
Journal of Algebra 595 (2022) 297–346

Sh:1201
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

First-order aspects of Coxeter groups ✩

Bernhard Mühlherr a, Gianluca Paolini b,∗, Saharon Shelah c,d

a Mathematisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
b Department of Mathematics “Giuseppe Peano”, University of Torino, Italy
c Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel
d Department of Mathematics, Rutgers University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2021
Available online 30 December 2021
Communicated by Franz-Viktor 
Kuhlmann

We lay the foundations of the first-order model theory of 
Coxeter groups. Firstly, with the exception of the 2-spherical 
non-affine case (which we leave open), we characterize the 
superstable Coxeter groups of finite rank, which we show to 
be essentially the Coxeter groups of affine type. Secondly, 
we characterize the Coxeter groups of finite rank which are 
domains, a central assumption in the theory of algebraic 
geometry over groups, which in many respects (e.g. λ-
stability) reduces the model theory of a given Coxeter system 
to the model theory of its associated irreducible components. 
In the second part of the paper we move to specific definability 
questions in right-angled Coxeter groups (RACGs) and 2-
spherical Coxeter groups. In this respect, firstly, we prove 
that RACGs of finite rank do not have proper elementary 
subgroups which are Coxeter groups, and prove further that 
reflection independent ones do not have proper elementary 
subgroups at all. Secondly, we prove that if the monoid 
Sim(W, S) of S-self-similarities of W is finitely generated, 
then W is a prime model of its theory. Thirdly, we prove 
that in reflection independent RACGs of finite rank the 
Coxeter elements are type-determined. We then move to 2-
spherical Coxeter groups, proving that if (W, S) is irreducible, 
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2-spherical even and not affine, then W is a prime model of 
its theory, and that if WΓ and WΘ are as in the previous 
sentence, then WΓ is elementary equivalent to WΘ if and only 
if Γ ∼= Θ, thus solving the elementary equivalence problem 
for most of the 2-spherical Coxeter groups. In the last part 
of the paper we focus on model theoretic applications of the 
notion of reflection length from Coxeter group theory, proving 
in particular that affine Coxeter groups are not connected.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Since the work of Sela [49], and Kharlampovich & Myasnikov [32] on Tarski’s problem 
for non-abelian free groups, the model theoretic analysis of classes of groups arising from 
combinatorial and geometric group theory has seen crucial advancements, famous is for 
example the extension of the methods employed for free groups to the analysis of the 
model theory of torsion-free hyperbolic groups [31,50].

In the present study we lay the foundations of the first-order model theory of Coxeter 
groups, a class of groups that arises in a multitude of ways in several areas of mathematics, 
such as algebra [29], geometry [17] and combinatorics [5]. This area of model theory is a 
largely unexplored territory. In fact, at the best of our knowledge, the only known results 
on the first-order1 model theory of Coxeter groups are:

Fact 1.1.

(a) If WΓ and WΘ are two right-angled Coxeter groups of finite rank, then WΓ is ele-
mentary equivalent to WΘ if and only if Γ ∼= Θ (see [12]).

(b) If W is a right-angled Coxeter group of finite rank, then the existential (resp. positive) 
first-order theory of W is decidable (see [20]).

1 See [30] for a model theoretic analysis of right-angled Coxeter groups in the non first-order context of 
abstract elementary classes.
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Our first main result is a nearly complete characterization of the superstable Coxeter 
groups of finite rank (we leave open the non-affine 2-spherical case). The property of su-
perstability is one of the main diving lines in model theory, with very strong structural 
consequences, e.g. its negation implies the maximal number of models in every uncount-
able cardinality. Most abelian groups are superstable [48] (e.g. the free ones), while e.g. 
non-abelian free groups are not superstable [45].2

Theorem 1.2. Let (W, S) be a Coxeter system of finite rank, and let W1 × · · · × Wn be 
the corresponding decomposition of W into irreducible components. Suppose further that 
W is infinite and not non-affine 2-spherical. Then W is superstable if and only if, for 
every i ∈ [1, n], Wi is either of affine type or of spherical type.

The negative side of Theorem 1.2 actually follows from an abstract technical criterion, 
Theorem 4.6, which is of independent interest and whose applicability is well-beyond the 
present case study. In particular, it also allows us to prove:

Theorem 1.3. Let G be a group. A sufficient condition for the unsuperstability of G is 
that, for some 2 � n < ω, there exists a non-abelian free subgroup F � G which is 
n-pure in G, i.e. for every x ∈ G, if xn ∈ F , then x ∈ F . In particular, if G is a virtually 
non-abelian free group, then G is not superstable.

The generality of Theorem 1.3 also implies a characterization of the superstable right-
angled Artin groups of finite rank (on these groups see also below):

Corollary 1.4. Let AΓ = A be an Artin group, if Γ contains a non-edge (i.e. the associated 
Coxeter matrix has an ∞ entry), then A is not superstable. In particular, a right-angled 
Artin group is superstable if and only if it is abelian.

Also the positive side of Theorem 1.2 follows from a stronger result:

Theorem 1.5. Let (W, S) be an irreducible affine Coxeter group. Then W is interpretable
in (Z, +, 0) with finitely many parameters, and so Th(W ) is decidable.

Our second main result concerns algebraic geometry over groups, a general theory 
developed in a series of papers [3,34,35] which has important algebraic and model theo-
retic applications. In order to develop this involved machinery, the authors of [3,34,35]
isolate a group theoretic property, that of being a domain (cf. Definition 5.8), and show 
that under this assumption many notions from algebraic geometry can be developed in 
a purely group theoretic context. We prove:

2 We observe that the unsuperstability of non-abelian free groups has been known since at least the 80’s 
(see in fact [45] for an explicit proof of this fact). On the other hand, the stability of non-abelian free groups 
has been established only recently by the fundamental work of Sela [51].
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Theorem 1.6. Let (W, S) be a Coxeter system of finite rank, and W1 × · · · × Wn the 
corresponding decomposition of W into irreducible components. Suppose that for every 
i ∈ [1, n], Wi is neither spherical nor affine, then the following are equivalent:

(1) W is a domain;
(2) n = 1, i.e. (W, S) is irreducible.

By a case-by-case analysis of the irreducible affine and spherical Coxeter groups it 
could be seen that W is a domain if and only if W is irreducible, centerless and not of 
affine type, but this is outside of the scope of the present paper. Using Theorem 1.6 in 
combination with the general results of [35], we then deduce:

Corollary 1.7. Let (W, S) be a Coxeter system of finite rank, and suppose that (W, S) is 
irreducible and neither spherical nor affine. Then the machinery of algebraic geometry 
over groups [3,34,35] can be applied to W .

Corollary 1.8. Let (W, S) be a Coxeter system of finite rank, and let W1 × · · · ×Wn be 
the corresponding decomposition of W into irreducible components, and suppose that, for 
every i ∈ [1, n], Wi is neither spherical nor affine. Then:

(i) if W ≡ H, then H is also a finite direct product of domains H = H1 × · · · ×Hk, 
with k = n and Wi ≡ Hi, for all i ∈ [1, n] (after suitable ordering of factors);

(ii) for every i ∈ [1, n], Th(Wi) is interpretable in W ;
(iii) W is λ-stable if and only if Wi is λ-stable for every i ∈ [1, n];
(iv) Th(W ) is decidable if and only if Th(Wi) is decidable for every i ∈ [1, n].

In the second part of the paper we move to definability questions in specific classes 
of Coxeter groups. The first class that we consider is the class of right-angled Coxeter 
groups (RACGs). These groups play a central role in the theory of Coxeter groups (and 
related objects), and they are closely related to the so-called right-angled Artin group 
(RAAGs), a class of groups whose model theoretic analysis has recently seen important 
advancements (see e.g. [13,14]).

We focus on two model theoretic problems: the analysis of elementary substructures 
of a given structure, and the question of primality of a given model (where a model M
is prime if it embeds elementarily in every model of its theory).

The question of elementarity of a subgroup of a given group is a classical theme in 
model theory. For example, in the 50’s Tarski asked if the natural embedding of the 
non-abelian free group Fk on k generators into the non-abelian free group Fn on n
generator was elementary (k � n < ω). This was settled in the positive by Sela [49], and, 
independently, by Kharlampovich & Myasnikov [32]. Furthermore, Perin proved that H
is elementary in Fn if and only if H is a free factor of Fn [41,42].
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In the following theorem we give a strong contribution to the question of determination 
of the elementary substructures of a right-angled Coxeter group W , and a full answer in 
the case W is further assumed to be reflection independent, i.e. its set of reflections SW

is independent of the choice of Coxeter basis S of W .

Theorem 1.9. Let W be a right-angled Coxeter group of finite rank. Then W does not have 
proper elementary subgroups which are Coxeter groups. Furthermore, if W is reflection 
independent, then the set of reflections of W is definable without parameters and W has
no proper elementary subgroups at all.

Another classical theme in model theory is the existence of prime models, and the 
question of homogeneity of a given model, where a structure is said to be homogeneous 
if tuples realizing the same first-order types over ∅ are automorphic.3 In [40] Nies proved 
that F2 is homogeneous and that the theory of non-abelian free groups does not have 
a prime model. Nies left open the question of homogeneity of free groups of finite rank 
� 3, which was solved in the positive only about 15 years later by Sklinos & Perin [43], 
and, independently, by Houcine [27].

In Theorem 1.10 we connect the question of primality of a given RACG of finite rank 
W to the finite generation of a certain monoid of monomorphisms of W : the monoid of 
S-self-similarity of W , denoted as Sim(W, S) (cf. Definition 3.19).

Theorem 1.10. Let W be a RACG of finite rank and S a basis of W . Then:

(1) If the monoid Sim(W, S) of special S-endomorphisms of W is finitely generated, 
then W is a prime model of its theory, that is, for every n < ω and any n-tuple ā
from W , the Aut(W )-orbit of ā is definable in W without parameters.

(2) If Sim(W, S) is not finitely generated, then the orbit of (any enumeration of) S is 
not definable in W without parameters by a universal sentence.

(3) If W is a universal Coxeter group of finite rank at least two, then the monoid 
Sim(W, S) is not finitely generated.

Finally, we prove that right-angled Coxeter groups of finite rank manifest strong traces 
of homogeneity, leaving though open the problem of full homogeneity.

Theorem 1.11. Let W be a right-angled Coxeter group of finite rank. Then if ā ∈ Wn is 
such that 〈ā〉W contains a Coxeter element of W , then ā is type-determined.

We now move to another important and well-known class of Coxeter groups which 
shows a very different model theoretic behavior: the 2-spherical Coxeter groups. In this 
respect, relying on the fundamental results of [24,28], we were able to prove:

3 The two questions are strictly related, since a prime model M is such that orbits of tuples are not only 
type-definable over ∅, but actually first-order definable over ∅, and thus M is homogeneous.



302 B. Mühlherr et al. / Journal of Algebra 595 (2022) 297–346

Sh:1201
Theorem 1.12. Let (W, S) be an irreducible, 2-spherical Coxeter system of finite rank. 
Then the set of reflections of W is definable without parameters. Furthermore, if (W, S)
is even and not affine, then W is a prime model of its theory.

Corollary 1.13. Let WΓ and WΘ be irreducible, 2-spherical, even and not affine Coxeter 
groups, then WΓ is elementary equivalent to WΘ if and only if Γ ∼= Θ.

In the last part of our paper we focus on model theoretic applications of the notions 
of reflection length, i.e. the study of W with respect to the generating set SW (the 
set of S-reflections of W ). Recently, the notion of reflection length has received the 
attention of several researchers in Coxeter group theory,4 see e.g. [4,7,21,23,33]. One of 
the most important results concerning this notion is that a Coxeter group of finite rank 
has bounded reflection length iff it is either spherical or affine [23,33], and further that 
in these cases explicit bounds can be given [7].

We observe that the unboundedness phenomenon just mentioned implies that ℵ0-
saturated elementary extensions of infinite non-affine Coxeter groups have “non-standard 
elements”, i.e. elements with “infinite reflection length”. On the other hand, elementary 
extensions of affine Coxeter groups are always generated by reflections and thus these 
groups behave very differently. We believe that the boundedness of reflection length in 
affine Coxeter groups is related to the phenomenon of superstability proved in Theo-
rem 1.2 (but we have no hard evidence at the moment).

Theorem 1.14. Let (W, S) be an infinite Coxeter system of finite rank, and let G be an 
elementary extension of W . Let NG = N = 〈g ∈ G : g2 = e〉G. Then:

(1) N is generated by SG, and N is a characteristic subgroup of G;
(2) if W is not affine and G is ℵ0-saturated, then N 
= G;
(3) if W is affine, then G = N .

We then focus on definable subgroups of Coxeter groups of finite rank, showing that 
kernels of reflection invariant homomorphisms of W determine 

∨
-definable subgroups 

of W , and that in the case of affine Coxeter groups they actually determine first-order 
definable subgroups. In particular, we were able to show:

Corollary 1.15. Let (W, S) be an affine Coxeter system (of finite rank). Then the alter-
nating subgroup of (W, S) is definable in W over S. In particular, the monster model of 
W has a definable subgroup of index two and so it is not a connected group.

We conclude the paper combining our methods with the construction from [18] es-
tablishing that right-Angled Artin groups are commensurable with right-angled Coxeter 

4 Sometimes this area of research goes under the name of “dual Coxeter theory”.
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groups, showing that this construction is actually 
∨

-definable. This gives a partial an-
swer to the following question which we consider to be of independent interest: is there 
a way to establish a technical relation between the model theory of right-angled Artin 
groups and the model theory of right-angled Coxeter groups?

Corollary 1.16. For any right-angled Artin group A of finite rank there exists a right-
angled Coxeter system of finite rank (WA, S) such that A is a normal subgroup of WA, 
A has finite index in WA, and A is a 

∨
-definable subgroup of WA over S.

2. Model theoretic preliminaries

For a nice introduction to model theory and a detailed background on the definitions 
which we are about to introduce see e.g. [37]. For a text specifically devoted to the model 
theory of groups see e.g. the classical reference [46].

The first-order language of group theory consists of the formulas:

(i) atomic expressions of the form σ(x̄) = τ(ȳ), where σ(x̄) and τ(ȳ) are group theoretic 
terms (words) in the variable x̄ and ȳ, respectively;

(ii) the closure of the atomic formulas from (i) under ∧ (“and”), ∨ (“or”), ¬ (“not”), 
∀ (“for all”), and ∃ (“there exists”).

The occurrence of a variable x in the formula ϕ is said to be free if it is not contained 
in a subformula of ϕ which is immediately preceded by a quantifier which bounds x (i.e. 
the symbols ∀x or ∃x). We usually denote a first-order formula by ϕ(x̄), x̄ = (x1, ..., xn), 
if the free variables which occur in ϕ are among x1, ..., xn.

A formula ϕ with no free variables (i.e. a formula in which every occurrence of every 
variable is not free) is said to be a sentence. If ϕ(x̄), x̄ = (x1, ..., xn), is a first-order 
formula and ḡ ∈ Gn, for G a group, we say that ϕ(ḡ) is satisfied in G, if the formulas 
ϕ(x̄) are true in G under the assignment xi �→ gi, for i ∈ [1, n]. This is denoted by 
G |= ϕ(ḡ) (where the symbol |= stands for “models”).

Definition 2.1. Let G and H be groups.

(1) We say that G is elementary equivalent to H, if a sentence ϕ is true in G if and only 
if it is true in H, i.e. G and H have the same first-order theory.

(2) We say that G is an elementary subgroup of H if G is a subgroup of H and for every 
formula ϕ(x̄), x̄ = (x1, ..., xn), and ḡ ∈ Gn we have that:

G |= ϕ(ḡ) ⇔ H |= ϕ(ḡ).

In this case we also say that H is an elementary extension of G.
(3) We say that G is elementary embeddable into H if there exists an embedding α :

G → H such that α(G) is an elementary subgroup of H.
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Definition 2.2. Let G be a group and X ⊆ Gn. Given P ⊆ G, we say that X is P -
definable, or definable over P , if there exists a first-order formula ϕ(x̄, ̄a), with ā ∈ Pm, 
such that X = {ḡ ∈ Gn : G |= ϕ(ḡ, ̄a)}. We say that X is definable if it is definable over 
some set of parameters (although we sometimes say “definable with parameters”). We 
say that X is definable without parameters if it is ∅-definable.

Definition 2.3. We say that a group G is a prime model of its theory if it is elementary 
embeddable in every group H elementary equivalent to it.

Definition 2.4. Let G be a group and H a subgroup of G. We say that H is 
∨

-definable 
(resp. definable, or first-order definable) in G if the following hold:

(i) H is definable in G by a countable disjunction, i.e. one of size � ℵ0, (resp. by a 
first-order formula ϕ(x)) with parameters from G;

(ii) in every elementary extension G′ of G this disjunction (resp. the first-order formula 
ϕ(x)) defines a subgroup of G.

Definition 2.5. We say that a group G is connected if it does not have a proper (first-
order) definable subgroup of finite index.

Definition 2.6. Let M and N be models. We say that N is interpretable in M over A ⊆ M

if for some n < ω there are:

(1) an A-definable subset D of Mn;
(2) an A-definable equivalence relation E on D;
(3) a bijection α : N → D/E such that for every m < ω and ∅-definable subset R of 

Nm the subset of Mnm given by:

{(ā1, ..., ām) ∈ (Mn)m : (α−1(ā1/E), ..., α−1(ām/E)) ∈ R}

is A-definable in M .

There are many equivalent definitions of superstability (the notion occurring in The-
orem 1.2), we will give one in Section 4, see Definition 4.3.

3. Coxeter groups

Definition 3.1 (Coxeter groups). Let S be a set. A matrix m : S × S → {1, 2, ..., ∞} is 
called a Coxeter matrix if it satisfies:

(1) m(s, s′) = m(s′, s);
(2) m(s, s′) = 1 ⇔ s = s′.
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For such a matrix, let S2
∗ = {(s, s′) ∈ S2 : m(s, s′) < ∞}. A Coxeter matrix m determines 

a group W with presentation:

{
Generators: S

Relations: (ss′)m(s,s′) = e, for all (s, s′) ∈ S2
∗ .

A group with a presentation as above is called a Coxeter group, and the pair (W, S) is 
a called a Coxeter system. The rank of the Coxeter system (W, S) is |S|.

Definition 3.2. In the context of Definition 3.1, the Coxeter matrix m can equivalently 
be represented by a labeled graph Γ whose node set is S and whose set of edges EΓ is the 
set of pairs {s, s′} such that m(s, s′) < ∞, with label m(s, s′). Notice that some authors 
consider instead the graph Δ such that s and s′ are adjacent iff m(s, s) � 3. In order to 
try to avoid confusion we refer to the first graph as the Coxeter graph of (W, S) (and 
usually denote it with the letter Γ), and to the second graph as the Coxeter diagram of 
(W, S) (and usually denote it with the letter Δ).

Definition 3.3 (Right-angled Coxeter and Artin groups). Let m be a Coxeter matrix and 
let W be the corresponding Coxeter group. We say that W is right-angled if the matrix 
m has values in the set {1, 2, ∞}. In this case the Coxeter graph Γ associated to m is 
simply thought as a graph (instead of a labeled graph), with edges corresponding to 
the pairs {s, s′} such that m(s, s′) = 2. A right-angled Artin group is defined as in the 
case of right-angled Coxeter groups with the omission in the defining presentation of the 
requirement that generators have order 2.

Definition 3.4. Let W be a Coxeter group. We say that T ⊆ W is a Coxeter basis of W
(or a Coxeter generating set for W ), if (W, T ) is a Coxeter system for W .

Fact 3.5. Let (W, S) be a Coxeter system and J ⊆ S.

(a) (〈J〉W , J) is a Coxeter system;
(b) for K ⊆ S we have 〈J〉W ∩ 〈K〉W = 〈J ∩K〉W ;
(c) if t ∈ S − J normalizes 〈J〉W , then [t, J ] = e.

Proof. Assertions (a) and (b) are well known (see e.g. [29]). Let t be as in Item (c) and 
s ∈ J . Then tst ∈ 〈s, t〉W ∩ 〈J〉W = 〈s〉W , by Item (b), and so st = ts. �
Definition 3.6. Let (W, S) be a Coxeter system. An S-parabolic subgroup of W is a sub-
group P of W such that P = w〈J〉Ww−1 for some w ∈ W and some J ⊆ S. A special 
S-parabolic subgroup of W is a subgroup P of W such that P = 〈J〉W for some J ⊆ S. 
A subset J of S is called spherical if 〈J〉W is finite.
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Definition 3.7. Let (W, S) be a Coxeter system with Coxeter diagram Δ (recall Defini-
tion 3.2). We say that (W, S) is irreducible if Δ is connected.

Remark 3.8. Let (W, S) be a right-angled Coxeter system with Coxeter graph Γ (recall 
Definition 3.2). Then (W, S) is irreducible iff the complement of Γ is connected.

Fact 3.9. Let (W, S) be a Coxeter system of finite rank. Then W can be written uniquely 
as a product W1 × · · · × Wn of irreducible special S-parabolic subgroups of W (up to 
changing the order of the factors Wi, i ∈ [1, n]). In fact, if S1, ..., Sn are the connected 
components of the Coxeter diagram Δ, then Wi = 〈Si〉W .

Definition 3.10. Let W be a Coxeter group. We say that W is spherical if it is finite. 
We say that W is affine if it is infinite and it has a representation as a discrete affine 
reflection group (see e.g. the classical reference [29] for details).

Definition 3.11. Let (W, S) be a Coxeter system with Coxeter matrix m. We say that 
the Coxeter system (W, S) is 2-spherical (resp. even) if m has only finite entries (resp. if 
m has only even or infinite entries).

Definition 3.12. Let W be a Coxeter group of finite rank. For any subset X of W we 
define its S-parabolic closure PcS(X) as the intersection of all the S-parabolic subgroups 
of W containing X.

In the following lemma we collect some basic properties concerning the parabolic 
closure PcS(X). Given a group G and X ⊆ G, we denote by NG(X) and CG(X) the 
normalizer of X in G and the centralizer of X in G, respectively.

Lemma 3.13. Let W be a Coxeter group of finite rank. For X ⊆ W we have:

(a) PcS(X) is an S-parabolic subgroup of W containing 〈X〉W ;
(b) if 〈X〉W is finite, then PcS(X) is a finite S-parabolic subgroup of W ; in particular, 

there is a spherical J ⊆ S and w ∈ W such that PcS(X) = w〈J〉Ww−1;
(c) NW (〈X〉W ) � NW (PcS(X)), and in particular CW (X) � NW (PcS(X)).

Proof. For Item (a) we refer to the discussion in [36] following Proposition 2.1.4. Item 
(b) is a consequence of Item (a) and the well-known fact that each finite subgroup of W
is contained in a finite S-parabolic subgroup of W (see e.g. [1, Proposition 2.87]). Item 
(c) follows from the fact that W normalizes the set of its S-parabolic subgroups. �
Definition 3.14 (Reflection length). Given a Coxeter system (W, S), we denote by �S the 
length of an element from W with respect to the generating set S (so the minimal length 
of a word in the alphabet S which spells the element w ∈ W ). We denote by �T the 
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length of an element from W with respect to the generating set T := SW = {wsw−1 :
s ∈ S, w ∈ W}. The latter length is called reflection length.

Fact 3.15 ([23,33]). Let (W, S) be a Coxeter group of finite rank and T = SW .

(1) If W is spherical or affine, then the reflection length �T is bounded.
(2) If W is not as in (1), then the reflection length �T is unbounded.

Fact 3.16 (Abelianization). Let (W, S) be a Coxeter group of finite rank, and let m be the 
corresponding Coxeter matrix. Let ∼ be the equivalence relation on S defined by taking 
the transitive closure of the relation s ∼ s′ if m(s, s′) is odd. Then:

α : W → (Z/2Z)|S/∼| : s �→ [s]∼,

is an homomorphism, and in fact (Z/2Z)|S/∼| is the abelianization of W .

Definition 3.17. Let (W, S) be a Coxeter system of finite rank. We say that W is reflection 
independent if SW = {wsw−1 : s ∈ S, w ∈ W} is invariant under change of Coxeter 
basis S of W (i.e. if S and T are two such bases, then SW = TW ).

3.1. Reflection subgroups of even Coxeter groups

Definition 3.18. Let W be a Coxeter group.

(1) If (W, S) is a Coxeter system and W ′ � W , we say that W ′ is an S-reflection 
subgroup of W if W ′ = 〈W ′ ∩ SW 〉.

(2) We say that W ′ � W is a reflection subgroup of W if there is a Coxeter basis S of 
W such that W ′ is an S-reflection subgroup of W .

Definition 3.19. Let (W, S) be a Coxeter system. We say that α ∈ End(W ) is an S-self-
similarity (or a special S-endomorphism) if for every s, t ∈ S we have:

(1) α(s) ∈ sW ;
(2) o(α(s)α(t)) = o(st).

We denote the monoid of S-self-similarities as Sim(W, S). We denote the semigroup of 
S-self-similarities which are not automorphisms as Sim∗(W, S). We say that U � W is 
an S-self-similar subgroup if U = 〈α(S)〉W , for some α ∈ Sim(W, S).

Example 3.20. We give an example of an α ∈ Sim(W, S). Let S = {s1, ..., sn}, n � 2
and W be the free Coxeter group with basis S. We define α ∈ Sim(W, S) by letting 
α(s1) = s2s1s2, α(s2) = s1s2s1 and, for 2 � i � n, α(si) = si.
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Definition 3.21. Let (W, S) be a Coxeter system. We say that Ŝ is a self-similar set of 
reflections of (W, S) (or a self-similar set of S-reflections) if Ŝ = {ŝ : s ∈ S} and for all 
s, t ∈ S we have ŝ ∈ sW and o(ŝt̂) = o(st). I.e., Ŝ is a self-similar set of reflections of 
(W, S) if there is α ∈ Sim(W, S) such that α(s) = ŝ, for every s ∈ S.

We now collect some facts which will be used in the proof of Proposition 3.23.

Fact 3.22. Let (W, S) be a Coxeter system of finite rank.

(A) As the geometric representation of (W, S) is faithful (see e.g. [29]), W is a finitely 
generated linear group over the real numbers. It follows that W is a residually finite 
group, and in particular that it is Hopfian.

(B) If u, v ∈ SW are such that D = 〈u, v〉W is finite, then there exist s, t ∈ S and 
w ∈ W such that o(st) is finite and Dw � 〈s, t〉W . This follows from Assertion 
(d) of Theorem 1.12 in [29] in the case where W is finite. Using Assertion (b) of 
Lemma 3.13 the general case can be reduced to the spherical case.

(C) If T ⊆ SW and U := 〈T 〉W then there exists R ⊆ U ∩ SW such that (U, R) is a 
Coxeter system and RU = U ∩SW (Theorem (3.3) in [22]). Moreover, if T is finite, 
then |R| � |T | (Assertion (i) of Corollary (3.11) in [22]).

(D) If (W, S) is even, then for s 
= t ∈ S we have that sW ∩ tW = ∅ (follows from 
Fact 3.16).

(E) Suppose (W, S) is even and let s, t ∈ S be such that st has infinite order. Then xy
has infinite order for all x ∈ sW and y ∈ tW . This follows from Facts (B) and (D) 
above.

Proposition 3.23. Let (W, S) be an even Coxeter system of finite rank, and let α be a 
self-similarity of (W, S) (cf. Definition 3.19). Then (〈α(S)〉W , α(S)) is a Coxeter system 
and thus the map α : W → 〈α(S)〉W is an isomorphism.

Proof. Let α be a self-similarity of (W, S), put U := 〈α(S)〉W and let R be as in 
Fact 3.22(C) for (W, S) and U . By Fact 3.22(C) we know that |R| � |α(S)| = |S|. We 
first prove by contradiction that, in fact, equality holds. Indeed, suppose that |R| < |S|. 
Note first that α(S) ⊆ U ∩ SW = RU . As |α(S)| = |S| < |R| there exist t 
= s ∈ S and 
r ∈ R such that α(s), α(t) ∈ rU . This implies sW = α(s)W = α(t)W = tW and finally 
this yields a contradiction to Fact 3.22(D).
Thus, |R| = |S| and so there is a bijection β : S → R such that for each s ∈ S we have 
that {β(s)} = sW ∩R. Suppose now that the following holds:

for all s 
= t ∈ S we have that o(β(s)β(t)) = o(st). (
)

Then we can argue as follows: By (
) and Fact 3.22(E), the map β extends to an ho-
momorphism from W to U , which is actually an isomorphism, since (U, R) is a Coxeter 
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system. Consider now the map γ : α ◦ β−1 : R → α(S). As (U, R) is a Coxeter system, 
the map γ extends to a surjective endomorphism of U , but such a map must be an 
isomorphism, since by Fact 3.22(A), U is Hopfian. Hence, the map α : W → 〈α(S)〉W is 
an isomorphism, if (
) holds. We show that (
) holds.

To this extent, let s 
= t ∈ S be such that o(st) is finite and put s1 := α(s), t1 := α(t), 
and D1 := 〈s1, t1〉U � U � W . Now, by Fact 3.22(B) for the Coxeter system (U, R), we 
can find r 
= v ∈ R and u ∈ U such that o(rv) is finite and Du

1 � D2 := 〈r, v〉U . By 
Fact 3.22(B) for the Coxeter system (W, S), we can find s′ 
= t′ ∈ S and w ∈ W such 
that o(s′t′) is finite and Dw

2 � 〈s′, t′〉W . Hence, recapitulating, we have the following 
situation:

D1 := 〈s1, t1〉U , Du
1 � D2 := 〈r, v〉U and Dw

2 � D3 := 〈s′, t′〉W .

We want to show that {s, t} = {s′, t′} and {r, v} = {β(s), β(t)}. We show the second 
equality, the first is proved by an analogous argument. To this extent, let su1 = sh and 
tu1 = tg, for h, g ∈ W (recall that s1 = α(s), t1 = α(t), α(s) ∈ sW and α(t) ∈ tW ). 
Now, sh ∈ SW ∩ U = RU and so sh ∈ RU ∩D2 = {r, v}D2 , since D2 is an R-parabolic 
subgroup of U . Hence we have that sh ∈ rD2 or sh ∈ vD2 and not both, by Fact 3.22(D). 
Thus, we have that r = β(s) or v = β(s), and not both.

Similarly, we see that tg ∈ rD2 or tg ∈ vD2 (and not both, by Fact 3.22(D)), and so 
r = β(t) or v = β(t), and not both. Suppose now that r = β(s) and r = β(t), then β
is not a bijection, a contradiction. Analogously, it cannot be the case that v = β(s) and 
v = β(t). It thus follows that {r, v} = {β(s), β(t)}, as wanted.

Hence, putting all together, we actually have the following situation:

D1 := 〈s1, t1〉U , Du
1 � D2 := 〈β(s), β(t)〉U and Dw

2 � 〈s, t〉W .

Thus, using the fact that D2 and D3 are finite dihedral groups (since (U, R) and (W, S)
are Coxeter systems, and o(β(s), β(t)), o(s′t′) < ∞) we have that:

o(st) = o(α(s)α(t)) = o(s1t1) = o(su1 tu1 ) � o(β(s)β(t)) = o(β(s)wβ(t)w) � o(st).

Hence, (
) is verified (given that s and t were arbitrary) and the proof is complete. �
Remark 3.24. The following example shows that the even assumption in Proposition 3.23
is necessary. Let (W, S) be the Coxeter system such that S = {s, t, u} and o(xy) = 7 for 
all x 
= y ∈ S. Put s′ := s, t′ := t, u′ := sts, and let then S′ = {s′, t′, u′}. Then S′ is a 
set of self-similar reflections of (W, S) and S′ generates a finite group G, and so G is not 
isomorphic to W (since W is infinite).
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3.2. Reflection subgroups of RACGs

The objective of this subsection is to prove Proposition 3.44, which will play a crucial 
role in Section 7, where we will prove in particular that if W is a right-angled Coxeter 
group of finite rank, then W is a prime model of its theory iff the monoid Sim(W, S) is 
finitely generated.

Throughout this subsection (W, S) is a right-angled Coxeter system of finite rank and 
SW := {sw : s ∈ S, w ∈ W} denotes the set of its reflections. We shall use the notation 
of [38]. This means that we are working with the Cayley graph Cay(W, S) = (W, P) of 
(W, S) where P := {{w, ws} | w ∈ W, s ∈ S}. Since Cay(W, S) is a Coxeter building, 
we shall use the language of buildings here. Thus, the vertices of Cay(W, S) are called 
chambers, the edges are called panels and a gallery is a path in Cay(W, S). The group 
W acts by multiplication from the left on Cay(W, S) and the stabilizer of a panel P =
{w, ws} is the subgroup generated by the reflection wsw−1. The set of panels stabilized 
by a reflection t is denoted by P(t) and the graph (W, P \ P(t)) has two connected 
components which are called the roots associated with t. For a reflection t ∈ SW and a 
chamber c ∈ W we denote the root associated with t that contains c by H(t, c). The set 
of chambers lying at the wall of t is:

C(t) := ∪P∈P(t)P.

Definition 3.25.

(1) For two chambers c, d ∈ W we denote their distance in Cay(W, S) (i.e. the length of 
a minimal gallery joining them) by �(c, d).

(2) For any two nonempty subsets X, Y of W we let:

�(X,Y ) := min{�(x, y) | x ∈ X, y ∈ Y }

and for z ∈ W , we set dist(z, X) := dist({z}, X).
(3) For t, u ∈ SW we let the distance between t and u to be:

dist(t, u) := �(C(t),C(u)).

Remark 3.26. It is a basic fact that dist(t, u) = 0 if [s, u] = 1.

Fact 3.27. Suppose that o(tu) = ∞. Then there exists a root (or halfspace) H associated 
with t such that C(u) ⊆ H. This root will be denoted by H(t, u) or H(t, u, +). Fur-
thermore, H(t, u, −) denotes the set which does not contain the wall of u; equivalently, 
H(t, u, −) is the (set theoretic) complement of H(t, u) in W .
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Definition 3.28.

(1) A triangle of (W, S) is a set T = {t1, t2, t3} ⊆ SW such that o(titj) = ∞ for all 
1 � i 
= j � 3.

(2) We say that a triangle T = {t1, t2, t3} is geometric if H(ti, tj) = H(ti, tk) whenever 
{i, j, k} = {1, 2, 3}.

(3) A set T ⊆ SW of reflections of (W, S) is called geometric if each triangle contained 
in T is geometric.

Lemma 3.29. Let t, u, v ∈ SW be such that o(tu) = ∞ = o(tv) and H(t, u) = H(t, v, −). 
Then o(vu) = ∞.

Proof. This is Assertion (i) of Lemma 2.5 in [38]. �
Lemma 3.30. For T ⊆ SW the following assertions are equivalent:

(i) T is geometric;
(ii) if t, u, v ∈ T are such that o(tu) = ∞ = o(tv), then H(t, u) = H(t, v).

Proof. This follows from Lemma 3.29. �
Definition 3.31. Let X ⊆ W . Then we call X convex if it is a convex subset in the 
metric space (W, �). If U � W is a subgroup of W , then it acts on Cay(W, S) by left 
multiplication and we call X a fundamental domain for U when:

(i) W = ∪u∈UuX;
(ii) uX ∩X 
= ∅ implies u = eU , for all u ∈ U .

Proposition 3.32. Let T ⊆ SW be a geometric set of reflections and U := 〈T 〉W .

(a) There exists a family of roots (Ht)t∈T such that Ht is a root associated with t for 
each t ∈ T and such that Ht = H(t, u) whenever t, u ∈ T and o(tu) = ∞.

(b) (U, T ) is a Coxeter system and if (Ht)t∈T is as in item (a), then D := ∩t∈THt is a 
convex fundamental domain for the action of U on W .

(c) TU = U ∩ SW and:

T = {r ∈ SW : |P ∩D| = 1 for some panel P on the wall associated with r}.

Proof. This is essentially the content of [38, Proposition 2.6]. �
Lemma 3.33. Let T ⊆ SW be a geometric set of reflections, U = 〈T 〉W , D be as in item 
(b) of Proposition 3.32, c ∈ D and r ∈ SW ∩ U (= TU ). Then:
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(a) If r is not in T , then there exists u ∈ U such that �(c, C(uru−1)) < �(c, C(r)).
(b) For each t ∈ T we have �(c, C(tu)) � �(c, C(t)) for all u ∈ U .
(c) In (b) equality holds if and only if tu = t.

Proof. Let k := �(c, C(r)) and let γ = (c = c0, . . . , ck) be a minimal gallery from c to 
C(r). As r is not in T by assumption, there exists 0 � m < k such that, for all 0 � i � m, 
ci ∈ D and cm+1 /∈ D. It follows that the unique reflection u associated with the panel 
{cm, cm+1} is in T . Now, γ1 := (c0, . . . , cm) = (u(cm+1), u(cm+2), . . . , u(ck)) (where u(g)
is in the sense of Definition 3.31, i.e. u(g) = ug) is a gallery from c to C(uru) of length 
k − 1. This yields item (a). Finally, parts (b) and (c) follow by an argument similar to 
the one given in the proof of part (a) by using induction on �T (u), where �T denotes the 
length function on U with respect to the generating set T . This concludes the proof of 
the lemma. �
Proposition 3.34. Let T ⊆ SW be a geometric set of reflections and U := 〈T 〉W . If R is 
a geometric set of reflections such that U = 〈R〉W , then for some u ∈ U :

R = Tu = {utu−1 | t ∈ T}.

Proof. Let (Ht)t∈T and D := ∩t∈THt be as in Proposition 3.32; similarly, let (Hr)r∈R

and E := ∩r∈RHr be as in Proposition 3.32. Then D and E are fundamental domains 
for the action of U on W by item (b) of Proposition 3.32.
Claim 1 . If D ∩ E 
= ∅, then D = E and T = R.
Proof. Let c ∈ D ∩ E and let d ∈ D. Suppose that d ∈ D is not in D ∩ E and that 
γ = (c = c0, . . . , ck = d) is a minimal gallery from c to d. Then ci ∈ D for all 0 � i � k

because D is convex (cf. Fact 3.32(b)). As d is not in E, the gallery γ crosses a wall 
associated to a reflection r ∈ R. Thus there exists 1 � i � k such that r(ci) = ci−1. As 
r ∈ R ⊆ U this yields a contradiction, because ci−1 and ci are both elements of D and 
the latter is a fundamental domain for the action of U on W . This shows that D ⊆ E and 
by symmetry we also have that E ⊆ D. Now it follows from item (c) of Proposition 3.32
that T = R.
As D and E are fundamental domains for the action of U on W there exists u ∈ U such 
that u(D) ∩ E 
= ∅ and so by the claim above we are done. �
Definition 3.35. Let U � W be a reflection subgroup of (W, S) and T := U ∩ SW . The 
graph ΓU is defined by ΓU := (W, P \ (∪t∈TP(t))). For each c ∈ W we define the set 
DU (c) ⊆ W to be the connected component of the graph ΓU containing the chamber c. 
Furthermore, we set:

RU (c) := {r ∈ SW | |P ∩DU (c)| = 1 for some P ∈ P(r)}.

Proposition 3.36. Let U � W be a reflection subgroup of (W, S), let c ∈ W be a chamber 
and put D := DU (c) and R := RU (c) (as in Definition 3.35). Then R is a geometric set 
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of reflections, U = 〈R〉W and D is a fundamental domain for the action of U on W (by 
left multiplication). Moreover, we have U ∩ SW = RU .

Proof. This is a geometric version of a result that have been obtained independently by 
Deodhar and Dyer (cf. [19,22]). In its present form it is due to Hée (cf. [25]). �
Corollary 3.37. Let T ⊆ SW and U = 〈T 〉W . Then the following hold.

(a) There is a geometric set R of reflections such that the 〈R〉W = U and all such sets 
are conjugate in U .

(b) If T is a finite set and R is as in item (a), then |R| � |T |.

Proof. Item (a) is a consequence of the previous proposition and item (b) is a refinement 
which follows from Corollary 3.11 in [22]. �
Lemma 3.38. Let U � W be a reflection subgroup of (W, S). Then:

(a) If r ∈ U ∩ SW and c ∈ C(r), then r ∈ RU (c).
(b) Suppose V � W is a reflection subgroup of (W, S) such that V ⊆ U . If r ∈ V ∩ SW

and c ∈ C(r), then r ∈ RV (c), r ∈ RU (c) and DU (c) ⊆ DV (c).
(c) DU (c) = DV (c) if and only if V = U .

Proof. Let P ∈ P(r) be the unique panel contained in the wall of r that contains c and 
let d = r(c). Then P = {c, d} and d /∈ DU (c) because DU (c) is convex and P is not an 
edge of the graph (W, P \ (∪t∈U∩SW P(t))). It follows that |P ∩ DU (c)| = 1 and hence 
r ∈ RU (c). This yields item (a).

Concerning item (b), let r ∈ V ∩ SW and c ∈ C(r). Then it follows from item (a) that 
r ∈ RV (c). As V ⊆ U , we have SW ∩ V ⊆ SW ∩U . Thus r ∈ U ∩SW and again by item 
(a) we have r ∈ RU (c). As SW ∩ V ⊆ SW ∩ U we have ∪t∈V ∩SW P(t) ⊆ ∪t∈U∩SW P(t)
and therefore DU (c) ⊆ DV (c).

Concerning item (c), if V = U , then we have DU (c) = DV (c) by definition. For the other 
direction, suppose DU (c) = DV (c), then, again by definition, we have RU(c) = RV (c)
and it follows from Proposition 3.36 that V = 〈RV (c)〉W = 〈RU (c)〉W = U . �
Proposition 3.39. Let α be a self-similarity of (W, S) and U := 〈α(S)〉W . Then:

(a) There exists a self-similarity β of (W, S) such that 〈β(S)〉W = U and β(S) is geo-
metric.

(b) If γ is a self-similarity such that 〈γ(S)〉W = U and γ(S) is geometric, then there 
exists u ∈ U such that β(S)u = γ(S).
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Proof. Item (a) can be proved by arguments that are similar to those given in the proof 
of Proposition 3.23. Assertion (b) follows from (a) by Proposition 3.34. �
Definition 3.40. Let α be a self-similarity of (W, S) and let β be as in item (a) of Proposi-
tion 3.39. The complexity of α is defined to be the matrix Δ(α) := (dist(β(s), β(s′))s,s′∈S

(notice that this is well defined by (b) of Proposition 3.39). For any two square matrices 
A = (ass′)s,s′∈S , B = (bss′)s,s′∈S with entries in the natural numbers, we put A � B if 
ass′ � bss′ for all s, s′ ∈ S; we put A < B if A � B and if there exist s, s′ ∈ S such that 
ass′ < bss′ .

Definition 3.41. A self-similarity of (W, S) is called geometric if α(S) is a geometric set 
of reflections.

Lemma 3.42. Let α and β be geometric self-similarities of (W, S). Let also U := 〈α(S)〉W , 
V := 〈β(S)〉W and suppose that V ⊆ U . Then:

(1) Δ(α) � Δ(β);
(2) Δ(α) = Δ(β) iff U = V .

Proof. Note first that β(s) ∈ V ∩ sW ⊆ U ∩ sW = α(s)U for all s ∈ S. Let s ∈ S. 
By conjugating with an element in U , we can assume that α(s) = β(s), we denote 
this reflection by r. Let s′ ∈ S, let γ = (c0, . . . , ck) be a minimal gallery from C(r) to 
C(β(s′)) and put c := c0. We set E := DV (c) and observe that r ∈ RV (c) by item (a) of 
Lemma 3.38. As RV (c) and β(S) are geometric and 〈RV (c)〉W = 〈β(S)〉W , there exists 
v ∈ V such that β(S)v = RV (c) by Proposition 3.34 and we have rv = r because r is the 
only element in β(S) and RV (c) that is in sW . Similarly, we have α(S)u = RU (c) and 
ru = r for some u ∈ U . Thus, we may assume that α(S) = RU (c) and β(S) = RV (c). As 
β(s′) ∈ α(s′)U , by (b) of Lemma 3.33:

�(c,C(α(s′))) � �(c,C(β(s′))) � �(C(β(s)),C(β(s′))) = dist(β(s), β(s′))

and that equality holds iff α(s′) = β(s′).
As dist(α(s), α(s′)) � dist(c, α(s′)) this shows that Δ(α) � Δ(β) and that U = V if 
equality holds. That U = V implies Δ(α) = Δ(β) follows from Proposition 3.34. �
Lemma 3.43. Let α and β be self-similarities of (W, S). Then Δ(α ◦ β) � Δ(α) and the 
inequality is strict if β is not an automorphism of W .

Proof. Let U := 〈α(S)〉W and V := 〈α(β(S))〉W . Then V ⊆ U . Let R be a geomet-
ric set of reflections such that 〈R〉W = U and let T be a geometric set of reflections 
such that 〈T 〉W = V . Thus we have unique self-similarities α′, γ of (W, S) such that 
R = α′(S) and γ(S) = T . By definition we have Δ(α) = Δ(α′) and Δ(α ◦ β) = Δ(γ). 
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As V ⊆ U , it follows by Lemma 3.42 that Δ(γ) � Δ(α′) and that equality holds if 
and only if U = V . This shows that Δ(α ◦ β) � Δ(α) and that equality holds if 
and only if U = V . Suppose now that β is not an automorphism. Since each self-
similarity is injective, it follows that β(W ) 
= W . As α is also injective, it follows 
that V = α(β(W )) 
= α(W ) = U , and so we are done. �
Proposition 3.44. Let (W, S) be a right-angled Coxeter system of finite rank. For every 
S-self-similar subgroup U of W there exists n < ω such that if U = V0 < · · · < Vα = W

is a proper chain of S-self-similar subgroups of W , then α � n.

Proof. This follows from the fact that the complexity (in the sense of Definition 3.40) of 
the corresponding self-similarities decreases strictly along such a chain. �
Definition 3.45. Let α ∈ Sim(W, S). We say that α is proper if α /∈ Aut(W ). We say 
that α is decomposable if there are proper β, γ ∈ Sim(W, S) such that α = β ◦γ. Finally, 
α is called irreducible if it is proper and not decomposable.

Corollary 3.46. Let f1, ..., fk be proper self-similarities, α = f1 ◦ · · · ◦ fk, and let Δ(α) =
(dss′)s,s′∈S be the matrix associated to α from Definition 3.40, then:

k �
∑

s,s′∈S

dss′ .

3.3. Word combinatorics for RACGs

Definition 3.47. Let (W, S) be a right-angled Coxeter system.

(1) A word w in the alphabet S is a sequence (s1, ..., sk) with si 
= si+1 ∈ S, i ∈ [1, k).
(2) We denote words simply as s1 · · · sk instead of (s1, ..., sk).
(3) We call each si a syllable of the word s1 · · · sk.
(4) We say that the word s1 · · · sk spells the element g ∈ W if W |= g = s1 · · · sk.
(5) By convention, the empty word spells the identity element e.
(6) The length �(w) of the word w = s1 · · · sn is the natural number n (so, in particular, 

the length of the empty word is 0).

Definition 3.48. Let (W, S) be a right-angled Coxeter system.

(1) We say that the word w is reduced if there is no word with fewer syllables which 
spells the same element of W .

(2) We say that the word w is a normal form for g ∈ W if w spells g and w is reduced.
(3) We say that the word w = s1 · · · sk is cyclically reduced if w = e or s1 
= sk.
(4) We say that g ∈ W is cyclically reduced if g is spelled by a cyclically reduced word.
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Notice that the definition of �S from Definition 3.14 is consistent with the following 
definition of �S (i.e. the one in Definition 3.49(ii)).

Definition 3.49. Let (WΓ, S) be a right-angled Coxeter system and let g ∈ WΓ (so Γ =
(S, EΓ) is the corresponding Coxeter graph). We define:

(1) spS(g) = sp(g) = {s ∈ S : s is a syllable of a normal form for g};
(2) �S(g) = �(g) = |w|, for w a normal form for g;
(3) lkS(g) = lk(g) = {s ∈ S : sEΓt for every t ∈ sp(g)}.

The following notation is justified by Fact 3.51, which is stated soon after.

Notation 3.50. Let W be an irreducible right-angled Coxeter group and g ∈ W .

(1) We denote by o(g) the order of g.
(2) If o(g) is infinite, write g = rn with 1 � n < ω maximal.
(3) If o(g) is finite, write g = rn with 1 � n < o(g) maximal.
(4) We let √g = r, and we call r a root of g.

Fact 3.51 ([16, Theorem 3.2]). Let W be an irreducible right-angled Coxeter group. Then 
roots are unique, and so Notation 3.50 is well-defined.

Let W be a right-angled Coxeter group of finite rank. Since W decomposes as the 
direct product of its irreducible components and for k = hgh−1 ∈ W , with g cyclically 
reduced, we have that the centralizer CW (k) = hCW (g)h−1, in the next theorem we can 
assume w.l.o.g. that W is irreducible and g is cyclically reduced.

Fact 3.52 (Centralizer Theorem [16, Theorem 3.2] and [2]). Let (W, S) be an irreducible 
right-angled Coxeter system. Let g ∈ W be a cyclically reduced element. Then the cen-
tralizer CW (g) of g in W is 〈√g〉W × 〈lk(g)〉W .

Fact 3.53 (Finite Order Theorem [12, Proposition 1.2]). Let (W, S) be a right-angled 
Coxeter system and k ∈ W . Then k has finite order if and only if k has order 2 if and 
only if k = hgh−1, with g cyclically reduced and sp(g) inducing a clique of Γ (i.e. for 
every s, t ∈ sp(g) we have sEΓt).

3.4. Automorphism groups of RACGs

Fact 3.54 ([15, Théorème 2]). Let W be a right-angled Coxeter group. Let S and T be 
two Coxeter bases of W , then there exists α ∈ Aut(W ) such that α(S) = T .

A fundamental result of Tits [52] gives an explicit description of Aut(WΓ) as a semidi-
rect product of two subgroups of Aut(WΓ), namely Spe(WΓ) and F (Γ).
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Definition 3.55. Let W be a right-angled Coxeter group. We denote by Spe(W ) the set 
of automorphisms α ∈ Aut(W ) such that for every involution h ∈ W there exists g ∈ W

such that:

α(h) = ghg−1.

Definition 3.56. Let Γ be a graph. We think of the set of finite subsets of Γ as a GF (2)-
vector space (the field with 2 elements) V (Γ) = (Pfin(Γ), �, ·) by letting:

(1) S1�S2 = (S1 − S2) ∪ (S2 − S1);
(2) 0 · S = ∅;
(3) 1 · S = S.

We denote by F (Γ) the set of linear automorphisms of V (Γ) which send finite cliques of 
Γ to finite cliques of Γ.

Remark 3.57. Notice that F (Γ) is naturally seen as a subgroup of Aut(WΓ) by letting, 
for α ∈ F (Γ), βα be the map such that for every s ∈ Γ we have

βα(s) =
∏

t∈α(s)

t.

Abusing notation, we might write βα simply as α. When we want to stress that Γ =
(S, E), i.e. we want to make explicit that S is the domain of Γ, we write Γ as ΓS . Also, 
given a basis S of W , we denote by ΓS the associated Coxeter graph.

Definition 3.58. Given a group G, a subgroup H of G, and a normal subgroup N of G, 
we write G = N � H when G = NH and N ∩H = {e}.

Fact 3.59 (Tits [52]). Let Γ be a graph. Then:

Aut(WΓ) = Spe(WΓ) � F (Γ).

Notation 3.60. Let Γ = (Γ, EΓ) be a graph. For v ∈ Γ, we let:

(1) N(v) = {v′ ∈ Γ : vEΓv
′};

(2) N∗(v) = N(v) ∪ {v}.

Definition 3.61. Let Γ be a graph, s ∈ Γ and C a union of connected components of 
Γ −N∗(s). We define an automorphism (cf. Fact 3.62) π(s,C) of WΓ as follows:

{
π(s,C)(t) = sts if t ∈ C

π (t) = t otherwise.
(s,C)
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Automorphisms of the form π(s,C) are called partial conjugations.

Fact 3.62 ([38]). Let Γ be a graph, then the partial conjugations (cf. Definition 3.61) are 
automorphisms of WΓ and, if Γ is finite, then Spe(WΓ) is generated by them.

Remark 3.63. Notice that the partial conjugations π(s,C) are involutory automorphism, 
i.e. they have order 2. Hence, when Γ is finite, Spe(WΓ) is generated by finitely many 
involutory automorphisms. This will be relevant in Section 7.

Definition 3.64. Let Γ be a graph.

(1) We say that Γ has the star-property if for every v 
= v′ ∈ Γ we have that N∗(v) �
N∗(v′) (cf. Notation 3.60).

(2) We say that Γ is star-connected if for every v ∈ Γ we have that Γ −N∗(v) is connected 
(cf. Notation 3.60).

Fact 3.65 ([15, Commentaire 3]). Let Γ be a graph. The following are equivalent:

(1) F (Γ) = Aut(Γ) (cf. Definition 3.56);
(2) WΓ is reflection independent (cf. Definition 3.17));
(3) Γ has the star-property (cf. Definition 3.64(1)).

Fact 3.66 ([15, Comm. 3]). Let Γ be a finite graph. The following are equivalent:

(1) Spe(WΓ) = Inn(WΓ) (cf. Definition 3.55);
(2) Γ is star-connected (cf. Definition 3.64(2)).

3.5. 2-Spherical Coxeter groups

Definition 3.67 ([24]). Let (W, S) be a Coxeter system of finite rank and let w ∈ W

be of finite order. We define the finite continuation of w, denoted as FC(w), to be the 
intersection of all the maximal finite subgroups of W containing w.

Fact 3.68 ([28, Lemma 9.3]). Let (W, S) be a Coxeter system of finite rank and let w ∈ W

be of finite order. Then FC(w) is well-defined and it is the intersection of all the maximal 
spherical subgroups of W containing w.

Fact 3.69 ([24, Main Result and Theorem 1]). Let (W, S) be an irreducible, infinite, 2-
spherical Coxeter system of finite rank. Then W is reflection-independent and the set of 
reflection is exactly the set of involutions of W such that FC(w) = {e, w}. Furthermore, 
if R ⊆ W is such that (W, R) is a Coxeter system, then there exists w ∈ W such that 
Rw = S (i.e., in the terminology of [24], W is strongly rigid).
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4. Superstability in Coxeter groups

In this section we prove Theorems 1.2 and 1.3, and their corollaries. Section 4.1 will 
be concerned with sufficient conditions for unsuperstability for a given group G, while 
in Section 4.2 we will prove that affine Coxeter groups are superstable.

4.1. The negative side

Notation 4.1. Given (yi : i < ω) and n < ω, let ȳ[n) = (yi : i < n). Also, given 
{i0, ..., ik−1} = I ⊆ {0, ..., n − 1} we let ȳI = (yi� : � < k). The consistency of the two 
notations is given letting {0, ..., n − 1} = [0, n) = [n).

Notation 4.2. Given η, ν ∈ ω<ω, we write ν � η if η extends ν, and ν � η if η extends ν
or η = ν. Also, we identify the number n < ω with the set {0, ..., n − 1}.

Definition 4.3. We say that the first-order theory T is not superstable if:

(a) there are formulas ϕn(x, ȳ[kn)), for n < ω and kn = k(n) � n;
(b) there is M |= T ;
(c) there are bη ∈ M , for η ∈ ω<ω;
(d) there are āν ∈ Mk(n), for ν ∈ ωn;
(e) for ν ∈ ωn and η ∈ ω<ω, M |= ϕn(bη, ̄aν), if ν � η;
(f) there is m(n) < ω such that if ν ∈ ωn, k, j < ω, and η = ν�(k, j), then:

|{i < ω : M |= ϕn+1(bη, āν�(i))}| � m(n).

There are many equivalent definitions of superstability, we use the above for conve-
nience, a more easy to understand definition of superstability uses types: T is said to be 
superstable if it is κ-stable for every κ � 2ℵ0 (see e.g. [37, pg. 172]), where a theory T
is said to be κ-stable when for every M |= T and A ⊆ M with |A| = κ we have that the 
number of finitary types over A is of size κ (see e.g. [37, pg. 135]). A canonical example 
of a superstable structure is the abelian group Z.

Remark 4.4. In Definition 4.3(f) we can take m(n) = 1, for every n < ω.
[Why? Without loss of generality M is ℵ1-saturated, and so it is enough to find (āη, bη :
η ∈ ω�n+2), for every n < ω. To this extent, let ν ∈ ωn and consider the function 
fν : ω3 → {0, 1} such that fν(k, j, i) = 1, if k = i or M 
|= ϕn+1(bν�(k,j), ̄aν�(i)), 
and fν(k, j, i) = 0 otherwise. By the Infinite Ramsey Theorem there is an infinite f -
homogeneous subset of ω, and by clause (f) of Definition 4.3 this set has to have color 
1, and so we can conclude easily.]
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Remark 4.5. In Definition 4.3(c-d) we can restrict to η’s and ν’s in the set:

inc<ω(ω) = {σ ∈ ω<ω : σ(0) < σ(1) < · · · < σ(|σ| − 1)}.

We denote the subset of inc<ω(ω) consisting of the sequences with {0, ..., m − 1} as 
domain by incm(ω) – this notation will be used in the proof of Theorem 4.6.

Theorem 4.6. Let G be a group. A sufficient condition for the unsuperstability of G is 
that there is a subgroup H ⊆ G (not necessarily definable), 2 � n < ω, and 1 � k < ω

such that:

(a) if a ∈ H − {eG}, then Xa := {x ∈ G : xn = a} ⊆ H − {eG}, and |Xa| � k;
(b) there are a� ∈ H − {eG}, for � < ω, such that:

(i) �1 
= �2 implies a−1
�1

a�2 /∈ {xnyn : x, y ∈ H};
(ii) for every (s1, ..., sk) ∈ ω<ω we have as1 · · · ask 
= eG.

Proof. Let n and k be as in the statement of the theorem. By induction on m < ω, we 
define the group word wm(z, y[m)) (recall Notation 4.1) as follows:

(i) w0(z) = z;
(ii) wm+1(z, ȳ[m+1)) = wm(ymzn, ȳ[m)).

Notice that if m < ω is such that m = m1 + m2, then:

wm(x, ȳ[m)) = wm2(wm1(x, ȳ[m1)), ȳ[m1,m)).

Let now ϕm(x, ȳ[m)) be the formula:

∃z(x = wm(z, ȳ[m)) ∧
∧
��m

(w�(z, ȳ[m−�,m)))n 
= e), (
)1

(clearly for m = 0, the set [m, m) is simply ∅ and so w0(z, y[m,m)) = w0(z) = z.) Notice 
that:

ϕm+1(x, ȳ[m+1)) � ϕm(x, ȳ[m)) � · · · (
)2

We claim that (ϕm(x, ȳ[m)) : m < ω) is a witness for the unsuperstability of G, referring 
here to Definition 4.3 (cf. also Remarks 4.4 and 4.5).
Let a� ∈ H − {eG}, for � < ω, be as in the statement of the theorem. Now, for m < ω

and ν ∈ incm(ω) (cf. Remark 4.5), let:

āν = (aν(�) : � < m) ∈ Hm. (
)3
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For m < ω and η ∈ incm+1(ω), let:

bη = wm(aη(m), āη�m) ∈ H − {eG} (by clause (b)(ii)). (
)4

Clearly clauses (a)-(d) of Definition 4.3 hold. Furthermore, we have:

η ∈ incm+1(ω) ⇒ M |= ϕm(bη, āη�m). (
)5

[Why? The satisfaction of the first conjunct of the formula ϕm(bη, ̄aη�m) is ensured by 
the choice of bη, while the second conjunct is by clause (b)(ii) of the theorem.] More 
strongly, we have:

η ∈ inck(ω), ν � η ⇒ M |= ϕ|ν|(bη, āν). (
)6

[Why? By (
)2 and (
)5.]
Further, we have that if b ∈ H − {eG} and η ∈ incm(ω), then letting:

Cη
b := {c ∈ G : G |= b = wm(c, āη) ∧

∧
��m

(w�(c, ȳ[m−�,m)))n 
= e}, (
)7

we have:

Cη
b ⊆ H − {eG} and |Cη

b | � km. (
)8

[Why? We prove this by induction on m = |η| using clause (a) of the theorem. For m = 0
this is obvious. For m = � + 1, let ν = η � �. Recall that by inductive hypothesis we 
have that |Cν

b | � k�. Further, clearly, η ∈ inc�+1(ω). Now, if G |= b = w�+1(c, ̄aη), then, 
letting dc = aη(�)c

n, we have G |= b = w�(dc, aη��), and thus dc ∈ Cν
� ⊆ H − {eG} (by 

inductive hypothesis). That is, we have a function c �→ dc from Cη
b into Cν

b . Hence, it 
suffices to prove that for each d ∈ Cν

b we have:

Dd := {c ∈ Cη
b : dc = d} ⊆ H − {eG} and |Dd| � k,

since then we would have:

|Cη
b | � |Cν

b |k � k�k = k�+1 = km.

Let then d ∈ Cν
b and c ∈ Dd. Since aη(�)c

n = dc = d ∈ H − {eG} we have that 
cn = a−1

η(�)dc ∈ H (recall that H is a subgroup), and by the choice of c we have that 
cn 
= eG (cf. (
)7, second conjunct, m = 0). Thus, by clause (a) of the theorem, we have 
that c ∈ H − {eG}. Thus, Dd ⊆ {x ∈ G : xn = a−1

η(�)d} = Xd, and by clause (a) of the 
statement of the theorem we have that |Xd| � k, and so |Dd| � k.]
Finally, we have that if ν ∈ ωm, k, j < ω, and η = ν�(k, j), then:
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|{i < ω : G |= ϕm+1(bη, āν�(i))}| � km. (
)9

[Why? Let Um
η := {i < ω : G |= ϕm+1(bη, ̄aν�(i))}, and for every i ∈ Um

η , choose ci ∈ G

such that:

G |= bη = wm+1(ci, āν�(i)) ∧
∧

��m+1

(w�(ci, ȳ[(m+1)−�,m+1)))n 
= e.

Note that, for i ∈ Um
η , ci ∈ H − {eG}, since bη 
= eG (cf. ((
)4)) and ci ∈ C

ν�(i)
bη

, and, 
by (
)7, we have that Cν�(i)

bη
⊆ H − {eG}. Further, for i ∈ Um

η , we have:

G |= bη = wm(aicni , āν),

and so aicni ∈ Cν
bη

(recall that ν�(i)(m) = i). For the sake of contradiction, assume that 
|Um

η | > km. By (
)7 we have that |Cν
bη
| � km, and so for some i 
= j ∈ Um

η we have 
aic

n
i = ajc

n
j . Thus, we have:

a−1
j ai = (cj)n(c−1

i )n. (
)10

But then, since ci, cj ∈ H (as observed above), the conclusion (
)10 is in contradiction 
with clause (a)(i) of the statement of the theorem. Thus, (
)9 holds.]
Hence, by ((
)6) and ((
)9), conditions (e) and (f) from Definition 4.3 are also satis-
fied. �
Lemma 4.7. Let (W, S) be a Coxeter system of finite rank which is not non-affine 2-
spherical, and assume that W is infinite. If (W, S) fails the condition of Theorem 1.2, 
then W is not superstable (cf. Definition 4.3).

Proof. Let (W, S) be of finite rank, irreducible, infinite, not of affine type and not 2-
spherical. By Theorem 4.6 it suffices to find a non-abelian free subgroup F � W and 
n < ω such that for every x ∈ W , if xn ∈ F , then x ∈ F . Now, since W is not 2-
spherical and not affine, we can find a special parabolic subgroup P of W of rank 3
such that its associated graph contains a non-edge. Then, by [26, Theorem 1], we know 
that P is virtually a non-abelian free group. Let then F � P be such that the index 
[P : F ] = t < ω. Let now n be a prime number bigger than c, where:

c = max{t,max{|B| : B a spherical special S-parabolic subgroup of W}}.

(Recall that W is of finite rank and so this c is well-defined.) Without loss of generality 
we can assume that F is normal in P (if not, replace F with 

⋂
{gFg−1 : g ∈ P}, which is 

still non-abelian free and of finite index in P ). We claim that n is as wanted, i.e. for every 
x ∈ W , if xn ∈ F , then x ∈ F . To this extent, let w ∈ W be such that wn ∈ F . First of 
all we claim that w ∈ P . Since wn ∈ P , we have that wn ∈ NW (P ) = CW (P ) × P (see 
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e.g. [11, Lemma 2.2]), Let then π be the canonical homomorphism mapping NW (P ) onto 
CW (P ). Then obviously π(w)n = e, and so π(w) = e, since the order of π(w) divides n, 
which is a prime number, and n is bigger than all the orders of finite elements from W , 
by the choice of n. Hence, by the nature of π, we can conclude that w ∈ P , as claimed 
above. We now show that w is actually in F . Since by assumption wn ∈ F we have that 
P/F |= (wF )n = e (recall that we assume that F is normal in P ), but then the order of 
wF in P/F divides a prime number which is bigger than all the orders of elements from 
P/F (since n > [P : F ]). Hence, P/F |= wF = e, that is w ∈ F , as wanted. �
Proof of Theorem 1.3. This is by Theorem 4.6 and properties of free groups. The claim 
about virtually non-abelian free groups is proved as in the proof of Lemma 4.7. �
Proof of Corollary 1.4. This follows from Theorem 1.3. �
4.2. The positive side

Fact 4.8 ([8, Proposition 2, pg. 146]). Let (W, S) be an irreducible affine Coxeter group. 
Then there exists N � W and W0 � W such that:

(1) W = N � W0;
(2) N ∼= Zd, for some 1 � d < ω;
(3) W0 is a Weyl group (and so, in particular, a finite Coxeter group).

Thus, in light of Fact 4.8, we show:

Proposition 4.9. Let Q be a finite group, 1 � d < ω, and θ : Q → Aut(Zd) an homo-
morphism. Then the semidirect product G := Zd �θ Q is interpretable in Z with finitely 
many parameters, and so, in particular, the group G is superstable.

We prove two lemmas from which Proposition 4.9 follows.

Lemma 4.10. In the context of Proposition 4.9, the group G is interpretable with finitely 
many parameters in the structure M = (Zd, +, πx)x∈Q, where πx := θ(x).

Proof. Let G = (G, ·G) = (Zd × Q, ·G), and enumerate {πx : x ∈ Q} as (t0, ..., tn−1). 
Let also Zd = N . We represent N ×Q as the collection of pairs (a, ̂ti) with a ∈ N and 
ti = (i, 0, ..., 0︸ ︷︷ ︸

d−1

), for i < n, thus using the elements {(i, 0, ..., 0︸ ︷︷ ︸
d−1

) : i < n} as parameters. 

For the rest of the proof we do not distinguish between the elements ti and t̂i. We are 
left to show that the product:

(a1, t1) ·G (a2, t2) = (a3, t3) = (a1t1(a2), t1t2) ∈ N ×Q,
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is definable in M . Now, Q |= t3 = t1t2 is clearly definable in M , since Q is finite. We 
then conclude observing that N |= a3 = a1t1(a2) is also definable in M , because the 
function symbols t�, for � < n, are part of the signature of the structure M . �
Fact 4.11. Let 1 � d < ω, then Aut(Zd) is the group of d × d invertible Z-matrices.

Lemma 4.12. The structure M = (Zd, +, πx)x∈Q from Lemma 4.10 is interpretable with 
finitely many parameters in the abelian group Z.

Proof. Let (π0, ..., πn−1) enumerate {πx : x ∈ Q}. By Fact 4.11, for every � < n, π� can be 
represented as the invertible Z-matrix (a�i,j)i,j<d. We now show that we can interpret M
in Z with the set of parameters A = {a�i,j : � < n, i < d, j < d}. The domain of M under 
the interpretation is naturally the set Zd. The additive group structure of M is defined 
coordinate-wise. We are then left to show that the function symbols π�’s are definable in 
Z with parameters from A. To this extent, let � < n, and b̄ = (b0, ..., bd−1) ∈ Zd. Then, 
letting (c0, ..., cd−1) = π�(b̄), we have:

ci =
∑
j<d

a�i,jbj ,

which is clearly definable in Z over A. �
Proof of Proposition 4.9. By Lemmas 4.10 and 4.12 (the fact that the interpretation 
uses finitely parameters is not a problem, see e.g. [44, pg. 287]). �
Proof of Theorem 1.2. The fact that the condition is necessary is by Lemma 4.7. The 
fact that the condition is sufficient is by Fact 4.8, Proposition 4.9 and the fact that finite 
direct products of superstable groups are superstable. �
Proof of Theorem 1.4. If the right-angled Artin group A is not abelian, then argue as 
in Lemma 4.7. We are then left with the case A ∼=

⊕
β<α Z, and so we are done. �

Proof of Theorem 1.5. The only thing which is left to show is the decidability claim, but 
this is clear simply observing the two following facts:

(1) any expansion of the abelian group Z with finitely many constants is decidable (this 
structure is definable in (Z, +, 1, 0), which is well-known to be decidable);

(2) if a structure M is ∅-interpretable into a structure N , then the decidability of Th(N)
implies the decidability of Th(M). �

5. Which Coxeter groups are domains?

In this section we prove Theorem 1.6.
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5.1. Preparatory work

In this section we lay the preparatory work towards a proof of Theorem 1.6. We invite 
the reader to recall the terminology from Section 3. Also, given a group G and A, B ⊆ G

we let [A, B] = {a−1b−1ab : a ∈ A, b ∈ B}.

Lemma 5.1. Let W be a Coxeter group of finite rank. Let N be a normal subgroup of W . 
Then PcS(N) = 〈J〉W for some J ⊆ S such that [J, S − J ] = e.

Proof. Let M := PcS(N). As W � NW (N) we have W � NW (M) by Item (c) of 
Lemma 3.13, and therefore M is a normal subgroup of W . As M is an S-parabolic 
subgroup of W , we have M = w〈J〉Ww−1 for some w ∈ W and some J ⊆ S. As M
is a normal subgroup of W we have M = w−1Mw = 〈J〉W . As M is normal, we have 
t〈J〉W t = 〈J〉W for each t ∈ S and so [S − J, J ] = e by Lemma 3.5(c). �
Lemma 5.2. Let (W, S) be a Coxeter system of finite rank. Let t ∈ S, let K ⊆ S be the 
irreducible component of (W, S) containing t, let J := S − {t} and let U := NW (〈J〉W ). 
If U 
= 〈J〉W , then K is a spherical subset of S. In particular, if (W, S) is irreducible 
and U 
= 〈J〉W , then (W, S) is spherical.

Proof. We put Γ := 〈J〉W and remark that Γ � U . The group Γ acts on the Cox-
eter building Σ(W, S) and R := 〈J〉W ⊆ W is a Γ-chamber (in the sense of [39, 
Definition 22.2]. As U = NW (Γ), the group U acts on the set of Γ-chambers. If 
U 
= Γ = StabW (R), then there exists a Γ-chamber T 
= R. By [39, Proposition 21.3], T
is parallel to R (in the sense of [39, Definition 21.7]), and therefore it follows from [39, 
Proposition 21.50] that K is spherical. �
Lemma 5.3. Let (W, S) be a Coxeter system of finite rank, and suppose that (W, S) is 
irreducible and non-spherical. Let N be a normal subgroup of W and let J ⊆ S be such 
that ∅ 
= J 
= S. If N � NW (〈J〉W ), then |N | = 1.

Proof. We proceed by induction on k := |S − J |.
If k = 1, then N � 〈J〉W by Lemma 5.2 and therefore M := PcS(N) 
= W . Since (W, S)
is irreducible, it follows from Lemma 5.1 that |M | = 1 and hence |N | = 1.

Suppose k > 1. As (W, S) is irreducible, there exists t ∈ S − J such that [t, J ] 
= e and 
it follows that t〈J〉W t 
= 〈J〉W by Item (c) of Lemma 3.5. As N is normal in W we have 
tNt = N and therefore N � NW (t〈J〉W t). Let U be the subgroup of W generated by 
〈J〉W and t〈J〉W t. Then N � NW (U). Furthermore, U properly contains 〈J〉W and it is 
itself contained in 〈K〉W where K := J ∪ {t} and therefore PcS(U) = 〈K〉W . Thus N
normalizes 〈K〉W by Item (c) of Lemma 3.13 and therefore it follows by induction that 
|N | = 1, as wanted. �
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5.2. A proof of Theorem 1.6

In this section we prove Theorem 1.6. We shall first need the following important 
result of Daan Krammer.

Theorem 5.4. Let (W, S) be an irreducible, non-spherical Coxeter system of finite rank. 
Suppose that there exists a subgroup H of W such that PcS(H) = W and such that H
is free abelian of rank 2. Then (W, S) is affine.

Proof. This follows from [36, Theorem 6.8.2]. �
Lemma 5.5. Let (W, S) be an irreducible, non-spherical Coxeter system of finite rank. 
Let x, y ∈ W be such that x 
= e 
= y and [x, yw] = e for all w ∈ W . Then PcS(x) =
W = PcS(y); moreover, x and y have both infinite order.

Proof. We put N := 〈yw : w ∈ W 〉W and observe that N is a normal subgroup of W such 
that |N | 
= 1. As yw ∈ CW (x) for each w ∈ W we have N � CW (x). Let P := PcS(x). 
Then N � CW (x) � NW (P ), by Lemma 3.13(c).
We have P = w〈J〉Ww−1 for some w ∈ W and some J ⊆ S. As e 
= x ∈ P , we have J 
= ∅. 
Furthermore N = w−1Nw normalizes 〈J〉W . Since |N | 
= 1 it follows by Lemma 5.3 that 
J = S and hence PcS(x) = W . Finally, it follows from Item (b) of Lemma 3.13 (and the 
fact that (W, S) is non-spherical) that x has infinite order.
As [x, yw] = e for all w ∈ W , we have also [y, xw] = e for all w ∈ W . Thus, it follows 
that PcS(y) = W and that y has infinite order as well. �
Lemma 5.6. Let (W, S) be an irreducible, non-spherical Coxeter system of finite rank. If 
there exists a normal subgroup N of W having a non-trivial center, then (W, S) is affine.

Proof. Let N be a normal subgroup of W , let Z be the center of N and let e 
= z ∈ Z. 
Then Z is normal in W and we have [z, zw] = e for all w ∈ W . By Lemma 5.5 we have 
PcS(z) = W and that z has infinite order.
For each s ∈ S we have szs ∈ Z. Suppose first that szs ∈ {z, z−1} for all s ∈ S. Then 
T := 〈z〉W is a normal subgroup of W . Assume, by contradiction, that there exists s ∈ S

such that szs = z. Then [s, zw] = e for all w ∈ W . As e 
= s ∈ W is of finite order, 
Lemma 5.5 yields a contradiction. Thus we have szs = z−1 for all s ∈ S. Let t 
= s be 
elements of S. Then e 
= ts ∈ CW (T ) and therefore [st, zw] = e because T is a normal 
subgroup of W . By Lemma 5.5 it follows that PcS(st) = W . As st ∈ 〈s, t〉W it follows 
that S = {s, t} and that W is the infinite dihedral group. We conclude that (W, S) is 
affine.
Suppose now that there is s ∈ S such that z 
= szs 
= z−1. We put a := zszs and 
b := z−1szs and observe that e 
= a ∈ Z, e 
= b ∈ Z, sas = a and sbs = b−1. Let 
H = 〈a, b〉W . As a, b ∈ Z, the group H is abelian and as a 
= e 
= b it follows by the 
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argument above that they are both of infinite order. We claim that H is free abelian 
of rank 2. Indeed, let k, m ∈ Z be such that akbm = e. Then e = sakbms = akb−m

which yields b2m = e. As b has infinite order, we have m = 0 which implies ak = e and 
finally k = 0 since a has infinite order. Finally, as e 
= a ∈ Z, we have PcS(a) = W by 
Lemma 5.5 and therefore PcS(H) = W . Thus we may apply Theorem 5.4 in order to 
conclude that (W, S) is affine. �
Theorem 5.7. Let (W, S) be an irreducible, non-spherical Coxeter system of finite rank. 
Suppose that there are x, y ∈ W such that x 
= e 
= y and [x, yw] = e for all w ∈ W . 
Then (W, S) is affine.

Proof. We put N := 〈yw : w ∈ W 〉W and observe that N is a normal subgroup of W with 
|N | 
= 1. Moreover, N � CW (x). If Z := 〈x〉W ∩N is non-trivial, then (W, S) is affine by 
Lemma 5.6. Thus we are left with the case where 〈x〉W ∩N is trivial. Now x and y have 
both infinite order by Lemma 5.5, [x, y] = e by assumption, and 〈x〉W ∩〈y〉W � 〈x〉W ∩N
is trivial. We conclude that H := 〈x, y〉W is a free abelian subgroup of W . Furthermore, 
PcS(x) = W by Lemma 5.5 and therefore PcS(H) = W . Now Theorem 5.4 yields that 
(W, S) is affine. �
Definition 5.8. Let G be a group. We say that G is a domain if for every x, y ∈ G with 
x, y 
= e there exists g ∈ G such that [x, yg] 
= e.

Proof of Theorem 1.6. This follows immediately from Lemma 5.7 and the fact that the 
direct product of two non-abelian groups is never a domain [3,34]. �
6. Elementary substructures in RACGs

In this section we prove Theorem 1.9.

In previous sections we already used the notation which we are about to introduce, 
but we recall it for clarity, since it will appear in Lemma 6.3.

Notation 6.1. Given a group G and g, h ∈ G we denote ghg−1 by hg.

Remark 6.2. The formula ϕΓ(x̄), for Γ a finite graph, which we will introduce in 
Lemma 6.3 plays a crucial role also in [12]. In fact, as shown there, we have that if 
WΘ is a right-angled Coxeter group of finite rank, then WΘ |= ∃x̄ϕΓ(x̄) iff Γ ∼= Θ.

Lemma 6.3. Let (WΓ, S) be a right-angled Coxeter system of finite rank and S =
{s1, ..., sn}. Let ϕΓ(x1, ..., xn) = ϕΓ(x̄) be the first-order formula expressing:

(a) for every � ∈ [1, n], x� has order 2 and x� 
= e;
(b) for every � 
= j ∈ [1, n], x� 
= xj and [x�, xj ] = e if and only if s�EΓsj;
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(c) for every � ∈ [1, n], y1, ..., yn ∈ WΓ, and k1, ..., k�−1, k�+1, ..., kn ∈ {0, 1}:

xy�

� 
= ((x1)k1)y1 · · · ((x�−1)k�−1)y�−1((x�+1)k�+1)y�+1 · · · ((xn)kn)yn .

Then WΓ |= ϕΓ(g1, ..., gn) iff there is α ∈ F (ΓS) (cf. Definition 3.56) such that 
{g1, ..., gn} is a set of self-similar T -reflections of WΓ (cf. Definition 3.21), where 
T = {α(s) : s ∈ S}.

Proof. The direction “right-to-left” is well-known, in fact conditions (a) and (b) and 
clear and condition (c) is also easily seen to be verified using Fact 3.16. Concerning the 
other direction, let g1, ..., gn ∈ WΓ and suppose that WΓ |= ϕ(g1, ..., gn). By condition 
(a) of the definition of ϕΓ(x̄) and Fact 3.53, for every � ∈ [1, n], we have:

g� = h�a
�
1 · · · a�m(�)(h�)−1, (1)

with A� := {a�1, ..., a�m(�)} inducing a non-empty clique of Γ. We claim that the map α
determined by the assignment α̂ : {s�} �→ A� is in F (Γ). First of all we claim that α is 
an automorphism of V (Γ) (cf. Definition 3.56). To see this it suffices to show that the 
set {A� : � ∈ [1, n]} is linearly independent in V (Γ), and this is clear by condition (c)
of the definition of ϕΓ(x̄). In fact, suppose that this is not the case, then there exists 
� ∈ [1, n] such that:

A� = (A1)k1�· · ·�(A�−1)k�−1�(A�+1)k�+1�· · ·�(Ak)kn ,

with k1, ..., k�−1, k�+1, ..., kn ∈ {0, 1} and (Ai)1 = Ai and (Ai)0 = ∅, and so:∏
A� = (

∏
A1)k1 · · · (

∏
A�−1)k�−1 · · · (

∏
A�+1)k�+1 · · · (

∏
Ak)kn .

Thus, letting yi = (hi)−1 we have:

gy�

� = ((x1)k1)y1 · · · ((x�−1)k�−1)y�−1((x�+1)k�+1)y�+1 · · · ((xn)kn)yn .

contradicting (c) of the definition of ϕΓ(x̄) (cf. (1)). Hence, in order to show that α ∈
F (Γ) we are only left with the verification that α sends cliques of Γ to cliques of Γ, but 
this is clear by condition (b) of the definition of ϕΓ(x̄) and Fact 3.52. Hence, {g1, ..., gn}
is a set of self-similar reflections of (WΓ, T ), for T = {α(s) : s ∈ S}. �
Definition 6.4. Let W be a right-angled Coxeter group of finite rank. We say that W has 
the self-similar reflection property if for every Coxeter basis S of W and self-similar set 
of reflections Ŝ of (W, S) (cf. Definition 3.21) we have that Ŝ generates W . On the other 
hand, we say that W ′ � W is a counterexample to the self-similar reflection property if 
there exists a Coxeter basis S of W and a set Ŝ of self-similar reflections of (W, S) such 
that W ′ = 〈Ŝ〉W and W ′ is a proper subgroup of W .
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Lemma 6.5. Let W = WΓ be a right-angled Coxeter group of finite rank, and let ϕΓ be the 
formula from Lemma 6.3. If W ′ � W is elementary in W and W ′ is a Coxeter group, 
then W ′ is a counterexample to the self-similar reflection property.

Proof. Let W = WΓ be a right-angled Coxeter group of finite rank, and let W ′ � W be 
elementary in W . Suppose that W ′ is a Coxeter group, then clearly W ′ is right-angled 
(since any element in W either has order 2 or it has order ∞, cf. Fact 3.53). Since W ′

is an elementary subgroup of W , then clearly W ′ is elementary equivalent to W . First 
of all notice that W ′ is of finite rank, since e.g. W has finitely many conjugacy classes 
of involutions, and this is a first-order property. Thus, by the main result of [12], W ′

is isomorphic to W . Let then (W ′, T ) be a right-angled Coxeter system of type Γ, with 
T = {t1, ..., t|Γ|} (recall Fact 3.54). Then W ′ |= ϕΓ(t1, ..., t|Γ|) and so W |= ϕΓ(t1, ..., t|Γ|). 
Thus, by Lemma 6.3, there exists a Coxeter basis S of W such that T = {t1, ..., t|Γ|} is a 
set of self-similar reflections of (W, S). Furthermore, clearly 〈t1, ..., t|Γ|〉W = W ′ and by 
hypothesis W ′ � W . �
Lemma 6.6. Let W be a Coxeter group of finite rank. Then W does not have proper 
elementary subgroups which are Coxeter group.

Proof. Let W ′ � W be elementary in W and suppose that W ′ is a Coxeter group 
and that W ′ � W . Then, by Lemma 6.5, we have that W ′ is a counterexample to the 
self-similar reflection property, i.e. there exists a Coxeter basis S of W and a set Ŝ of self-
similar reflections of (W, S) such that W ′ = 〈Ŝ〉W . By Proposition 3.23, W is isomorphic 
to W ′ by the map α : ŝ �→ s. Let S = {s1, ..., sn}, Ŝ = {ŝ1, ..., ŝn}, and let:

ŝi = si1 · · · siki
sisiki

· · · si1 ,

(recall that ŝi ∈ sWi ) for i ∈ [1, n]. Now, clearly we have:

W |= ∃x1, ..., xn(ϕΓ(x1, ..., xn) ∧
∧

i∈[1,n]

ŝi = xi1 · · ·xiki
xixiki

· · ·xi1),

where Γ is the graph specifying the type of W and ϕΓ(x1, ..., xn) is the formula from 
Lemma 6.3. Hence, being W ′ elementary in W and Ŝ ⊆ W ′ we have:

W ′ |= ∃x1, ..., xn(ϕΓ(x1, ..., xn) ∧
∧

i∈[1,n]

ŝi = xi1 · · ·xiki
xixiki

· · ·xi1).

But then, via the isomorphism α : W ′ ∼= W such that ŝ �→ s, we have:

W |= ∃x1, ..., xn(ϕΓ(x1, ..., xn) ∧
∧

si = xi1 · · ·xiki
xixiki

· · ·xi1). (
)

i∈[1,n]
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Let b1, ..., bn ∈ W be a witness of (
). Then, by Lemma 6.3, there exists a Coxeter basis 
T of W such that B := {b1, ..., bn} is a set of self-similar reflections of (W, T ). On the 
other hand, by the second conjunct of the formula in (
), we have that:

〈bi : i ∈ [1, n]〉W = W,

since S ⊆ 〈bi : i ∈ [1, n]〉W and S generates W . Thus, by Proposition 3.23, we have that 
B is a basis of W . Hence, we have:

β : si �→ bi ∈ Aut(W ),

by Fact 3.54 and the fact that B is a basis of W . Furthermore:

{bi1 · · · biki
bibiki

· · · bi1 : i ∈ [1, n]} = {s1, ..., sn} = S

is a basis of W , and so:

γ : bi �→ bi1 · · · biki
bibiki

· · · bi1 ∈ Aut(W ).

Hence, we have:

(β−1 ◦ γ ◦ β)(si) = (β−1 ◦ γ)(bi)
= β−1(bi1 · · · biki

bibiki
· · · bi1)

= β−1(bi1) · · ·β−1(biki
)β−1(bi)β−1(biki

) · · ·β−1(bi1)
= si1 · · · siki

sisiki
· · · si1 ,

and so the map α−1 : si �→ ŝi = si1 · · · siki
sisiki

· · · si1 is an automorphism of W , 
contradicting the fact that W ′ = 〈Ŝ〉W is a proper subgroup of W . �
Lemma 6.7. Let Γ be a graph of arbitrary cardinality with the star-property (cf. Defini-
tion 3.64). Let ψ(x) be the first-order formula expressing:

(1) x has order 2 and x 
= e;
(2) there is no y of order 2 such that e 
= y 
= x and for every z of order 2 we have:

[z, x] = e implies [z, y] = e.

Then the following are equivalent for a ∈ WΓ = W :

(1) W |= ψ(a);
(2) a ∈ SW , for some (equivalently, every) Coxeter basis S of W .
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Proof. Suppose that Γ has the star property and let W = WΓ. By Fact 3.65, SW does 
not depend on a choice of the Coxeter basis S of W , let then R(W ) := SW . First of all, 
we prove that for g ∈ R(W ) we have that W |= ψ(g). Notice that it suffices to show this 
for s ∈ S, since conjugation is an automorphism. Let then s ∈ S and b ∈ W of order 
2 with e 
= b 
= g. We want to find c ∈ CW (s, 2) − CW (b, 2), where for h ∈ W we let 
CW (h, 2) = CW (h) ∩{g ∈ W : g2 = e}, and we recall that CW (h) denotes the centralizer 
of h in W . By Fact 3.53, we have that b = w = s1 · · · smasm · · · s1, with w reduced and 
sp(a) inducing a non-empty clique of Γ. We make a case distinction:
Case 1. �(a) = 1 and a = t ∈ S with t 
= s.
Let r ∈ N∗(s) −N∗(t). Then r = c is as wanted.
Case 2. �(a) = 1 and a = s.
In this case necessarily m � 1, since we are assuming that g 
= b. Let r ∈ N∗(s) −N∗(sm). 
Then r = c is as wanted.
Case 3. �(a) > 1.
Let t ∈ sp(a) − {s} and r ∈ N∗(s) −N∗(t). Then r = c is as wanted.
We now prove that if W |= ψ(g), then g ∈ R(W ). Now, since g is of order 2, by 
Fact 3.53, we have that g = w = s1 · · · smasm · · · s1, with w reduced and sp(a) inducing 
a non-empty clique of Γ. For the sake of contradiction, suppose that a = w′ = t1 · · · tk
with k = �(a) � 2. Then, for every � ∈ [1, k], we have that:

CW (g, 2) � CW (t�, 2),

where the inclusion ⊆ is by Fact 3.52, and the fact that the inclusion is proper is by the 
star-property, and so W 
|= ψ(g), a contradiction. So �(a) = 1 and g ∈ R(W ). �
Theorem 6.8. Let Γ be a right-angled graph (finite or infinite) and WΓ = W the corre-
sponding right-angled Coxeter group. Then the following are equivalent:

(1) Γ has the star-property (cf. Definition 3.64);
(2) the set of reflections SW of the Coxeter system (W, S) is invariant under change of 

basis S of W ;
(3) the set of reflections SW of the Coxeter system (W, S) is invariant under change of 

basis S of W and it is first-order definable in W without parameters.

Furthermore, if Γ has the star-property, then the graph Γ is interpretable in WΓ.

Proof. The equivalence of (1) and (2) is by Fact 3.65, while the other equivalence is by 
Lemma 6.7. The “furthermore” also follows easily from Lemma 6.7. �
Corollary 6.9. Let WΓ be a right-angled Coxeter group of finite rank, and suppose that Γ
has the star-property. Then WΓ does not have proper elementary subgroups.
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Proof. Suppose that Γ has the star property and let W = WΓ. By Fact 3.65, SW does 
not depend on a choice of the Coxeter basis S of W , let then R(W ) := SW . Let W ′

be an elementary subgroup of W . By Lemma 6.6 and [19,22] it suffices to show that W
is a reflection subgroup of W (since then we have that W ′ is a Coxeter group and we 
can indeed apply Lemma 6.6), i.e. W ′ = 〈W ′ ∩R(W )〉W . Let ψ(x) the formula defining 
R(W ) in W (cf. Theorem 6.8). Let a ∈ W ′, then:

W |= ∃x1, ..., xn(
∧

i∈[1,n]

ψ(xi) ∧ a = x1 · · ·xn),

and thus:

W ′ |= ∃x1, ..., xn(
∧

i∈[1,n]

ψ(xi) ∧ a = x1 · · ·xn).

Hence, since ψ(W ′) ⊆ ψ(W ) being W ′ elementary in W , we can find t1, ..., tn ∈ W ′ ∩
R(W ) such that a = t1 · · · tn, and so a ∈ 〈W ′ ∩R(W )〉W , as wanted. �
Proof of Theorem 1.9. Immediate by Lemmas 6.6 and 6.7, and Corollary 6.9. �
7. Prime models in RACGs

In this section we prove Theorem 1.10.

7.1. Prime models and Sim(W, S)

Proposition 7.1. Let W be a right-angled Coxeter group of finite rank. Then the Aut(W )-
orbit of any Coxeter basis is type-definable in W without parameters.

Proof. Let Γ be the type of W , ϕΓ be as in the proof of Lemma 6.3, and n = |Γ|. 
Let X = ϕΓ(M) = {ā ∈ Wn : W |= ϕΓ(ā)} and X∗ = {ā ∈ X : 〈ā〉W 
= W}. Now, 
by Lemma 6.3, for every ā ∈ X, there exists a basis Tā such that {a1, ..., an} is a set 
of self-similar reflections of (W, Tā). For every ā ∈ X∗, fix one such basis Tā and an 
enumeration �ā= {t(ā,1), ..., t(ā,n)} of Tā. Then for every ā ∈ X∗ and for i ∈ [1, n] we 
have a Tā-normal form:

ai = t(ā,i1) · · · t(ā,iki
)t(ā,i)t(ā,iki

) · · · t(ā,i1).

Thus, for every ā ∈ X∗, let:

χ(ā,Tā,�ā)(x̄, ȳ) =
∧

i∈[1,n]

xi = yi1 · · · yiki
yiyiki

· · · yi1 ,

θ(ā,Tā,�ā)(x̄) = ¬∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(ā,Tā,�ā)(x̄, ȳ)).
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Let then:

pΓ(x̄) = {ϕΓ(x̄)} ∪ {θ(ā,Tā,�ā)(x̄) : ā ∈ X∗}.

We claim that ā = (a1, ..., an) |= pΓ(x̄) if and only if {a1, ..., an} is a basis of W . 
Concerning the implication “left-to-right”, suppose that b̄ = (b1, ..., bn) |= pΓ(x̄), then 
b̄ ∈ X, and so it suffices to show that b /∈ X∗, since then by Proposition 3.23 we have 
that {b1, ..., bn} is a basis of W . For the sake of contradiction, suppose that b̄ ∈ X∗, then 
the basis Tb̄ = {t(b̄,1), ..., t(b̄,n)} is such that:

bi = t(b̄,i1) · · · t(b̄,iki
)t(b̄,i)t(b̄,iki

) · · · t(b̄,i1),

and so W |= ∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(b̄,Tb̄,�b̄)(b̄, ȳ)), contradicting the fact that:

¬∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(b̄,Tb̄)(b̄, ȳ)) ∈ pΓ(x̄).

Concerning the implication “right-to-left”, let (s1, ..., sn) = s̄ be a basis of W , we want 
to show that s̄ |= pΓ(x̄). Clearly, W |= ϕΓ(s̄). For the sake of contradiction, suppose that 
for some ā ∈ X∗ we have:

W |= ∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(ā,Tā,�ā)(s̄, ȳ)).

Then there exists b1, ..., bn ∈ W such that:

W |= ϕΓ(b1, ..., bn) ∧
∧

i∈[1,n]

si = bi1 · · · biki
bibiki

· · · bi1 ,

where si = yi1 · · · yiki
yiyiki

· · · yi1 is the formula χ(ā,Tā,�ā)(s̄, ȳ). But then, arguing as in 
the proof of Theorem 6.6 we see that {b1, ..., bn} is a basis of W , and that:

β : ti �→ bi ∈ Aut(W ), γ : bi �→ bi1 · · · biki
bibiki

· · · bi1 ∈ Aut(W ),

where Tā = {t(ā,1), ..., t(ā,n)} = {t1, ..., tn}. Thus, exactly as in the proof of Theorem 6.6, 
we see that:

(β−1 ◦ γ ◦ β)(ti) = ti1 · · · tiki
titiki

· · · ti1 ,

and so:

ti �→ ti1 · · · tiki
titiki

· · · ti1 = ai ∈ Aut(W )

contradicting the fact ā ∈ X∗. �
We invite the reader to recall the definition of Sim∗(W, S) from Definition 3.19.
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Lemma 7.2. In the context of the proof of Proposition 7.1, in the definition:

pΓ(x̄) = {ϕΓ(x̄)} ∪ {θ(ā,Tā,�ā)(x̄) : ā ∈ X∗}

we can assume that for every ā ∈ X∗ we have that:

(i) ā is a set of self-similar reflections of (W, S) for a fixed basis S of W ;
(ii) ā = (a1, ..., an) = (α(s1), ..., α(sn)), for some α ∈ Sim∗(W, S);
(iii) θ(ā,Tā,�ā)(x̄) = θ(ā,S,�)(x̄), for a fixed enumeration � = {s1, ..., sn} of S.

Consequently, from now on we denote X∗ simply as XS, and we let XS be:

{ā ∈ ϕΓ(W ) : ā = (a1, ..., an) = (α(s1), ..., α(sn)), for α ∈ Sim∗(W,S)}.

Also, we let:

pΓ(x̄) = {ϕΓ(x̄)} ∪ {θ(ā,S,�)(x̄) : ā ∈ XS}.

Finally notice that in this notation we have that:

θ(ā,S,�)(x̄) = ¬∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(ā,S,�)(x̄, ȳ)),

where:

χ(ā,S,�)(x̄, ȳ)) =
∧

i∈[1,n]

xi = yi1 · · · yiki
yiyiki

· · · yi1 .

Proof. This is clear from the proof of Proposition 7.1. Notice in fact that if S is a basis 
of W and ā ∈ X∗, then, by Fact 3.54, we can find β ∈ Aut(W ) such that β(S) = Tā

and thus β−1(ā) = b̄ ∈ X∗. Furthermore, since the proof of Proposition 7.1 did not 
depend on the choice function ā �→�ā = {t(ā,1), ..., t(ā,n)} = {t1, ..., tn}, we can always 
choose �ā = {β(s1), ..., β(sn)}, and so we have that bi ∈ sWi , since ai ∈ tWi . Thus, 
α : si �→ bi ∈ Sim∗(W, S) and we have:

W |= ¬θ(b̄,S,�)(ā).

Hence, ā |= pΓ(x̄) if and only if ā |= {ϕΓ(x̄)} ∪ {θ(ā,S,�)(x̄) : ā ∈ XS}. �
Notation 7.3. In the context of Lemma 7.2, for ā ∈ XS , let fā : si �→ ai, for i ∈ [1, n]. 
Then fā ∈ Sim∗(W, S), and the map ā �→ fā is a bijection of XS onto Sim∗(W, S). 
Hence, letting s̄ = {s1, ..., sn}, for f ∈ Sim∗(W, S) we let:

χ(f(s̄),S,�)(x̄) = χ(f,s̄)(x̄),
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θ(f(s̄),S,�)(x̄) = θ(f,s̄)(x̄).

Also, in this notation, we let:

pΓ(x̄) = {ϕΓ(x̄)} ∪ {θ(f,s̄)(x̄) : f ∈ Sim∗(W,S)}.

Finally, given f ∈ Sim∗(W, S) we denote by āf the associated element of XS .

We invite the reader to recall the definition of Sim(W, S) from Definition 3.19.

Lemma 7.4. In the context of Notation 7.3, let fā, fb̄ ∈ Sim∗(W, S). Suppose that there 
exists g ∈ Sim
(W, S) such that fā = g ◦ fb̄, then:

W |= ∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(fb̄,s̄)(ā, ȳ)).

Proof. By definition we have:

W |= χ(fb̄,s̄)(b̄, s̄).

And so, since g is a monomorphism we have:

W |= χ(fb̄,s̄)(g(b̄), g(s̄)).

Furthermore, we have:

(i) fb̄(s̄) = b̄ and fā(s̄) = ā;
(ii) g(b̄) = g(fb̄(s̄)) = fā(s̄) = ā;
(iii) W |= ϕΓ(g(s̄)), since g ∈ Sim(W, S) (cf. Lemma 6.3).

Hence:

W |= ϕΓ(g(s̄)) ∧ χ(fb̄,s̄)(ā, g(s̄)). �
Definition 7.5. Let f ∈ Sim∗(W, S), we say that f is indecomposable if there are no 
g ∈ Sim∗(W, S) and h ∈ Sim∗(W ) such that f = g ◦ h.

Lemma 7.6. Let fā ∈ Sim∗(W, S) and suppose that fā is not indecomposable, and let 
fb̄, fc̄ ∈ Sim∗(W, S) be such that fā = fc̄ ◦ fb̄, then 〈fā(s̄)〉W � 〈fc̄(s̄)〉W � W .

Proof. The fact that 〈fc̄(s̄)〉W � W is clear, since by hypothesis fc̄ ∈ Sim∗(W, S). Now, 
by the same argument used in the proof of Lemma 7.4 we have that:

W |= χ(f¯,s̄)(fc̄(b̄), fc̄(s̄)).
b
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Thus, 〈fā(s̄)〉W � 〈fc̄(s̄)〉W , since every element of fc̄(b̄) = fc̄(fb̄(s̄)) = fā(s̄) can be 
written as a product of elements of fc̄(s̄) (cf. the explicit definition of χ(fb̄,s̄)(x̄, ȳ) from 
Notation 7.3). Furthermore, the map φ : 〈fc̄(s̄)〉W → 〈fc̄(s̄)〉W such that fc̄(s̄) �→ fc̄(b̄) =
fc̄(fb̄(s̄)) = fā(s̄) is not surjective, since 〈fc̄(s̄)〉W ∼= W (say via the map γ), in fact if it 
were we could find group words w1(x̄), ..., wn(x̄) such that fc̄(si) = wi(fc̄(b̄)), for every 
i ∈ [1, n], and so via the isomorphism γ we would have that the same is true for s̄ and b̄, 
contradicting that fb̄ ∈ Sim∗(W, S), i.e. contradicting that fb̄ is not surjective. Hence, 
〈fā(s̄)〉W � 〈fc̄(s̄)〉W � W . �
Lemma 7.7. Let B be a generating set for the monoid Sim(W, S) and let YB = {f ∈ B :
f ∈ Sim∗(W, S)}. Then the type pΓ(x̄) is isolated by the type:

pBΓ (x̄) = {ϕΓ(x̄)} ∪ {θ(f,s̄)(x̄) : f ∈ YB}.

Further, if Z ⊆ YB, f∗ /∈ 〈Z∪Spe(W )〉Sim(W,S) and f∗ ∈ Sim∗(W, S) is indecomposable, 
then the type {ϕΓ(x̄)} ∪ {θ(f,s̄)(x̄) : f ∈ Z} does not imply {θ(f∗,s̄)(x̄)}, that is there is 
ā ∈ W<ω s.t. W |= {ϕΓ(ā)} ∪ {θ(f,s̄)(ā) : f ∈ Z} and W 
|= θ(f∗,s̄)(ā).

Proof. Concerning the first claim, let ā ∈ XS , we want to show that ā 
|= pBΓ (x̄). If fā ∈
YB , then this is clear (cf. the proof of Proposition 7.1). Suppose then that fā ∈ XS−YB , 
then there are fb̄ ∈ YB, h ∈ Spe(W ) and g ∈ Sim(W, S) such that:

fā = g ◦ fb̄ ◦ h,

in fact since Sim(W, S) is generated by B we have that fā = α1 ◦ · · · ◦ αk with all 
the αi ∈ B and such that at least one of the αi ∈ Sim∗(W, S) (since if they were all 
automorphisms, then also fā would be an automorphism, contrary to our assumption that 
fā ∈ Sim∗(W, S)), and so letting fb̄ to be the largest i ∈ [1, k] such that αi ∈ Sim∗(W, S)
we are done (notice that if i = k we can take h = idW ).
Now, simply unraveling notations, we have:

g ◦ fb̄ ◦ h(s̄) = fā(s̄) = ā,

and so, letting ā′ = h−1(ā) (recall that h is an automorphism), we have that:

g ◦ fb̄(s̄) = ā′ = fā′(s̄),

where, clearly fā′ ∈ Sim∗(W, S), since fb̄ ∈ Sim∗(W, S). Hence, by Lemma 7.4:

W |= ∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(fb̄,s̄)(ā
′, ȳ)).

And since h ∈ Aut(W ) and h−1(ā′) = ā, clearly we have that:
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W |= ∃y1, ..., yn(ϕΓ(ȳ) ∧ χ(fb̄,s̄)(ā, ȳ)).

Hence, ā 
|= pBΓ (x̄), as θ(fb̄,s̄)(x̄) ∈ pBΓ (x̄), since fb̄ ∈ YB = {f ∈ B : f ∈ Sim∗(W, S)}.
Concerning the “furthermore claim”, let Z ⊆ YB and let:

f∗ = fā /∈ 〈Z ∪ Spe(W )〉Sim(W,S)

be such that f∗ ∈ Sim∗(W, S) is indecomposable. Clearly W |= ¬θ(fā,s̄)(ā). We claim 
that ā |= {ϕΓ(x̄)} ∪ {θ(f,s̄)(x̄) : f ∈ Z}, and so {ϕΓ(x̄)} ∪ {θ(f,s̄)(x̄) : f ∈ Z} does not 
imply θ(fā,s̄)(x̄). Suppose that this is not true, and let fb̄ ∈ Z be such that:

W |= ∃ȳ(ϕΓ(ȳ) ∧ χ(fb̄,s̄)(ā, ȳ)).

Then we can find t̄ ∈ W<ω such that:

W |= ϕΓ(t̄) ∧ χ(fb̄,s̄)(ā, t̄). (∗)

Let now, g : si �→ ti, for i ∈ [1, n]. We claim that ti ∈ sWi , i.e. that g ∈ Sim(W, S). 
Let i ∈ [1, n], then ai ∈ sWi by hypothesis, since fā ∈ Sim∗(W, S). Furthermore, by (∗)
above we have that ai ∈ tWi . Let then w, u ∈ W be such that:

wsiw
−1 = ai = utiu

−1.

Then we have:

ti = u−1wsiw
−1u = u−1wsi(u−1w)−1 ∈ sWi .

We now claim that fā = g ◦ fb̄. To this extent, let:

χ(fb̄,s̄)(x̄, ȳ) =
∧

i∈[1,n]

xi = yi1 · · · yiki
yiyiki

· · · yi1 .

Then we have (where in the last equation we use crucially (∗)):

g ◦ fb̄(si) = g(si1 · · · siki
sisiki

· · · si1)
= g(si1) · · · g(siki

)g(si)g(siki
) · · · g(si1))

= ti1 · · · tiki
titiki

· · · ti1
= ai.

Case 1 . g ∈ Spe(W ).
In this case fā = g ◦ fb̄ ∈ 〈Z ∪ Spe(W )〉Sim(W,S), since fb̄ ∈ Sim∗(W, S).
Case 2 . g ∈ Sim∗(W, S).
In this case fā = g ◦ fb̄, with g, fb̄ ∈ Sim∗(W, S) and so f∗ is not indecomposable. �
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Proposition 7.8. For every f ∈ Sim∗(W, S) there exist f1, ..., fn ∈ Sim∗(W, S) such that 
f = f1 ◦ · · · ◦ fn and, for every i ∈ [1, n], fi is indecomposable.

Proof. This is an immediate consequence of Corollary 3.46. �
Corollary 7.9. If the monoid Sim(W, S) is not finitely generated, then for every finite 
Z ⊆ Sim∗(W, S) there exists an indecomposable f∗ /∈ 〈Z ∪ Spe(W )〉Sim(W,S).

Proof. This is a consequence of Proposition 7.8, since we have that:

Sim(W,S) = 〈Sim∗(W,S) ∪ Spe(W )〉Sim(W,S)

and Spe(W ) is generated by finitely many involutory automorphisms (cf. Fact 3.62). �
7.2. Generators of Sim(W, S)

In this section we prove the “furthermore” part of Theorem 1.10, i.e. that if W is 
a universal Coxeter group of finite rank at least two and S is a basis of W , then the 
monoid Sim(W, S) is not finitely generated.

Let G be a group and let α be an endomorphism of G. Then α(eG) = eG and α(x−1) =
α(x)−1 for each x ∈ G. It follows that α([G, G]) ⊆ [G, G] for all α ∈ End(G) and 
therefore each such α induces an endomorphism α of G := G/[G, G] (namely g[G, G] �→
α(g)/[G, G]). Thus, we have a natural homomorphism of monoids π from End(G) to 
End(G) (namely α �→ α).

Let L be the free abelian group of rank n where 1 � n < ω. Then det is a homomorphism 
of monoids from End(L) to the monoid Z with multiplication. Furthermore, if M is a 
submonoid of End(L) such that det(M) contains infinitely many prime numbers, then 
M is not finitely generated.

Let G be a group and suppose that G := G/[G, G] is a free abelian group of rank n
where 1 � n < ω and suppose that M is a submonoid of End(G). If det ◦π(M) contains 
infinitely many prime numbers, then M is not finitely generated.

Lemma 7.10. Let W be a universal Coxeter group of finite rank at least two and S a basis 
of W , then the monoid Sim(W, S) is not finitely generated

Proof. Let (W, S) be the universal Coxeter system of rank n + 1 where 1 � n < ω and 
let S = {s0, s1, . . . , sn}. Let W+ := {w ∈ W : �S(w) is even} (cf. Definition 3.49(ii)), 
and put xi := s0si for 1 � i � n. Then W+ is the non-abelian free group of rank n and 
{xi : 1 � i � n} is a basis of W+ (cf. e.g. [6, Proposition 2.1.1]). Furthermore, W+ :=
W+/[W+, W+] is the free abelian group of rank n with basis {xi/[W+, W+] : 1 � i � n}. 
Also, by the considerations preceding the current lemma, we have homomorphisms of 
monoids:
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π : End(W+) → End(W+) and det : End(W+) → (Z, ·).

Notice now that for each α ∈ Sim(W, S) we have that α(W+) ⊆ W+ and therefore we 
obtain a homomorphism of monoids:

ϕ : Sim(W,S) → End(W+) : α �→ α+,

where α+ is the restriction of α to W+.
For an odd prime p let wp = sns0sns0 · · · s0sn be the alternating product of length 2p −1
and let αp ∈ Sim(W, S) be defined by αp(si) := si for i < n and αp(sn) := wp. Then 
det ◦ π ◦ ϕ(αp) = p. Hence, by the considerations preceding the current lemma, we have 
that M := ϕ(Sim(W, S)) is not finitely generated and therefore Sim(W, S) is not finitely 
generated. This concludes the proof of the lemma. �
Remark 7.11. Let (W, S) be a right-angled Coxeter group of finite rank. We conjecture 
that Sim(W, S) is not finitely generated whenever there are s, t ∈ S satisfying the 
following assumptions:

(1) o(st) = ∞;
(2) N(t) ⊆ N(s), where N is as in Notation 3.60 for the Coxeter graph of (W, S).

In support of this conjecture we observe that these two assumptions are exactly what we 
need in order for the maps αp defined in the proof of Lemma 7.10 to be endomorphisms of 
W (and so to be elements of Sim(W, S)). Explicitly, letting S = {s0, ..., sn}, s0 = s and 
sn = t, if p is an odd prime and we let wp = sns0sns0 · · · s0sn be the alternating product 
of length 2p − 1 and we let αp be defined by αp(si) = si for i � n and αp(sn) = wp. 
Then, by Lemma 3.52, αp ∈ Sim(W,S).

Proof of Theorem 1.10. This is immediate by Lemmas 7.7, 7.9 and 7.10. �
8. Traces of homogeneity in RACGs

In this section we prove Theorem 1.11.

The material contained in this section is connected to the area of group theory which 
studies test elements (resp. test elements for monomorphisms), i.e. those g ∈ G such 
that for every α ∈ End(G) (resp. for every monomorphism α ∈ End(G)) we have that 
α(g) = g implies that α ∈ Aut(G). On this see e.g. [53,54].

Definition 8.1. Let (W, S) be a right-angled Coxeter system of finite rank and let S =
{s1, ..., sn}. We say that h ∈ W is a Coxeter element of (W, S) if there exists σ ∈
Sym({1, ..., n}) such that h = sσ(1) · · · sσ(n). We say that h is a Coxeter element of W if 
it is a Coxeter element of (W, S) for some Coxeter basis S of W .
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Definition 8.2. Let (W, S) be a right-angled Coxeter system. We say that α ∈ End(W )
is a pre-special S-endomorphism when:

(1) α = γ ◦ β;
(2) β ∈ F (ΓS) (cf. Definition 3.56);
(3) γ(t) ∈ tW , for every t ∈ T = α(S);
(4) o(γ(t)γ(r)) = o(tr), for all t, r ∈ T .

We denote the set of pre-special S-endomorphisms as End
(W, S).

Remark 8.3. Notice that by Proposition 3.23 if α ∈ End
(W, S), then the map:

W → 〈α(s) : s ∈ S〉W : s �→ α(s)

is an isomorphism, and so α is a monomorphism. Notice further that if F (Γ) = Aut(Γ), 
then Definition 8.2 simplifies, since in this case β ∈ Aut(Γ) and S = α(T ).

Fact 8.4 ([10, Lemma 5.2]). Let (W, S) be a reflection independent right-angled Coxeter 
system of finite rank and let h be a Coxeter element of (W, S). Then, for every α ∈
End
(W, S), the fact that α(h) = h implies that α ∈ Aut(W ).

Lemma 8.5. Let (W, S) be a right-angled Coxeter system of finite rank, ā ∈ Wm and 
H = Hā = 〈ā〉W . Suppose that there exists h ∈ H such that for every α ∈ End
(W, S)
we have that α(h) = h implies that α ∈ Aut(W ). Then ā is type-determined, i.e. if 
tp(ā/∅) = tp(b̄/∅), then there is α ∈ Aut(W ) such that α(ā) = b̄.

Proof. Let S be a basis of W . First of all, for every i ∈ [1, m], let:

ai = wi(s1, ..., sn)

be normal forms in the alphabet {s1, ..., sn}. Let then ̄b = (b1, ..., bm) ∈ Wm and suppose 
that b̄ is not in the Aut(W )-orbit of ā. For the sake of contradiction, suppose also that 
tp(ā) = tp(b̄). Now, clearly we have:

W |= ∃x̄(ϕΓ(x̄) ∧
∧

i∈[1,m]

ai = wi(x1, ..., xn)).

Thus, since tp(ā) = tp(b̄), we can find t̄′ = (t′1, ..., t′n) ∈ Wm such that:

W |= ϕΓ(t̄′) ∧
∧

i∈[1,n]

bi = wi(t′1, ..., t′n).

Then there exists a basis S′ = {s′1, ..., s′n} of W such that T ′ = {t′1, ..., t′n} is a set of 
self-similar reflections of (W, S′). Hence, since b̄ is not in the Aut(W )-orbit of ā, the 
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monomorphism β : s′i �→ t′i must be non surjective, and so we can find a formula χ(x̄, ȳ)
as in the proof of Proposition 7.1 such that W |= χ(t̄′, ̄s′), and thus witnessing the 
non-surjectivity of β. But then, since tp(ā) = tp(b̄), we have:

W |= ∃x̄ȳ(ϕΓ(x̄) ∧
∧

i∈[1,m]

ai = wi(x1, ..., xn) ∧ ϕΓ(ȳ) ∧ χ(x̄, ȳ)). (
)

Hence, if t̄ is a witness for the quantifier ∃x̄ in the formula in (
) and we let α : si �→ ti, 
for i ∈ [1, n], then we have:

(1) the map α ∈ End
(W, S);
(2) α is not surjective and so α /∈ Aut(W );
(3) W |= ai = wi(t1, ..., tn).

Now from the above we infer:

α(ai) = α(wi(s1, ..., sn)) = wi(α(s1), ..., α(sn)) = wi(t1, ..., tn) = ai.

Thus, α � H = idH , a contradiction. �
Proof of Theorem 1.11. Immediate from Fact 8.4 and Lemma 8.5. �
9. Prime models and ≡ in 2-spherical Coxeter groups

In this section we prove Theorem 1.12.

Lemma 9.1. Let (W, S) be an irreducible, 2-spherical Coxeter system of finite rank. Then 
the set of reflections of W is definable without parameters.

Proof. Let G1, ..., Gn be a list of the maximal special S-parabolic5 subgroups of W (cf. 
Definition 3.6) and, for � ∈ [1, n], let |G�| = k�. Then, by Fact 3.68, for every w ∈ W of 
finite order, the finite continuation FC(w) (cf. Definition 3.67) of w can be defined by 
the formula ϕ(y, w) (y is a free variable and w is a parameter):

(A) for every � ∈ [1, n] if there are x1, ..., xk�
∈ W such that {x1, ..., xk�

} determines a 
subgroup G′

� of W isomorphic to G�, and G′
� contains w, then y is in G′

�.

Then, by Fact 3.69, we can define SW to be the set of x in W such that x is an involution, 
x 
= e and FC(x) = {e, x}, and this is clearly a first-order condition. �
5 Notice that in the proof of Lemma 9.1, by the “furthermore part” of Fact 3.69 (i.e. by the strong rigidity 

of W ), it does not matter the choice of Coxeter basis S of W .
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Proof of Theorem 1.12. Let (W, S) be an irreducible, 2-spherical Coxeter system of finite 
rank. Then, by Lemma 9.1, the set SW is first-order definable without parameters. 
Suppose in addition that (W, S) is even and not affine, and let S = {s1, ..., sn}. Let then 
δ(x1, ..., xn) be the first-order formula expressing that:

(i) for every i ∈ [1, n], xi is in SW ;
(ii) for every i 
= j ∈ [1, n], o(xixj) = o(sisj) (recall that (W, S) is 2- spherical).

Let now ā ∈ Wn be such that W |= ϕ(ā). Then the map α : si �→ ai extends to an 
S-self-similarity of W , and so, by Proposition 3.23, we have that α : W → 〈α(S)〉W is 
an isomorphism. Now, by [9] we have that W is co-Hopfian, and so it must be the case 
that α is actually an automorphism. Hence, δ(x1, ..., xn) defines the Aut(W )-orbit of any 
Coxeter generating set, i.e. W is a prime model of its theory. �
Proof of Corollary 1.13. Let WΓ and WΘ be as in the assumptions of the corollary. 
Suppose now that Th(WΓ) = Th(WΘ), then WΓ |= Th(WΘ), and so, since WΘ is a 
prime model of Th(WΘ), we can find an elementary embedding f : WΘ → WΓ. Without 
loss of generality we may assume that f is actually an inclusion map, so that WΘ � WΓ. 
Let now δ(x̄) = δΓ(x̄) be the formula from the proof of Theorem 1.12 for the Coxeter 
system (WΓ, S), where S is any6 basis for WΓ. Then:

WΓ |= ∃x̄δΓ(x̄) ⇒ WΘ |= ∃x̄δΓ(x̄)
⇒ ∃ā ∈ W

|S|
Θ such that WΘ |= δΓ(ā)

⇒ WΓ |= δΓ(ā)
⇒ s̄ �→ ā ∈ Aut(WΓ).

Thus, we have:

〈ā〉Wθ
� WΘ � WΓ and 〈ā〉Wθ

= WΓ.

Hence, we must in fact have that WΘ = WΓ and so, by the “furthermore part” of 
Fact 3.69 (i.e. by the strong rigidity of W ), we can conclude that Θ ∼= Γ. �
10. A model-theoretic interpretation of reflection length

In this section we develop the model theoretic applications of reflection length 
announced in the introduction and in particular prove Theorem 1.14 and Corollar-
ies 1.15 and 1.16. We invite the reader to recall Definition 3.14 and Facts 3.15, 3.16.

6 Notice that also in the proof of Corollary 1.13, by the “furthermore part” of Fact 3.69 (i.e. by the strong 
rigidity of W ), it does not matter the choice of Coxeter basis S of W .
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Proof of Theorem 1.14. Item (1). The fact that N is characteristic in G is clear, since 
automorphisms map involutions to involutions. We are then left to show that N = 〈SG〉G. 
To see this notice that every element g ∈ W of order 2 is a conjugate of an element in 
a spherical special parabolic subgroup of W (see e.g. [47]), i.e. there exists S′ ⊆ S such 
that 〈S′〉W = H is finite and k ∈ H such that g ∈ kW . Since there are only finitely many 
possibilities for such a k (given that S is assumed to be finite), we have that in G it is 
true that if g ∈ G is of order 2, then g = (s1 · · · sn)h, for some s1, ..., sn ∈ S and h ∈ G, 
and thus we have:

g = (s1 · · · sn)h = hs1h
−1hs2h

−1 · · ·hsnh−1 ∈ 〈SG〉G.

Item (2). This is by Fact 3.15(2) and the fact that the property “x has reflection length 
�T (x) at least n” is first-order expressible over S.
Item (3). This is by Fact 3.15(2) and the fact that the property “x has reflection length 
�T (x) at most n” is first-order expressible over S. �
Proposition 10.1. Let (W, S) be a Coxeter system of finite rank, Q a group, and let 
η : W → Q ∈ Hom(W, Q) be such that η(sw) = η(s), for all s ∈ S and w ∈ W . Then 
there exist ψi(x, S), i < ω, such that for every elementary extension G of W :

(1) η extends to an homomorphism η̂ : NG → Q (cf. Theorem 1.14);
(2)

∨
i<ω ψi(G, S) = ker(η̂);

(3) if W is affine, then there exists n < ω such that 
∨

i<n ψi(G, S) = ker(η̂).

Proof. Item (1). Define:

η̂ : NG → Q : sg1
1 · · · sgnn �→ η(s1 · · · sn).

Clearly, we have:

η̂(sg1
1 · · · sgnn th1

1 · · · thm
m ) = η(s1 · · · snt1 · · · tm)

= η(s1 · · · sn)η(t1 · · · tm)
= η̂(sg1

1 · · · sgnn )η̂(th1
1 · · · thm

m ).

Thus, we are left to show that η̂ is well-defined. Suppose then that:

g = sg1
1 · · · sgnn and g = th1

1 · · · thm
m .

Then:

sg1
1 · · · sgnn thm

m · · · th1
1 = e.

But then, since G is an elementary extension of W , by Fact 3.16, we have:
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s1 · · · sntm · · · t1 = e,

in fact the abelianization map from Fact 3.16 is a witness that in W we have that if a 
product of reflections sw1

1 · · · swn
n equals e, then s1 · · · sn = e. Hence, we have:

η(s1 · · · sntm · · · t1) = η(s1 · · · sn)η(tm · · · t1) = e.

Thus,

η(s1 · · · sn) = η(t1 · · · tm),

and so:

η̂(sg1
1 · · · sgnn ) = η̂(th1

1 · · · thm
m ).

Item (2). By the definition of η̂ from the proof of Item (1), it is clear that ker(η̂) is 
defined by the following infinite disjunction of S-formulas:

∨
{∃y1 · · · ∃yn(x = sy1

1 · · · syn
n ) : n < ω, si ∈ S, η(s1 · · · sn) = e}.

Item (3). This follows from Item (2) and the boundedness of reflection length in affine 
Coxeter groups of finite rank from Fact 3.15(2). �
Proof of Corollary 1.15. By Proposition 10.1 it suffices to show that the homomorphism 
ε : W → {+1, −1} defined as s �→ −1, for all s ∈ S, is such that ε(sw) = ε(s), for all 
s ∈ S and w ∈ W . But by e.g. [5, Proposition 1.4.2] we have that:

ε(sw) = (−1)�S(w)1(−1)�S(w−1) = (−1)�S(w)1(−1)�S(w) = 1 = ε(s). �
Proof of Corollary 1.16. We recall the construction from [18] and observe that it satisfies 
the assumption of our Proposition 10.1. Let Γ be a finite graph with domain S = {si :
i ∈ I}, we define a graph Γ+ as follows. The domain of Γ+ is {si : i ∈ I} ∪ {ri : i ∈ I}, 
where the sets {si : i ∈ I} and {ri : i ∈ I} are disjoint. Concerning the adjacency relation 
of Γ+ we have:

(i) {si : i ∈ I} spans a copy of Γ;
(ii) for every i 
= j ∈ I we have that ri is adjacent to rj ;
(iii) for i, j ∈ I we have that si is adjacent to rj if and only if i 
= j.

Let now (Z/2)I denote the direct sum of I copies of a cyclic group of order 2 and let r̄i
be the standard generators. Now, define θ : W (Γ+) → (Z/2)I by letting:

θ(si) = θ(ri) = r̄i,
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for all i ∈ I (cf. Fact 3.16). Then, letting A be the right-angled Artin group A(Γ) on 
generators {gi : i ∈ I}, we have that the map β : A → ker(θ) ⊆ W (Γ+) defined by:

θ(gi) = risi,

for all i ∈ I, is an isomorphism. Thus, it suffices to show that the map θ satisfies the 
assumptions of Proposition 10.1, but this is clear, since (Z/2)I is abelian. �
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