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LARGE STRONGLY ANTI-URYSOHN SPACES EXIST

ISTVÁN JUHÁSZ, SAHARON SHELAH, LAJOS SOUKUP,
AND ZOLTÁN SZENTMIKLÓSSY

Dedicated to the memory of our old friend Ken Kunen

Abstract. As defined in [3], a Hausdorff space is strongly anti-
Urysohn (in short: SAU) if it has at least two non-isolated points
and any two infinite closed subsets of it intersect. Our main result
answers the two main questions of [3] by providing a ZFC con-
struction of a locally countable SAU space of cardinality 2c. The
construction hinges on the existence of 2c weak P-points in ω∗, a
very deep result of Ken Kunen.

It remains open if SAU spaces of cardinality > 2c could exist,
while it was shown in [3] that 22

c

is an upper bound. Also, we do
not know if crowded SAU spaces, i.e. ones without any isolated
points, exist in ZFC but we obtained the following consistency
results concerning such spaces.
(1) It is consistent that c is as large as you wish and there is a

locally countable and crowded SAU space of cardinality c+.
(2) It is consistent that both c and 2c are as large as you wish

and there is a crowded SAU space of cardinality 2c.
(3) For any uncountable cardinal κ the following statements are

equivalent:
(i) κ = cof([κ]

ω
,⊆).

(ii) There is a locally countable and crowded SAU space
of size κ in the generic extension obtained by adding
κ Cohen reals.

(iii) There is a locally countable and countably compact
T1-space of size κ in some CCC generic extension.
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2 I. JUHÁSZ, S. SHELAH, L. SOUKUP, AND Z. SZENTMIKLÓSSY

1. Introduction

Anti-Urysohn (AU) and strongly anti-Urysohn (SAU) spaces were
introduced and studied in [3]. An AU space is a Hausdorff space in
which any two non-empty regular closed sets intersect and a SAU space
is a Hausdorff space that has at least two non-isolated points and in
which any two infinite closed sets intersect. Note that a non-singleton
AU space has no isolated points, i.e. is crowded and a crowded SAU
space is AU, this explains the terminology. Also, the requirement of
having at least two non-isolated points is needed to exclude the trivial
case of one-point compactifications of discrete spaces.

All relevant questions concerning AU spaces were settled in [3], in
particular it was shown that for every infinite cardinal κ there is an
AU space of cardinality κ, but only inconclusive partial results were
proved for SAU spaces. For instance, we could only construct consistent
examples of SAU spaces, moreover all of them were of size ≤ c, while
only 22

c was established as an upper bound for their cardinality.
This, of course, naturally led to the following two questions raised

in [3]:

(1) Is there a SAU space in ZFC?

(2) Can there be a SAU space of cardinality greater than c?

Our main result answers affirmatively both of these questions, namely
we shall present a ZFC example of a locally countable SAU space of
cardinality 2c. It is easy to see that 2c is an upper bound for the sizes
of locally countable SAU spaces, so this result is sharp. However, it
remains an open question if 2c is an upper bound for the sizes of all
SAU spaces. It was proved in [3] that 22

c is such an upper bound.
It was proved in [3, Theorem 3.7] that r = c implies the existence

of a locally countable and crowded SAU space of size ≤ c, moreover
several other forcing constructions yielded crowded SAU spaces. This
then led to the question if the existence of a SAU space is equivalent
to the existence of crowded ones.

By Theorem 2.7 this question can now be reformulated as follows: Is
there a crowded SAU space in ZFC? Now, the method of construction
of Theorem 2.7 yields a SAU space that is right-separated, i.e. scat-
tered, hence it may not help to answer this question that we could not
answer. However, we could get several partial results about it. We
could prove the consistency of the existence of a locally countable and
crowded SAU space of size ≤ c+, moreover we proved that the equality
κ = cof([κ]ω,⊆) is equivalent to the existence of a locally countable
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LARGE STRONGLY ANTI-URYSOHN SPACES EXIST 3

and crowded SAU space in the generic extension obtained by adding κ
Cohen reals.

2. A large SAU space in ZFC

The aim of this section is to present a construction that yields,
in ZFC, a locally countable SAU space of cardinality 2c.We actually
present a general construction of right-separated spaces that uses func-
tions with values that are free filters. We start by fixing some notation
and terminology.

For any infinite set S we write Φ(S) to denote the collection of all
free filters on S. As is customary, S∗ ⊂ Φ(S) denotes the family of all
free ultrafilters on S.

Definition 2.1. Let κ be an uncountable cardinal. We call a function
ϕ with domain κ\ω a nice filter assignment for κ if for all α ∈ κ\ω we
have ϕ(α) ∈ Φ(Sα) for some infinite subset Sα of α. We shall denote
by F(κ) the family of all nice filter assignments for κ.

Note that Sα is simply the maximal member of ϕ(α).
Next we shall show how a nice filter assignment for κ defines a natural

topology on κ.

Definition 2.2. Let ϕ be a nice filter assignment for κ > ω. Then the
topology τϕ on κ is defined by the formula

τϕ = {G ⊂ κ : ∀α ∈ G \ ω
(
G ∩ Sα ∈ ϕ(α)

)
}.

It is left to the reader to check that τϕ is a T1 topology on κ, this is
where considering only free filters is essential.

Since SAU spaces are Hausdorff by definition, we shall need a con-
dition that will imply in case of a nice filter assignment ϕ for κ that
τϕ is Hausdoff. To formulate this condition, we shall use the following
terminology that was introduced in [2].

Definition 2.3. The indexed family of filters {Fi : i ∈ I} is called
disjointly representable if there are sets {Ai ∈ Fi : i ∈ I} such that
Ai ∩ Aj = ∅ whenever i, j ∈ I and i 	= j.

Lemma 2.4. Let ϕ be a nice filter assignment for κ > ω such that
(i) Sα is countable for all α ∈ κ \ ω,
(ii) {ϕ(i) : i ∈ I} is disjointly representable for all countable I ⊂ κ\ω.

Then τϕ is a Hausdoff topology.

Proof. Note first that all n ∈ ω are isolated in τϕ. So, it suffices to
show that distinct α, β ∈ κ \ ω have disjoint neighborhoods.
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4 I. JUHÁSZ, S. SHELAH, L. SOUKUP, AND Z. SZENTMIKLÓSSY

To see that, we set U0 = {α} and V0 = {β} and then define by
recursion countable sets Un and Vn with Un ∩ Vn = ∅ as follows.

Given Un and Vn, we apply (ii) to the index set In = Un ∪ Vn \ ω
to obtain pairwise disjoint sets Ai ∈ ϕ(i) for all i ∈ In. Then we set
Un+1 = Un ∪

⋃
{Ai : i ∈ Un} and similarly Vn+1 = Vn ∪

⋃
{Ai : i ∈ Vn}.

Clearly, then both Un+1 and Vn+1 are countable by (i), moreover we also
have Un+1∩Vn+1 = ∅. Now, it is obvious that U =

⋃
{Un : n < ω} ∈ τϕ

and V =
⋃
{Vn : n < ω} ∈ τϕ are disjoint open neighborhoods of α

and β, completing the proof. �
In view of this result it is natural to look for conditions that imply

disjoint representability of certain countable families of filters. Here is
a very simple such condition about families of ultrafilters on ω.

Proposition 2.5. A countable subfamily of ω∗ is disjointly representable
iff it is a discrete subspace of ω∗, considered as the remainder of βω.

Proof. Indeed, this follows from the fact that in a regular space the
points in a countable discrete subspace have pairwise disjoint neighbor-
hoods, moreover for members of ω∗ this means that they have pairwise
almost disjoint elements. �

Contrary to this proposition, the following result needed in our con-
struction of SAU spaces, is highly non-trivial. But, luckily for us, it is
an immediate consequence of a deep result of Kunen in [5]. We recall
that an ultrafilter u ∈ ω∗ is a weak P-point if u is not in the closure of
any countable subset of its complement.

Theorem 2.6. The family U of all weak P-point ultrafilters in ω∗ has
cardinality 2c, moreover all countable subfamilies of U are disjointly
representable.

Proof. We have |U| = 2c by [5] and it is obvious that all countable sub-
sets of U are discrete in ω∗, hence disjointly representable by Proposi-
tion 2.5. �

We are now ready to present our main result.

Theorem 2.7. If κ = κω ≤ 2c then there is a locally countable SAU
space of cardinality κ.

Proof. To start with, we fix using Theorem 2.6 for every countably
infinite set S ⊂ κ the family U(S) of size 2c of all weak P-point ul-
trafilters in S∗. Then all countable subfamilies of U(S) are disjointly
representable. Also, if T ∈ [S]ω then

U(T ) = {u � T : u ∈ U(S) and T ∈ u},
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LARGE STRONGLY ANTI-URYSOHN SPACES EXIST 5

where u � T = {A ∩ T : A ∈ u}. In other words, u ∈ T ∗ belongs to
U(T ) iff the ultrafilter û ∈ S∗ generated by u belongs to U(S). Indeed,
this is because T ∗ is clopen in S∗.

Next, using κ = κω we fix an enumeration {〈Aα, Bα〉 : ω ≤ α < κ}
of [κ]ω × [κ]ω such that Sα = Aα ∪ Bα ⊂ α for all α ∈ κ \ ω. We then
pick, by transfinite recursion on α ∈ κ \ ω, weak P-points uα ∈ U(Sα)
and vα ∈ U(Sα) such that Aα ∈ uα and Bα ∈ vα as follows.

Assume that α ∈ κ\ω and uβ, vβ have been chosen for all ω ≤ β < α
and then let us put

I = {β ∈ α \ ω : Aβ ∩ Sα ∈ uβ} and J = {β ∈ α \ ω : Bβ ∩ Sα ∈ vβ}.

For each β ∈ I then uβ � Aα generates a weak P-point ultrafilter
ûβ ∈ U(Sα) and, similarly, for each β ∈ J , vβ � Bα generates a weak
P-point ultrafilter v̂β ∈ U(Sα).

But we have on one hand |I ∪ J | < κ ≤ 2c and, on the other hand,
|U(Sα)| = |U(Aα)| = |U(Bα)| = 2c, so we may clearly choose distinct
uα, vα ∈ U(Sα) \ {ûβ : β ∈ I} ∪ {v̂β : β ∈ J} such that Aα ∈ uα and
Bα ∈ vα.

After having completed the recursion, we let

ϕ(α) = {U ∪ V : U ∈ uα and V ∈ vα}

for each α ∈ κ \ ω. Clearly, then ϕ(α) ∈ Φ(Sα), hence ϕ is a nice filter
assignment for κ. It is also clear from the definitions that each α ∈ κ\ω
is a common τϕ-accumulation point of both Aα and Bα, hence τϕ turns
out to be a SAU topology on κ if we can prove that it is Hausdorff.

To see that, it suffices to show that for any I ∈ [κ \ ω]ω the family
{uα, vα : α ∈ I} is disjointly representable. Indeed, if

{Uα : α ∈ I} ∪ {Vα : α ∈ I}

are pairwise disjoint sets with Uα ∈ uα and Vα ∈ vα then {Uα∪Vα : α ∈
I} are pairwise disjoint as well. But this means that {ϕ(α) : α ∈ I} is
disjointly representable for all countable I ⊂ κ\ω, hence τϕ is Hausdorff
by Lemma 2.4.

So, consider I ∈ [κ \ ω]ω and put S =
⋃
{Sα : α ∈ I}. For each

α ∈ I then uα generates a weak P-point ûα ∈ U(S) and similarly vα
generates v̂α ∈ U(S), moreover by our recursive construction they are
all distinct. Consequently, by Theorem 2.6 the family {ûα, v̂α : α ∈ I}
is disjointly representable, hence so is {uα, vα : α ∈ I}, completing the
proof. �

It is worth to mention that for κ ≥ c the condition κ = κω ≤ 2c

in Theorem 2.7 is actually necessary to have a locally countable SAU
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6 I. JUHÁSZ, S. SHELAH, L. SOUKUP, AND Z. SZENTMIKLÓSSY

space of cardinality κ. Since SAU spaces are countably compact, this
follows immediately from the following result.
Theorem 2.8. If X is a locally countable and countably compact T1-
space of cardinality κ > c then κ = κω.

Proof. Assume, on the contrary that κ < κω and let λ be the smallest
cardinal such that λω > κ. It is well-known that then cf(λ) = ω. But
then by a classical result of Tarski in [7], there is an almost disjoint
family A ⊂ [λ]ω with |A| = λω > κ.

Since λ ≤ κ, we may assume without any loss of generality that
λ ⊂ X, hence every A ∈ A has an accumulation point xA ∈ X. But
|A| > κ then implies the existence of some B ⊂ A and x ∈ X such that
|B| > κ and xA = x for all A ∈ B. Let U be a countable neighbourhood
of x, then A∩U is infinite for all A ∈ B which is impossible because B
is almost disjoint with |B| > κ > c. �
Corollary 2.9. For c ≤ κ ≤ 2c there is a locally countable SAU space
of cardinality κ iff κ = κω.

As was mentioned in the introduction, any locally countable SAU
space X has cardinality ≤ 2c. Indeed, this is because it does have an
infinite closed subset F of cardinality ≤ 2c, namely the closure of any
subset of size ω. But local countability then implies that F is covered
by an open set U with |U | = |F | ≤ 2c and the SAU property implies
that X \ U is finite.

Finally, we mention the following accidental consequence of Theorem
2.7. In this, F (X) is the free set number and Xδ denotes the Gδ-
modification of the space X, see [4].
Corollary 2.10. The locally countable SAU space X of cardinality 2c

of Theorem 2.7 is an example of a Hausdorff space with F (X) = ω and
F (Xδ) = 2c.

Indeed, F (X) = ω because every free sequence in a SAU space has
order type < ω + ω, while Xδ is discrete. It was shown in [4] that for
any Hausdorff space X with F (X) = ω we have F (Xδ) ≤ 22

c and we do
not know if this upper bound could be replaced by 2c, i.e. if Corollary
2.10 is sharp. It is curious that the same upper bound 22

c is known for
the size of any SAU space and the same problem arises if this could be
improved to 2c.

3. Forcing "large" crowded SAU spaces

All the consistent examples of SAU spaces constructed in [3] were
crowded but of cardinality ≤ c. As mentioned above, we do not know
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LARGE STRONGLY ANTI-URYSOHN SPACES EXIST 7

if crowded SAU spaces exist in ZFC but the aim of this section is to
produce consistent examples of crowded SAU spaces of size > c.

By Theorem 3.7 of [3], the assumption r = c implies the existence
of a locally countable and crowded SAU space of cardinality c. Our
next result says that, under the same assumption r = c together with
c = 2<c, a forcing construction yields a generic extension of the ground
model in which there is a locally countable and crowded SAU space of
cardinality c+.

Theorem 3.1. If r = c = 2<c then we have a c-closed and c+ − CC
notion of forcing P such that, in the generic extension V P, there is a
locally countable and crowded SAU space of cardinality c+.

Proof. Our aim is to obtain a function U : c+ → [c+]ω in V P such
that α ∈ U(α) for each α ∈ c+ and {U(α) : α ∈ c+} generates a SAU
topology on c+. Our conditions then will be approximations to U of size
< c with some “side conditions" that will ensure that any two infinite
subsets of c+ have a common accumulation point. Hausdorffness of τ
will follow from the assumption r = c and genericity.

Now we define the notion of forcing P = 〈P,≤〉. The elements of
P will be pairs of the form p = 〈Up, Cp〉, where Up is a function with
domain Ap ∈ [c+]<c and values taken in [Ap]

ω such that ω ⊂ Ap and
Up(n) = ω for all n ∈ ω, moreover α ∈ U(α) ⊂ α + 1 if α ∈ Ap \ ω.

Then {U(α) : α ∈ Ap} as a subbase generates a topology τp on
Ap that is required to be crowded, i.e. we assume that all non-empty
members of τp are infinite. To handle this, we define

Bp,I =
⋂

{Up(α) : α ∈ I}

for any finite subset I of Ap. Then

Bp = {Bp,I : I ∈ [Ap]
<ω} \ {∅}

is a base for τp, hence our assumption just means that all members of
Bp are infinite.

For any x ∈ Ap we shall denote by acp(x) the family of all sets
C ∈ [Ap]

ω such that x is a τp-accumulation point of C, i.e. every τp-
neighborhood of x has infinite intersection with C. Now, the second
coordinate Cp of the condition p is also a function with domain Ap but
such that Cp(x) ∈ [acp(x)]

<c for x ∈ Ap.
Next we define the partial order ≤ on P by the following stipulations:

Definition 3.2. For p, q ∈ P we have p ≤ q, i.e. p is a stronger
condition than q iff
(a) Up ⊃ Uq and
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8 I. JUHÁSZ, S. SHELAH, L. SOUKUP, AND Z. SZENTMIKLÓSSY

(b) Cp(x) ⊃ Cq(x) for all x ∈ Aq.

We may reformulate item (a) above as follows: Ap ⊃ Aq and Up(x) =
Uq(x) for all x ∈ Aq. Note that this implies Bp,I = Bq,I for all I ∈
[Aq]

<ω. Also, it should be noted that in item (b) it is implicit that
every C ∈ Cq(x) accumulates to x in the topology τp as well.

We next present several lemmas concerning the forcing P which to-
gether will yield the desired function U : c+ → [c+]ω in V P.

Lemma 3.3. The forcing P is c-closed.

Proof of 3.3. Assume that 〈pξ : ξ < 
〉 is a decreasing 
-sequence in P,
where pξ = 〈Uξ, Cξ〉 for ξ < 
 and 
 < c is an infinite regular cardinal.
(To enhance readability, we use the ξ’s instead of the pξ’s as indices.)
We may then define a lower bound p = 〈Up, Cp〉 for the pξ’s as follows.

(1) Up =
⋃

ξ<� Uξ, hence Ap =
⋃

ξ<�Aξ, and

(2) Cp(x) =
⋃
{Cξ(x) : x ∈ Aξ} for any x ∈ Ap.

To see that p ∈ P , first note that c = 2<c implies that c is regular,
hence we have both |Ap| < c and |Cp(x)| < c for any x ∈ Ap. That τp is
crowded follows from the fact that Bp =

⋃
ξ<� Bξ. It remains to check

that for any C ∈ Cξ(x) we have C ∈ acp(x), and that is clear because
then C ∈ acη(x) for all η ∈ 
 \ ξ and every B ∈ Bp eventually belongs
to Bη as well. �

Our next lemma is an amalgamation result that will imply the c+ −
CC-property of P. To formulate it we use the following notation: if M
and N are non-empty sets of ordinals, we write M < N iff α < β for
each α ∈ M and β ∈ N .

Lemma 3.4. Assume that p, q ∈ P are such that Ap ∩ Aq < ApΔAq,
otp(Ap) = otp(Aq), and for the unique order isomorphism π : Ap → Aq

between them we have, for all α ∈ Ap, that
(i) Uq(π(α)) = Up(α), and
(ii) Cq(π(α)) = {π[C] : C ∈ Cp(α)}.

Then p and q are compatible in P.

Proof of 3.4. Let us note first that, as π is the identity on Ap ∩ Aq <
ApΔAq, we have Up(α) = Uq(α) for all α ∈ Ap ∩ Aq by (i), hence
Ur = Up ∪ Uq is a well-defined map on Ar = Ap ∪Aq. We claim that if
we set Cr(x) = Cp(x) ∪ Cq(x) for x ∈ Ap ∩ Aq, moreover Cr(x) = Cp(x)
for x ∈ Ap \ Aq and similarly Cr(x) = Cq(x) for x ∈ Aq \ Ap then
r = 〈Ur, Cr〉 is a common extension of p and q in P.
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To see that r ∈ P , the only non-trivial thing to check is that Cr(x) ⊂
acr(x) for any x ∈ Ap ∩ Aq. This, however, is clear because

Ur(x) = Up(x) = Uq(x) ⊂ ω ∪ (x+ 1),

and hence C ∈ acr(x) iff C∩(ω∪x) ∈ acr(x), moreover π is the identity
on Ap ∩ (ω ∪ x) = Aq ∩ (ω ∪ x). Now, that r extends both p and q is
obvious. �

Using our assumption c = 2<c, standard counting and delta-system
arguments imply that every subset Q of P with |Q| = c+ contains two
elements p, q ∈ Q that satisfy the conditions of Lemma 3.4, and hence
are compatible. Consequently, P is indeed c+ − CC.

It is an immediate consequence of the above results that we have
cV = cV

P and (c+)V = (c+)V
P .

Lemma 3.5. For every condition q ∈ P and α ∈ c+ \ ω there is p ≤ q
such that α ∈ Ap.

Proof of 3.5. Indeed, if α /∈ Aq then let Ap = Aq ∪ {α} and extend
Uq to Ap by putting Up(α) = ω ∪ {α}. Also, we extend Cq by letting
Cp(α) = ∅. It is obvious then that p = 〈Up, Cp〉 is as required. �

It immediately follows that if G ⊂ P is P-generic over V then U =⋃
{Up : p ∈ G} maps c+ into [c+]ω and the (obviously locally countable)

topology τ generated by the range of U is crowded because

B =
⋃

{Bp : p ∈ G} ⊂ [c+]ω

forms a base for τ .
We still have to work to show that τ is SAU. The Hausdorff property

of τ immediately follow from the following result.

Lemma 3.6. For every condition q ∈ P and distinct α, β ∈ Aq there
is p ≤ q such that for some γ, δ ∈ Ap we have α ∈ Up(γ), β ∈ Up(δ)
and Up(γ) ∩ Up(δ) = ∅.
Proof of 3.6. Start by fixing a countable τq-open set W containing both
α and β, e.g. W = Uq(α)∪Uq(β) will work. For every x ∈ W consider
the following two subfamilies of [W ]ω:
Bx = {B ∈ Bq : x ∈ B ⊂ W}, Ax = {B ∩ C : B ∈ Bx and C ∈ Cq(x)}.
Then we have |Ax ∪ Bx| < c and hence for A =

⋃
{Ax : x ∈ W} and

B =
⋃
{Bx : x ∈ W} we have |A ∪ B| < c as well.

We may thus apply our assumption r = c to the family A∪B ⊂ [W ]ω

to obtain a partition W = E∪F of W such that |E∩A| = |F ∩A| = ω
for all A ∈ A and |E ∩ B| = |F ∩ B| = ω for all B ∈ B. Without loss
of generality, we may also assume that α ∈ E and β ∈ F .
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Let us now choose γ, δ ∈ c+ such that Aq < γ < δ, and extend Uq to
Ap = Aq∪{γ, δ} by putting Up(γ) = E∪{γ} and Up(δ) = F ∪{δ}. It is
clear from our choice of E and F that τp is crowded and Cq(x) ⊂ acp(x)
for all x ∈ Aq. Consequently, if we extend Cq(x) to Ap by putting
Cp(γ) = Cp(δ) = ∅ then p = 〈Up, Cp〉 ∈ P is as required. �

Now, it is trivial from Lemma 3.6 that the generic topology τ in
V [G] is Hausdorff. Our next lemma will imply the only missing thing
required to show that τ is SAU, namely that any two infinite τ -closed
sets intersect.

Lemma 3.7. Given any condition q ∈ P and two countably infinite
sets C,D ∈ [Aq]

ω, there is p ≤ q such that both C and D belong to
Cp(x) for some x ∈ Ap.

Proof of 3.7. As in the previous proof, we start by fixing a countable
τq-open set W such that C∪D ⊂ W . Then we choose γ ∈ c+ such that
Aq < γ and extend Uq to Ap = Aq ∪ {γ} by putting Up(γ) = W ∪ {γ}.
We also extend Cq(x) to Ap by putting Cp(γ) = {C,D}. It is trivial
that then p = 〈Up, Cp〉 ∈ P and p ≤ q, completing the proof. �

As a corollary we have that the generic topology τ is SAU. Indeed,
for any two sets C,D ∈ [c+]ω, putting together Lemmas 3.3, 3.5, and
3.7 we may conclude that

{p ∈ P : C ∪D ⊂ Ap and ∃ x ∈ Ap {C,D} ⊂ acp(x)}
is dense in P. But clearly if {C,D} ⊂ acp(x) then p forces {C,D} ⊂
acτ (x) and so clτ (C) ∩ clτ (D) 	= ∅ as well. Thus the proof of Theorem
3.1 is completed. �

We do not know if the above result is (consistently) sharp, i.e. if
c+ could be replaced by, say, 2c. Our next theorem shows that this is
possible if we give up local countability. Also, the assumption r = c

in the ground model is strengthened to r∗ = c, where r∗ is defined to
be the smallest cardinal 
 such that there is a family A of infinite sets
that cannot be reaped (or bisected) by a single set. So, r∗ = c just says
that any family A of infinite sets with |A| < c can be reaped.

Clearly, we have ω < r∗ ≤ r ≤ c, moreover r∗ < r = c is consistent.
Indeed, by [1] it is consistent that c is as large as you wish, moreover
both ♣ and MA(countable) hold. But a ♣-sequence can not be reaped,
hence r∗ = ω1, while MA(countable) implies r = c.

Theorem 3.8. If r∗ = c = 2<c then there is a c-closed and c+ − CC
notion of forcing P such that, in the generic extension V P, there is a
crowded SAU space of cardinality (2c)V = (2c)V

P.

Paper Sh:1213, version 2022-10-11. See https://shelah.logic.at/papers/1213/ for possible updates.



LARGE STRONGLY ANTI-URYSOHN SPACES EXIST 11

Proof. To simplify notation, we shall write κ = 2c in what follows.
Similarly as in the proof of Theorem 3.1, our aim is then to force a
function U : κ → P(κ) such that α ∈ U(α) for all α ∈ κ and the
topology τ generated by the range {U(α) : α ∈ κ} of U on κ is a
crowded SAU space. The notion of forcing P = 〈P,≤〉 will also be
quite similar to the one used there.

The elements of P will be pairs of the form p = 〈Up, Cp〉, where
Up is a function with domain Ap ∈ [κ]<c with values taken in P(Ap)
such that α ∈ U(α) for all α ∈ Ap, moreover the second coordinate
Cp of the condition p is also a function with domain Ap but such that
Cp(x) ∈ [acp(x)]

<c for x ∈ Ap. Here we are freely using the analogs of
the pieces of notation from the above proof of 3.1, so acp(x) denotes
the family of all countable subsets of Ap that accumulate to x in the
topology τp generated by the range of Up on Ap. Also, we shall use the
notation Bp,I =

⋂
{Up(α) : α ∈ I} for I ∈ [Ap]

<ω to obtain the base

Bp = {Bp,I : I ∈ [Ap]
<ω} \ {∅}

for τp.
Next we define the partial order ≤ on P that, as far as the first

coordinate is concerned, is quite different from the corresponding part
of 3.2.

Definition 3.9. For p, q ∈ P we have p ≤ q, i.e. p is a stronger
condition than q iff
(a) Ap ⊃ Aq and for every α ∈ Aq we have Aq ∩ Up(α) = Uq(α);
(b) Uq(α) ∩ Uq(β) = ∅ implies Up(α) ∩ Up(β) = ∅ for any α, β ∈ Aq;

(c) Cp(x) ⊃ Cq(x) for all x ∈ Aq.

It is obvious that ≤ is indeed a partial order on P .
We next present a series of lemmas that will help us prove the re-

quired properties of the forcing P.

Lemma 3.10. The forcing P is c-closed.

Proof of 3.10. Assume that 〈pξ : ξ < 
〉 is a decreasing 
-sequence in P,
where pξ = 〈Uξ, Cξ〉 for ξ < 
 and 
 < c is an infinite regular cardinal.
We may then define a lower bound p = 〈Up, Cp〉 for the pξ’s as follows.

(1) Ap =
⋃

ξ<�Aξ, and Up(α) =
⋃
{Uξ(α) : ξα ≤ ξ < 
}, where

ξα = min{ξ : α ∈ Aξ}.
(2) Cp(x) =

⋃
{Cξ(x) : x ∈ Aξ} for any x ∈ Ap.

Since c is regular, we have both |Ap| < c and |Cp| < c. For any ξ < 

and C ∈ Cξ(x) we have C ∈ acp(x) because then C ∈ acη(x) for all
η ∈ 
 \ ξ and every B ∈ Bp eventually belongs to Bη as well. Thus we
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have p ∈ P . The easy verification of p ≤ pξ for all ξ < 
 is left to the
reader. �

As in the proof of 3.4, we next give an amalgamation result that will
imply the c+ − CC property of P.

Lemma 3.11. Assume that p, q ∈ P are isomorphic conditions, i.e.
otp(Ap) = otp(Aq), the unique order isomorphism π : Ap → Aq is the
identity on A = Ap ∩ Aq, moreover for all α ∈ Ap we have

(i) Uq(π(α)) = Up(α), and
(ii) Cq(π(α)) = {π[C] : C ∈ Cp(α)}.

Then p and q are compatible in P.

Proof of 3.11. We define the desired common extension r = 〈Ur, Cr〉 of
p and q by the following stipulations:
(a) Ur(x) = Ur(π(x)) = Up(x) ∪ Uq(π(x)) for x ∈ Ap;
(b) Cr(x) = Cr(π(x)) = Cp(x) ∪ Cq(π(x)) for x ∈ Ap.
As π is the identity on A, both functions Ur and Cr are well-defined on
Ar = Ap ∪ Aq.

To see that r ∈ P , we have to check that Cr(x) ⊂ acr(x) for all
x ∈ Ar. By symmetry, it suffices to do this for x ∈ Ap. In view of
conditions (ii) and (b), what we have to show is that x ∈ B ∈ Br

implies |B∩C| = |B∩π[C]| = ω for any C ∈ Cp(x). Now, any member
of Br is of the form

Br,I∪J =
⋂

{Ur(i) : i ∈ I} ∩
⋂

{Ur(j) : j ∈ J}

with I ∈ [Ap]
<ω and J ∈ [Aq]

<ω. It is easy to compute from condition
(a) that we have

Br,I∪J = Bp,I∪π−1[J ] ∪ Bq,π[I]∪J ,

moreover Bq,π[I]∪J = π[Bp,I∪π−1[J ]].
Then x ∈ Br,I∪J implies x ∈ Bp,I∪π−1[J ], hence |C ∩ Bp,I∪π−1[J ]| = ω,

consequently, then |π[C]∩Bq,π[I]∪J | = ω as well. But this clearly implies

|Br,I∪J ∩ C| = |Br,I∪J ∩ π[C]| = ω,

just as we claimed.
To see that r is a common extension of p and q, by symmetry again,

it suffices to show r ≤ p. Clearly, only condition (b) of 3.9 requires
any checking for this. But as π is an isomorphism, Up(x) ∩ Up(y) = ∅
implies Uq(π(x)) ∩ Uq(π(y)) = ∅, moreover Up(x) ∩ A = Uq(π(x)) ∩ A
and Up(y) ∩ A = Uq(π(y)) ∩ A, we indeed have Ur(x) ∩ Ur(y) = ∅. �
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Since c = 2<c, standard counting and delta-system arguments imply
that every subset Q of P with |Q| = c+ contains two isomorphic ele-
ments p, q ∈ Q that satisfy the conditions of Lemma 3.11, and hence
are compatible. Consequently, P is indeed c+ − CC.

It is an immediate consequence of the above results that we have
cV = cV

P , moreover by counting nice names we also may conclude
(2c)V = κ = (2c)V

P .
We also have the following immediate consequence of Lemma 3.11

which will be used to show that the generic topology τ is (very) crowded.

Lemma 3.12. For every α < κ the set of conditions

Dα = {r ∈ P : ∀B ∈ Br (B \ α 	= ∅)}
is dense in P.

Proof of 3.12. Since cf(κ) > c, the domain Ap of any condition p ∈ P
is bounded in κ. So we can pick q ∈ P isomorphic to p such that
Aq > {α} ∪ Ap. Now, let r be the common extension of p and q
constructed in Lemma 3.11. Then, as we have seen,

Br = {B ∪ π[B] : B ∈ Bp},
where π is the unique order isomorphism from Ap to Aq. Thus we
clearly have p ≥ r ∈ Dα. �

That the generic map U is defined on all of κ, follows from the
following trivial lemma.

Lemma 3.13. For every α < κ the set of conditions Eα = {p ∈ P :
α ∈ Ap} is dense in P.

Proof of 3.13. Indeed, if q ∈ P and α /∈ Aq then define p = 〈Up, Cp〉
as follows: Let Ap = Aq ∪ {α}, Up(x) = Uq(x) and Cp(x) = Cq(x)
for x ∈ Aq, moreover Up(α) = Ap and Cp(α) = ∅. Then p ≤ q and
p ∈ Eα. �

It immediately follows from Lemma 3.13 that if G is P-generic over
V then putting U(α) =

⋃
{Up(α) : p ∈ G ∩Eα} for all α < κ, then U :

κ → P(κ) is well-defined in V [G], hence so is the topology τ generated
by the range of U . It is also clear that if B is the base of τ consisting
of all non-empty finite intersections of the subbase {U(α) : α < κ}
then every member of B is cofinal in κ, hence τ is crowded. Indeed, fix
α < κ and assume that BI =

⋂
{U(i) : i ∈ I} 	= ∅ for some I ∈ [κ]<ω.

By lemmas 3.13 and 3.12 there is p ∈ G ∩ Dα such that I ⊂ Ap and
Bp,I ∈ Bp. But then Bp,I ⊂ BI implies BI \ α 	= ∅, so BI is indeed
cofinal in κ.
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Our next result is used to show that the generic topology τ is Haus-
dorff.

Lemma 3.14. For distinct α, β ∈ κ the set of conditions D(α, β) con-
sisting of all p ∈ P such that for some γ, δ ∈ Ap we have α ∈ Up(γ),
β ∈ Up(δ), and Up(γ) ∩ Up(δ) = ∅ is dense in P.

Proof of 3.14. By Lemma 3.13 it suffices to show that any q ∈ P with
α, β ∈ Aq has an extension in D(α, β). For every x ∈ Aq consider the
following family of infinite sets:

Ax = {B ∩ C : x ∈ B ∈ Bq and C ∈ Cq(x)} ⊂ [Aq]
ω.

Then we have |Ax| < c and hence, as c is regular and |Aq| < c, A =⋃
{Ax : x ∈ Aq} has cardinality less than c as well.
We may thus apply our assumption r∗ = c to A ⊂ [Aq]

ω to obtain a
partition Aq = E ∪ F of Aq such that |E ∩ A| = |F ∩ A| = ω for all
A ∈ A. Without loss of generality, we may also assume that α ∈ E
and β ∈ F .

Let us now choose distinct γ, δ ∈ κ \Aq and define p ∈ P as follows.
Put Ap = Aq ∪{γ, δ}, for x ∈ Aq set Up(x) = Uq(x) and Cp(x) = Cq(x),
moreover Up(γ) = E ∪ {γ}, Up(δ) = F ∪ {δ} and, finally, Cp(γ) =
Cp(δ) = ∅. It is clear from our choice of E and F that Cp(x) ⊂ acp(x)
for all x ∈ Aq. It trivially follows then that p = 〈Up, Cp〉 ∈ D(α, β) and
p ≤ q. �

It is obvious from condition (b) of Definition 3.9 that every p ∈
D(α, β) forces U(α)∩U(β) = ∅, hence τ is indeed Hausdorff. Our last
result will finish our proof by implying that τ is SAU.

Lemma 3.15. For any two sets C,D ∈ [κ]ω the set of conditions

E(C,D) = {p ∈ P : C ∪D ⊂ Ap and ∃ x ∈ Ap {C,D} ⊂ acp(x)}
is dense in P.

Proof of 3.15. By Lemmas 3.10 and 3.13 it suffices to show that any
q ∈ P with C ∪ D ⊂ Aq has an extension in E(C,D). To see that,
pick γ ∈ κ \ Aq and define p ∈ P as follows. First, set Ap = Aq ∪
{γ}, for x ∈ Aq set Up(x) = Uq(x) and Cp(x) = Cq(x). We also set
Up(γ) = {γ} ∪ Aq and Cp(γ) = {C,D}. Then the only member of Bp

containing γ is Ap, hence we trivially have Cp(γ) ⊂ acp(γ). We thus
have p = 〈Up, Cp〉 ∈ E(C,D) and p ≤ q, completing the proof. �

Since every condition p ∈ E(C,D) clearly forces clτ (C)∩clτ (D) 	= ∅,
it immediately follows that τ is indeed SAU. �
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4. Crowded SAU spaces from Cohen reals

In the previous section, with considerable effort, we presented con-
sistent examples of crowded SAU spaces of size > c. In this section we
show that to obtain such examples of size ≤ c is much easier, in fact,
we can get them by simply adding Cohen reals.

To fix our notation, we shall denote by CI the standard Cohen forcing

CI = 〈Fn(I, 2),⊃〉 ,
using the notation of [6]. Before turning to this promised result, we
formulate and prove the following technical lemma.

Lemma 4.1. Assume that cof([κ]ω,⊂) = κ, moreover τ is a crowded
and locally countable Hausdorff topology on a set X of cardinality κ with
X ∩ κ = ∅. Then there is a crowded and locally countable Hausdorff
topology σ on Z = X ∪ κ in V Cκ such that

(1) τ ⊂ σ;
(2) X ∩ clσ(A) = clτ (A) for every A ∈ V ∩ [X]ω;
(3) clσ(C) ∩ clσ(D) 	= ∅ for any two C,D ∈ V ∩ [X]ω.

Proof of 4.1. Since X is locally countable, every countable subset of X
is included in a countable τ -open set, hence by cof([κ]ω,⊂) = κ we can
fix U = {Uα : α ∈ κ} ⊂ τ ∩ [X]ω that is cofinal in [X]ω. For each α ∈ κ
we also fix an ω-type one-to-one enumeration {xα,n : n < ω} of Uα.

Let G be Cκ-generic over V and g = ∪G : κ → 2 be the correspond-
ing Cohen generic map. For every α < κ we then define

Wα = {α} ∪ {xα,n : g(ω · α + n) = 1}.

We claim that the topology σ generated in V [G] on Z by the subbase

τ ∪ {Wα : α < κ} ∪ {Tα = Z \Wα : α < κ}
is as required.

That σ is locally countable follows because Wα ⊂ Uα ∪ {α} for all
α < κ. To see that it is crowded, consider any non-empty basic open
set of the form B = U ∩WI ∩ TJ where U ∈ τ+, WI = ∩{Wi : i ∈ I}
and TJ = ∩{Tj : j ∈ J} with I, J ∈ [κ]<ω. Let H = U ∩

⋂
{Ui : i ∈ I},

then ∅ 	= B ⊂ H implies that H is infinite because X is crowded and
H is a non-empty open set in X. To see that |B| = ω, it is clearly
enough to prove the following Claim.

Claim 4.1.1. For any p ∈ Cκ and F ∈ [H]<ω there are q ≤ p and
x ∈ H \ F such that q � x ∈ B.
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Proof of the Claim. Let

E = {xα,n ∈ H : α ∈ I ∪ J and ω · α + n ∈ dom(p)}.
Clearly |E| ≤ | dom(p)| < ω, hence we can pick x ∈ H \ (F ∪E). Then
x ∈ H ⊂ Wα for each α ∈ I, so x = xα,nα for some nα < ω. Similarly,
if β ∈ J and x ∈ Wβ then there is mβ ∈ ω such that x = xβ,mβ

.
Let us put J ′ = {β ∈ J : x ∈ Wβ}. Now, since x /∈ E, we have
ω · α + nα /∈ dom(p) for α ∈ I and ω · β +mβ /∈ dom(p) for β ∈ J ′, so
we may define q ∈ Cκ with q ≤ p as follows:

q(ω · α + nα) = 1 for α ∈ I and q(ω · β +mβ) = 0 for β ∈ J ′.

Clearly, then q � x ∈ B. �
To check that σ is Hausdorff, consider first α 	= β ∈ κ. In this case

Wα and Z \ Wα are clearly their disjoint neighborhoods. If x ∈ X
and α ∈ κ then |{β : x ∈ Uβ}| = κ implies that for every condition
q ∈ Fn(κ, 2) there is β 	= α with x = xβ,n ∈ Uβ and

[ω · β, ω · β + ω) ∩ dom(q) = ∅.
Now, if p extends q so that p(ω · β + n) = 1 then p forces x ∈ Wβ and
α ∈ Z \Wβ. Finally, there is nothing to prove if x 	= y ∈ X because
τ ⊂ σ is Hausdorff.

It remains to prove (1), (2) and (3). Now, (1) holds by definition.
To check (2), consider any x ∈ clτ (A) for some A ∈ V ∩ [X]ω and
x ∈ B = U ∩WI ∩TJ . Let H = U ∩

⋂
{Ui : i ∈ I ∪J}, then x ∈ H ∈ τ .

We may assume that x /∈ A, hence |H∩A| = ω. So, given any condition
q ∈ Fn(κ, 2), there is y ∈ H ∩ A such that for every i ∈ I ∪ J with
y = xi,ni

we have ω ·i+ni /∈ dom(q). Consequently, we may extend q to
p ∈ Fn(κ, 2) so that p(ω ·i+ni) = 1 whenever i ∈ I and p(ω ·i+ni) = 0
whenever i ∈ J . But then p clearly forces y ∈ B, hence B ∩ A 	= ∅ as
well.

Finally, since for any C,D ∈ V ∩ [X]ω there is α < κ with C ∪D ⊂
Uα, to prove (3), it clearly suffices to show that α ∈ clσ(A) whenever
A ∈ V ∩ [Uα]

ω. To see this, note first that the sets of the form

Bα,I = Wα \
⋃

i∈I

Wi

constitute a σ-neighborhood base at α, where α /∈ I ∈ [κ]<ω. For any
condition q ∈ Fn(κ, 2) there is x = xα,n ∈ A such that ω · α + n /∈
dom(q) and for every i ∈ I if x = xi,ni

∈ Ui then ω · i + ni /∈ dom(q).
So, we may extend q to p ∈ Fn(κ, 2) so that p(ω · α + n) = 1 and
p(ω · i + ni) = 0 whenever x ∈ Ui for some i ∈ I. But then p forces
x ∈ Bα,I , hence A ∩ Bα,I 	= ∅, completing the proof. �
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From Lemma 4.1 the following result is easily deduced.

Theorem 4.2. Assume that W is a model of ZFC, 〈Vα : α < ω1〉 is
an increasing sequence of ZFC submodels in W , (ω1)

V0 = (ω1)
W , and

κ ∈ V0 is a cardinal such that

([κ]ω)W =
⋃

α<ω1

([κ]ω)Vα

and cof([κ]ω,⊂) = κ holds in all the Vα’s. Assume also that Vα+1

contains a Cκ-generic filter Gα over Vα for every α < ω1. Then there
is a crowded locally countable SAU space of cardinality κ in W .

Proof. To start with, we fix a crowded locally countable space 〈X0, τ0〉 ∈
V0 of cardinality κ such that X0∩(ω1×κ) = ∅. By transfinite recursion
on α ≤ ω1 we then define crowded locally countable topologies τα ∈ Vα

on Xα = X0 ∪ (α× κ) as follows.
To obtain τα+1 from τα, we apply Lemma 4.1 to get a crowded locally

countable topology σα ∈ V [Gα] ⊂ Vα+1 on Xα+1 = Xα∪ ({α}×κ) with
properties (1) - (3) applied to Xα and {α} × κ instead of X and κ.
Then τα+1 is the topology generated by σα on Xα+1 in Vα+1. For α
limit we simply let τα be the topology on Xα generated by

⋃
β<α τβ on

Xα in Vα+1.
Now, it is straightforward to check that τω1 is a crowded locally

countable topology on Xω1 in the final model W . The topology is
SAU because if A,B ∈ [Xω1 ]

ω ∩W then there is α < ω1 with A,B ∈
[Xωα ]

ω ∩ Vα, and so A and B have a common accumulation point in
Xα+1. Then x is a common accumulation point in Xω1 as well. �

While it is an immediate corollary of Theorem 4.2 that the equality
cof([κ]ω,⊂) = κ implies the existence of a crowded locally countable
SAU space of cardinality κ in the generic extension obtained by adding
κ > ω Cohen reals, it may be somewhat surprising that the two state-
ments are actually equivalent.

Theorem 4.3. For any uncountable cardinal κ TFAE:
(i) cof([κ]ω,⊂) = κ.
(ii) There is a crowded locally countable SAU space in V Cκ.
(iii) There is a locally countable and countably compact T1-space in

some CCC generic extension W of V .

Proof. Since (i) ⇒ (ii) is implied by Theorem 4.2 and (ii) ⇒ (iii) is
trivial, it suffices to show that (iii) ⇒ (i).
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We first note that if X is a locally countable and countably compact
T1-space of cardinality κ > ω then, choosing a countable neighbour-
hood Ux of every non-isolated point x ∈ X ′, the family

U = {Ux : x ∈ X ′} ⊂ [X]ω

has the property that for every A ∈ [X]ω there is Ux ∈ U with |A∩Ux| =
ω, i.e. U is ω-hitting.

Now, it is well-known that if κ > ω then the existence of an ω-hitting
family H of size λ in [κ]ω implies that of a cofinal family of size λ in
[κ]ω. Indeed, we may then take H with |H| = λ that is ω-hitting in
[κ]<ω and then {∪H : H ∈ H} is cofinal in [κ]ω. This is because if

A = {αi : i < ω} ∈ [κ]ω and SA =
{
{αi : i < n} : n < ω

}
,

then |H ∩ SA| = ω implies A ⊂ ∪H.
Thus (iii) implies that cof([κ]ω,⊂) = κ holds in W , but this, in turn,

implies the same in V because for any set A ∈ W with A ⊂ V there is
B ∈ V such that A ⊂ B and |A| = |B|. �

It is easy to see that r ≥ r∗ ≥ κ holds in V Cκ . Indeed, if G is a
Cκ-generic filter over V , and A ⊂ [λ]ω with |A| = λ < κ, then we can
assume that A ∈ W = V [G � Cλ]. Then H = G � Cκ\λ is a Cκ\λ-generic
filter over W . So if we take h =

⋃
H and define X ⊂ λ by the formula

α ∈ X iff h(λ+ α) = 1, then X reaps A, because A ∈ W .
Moreover Theorem 3.7. of [3] as well as Theorem 3.1 above used the

assumption r = c to obtain ‘"large" crowded locally countable SAU
spaces. This lead us to raise the question if one could get such spaces
when r is small. Our last result gives an affirmative answer to this
question.

Theorem 4.4. There are models of ZFC containing crowded locally
countable SAU spaces of cardinality c in which r = ω1 but c is arbitrarily
large.

Proof. To get such a model we first fix a cardinal κ = κω in the ground
model and then will do a finite support iteration 〈Pα : α ≤ ω1〉 of length
ω1 of CCC forcings where Pα+1 = Cκ ∗ Qα for any α < ω1. Then,
independently of the choice of the Qα’s, we get from Theorem 4.2 that
a crowded locally countable SAU space of cardinality c = κ exists in
the final model W = V Pω1 .

The posets Qα will be obtained together with ultrafilters uα ∈ ω∗

in V Pα by recursion so that β < α < ω1 implies uβ ⊂ uα. Our u0

is an arbitrary free ultrafilter on ω in the ground model and for α
limit we take uα ⊃

⋃
{uβ : β < α}. Once we have uα, we let Qα be
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the standard CCC, in fact even σ-centered, partial order that adds an
infinite pseudo-intersection Sα of uα.

Then u =
⋃
{uα : α < ω1} is a free ultrafilter on ω in the final model

W = V Pω1 that is generated by the family
{Sα : α < ω1} ∪ {ω \ a : a ∈ [ω]<ω}.

Thus W actually satisfies u = ω1 (see [6, V.4.27] for more details).
However the base of a free ultrafilter on ω obviously cannot be reaped,
hence u = ω1 implies r = ω1. �
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