗

1 . As σ < μ necessarily it is included inNp(ε)
δ1,ζ

, without loss of generality βι is

increasingwith ι. By the choice of δ∗
1 , if ι < σ thenβι ∈ N1 ∩ N2, hence g(βι) = βι; letβ∗ = min(Np(ε)

δ2,ζ
\ ⋃

ι βι), so

β∗ ∈ Np(ε)
δ2,ζ

⊆ Np(ε+1)
δ2,ζ

, so δ∗
1 = sup{βι : ι < σ } = sup(β∗ ∩ Np(ε)

δ2,ζ
) ∈ N2, contradiction. So we have proved (∗)12.]

Now for � = 1, 2 let α� =df N� ∩ μ, (this intersection is an initial segment ofμ) and β� =df sup(N� ∩ δ∗
� ) hence

β1 = β2 (by δ∗
� definition) and call it β. As cf(δ∗

� ) = μ clearly δ∗
� ≥ μ, and so clearly by g’s existence α1 = α2

and call it α∗ = α(∗), (also as μ ∈ N1 ∩ N2 ∩ μ+, necessarily N1 ∩ μ = N2 ∩ μ).
As ηδ∗

1
is a one to one function (being increasing) from μ, clearly

(∗)13 for every α < μ we have ηδ∗
1
(α) ∈ N1 ⇐⇒ α < α(∗).

Also N1 |= “〈ηδ∗
1
(α) : α < μ〉” is unbounded below δ∗

1 (remember N1 ≺ M∗ as Np(ε)
δ1,ζ

≺ M∗ for each ε).
So clearly β = β1 = sup{ηδ∗

1
(α) : α < α∗}; but ηδ∗

1
is increasing continuous and α∗ is a limit ordinal (being

N� ∩ μ), hence β = ηδ∗
1
(α∗).

For the same reasons β = ηδ∗
2
(α∗).

Similarly ηδ∗
1
�α∗ = ηδ∗

2
�α∗ because g(ηδ∗

1
) = ηδ∗

2
, and α∗ ∈W ε

δ∗
�
for each ε < ϑ (� = 1, 2) as N� |= “W ε

δ∗
�
is a

closed unbounded subset of μ”. For similar reasons δ∗
� ∈Wε for each ε < ϑ : recallWε ∈ Np(ε+1)

δ�,ζ
and soWε ∈ N�

henceWε ∈ N1 ∩ N2, and asN1,N2 ≺ M∗,M∗ has Skolem functions, clearlyN1 ∩ N2 ≺ M∗, soWε is an unbounded
subset of N1 ∩ N2 ∩ μ+. So in N�,Wε is unbounded in δ∗

� = Min[(μ+ ∩ N�) \ (N1 ∩ N2)], hence N� |= “δ∗
� ∈Wε”

hence δ∗
� ∈Wε.

© 2022 Wiley-VCH GmbH www.mlq-journal.org

Sh:1036



Math. Log. Quart. 0, No. 0 (2022) / www.mlq-journal.org 11

We can conclude that δ∗
1 , δ

∗
2 , β satisfy the requirements (A)-(E) of (∗)6 on δ1, δ2, ξ . Hence by (∗)7 we have

δ1 = δ∗
1 , δ2 = δ∗

2 . But, ζ ∈ Np(ε)
δ�,ζ

⊆ N� hence ζ < μ ∩ N1 ∩ N2 hence ζ < α, so clause (∗)8 contradicts the choice
of ζ , so we get a contradiction, thus finishing the proof of the theorem. �

Conclusion 2.9 The condition “have least upper bound” cannot be omitted in3 [9]. That is:

� There are Q and Iα (α < μ+) such that:
(a) Q is a forcing notion, (< μ)-complete; in fact every ≤Q-increasing sequence of length < μ has a lub,

i.e., satisfies (1)a;

(b) Q satisfies (2)b, equivalently ∗1
μ,Q(b); cf. Claim 2.6;

(c) each Iα is a dense open subset of Q;

(d) no directed G ⊆ Q meets every Iα, α < μ+.

P r o o f . Let κ = 2 and C̄ be an S-club system. If μ is a successor or just not strongly inaccessible, choose f̄
and Ī = 〈Iδ,Iδ,i : δ ∈ S, i < μ〉 as in Claims 2.7 & 2.5(2) resp., so Q = Q(W ,f̄,C̄) from Definition 2.3(2). So Q
satisfies clause (a) by Claim 2.5(1), satisfies clause (b) by Claim 2.6 and satisfies clauses (c),(d) by the choice of
f̄ and Ī . We are left with the case μ is strongly inaccessible, then we use Theorem 2.7 for the case κ = μ instead
of the case κ = 2. �

In Conclusion 2.9 above we get a failure when we waive in [9] the “well met condition”.

Conclusion 2.10 In Conclusion 2.9, we may replace (a) by (a)′ and add (e) where:

(a)′ Q is a forcing notion strategically (< μ)-complete (i.e., (1)c), in fact some partial order ≤st witnesses it
in a strong way (i.e., (1)+c ),

(e) (well met) (3)a holds, that is if p, q ∈ Q are compatible then they have a lub, (so in clause (a)’ above we
get (2)a).

P r o o f . We use a variant of the forcing from Definition 2.3(2) but in clause (A)(c) there we demand hp(δ)
has a last element (so is closed) and we repeat the proof for Definition 2.4. Actually similarly to the proof of
Conclusion 2.9; cf. 3.1 in particular. In details, this forcing notion satisfies clause (a)′ by Claim 3.8(1),(2) below;
clause (b), i.e., (2)b, by Claim 3.8(5) below. As for clauses (c),(d) we choose f̄ by Theorem 2.7. �

Remark 2.11 (1) In Claims 2.6 & 2.5 we can moreover find 〈Iε : ε < μ〉 such that I = ⋃

ε<μ

Iε ⊆ Q is dense

and p, q ∈ Iε =⇒ p, q are compatible (as in [4]).
Why? Let I = {p ∈ Q: if α1 < α2 belongs to vp then the set hp(α1) has a last member and there is an α ∈

Cα2\α1 such that otp(α ∩Cα2 ) ∈ hp(α2)}. By Claim 2.5(2) we have I is a dense subset of Q.
For p ∈ I let

1. up = {α : α ∈ vp or for some β ∈ vp we have α ∈ Cβ and otp(α ∩Cβ ) ≤ max(hp(β )) (implied by otp(α ∩
Cβ ) ∈ hp(β ) for some β ∈ vp)};

2. E1 = {(p1, p2) : p1, p2 ∈ I and otp(up1 ) = otp(up2 ) and the order preserving function g from up1 onto up2
maps vp1 onto vp2 ,Cα ∩ up1 onto Ch(α) ∩ up2 for α ∈ vp and maps hp1 (α) to hp2 (g(α)) for α ∈ vp}.

So E1 is an equivalence relation on I with ≤ μ classes: it is known that there is an equivalence relation E2 on
[μ+]<μ with μ equivalence classes such that u1E2u2 =⇒ u1 ∩ u2 � u�.

Easily the equivalence relation {(p1, p2) : p1E1p2 and up1E2up2} on I is as required.
[Why? Assume p1E2p2 and α� ∈ vp�

and α2 ∈ vp2 , γ ∈ Cα1 ∩Cα2 and otp(γ ∩Cα�
) ∈ hp�

(α�) for � = 1, 2. But
then γ ∈ up1 ∩ up2 and γ ∈ dom(gp1 ) ∩ dom(gp2 ), hence necessarily otp(γ ∩Cα1 ) = otp(γ ∩Cα2 ) and gp1 (γ ) =
gp2 (γ ). Let v = vp1 ∪ vp2 and choose 〈γα : α ∈ v〉 such that γα ∈ Cα and δ ∈ v =⇒ γα > sup(Cδ ∩ v). Define
p ∈ Q by:

(∗)8 (a) vp = v;

(b) up = up1 ∪ up2 ∪ {γα : α ∈ v};

3 And in the related works.
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(c) hp(α) = hp�
(α) ∪ {γα}, when α ∈ vp�

;

(d) gp = gp1 ∪ gp2 ∪ {(γα, f(γα ) : α ∈ v}.
We can easily check that p is well defined (that is in clause (c) if α ∈ vp1 ∪ vp2 then the two definitions agree;

similarly in clause (d).]
(2) Note that for the forcing notion Q from Conclusion 2.10, every ≤Q-increasing continuous sequence of

length < μ has a lub.

3 Forcing axiom: non-equivalence

We use Definitions 1.2 & 1.3 freely; this section is dedicated to proving the following theorem:

Theorem 3.1 Assume ϑ + ℵ0 < μ = μ<μ and 2 ≤ ϑ < μ and Q is adding μ+ many μ-Cohen. Then in VQ

we have:

�μ,ε For some P

(a) (α) P is a forcing notion;
(β ) P satisfies (2)εc from Definition 1.3;
(γ ) P has cardinality μ+;
(δ) P is strategically μ-complete (i.e., satisfies (1)c,μ or even (1)+c );
(ε) we have (2)+a,μ;
(ζ ) if p, q ∈ P are compatible then they have a lub, i.e., (3)a holds;
(η) (2)εc holds for every limit ε < μ;

(b) (α) P is not equivalent to any forcing notion satisfying (1)c + (2)+a,ϑ (+);

(β )moreover, there is a sequence Ī = 〈Iα : α < μ+〉 of dense open subsets of P such that: ifR is a
forcing notion satisfying the conditions from (b)(α) above, then �R “there is no directed G ⊆ P
which meets Iα for α < μ+”.

Remark 3.2 Hence the relevant forcing axioms are not equivalent!

P r o o f . By Claims 3.8, 3.12 & 3.13 below.
In details: Let f̄ be from Claim 3.12(1), (i.e., after the preliminary forcing Q, in VQ) and P = Pf̄,ϑ , as defined

in Definition 3.6.
Clause (a)(α) P a forcing notion, holds by Definition 3.6, i.e., the first statement of Claim 3.8(1).
Clause (a)(β ), i.e., for every limit ordinal ε < μ the statement (2)εc holds by Claim 3.8(5)
Clause (a)(γ ), “P of cardinality μ+”, holds by Claim 3.8(1).
Clause (a)(δ), (1)+c and so P is strategically μ-complete, by Claim 3.8(1),(2);
Clause (a)(ε), means (2)+a which holds by Claim 3.8(6).
Clause (a)(ζ ), “if p, q are compatible then they have a lub”, holds by Claim 3.8(3).
Clause (b)(α), “P not equivalent to a forcing satisfying (1)b + (2)+b,ϑ” holds, by Clause (b)(β ).
Clause (b)(β ), “R satisfies (1)b + (2)+a,ϑ (+)”, this holds by Claim 3.13(2) because it assumption holds by

Claim 3.12. �

Conclusion 3.3 If ϑ = cf(ϑ ) < μ = μ<μ then Axμ((1)c + (2)+a,ϑ )) does not imply Axϑ
μ and even

Axμ++,μ((1)c + (2)ϑc ) from Definition 1.5(3).

P r o o f . Let λ = λ<λ, Q, P as in Theorem 3.1(b)(α) and V1 = VQ. In V1 we can find a forcing notion R
which forces Axμ((1)c + (2)+a,ϑ (+) ) and satisfies those conditions, we know such R exists because (< μ)-support
iterations preserve the property (1)c + (2)+a,ϑ (+) ); cf. 1.13. Now also in the universe VR

1 the forcing notion P

satisfies the conditions in Axϑ
μ from Definition 1.5.

So by clause (b)(β ) of Theorem 3.1, inVR
1 the axiomAxϑ

μ fail as exemplified byP because of Hypothesis 4.1(a),
so we are done proving the conclusion. �

For this section (clearly if μ = μ<μ > ℵ0 then there are such objects)
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Hypothesis 3.4

1. μ = μ<μ > ϑ ≥ 2 and μ > ℵ0

2. S = Sμ+
μ = {δ < μ+ : cf(δ) = μ} or S just a stationary subset of Sμ+

μ .

3. C̄ is an S-club sytem; cf. Definition 2.2.

4. f̄ is as in Definition 3.6 but fδ : Cδ → ϑ .

Discussion 3.5

1. A major difference between the forcing in Definition 3.6 below and the one in Definition 2.3(2) above is
that:

(A) there the generic gives a function g
˜
from λ to κ such that for every δ ∈ S for “most” α ∈ Cδ we have

g
˜
(α) = fδ (α);

(B) here the generic gives a function g
˜
such that for every δ ∈ S for “most” α ∈ Cδ we have fδ (α) ∈ g

˜
(α).

2. See more in Remark 3.7(2).

3. Also here gp is part of the condition instead being defined, a minor change.

4. In addition hp(δ) is here a subset of Cδ instead of a subset of μ.

Definition 3.6 For f̄ an (S, C̄, ϑ )-parameter (cf. Definition 2.3), we define a forcing notion P = Pf̄,ϑ as follows
(but abusing our notation we may omit ϑ):

(A) p ∈ P iff p consists of (so up = u, etc.):

(a) u ∈ [μ+]<μ;

(b) g : u → [μ]<ϑ (one can use g : u → ϑ when ϑ = cf(ϑ ) ≥ ℵ0 because
∧

δ

Rang(fδ ) ⊆ ϑ);

(c) v ⊆ S of cardinality < μ;

(d) h a function with domain v;

(e) if δ ∈ v then
(α)h(δ) is a closed bounded non-empty subset of Cδ;
(β )h(δ) ⊆ u;
(γ )if β ∈ h(δ) then β ∈ u and fδ (β ) ∈ g(β ).

(B) p ≤ q, i.e., Pf̄ |= “p ≤ q” iff

(a) up ⊆ uq and gp ⊆ gq;

(b) vp ⊆ vq;

(c) if δ ∈ vp then hp(δ) is an initial segment of hq(δ);n

(d) if δ ∈ vp and α ∈ hq(δ) \ hp(δ) (hence hq(δ) �= hp(δ)), then up ∩Cδ ⊆ α;

(C) we define <st=<P
st, the strong order by: p <st q iff p ≤ q and

(e) if δ ∈ vp and hp(δ) �= hq(δ) then sup(hq(δ)) > sup(∪{δ ∩Cγ : γ ∈ vp\{δ}});
(D) let g

˜
= {gp : p ∈ G

˜
} and h

˜
= {hp : p ∈ G

˜
}.

Remark 3.7

1. In Definition 3.6 we may choose f̄ such that fδ is a function to κ = μ instead of to κ = ϑ the forcing is
defined similarly. It has similar properties but it seems that the case κ = ϑ is enough for us.

2. If in clause (A)(e)(α) of Definition 3.6 we would have demanded only “h(δ) is only closed in its supremum
but if α = sup(h(δ)) /∈ h(δ) then {fδ (α) : δ ∈ v, α ∈ Cδ}” then we get an equivalent forcing, we lose some
nice properties but gain others. Mainly we gain in having more cases of having a lub, in particular for an
increasing sequence which has an upper bound, really any set of < cf(ϑ ) members which has an upper
bound; but we lose for �-systems, i.e., Claim 3.8(6). Also we have to be more careful in Claim 3.9. We
shall use the “closed in its supremum” version also in § 4.
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Claim 3.8 Let f̄ be an (S, C̄, ϑ )-parameter as in 2.1, so S is a stationary subset of Sμ+
μ .

1. Pf̄ is a forcing notion of cardinality μ+, also <st is a partial order ⊆<P and p1 ≤ p2 <st p3 ≤ p4 =⇒
p1 <st p4 and (∀p)(∃q)(p <st q).

2. Any <st-increasing sequence in Pf̄ of length < μ has an upper bound (this is a strong/no memory version
of strategic μ-completeness), i.e., <st exemplifies (1)+c .

3. If p1, p2 ∈ Pf̄ are compatible then they have a lub.

4. The set {pi : i < i(∗)} has a ≤-lub in Pf̄ when
∧

i, j<i(∗)
(pi, p j are compatible) and i(∗) is finite or i(∗) < μ

and for every δ, the set {hpi (δ) : i < i(∗) satisfies δ ∈ vpi} is finite or at least has a maximal member. Note
this set is linearly ordered by being an initial segment.

4A. The set {pi : i < i(∗)} has an ub when i(∗) < μ and {pi : i < i(∗)} is a set of pairwise compatible members
of Pf̄ and i(∗) is finite or i(∗) < ϑ or at least i(∗) < μ and for every limit ordinal α the following set has
cardinality < ϑ:

(a) {δ ∈ ⋃

i
vpi : α = sup{hpi (δ) + 1 : i < i(∗) and δ ∈ vpi}}.

5. The forcing notion Pf̄ satisfies (2)
ε
c for ε < μ.

6. Pf̄ satisfies clauses (2)a, (2)
+
a,∂ of Definition 1.2 when ∂ ≤ μ.

P r o o f .

1. Recall that μ = μ<μ hence μ+ = (μ+)<μ and easily |P| = μ+. Also the statements on <st are obvious.
What about Pf̄ being a quasi order? Assume that p1 ≤ p2 ≤ p3 and we shall prove that p1 ≤ p3; clauses
(a), (b), (c) of Definition 3.6(B) are immediate and we shall elaborate on clause (d). So assume δ ∈ vp1
and α ∈ hp3 (δ) \ hp1 (δ) and we should prove that up1 ∩ hp1 (δ) ⊆ α. First assume α ∈ hp2 (δ), then p1 ≤ p2
implies up1 ∩Cδ ⊆ α as required. Second assume α /∈ hp2 (δ) then p2 ≤ p3 implies up2 ∩ hp2 (δ) ⊆ α but
up1 ⊆ up2 so we are done.

2. Let γ < μ be a limit ordinal and p̄ = 〈pi : i < γ 〉 be a <st-increasing sequence of members of Pf̄ .
Let
(∗)1 (a) v∗ = ⋃

i
{vpi : i < γ };

(b) let i : v∗ → γ be i(δ) = min{i < γ : δ ∈ vpi};
(c) let v∗

2 = {δ ∈ v∗: the sequence 〈hpi (δ) : i ∈ [i(δ), γ )〉 is not eventually constant};
(d) for δ ∈ v∗

2 let ζδ = sup(∪{hpi (δ) : i ∈ [i(δ), γ )};
(e) let v∗

1 = v∗\v∗
2 .

We try naturally to define p = (up, vp, gp, hp) almost as
⋃

i<γ

pi, i.e.,

(∗)2 (a) vp = v∗ := ∪{vpi : i < γ };
(b) up = ∪{upi : i < γ } ∪ {ζδ : δ ∈ v∗

2};
(c) gp = ∪{gpi : i < γ } ∪ {〈ζδ, {fδ (ζδ )}〉 : δ ∈ v∗

2};
(d) hp is a function with domain vp such that

(α) if δ ∈ v∗
1 then hp(δ) = pi(δ) for i < δ large enough;

(β ) if δ ∈ v∗
2 then hp(δ) = ∪{hpi (δ) : i ∈ [i(δ), γ )} ∪ {ζδ}.

The point is to check that p ∈ P, because i < γ =⇒ pi ≤ p is immediate:

i. up ∈ [μ+]<μ because upi ∈ [μ+]<μ and γ < μ = cf(μ) and |v∗
2 | ≤ �{|vpi | : i < γ } < μ;

ii. vp ∈ [S]<μ because vpi ∈ [S]<μ and γ < μ = cf(μ);

iii. hp is a function with domain vp such that δ ∈ vp =⇒ hp(δ) is a bounded closed subset ofCδ (check
the two cases);

iv. gp is a function from up to ϑ as each gpi is a function from upi to λ and p̄ is <st-increasing and:

(∗) if δ ∈ v∗
2 then ζδ /∈ ⋃

i
upi .

[Why? This holds by Definition 3.6(B)(d) applied to pi ≤ p j for i < j < γ .]

(∗∗) if δ1 �= δ2 ∈ v∗
2 then ζδ1 �= ζδ2 and ζδ1 �= Cδ2 .

[Why? Cf. Definition 3.6(C)(e)].
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3. Assume p1, p2 ∈ P have a common upper bound.

(∗)1 We define p ∈ P as follows:
(a) vp = vp1 ∪ vp2 ;
(b) up = up1 ∪ up2 ;
(c) gp = gp1 ∪ gp2 ;
(d) hp is the function with domain vp and for δ ∈ vp we have

i. if δ ∈ vp1 \ vp2 then hp(δ) = hp1 (δ);
ii. if δ ∈ vp2 \ vp1 then hp(δ) = hp2 (δ);
iii. if δ ∈ vp1 ∩ vp2 then hp(δ) = hp1 (δ) ∪ hp2 (δ).

Now indeed

(∗)2 p ∈ P.

Also

(∗)3 p� ≤ p for � = 1, 2.

[Why? E.g., for Definition 3.6(B)(d), let δ ∈ vp and α ∈ hp(δ) \ hp�
(δ). By the choice of p, necessarily

α ∈ hp3−�
(δ) \ hp�

(δ). Let q be a common upper bound of p1, p2, exist by our present assumption; so
clearly α ∈ hq(δ) \ hp�

(δ) hence up�
∩Cδ ⊆ α as promised.]

(∗)4 if q is a common upper bound of p1, p2 then p ≤ q.

Why? E.g., for Definition 3.6(B)(d), assume δ ∈ vp and α ∈ hq(δ) \ hp(δ) we should prove that up ∩Cδ ⊆
α. Now for � = 1, 2 we have p� ≤ q, δ ∈ vp�

and α ∈ hq(δ)) \ hp�
(δ)) hence up�

∩Cδ ⊆ α. So clearly

up ∩Cδ = (up1 ∪ up2 ) = (up1 ∩Cδ ) ∪ (up2 ∩Cδ ) ⊆ α.

So we are done.

4. The proof is similar.

4A. Similar to the proof of part (2).

5. The statement (2)εc holds by parts (2) & (3).

6. For (2)a by the proof of Claim 2.6, i.e., defining h as there, recalling part (3).
For (2)a,∂ for ∂ ≤ μ choose h as above, using part (4) instead of part (3). �

Claim 3.9

1. If̄,α is a dense open subset of Pf̄ where:

(a) If̄,α = {p ∈ Pf̄ : α ∈ up and α ∈ S =⇒ α ∈ vp}.
2. If δ ∈ S and α ∈ Cδ then Iδ,α is a dense open subset of Pf̄ where: Iδ,α = {p ∈ Pf̄ : δ ∈ vp and hp(δ) � α}.
P r o o f .

1. Assume p ∈ Pf̄ and we shall find q ∈ If̄,α such that p ≤ q. Note that α is fixed.
Case 1. If (α /∈ S ∨ α ∈ vp) and α ∈ up: Let q = p.
Case 2. If (α /∈ S ∨ α ∈ vp) and α /∈ up: Define q by:

(a) uq = up ∪ {α};
(b) vq = vp;

(c) gq = gp ∪ {〈α, {0}〉};
(d) hq = hp.

Now check that q ∈ P ∧ α ∈ uq. Also p ≤ q is clear, e.g., Definition 3.6(B)(d) holds because δ ∈ vp =⇒
hp(δ) = hq(δ).
Case 3. α ∈ S and for simplicity α /∈ vp: Let β ∈ Cα be such that δ ∈ vp \ {α} =⇒ β > sup(Cδ ∩ α) and
sup(up ∩ α) < β and define q ∈ Pf̄ by:

i. uq = up ∪ {β},
ii. vq = vp ∪ {α},
iii. gq = gp ∪ {(β, {fα (β )})},
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16 S. Shelah: Forcing for λ-complete μ+-c.c.

iv. for δ ∈ vq we define hq(δ) as:
(a) hp(δ) when δ �= α,
(b) {β} when δ = α /∈ vq,
(c) hp(δ) ∪ {β} when δ = α ∈ vp.

Clearly p ≤ q ∈ If̄,α .

2. Similarly. �
Definition 3.10

1. We say that f̄ is (κ, ∂ )-generic enough when (A) =⇒ (B) and recall f̄ = 〈fδ : δ ∈ S〉, fδ : Cδ → ϑ where ∂

is a regular cardinality < μ and κ ∈ [ϑ,μ) (and recall ϑ is a cardinal [2, μ) and 〈αδ,i : i < μ〉 list Cδ in
increasing order):

(A) (a) E is a club of μ+;
(b) 〈αδ,ζ : ζ < μ〉 is an increasing continuous sequence of the members of Cδ for δ ∈ E ∩ S;
(c) hζ is a pressing down function from E ∩ S for ζ < μ;

(B) we can find ξ < μ of cofinality ∂ and a sequence 〈δi : i < κ〉 of ordinals from E ∩ S such that:
i. if ζ < ξ then hζ �{δi : i < κ} is constant;
ii. 〈αδi,ζ : ζ < ξ 〉 does not depend on i < κ hence also α = αδi,ξ by continuity;
iii. the set {fδi (α) : i < κ} is equal to ϑ where α is from ii.

2. We say that f̄ is weakly (κ, ∂ )-generic enough when as above except that in (B)iii. we demand just that the
set has cardinality ϑ .

Remark 3.11

1. This is used when we demand that any < ϑ has an ub inside the proof of Claim 3.13.

2. For ϑ = 2 as Claim 3.8(2) does not apply, we shall in Claim 3.13 need a stronger version—with the game;
cf. § 4.

3. In Definition 3.10 we may add:

iv. {α ∈ Cδi : α < αδi,ζ } for some ζ < ξ does not depend on i;

v. the fδi’s agree on this set.

Now in Claims 3.12 & 3.13 we shall arrive at the main point.

Claim 3.12

1. For ∂ as in Definition 3.10 assume Q is the forcing notion for adding μ+ many μ-Cohens. Then in VQ,
there is an (S, C̄, μ)-parameter f̄ which is (κ, ∂ )-generic enough (in the sense of Definition 3.10) for our
cardinals ϑ ∈ [2, μ) and regular ∂ ∈ [ℵ0, μ);

2. If ♦S then there is f̄ as above.

P r o o f .

1. Now (modulo equivalence, so without loss of generality) Q can be described as follows:

(∗)1 (a) p ∈ Q iff p is a function, dom(p) ∈ [S]<μ and for every δ ∈ dom(p), p(δ) is a function from some
strict initial segment of Cδ into ϑ recalling Cδ ⊆ δ is a club of δ of order type μ;

(b) Q |= “p ≤ q” iff α ∈ dom(p) =⇒ (α ∈ dom(q)) ∧ (p(α) � q(α));
(c) let f

˜
δ for δ ∈ S be ∪{p(δ) : p ∈ G

˜
Q satisfies δ ∈ dom(p)}.

It suffices to prove �Q “〈f
˜
δ : δ ∈ S〉 is as required”.

So assume

(∗)2 p∗ �Q “h
˜
ζ is a pressing down function on S for ζ < μ and 〈α

˜
δ,ζ : ζ < μ〉 is increasing continuous

sequence of members of Cδ for δ ∈ S”.

It suffices to find a condition q above p∗ forcing that there are 〈δi : i < κ〉 and ξ as in clause (B) of Defini-
tion 3.10. For each δ ∈ S we choose (pδ,ε, ξδ,ε, ᾱδ,ε〉 by induction on ε < ∂ such that:

(∗)3δ,ε (a) pδ,ε ∈ Q is above p∗;
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(b) ε(1) < ε =⇒ pδ,ε(1) ≤Q pδ,ε;
(c) δ ∈ dom(pδ,ε );
(d) ξδ,ε = otp(dom(pδ,ε(δ)));
(e) if ε = ε(1) + 1 then

i. pδ,ε forces a value h∗
ζ (δ) to h˜ ζ

(δ) for ζ < ξδ,ε(1);

ii. pδ,ε forces a value ᾱδ,ε(1) to 〈α
˜
δ,ζ : ζ ≤ ξδ,ε(1) + 1〉;

iii. ξδ,ε > ξδ,ε(1) and rang(ᾱδ,ε(1) ) ⊆ dom(p(δ)).

There is no problem to carry out the induction. Let ξδ = ∪{ξδ,ε : ε < ∂} < μ, α∗
δ = sup{dom(pδ,ε(δ)) : ε <

∂}, pδ = ∪{pδ,ε : ε < ∂}.
Now we can define a pressing down function h on S such that:

(∗)4 if δ1, δ2 ∈ S and h(δ1) = h(δ2), ε < ∂ then:
(a) ᾱδ1,ε = ᾱδ2,ε;
(b) for every α ∈ Rang(ᾱδ1,ε ) we have

i. (Cδ1 ∩ α) = (Cδ2 ∩ α),
ii. pδ1 (δ1)�(Cδ1 ∩ α) = pδ2 (δ2)�(Cδ2 ∩ α);

(c) h∗
ε (δ1) = h∗

ε (δ2) so ξδ1 = ξδ2 and pδ1,ε�δ1 = pδ2,ε�δ2.
Next choose an increasing sequence 〈δi : i < κ〉 of members of S such that h is constant on {δi : i < κ} and
i < j =⇒ dom(pδi ) ⊆ δ j.
Define q ∈ Q:

(∗)5 (a) dom(q) = ∪{dom(pδi,ε : i < κ, ε < κ};
(b) if i < κ then q(δi) = ∪{pδi,ε(δi) : ε < ∂} ∪ {〈α∗

δ , i〉} where j = i if i < ϑ and j = 0 otherwise;
(c) if δ ∈ dom(q) \ {δi : i < κ} then q(α) = ∪{pδi,ε(α) : α ∈ dom(pδi,ε )}.

2. Also easy. �
Claim 3.13

1. There are dense sets Iα ⊆ P = Pf̄ for α < μ+, such that if G ⊆ P is directed and meets every Iα , then G
is ϑ+-directed and even (< μ)-direccted.

2. If f̄ is weakly (ϑ, ∂ )-generic enough and the forcing notion R satisfies (1)c + (2)+a,ϑ (+) (cf. Theorem 1.13)

then in VR there is no (< μ)-directed G ⊆ P = Pf̄ meeting all the sets from Claim 3.9.

3. Also there is no such R satisfying (2)εc,ϑ,D when ε < μ is a limit ordinal

P r o o f .

1. Let S = { p̄ : p̄ is a directed sequence of conditions in P of limit length < μ}. Since μ<μ = μ and
|P| = μ+ it follows that |S | ≤ μ+. For each p̄ = 〈pi : i < i∗〉 ∈ S , let I p̄ = {q ∈ P : q is either in-
compatible with pi for some i < i∗ or pi ≤ q, for every i < i∗ < μ}. Since P is μ-strategically com-
plete (by Claim 3.8(1),(2)), the set I p̄ is dense and open. Let G meet I p̄, for every p̄ ∈ S . Then G is
ϑ+-directed.

2. Towards contradiction, assume p∗ �R “H
˜

⊆ P is (< μ)-directed, meeting all the sets from Claim 3.9”.

Using (1)c,μ, fix a winning strategy st for COM, the completeness player in the game �μ(p∗, R) (cf. Defi-
nition 1.11(1)), choose (Eζ , q̄ζ , r̄ζ , h̄ζ , p̄ζ , ᾱζ ) by induction on ζ < μ such that:

(∗) (a) q̄ζ = 〈qζ ,δ : δ ∈ Eζ 〉 and r̄ζ = 〈rζ ,δ : δ ∈ Eζ 〉;
(b) p∗ ≤ qζ ,δ ≤ rζ ,δ are from R;
(c) 〈(qξ,δ, rξ,δ ) : ξ ≤ ζ 〉 is an initial segment of a play of �μ(p∗, R) in which the player COM uses st;
(d) Eζ ⊆ μ+ is a club;
(e) hζ is a regressive function on S ∩ Eζ ;
(f) if U ⊆ Eζ ∩ S, |U | < ϑ and hζ �U is constant, then {rζ ,δ : δ ∈ U } has a lub in R;
(g) p̄ζ = 〈pζ ,δ : δ ∈ Eζ 〉;
(h) rζ ,δ �R “pζ ,δ ∈ H

˜
is above pξ,δ for ξ < ζ”;

(i) ᾱζ = 〈αδ,ζ : δ ∈ S ∩ Eζ 〉;
(j) αδ,ζ is a member of hpζ ,δ

(δ) above dom(hpξ,δ
(δ)) for every ξ < ε.
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For clauses (e)+(f), we use condition (2)+a,ϑ .
Since f̄ is (ϑ, ϑ )-generic enough, we can find 〈δi : i < ϑ〉 and ξ as in Definition 3.10 and let 〈ζi : i < ϑ〉 be
increasing with limit ξ .
By clause (f), for each j < ϑ , the set {rζ j,δi : i < j} has a lub r∗j ∈ R—so necessarily j1 < j2 < ϑ =⇒ r∗j1 ≤
r∗j2 . Hence the sequence 〈r∗j : j < ϑ〉 has an upper bound r∗ (by (1)b,=ϑ ). So r∗ �R {pζi,δ j : i < j < ϑ} ⊆ H

˜
.

As r∗ �R H
˜
is < ϑ+-directed, we can find some p ∈ P, r∗∗ ≥ r∗ such that r∗∗ �R p ∈ H

˜
is an upper bound

for {pζi,δ j : i < j < ϑ}.
So, on one hand, gp(αδ0,ξ ) is a subset of μ of cardinality < ϑ—by the definition of P. On the other hand,
i < ϑ =⇒ αξ,δi = αξ,δ0 and fδi (αδi,ξ ) ∈ gp(αδi,ξ ). But by Definition 3.10(B)iii. this is impossible. �

Conclusion 3.14 If λ = λ<λ > μ = μ<μ > ℵ0 and ϑ �= ∂, ∂ = cf(∂ ) < μ (and recall 2 ≤ ϑ ≤ μ) then for
some forcing notion R we have:

(a) R satisfies (1)c + (2)+a,=ϑ , of cardinality λ (so adds no new sequences of length < μ, collapses no cardi-
nality, changes no cofinality and the only possible change in cardinal arithmetic is making 2μ = λ)

(b) in VR we have Axλ,μ((1)c + (2)+a,ϑ (+) );

(c) in VR the axiom Ax((1)c + (2)+a,∂ ) fails.

4 Separating Axϑ
μ,Ax∂

μ for regular ϑ, ∂

Recall that Axϑ
μ,D is Axμ((1)c + (2)ϑc,D), we usually omit D and μ is understood from the context.

Hypothesis 4.1

1. μ = μ<μ.

2. S ⊆ Sμ+
μ stationary.

3. C̄ = 〈Cδ : δ ∈ S〉,Cδ a closed unbounded subset of δ of order type μ, listed by 〈α∗
δ,ζ : ζ < μ〉 in increasing

order.

4. f̄ as in Definition 4.2.

5. � ⊆ Reg ∩ μ+, let Sμ+
� = {δ < μ+ : cf(δ) ∈ �}.

6. 2 ≤ ϑ < μ but our main interest is ϑ = 2.

Definition 4.2 We say f̄ is a (C̄, ϑ )-parameter (or uniformization problem) when f̄ = 〈fδ : δ ∈ S〉, fδ : Cδ → ϑ .

Definition 4.3

1. We define P1
f̄ and <st as in Definition 3.6 but we change clause (A)(e) by:

(e)’ if δ ∈ vp then
(α) hp(δ) is a bounded subset of Cδ closed only in its supremum,
(β ) hp(δ) ⊆ up,

(γ ) if β ∈ hp(δ) so δ ∈ vp then cf(β ) ∈ � =⇒ fδ (β ) ∈ gp(β ) (so really only gp�(up ∩ Sμ+
� ) matters),

(δ) if β ∈ hp(δ) and cf(β ) /∈ Sμ+
� then gp(β ) = ∅.

2. We define I 1
f̄,α ⊆ P1

f̄ as in Definition 3.9.

Claim 4.4 P1
f̄ satisfies

(a) any increasing sequence of length δ < μ, cf(δ) /∈ � has a lub, i.e., (1)a,=∂ for ∂ /∈ �;

(b) a set of pairwise compatible conditions of cardinality < min(� ∪ {�}) has a lub—the union, i.e.,
(1)a,<min(�) holds.

P r o o f . Easy. �

Claim 4.5 P1
f̄ satisfies:
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(a) we have (1)+c , i.e.,
(α) <st is a partial order and p1 ≤ p2 <st p3 < p4 =⇒ p1 <st p4;

(β ) any <st-increasing chain of length < μ has an ub;

(b) (α) we have (3)a, i.e., if p, q ∈ P1
f̄ are compatible then they have a lub;

(β ) {pi : i < i(∗)} has a lub when i(∗) < μ and {pi : i < i(∗)} is a set of pairwise compatible conditions
and for each δ ∈ S, the set {hpi (δ) : i < i(∗) and δ ∈ vpi} is finite; note that this set is linearly ordered
by being an initial segment;

(γ ) {pi : i < i(∗)} has a ub when i(∗) < μ and {pi : i < i(∗)} is a set of pairwise compatible conditions
and if cf(α) ∈ � then |wp,α| < ϑ wherewp,α = {δ : δ ∈ ⋃

i
vpi and α = sup{sup(gpi (δ)) + 1: i < i(∗)

and δ ∈ vpi}}.
(c) (α) (2)a holds;

(β ) (2)∂c that is ∗∂
μ holds if ∂ < μ is regular and ϑ ≥ 2 ∨ ∂ /∈ �;

(d) (3)b,ε holds if κ = cf(ε) ∈ μ\� so is regular.

P r o o f . Like for Claim 3.8, e.g.,
Clause (a): As in 3.8(1),(2).
Clause (b): Should be clear.
Clause (c): If ϑ ≥ 2 we use (3)a, i.e., the parallel of 3.8(3). If ϑ = 1 and ∂ /∈ � use clause (d).
Clause (d): Just recall (e)(γ ) of Definition 4.3. �

Claim 4.6 I¯̄f,α is a dense open subset of P1
f̄ where

1. If̄,α = {p ∈ Pf̄ : α ∈ up and α ∈ S =⇒ α ∈ vp}.
P r o o f . Should be clear. �

Definition 4.7 For (μ, ϑ, ∂,D, f̄) as in clause (A) below we define a game �gn(f̄, ϑ, ∂,D) in clause (B) below
where:

(A) (a) μ = μ<μ > ∂ = cf(∂ ) ≥ ℵ0 and

(b) S ⊆ Sμ+
μ , C̄ = 〈Cδ : δ ∈ S〉 a club sytem,

(c) D is a normal filter on μ+ to which S belongs,

(d) f̄ = 〈fδ : δ ∈ S〉, fδ is a function fromCδ to ϑ .

(B) (a) a play lasts ∂ moves,

(b) in the ζ -th move, the players choose S�
ζ ∈ D such that S2ζ ⊆ S1ζ ⊆ S ∧ (∀ξ < ζ )(S1ζ ⊆ S2ξ ) and ᾱ� =

〈α�
ζ ,δ : δ ∈ S�

ζ 〉, α�
ζ ,δ ⊆ Cδ, α

2
ζ ,δ > α1

ζ ,δ > sup{α2
ξ,δ : ξ < δ} and h�

ζ pressing down functions on S�
ζ ,

(c) in the ζ -th move, the anti-generic player chooses S1ζ , ᾱ
1
ζ ,h

1
ζ and then the generic player chooses

S2ζ , ᾱ
2,h2ζ ,

(d) in the end of the play the generic player wins when for some δ1 < δ2 from ∩{S2ζ : ζ < ∂} we have
sup{α�

ζ ,δ1
: ζ < ∂, � = 1, 2} = sup{α�

ζ ,δ2
: ζ < ∂, � = 1, 2}, call it α and fδ1 (α) �= fδ2 (α),

∧

k<∂

h�
k(δ1) =

h�
k(δ2).

Theorem 4.8 If σ ∈ �,ϑ = 2 and f̄ is such that in the game �gn(f̄, ϑ, σ,D) from Definition 4.7 the generic
player wins or just does not lose, (so D is a normal filter on μ+, Sμ+

μ ∈ D) then :

(a) P1
f̄ fails Ax

σ
μ.

(b) no forcing satisfying ∗σ
μ,D adds a generic to P1

f̄ , moreover

(c) no forcing satisfying ∗σ
μ,D adds a (< μ)-directed or just < (σ+)-directed G ⊆ P1

f̄ meeting If̄,α for every
α < μ+ (defined in 3.9).

P r o o f . As in the proof of Claim 3.13(1), e.g.,
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Clause (c):
In the proof of Claim 3.13(1), we replace st by a winning strategy of the completeness player in the game for

(2)σd,D (cf. Definition 1.3) and toward contradiction assume f̄ is an (S, C̄, ϑ )-parameter, p∗ ∈ P1
f̄ and p∗ � “H

˜
⊆ P1

f̄

is a (< σ+)-directed and meets every If̄,α, α < μ+′′.
Now for ζ < σ let Yζ be the set of (q̄ζ , r̄ζ ,hζ ,Eζ , p̄ζ , ᾱζ ) such that:

� (a) 〈q̄ξ , r̄ξ , hξ : ξ ≤ ζ 〉 is an initial segment of a play of the game from Definition 1.3 in which the player
COM uses the strategy st;

(b) so q̄ζ = 〈qζ ,δ : δ ∈ Sζ 〉, r̄ζ = 〈rζ ,δ : δ ∈ Sζ 〉, Sζ ∈ D and Sζ ⊆ {Sξ : for ξ < ζ };
(c) p̄ζ = 〈pζ ,δ : δ ∈ Sζ 〉 and pζ ,δ ∈ P1

f̄ ;

(d) rζ ,δ �R “pζ ,δ ∈ H
˜
”;

(e) δ ∈ vpζ ,δ
;

(f) 〈sup(dom(hpξ,δ
)) : ξ ≤ ζ 〉 is strictly increasing.

Now we use the definition of the game �gn(f̄, ϑ, σ,D) to finish as in Definition 3.10. �

The above theorem helps for further problems:

Claim 4.9

1. If a forcing notion P satisfies (1)b + (2)a and σ ∈ Reg ∩ μ then P satisfies (2)σc .

2. IfQ is addingμ+, μ-Cohen 〈η
˜
α : α < μ+〉, η

˜
α ∈ μϑ and ϑ ≤ μ,ℵ1 ≤ σ = cf(σ ) < μ,D is a normal filter

on μ+ such that Sμ+
μ ∈ D then �Q “〈η

˜
α : α < μ+〉 is a (C̄, μ)-parameter and is (ϑ, σ )-generic enough and

also the generic player wins in the game �gn(η̄
˜
, 2, σ,D)”, pedantically replacing D by the normal filter

it generates.
Explain Claim 3.9(2).

Conclusion 4.10 Assume ℵ0 ≤ σ = cf(σ ) < μ = μ<μ and Q is the forcing notion of adding μ+, μ-Cohens.

1. In VQ, there is a forcing notion P satisfying (1)+c , (2)ϑc for ϑ ∈ Reg ∩ μ\{σ } but not (2)σc .
2. Moreover in VQ, if R is a forcing notion satisfying (1)b, (2)σc then it adds no generic to P, in fact |P| = μ+

and we should demand “G ⊆ P is σ+-directed, G ∩ Iα �= ∅ for α < μ+” for some dense Iα ⊆ P for
α < μ+.

3. So for some (< μ)-complete μ+-c.c. forcing notion (satisfying (1)b + (2)σc ), in (V
Q)P we have Axσ

μ but no
G ⊆ P as above.

P r o o f . In VQ let f̄ be from Claim 4.9(2), P be P1
f̄ from Definition 4.3.

Now (1) follows from (2). For (2) use Theorem 4.8 and Claims 4.4, 4.5 & 4.6. For part (3) use the forcing
from [14, 1.1-1.18]. �
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